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The function space of deep-learning machines is investigated by studying growth in the entropy
of functions of a given error with respect to a reference function, realized by a deep-learning ma-
chine. Using physics-inspired methods we study both sparsely and densely-connected architectures
to discover a layer-wise convergence of candidate functions, marked by a corresponding reduction
in entropy when approaching the reference function, gain insight into the importance of having a
large number of layers, and observe phase transitions as the error increases.

Deep-learning machines (DLM) have both fascinated
and bewildered the scientific community and have given
rise to an active and ongoing debate [1]. They are care-
fully structured layered networks of non-linear elements,
trained on data to perform complex tasks such as speech
recognition, image classification, and natural language
processing. While their phenomenal engineering suc-
cesses [2] have been broadly recognized, their scientific
foundations remain poorly understood, particularly their
good ability to generalize well from a limited number of
examples with respect to the degrees of freedom [3–5] and
the nature of the layer-wise internal representations [6, 7].

Supervised learning in DLM is based on the intro-
duction of example pairs of input and output patterns,
which serve as constraints on space of candidate func-
tions. As more examples are introduced the function
space monotonically decreases. Statistical physics meth-
ods have been successful in gaining insight into both
pattern-storage [8] and learning scenarios, mostly in sin-
gle layer machines [9] but also in simple two-layer scenar-
ios [10, 11]. However, extending these methods to DLM
is difficult due to the recursive application of non-linear
functions in successive layers and the undetermined de-
grees of freedom in intermediate layers. While training
examples determine both input and output patterns, the
constraint imposed on hidden-layer representations are
difficult to pin down. These constitute the main difficul-
ties for a better understanding of DLM.

In this Letter, we propose a general framework for an-
alyzing DLM by mapping them onto a dynamical system
and by employing the Generating Functional (GF) ap-
proach to analyze their typical behavior. More specif-
ically, we investigate the landscape in function space
around a reference function by perturbing its parame-
ters (weights in the DLM setting), and quantifying the
entropy of the corresponding functions space for a given
level of error with respect to the reference function. This
provides a measure for the abundance of nearly-perfect
solutions and hence an indication for the ability to ob-
tain good approximations using DLM. The function error
measure is defined as the expected difference (Hamming
distance in the discrete case) between the perturbed and
reference functions’ outputs given the same input (ad-

ditional explanation is provided in [12]). This setup is
reminiscent of the teacher-student scenario, commonly
used in the neural networks literature [13] where the av-
erage error serves as a measure of distance between the
perturbed and reference network in function space. For
certain classes of reference networks, we obtain closed
form solutions of the error as a function of perturbation
on each layer, and consequently the weight-space volume
for a given level of function error. By the virtue of su-
pervised learning and constraints imposed by the exam-
ples provided, high-error functions will be ruled out faster
than those with low errors, such that the candidate func-
tion space is reduced and the concentration of low-error
functions increases. A somewhat similar approach, albeit
based on recursive mean field relations between each two
consecutive layers separately, has been used to probe the
expressivity of DLM [14].

Through the GF framework and entropy maximiza-
tion, we analyze the typical behavior of different classes
of models including networks with continuous and bi-
nary parameters (weights) and different topologies, both
fully and sparsely connected. We find that as one lowers
the error level, typical functions gradually better match
the reference network starting from earlier layers to later
ones. More drastically, for fully connected binary net-
works, weights in earlier layers of the perturbed func-
tions will perfectly match those of the reference function,
implying a possible successive layer by layer learning be-
havior. Sparsely connected topologies exhibit phase tran-
sitions with respect to the number of layers, by varying
the magnitude of perturbation, similar to the phase tran-
sitions in noisy Boolean computation [15], which support
the need of deep networks for improving generalization.

Densely connected network models–The model consid-
ered here comprises two coupled feed-forward DLM as
illustrated in Fig. 1, one of which serves as the ref-
erence function and the other is obtained by perturb-
ing the reference network parameters. We first consider
the densely connected networks. Each network is com-
posed of L+ 1 layers of N neurons each. The refer-
ence function is parameterized by N2×L weight vari-
ables ŵlij ,∀ l = 1, 2, ..., L, i, j = 1, 2, ..., N and maps an
N -dimensional input ŝ0∈{−1, 1}N to an N -dimensional
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Figure 1. (Color online). The model of two coupled DLMs.
The reference and perturbed functions are denoted by {ŵl}
(black edges) and {wl} (blue edges), respectively.

output ŝL∈{−1, 1}N , through intermediate-layer inter-
nal representations and according to the stochastic rule

P (ŝL|ŵ, ŝ0) =

L∏
l=1

P (ŝl|ŵl, ŝl−1). (1)

The i-th neuron in the l-th layer experiences a local field
ĥli(ŵ

l, ŝl−1)= 1√
N

∑
j ŵ

l
ij ŝ

l−1
j , and its state is determined

by the conditional probability

P (ŝli|ŵl, ŝl−1) =
eβŝ

l
iĥ

l
i(ŵ

l,ŝl−1)

2 cosh
[
βĥli(ŵ

l, ŝl−1)
] , (2)

where the temperature β quantifies the strength of ther-
mal noise. In the noiseless limit β →∞, node i repre-
sents a perceptron ŝli = sgn(ĥli) and Eq. (1) corresponds
to a deterministic neural network with a sign activation
function. The perturbed network operates in the same
manner, but the weights wlij are obtained by applying in-
dependent perturbation to each of the reference weights;
the perturbed weights wlij , give rise to a function that is
correlated with the reference function.

We focus on the similarity between reference and per-
turbed functions outputs for randomly sampled input
patterns s0 = ŝ0, drawn from some distribution P (ŝ0).
Considering the joint probability of the two systems

P
[
{ŝl}, {sl}

]
= P (ŝ0)

N∏
i=1

δs0i ,ŝ0i (3)

L∏
l=1

P (ŝl|ŵl, ŝl−1)P (sl|wl, sl−1),

where the weight parameters {ŵlij} and {wlij} are
quenched disordered variables. We consider two cases,
where the weights are continuous or discrete variables
drawn from the Gaussian and Bernoulli distributions,
respectively. The quantity of interests are the over-
laps between the two functions at the different layers
ql(ŵ,w)≡ 1

N

∑
i〈ŝlisli〉, where angled brackets 〈· · · 〉 de-

note the average over the joint probability P [{ŝl}, {sl}].
The N outputs represent N weakly coupled Boolean

functions of the same form of disordered, and thus share
the same average behavior.

The form of probability distribution (3) is analo-
gous to the dynamical evolution of disordered Ising
spin systems [16] if the layers are viewed as discrete
time steps of parallel dynamics. We therefore apply
the GF formulation from statistical physics to these
deep feed-forward functions similarly to the approach
used to investigate random Boolean formulae [15]. We
compute the GF Γ[ψ̂,ψ] =

〈
e−i

∑
l,i(ψ̂

l
iŝ

l
i+ψ

l
is

l
i)
〉
, from

which the moments can be calculated, e.g., ql(ŵ,w) =

−1
N

∑
i limψ̂,ψ→0

∂2

∂ψ̂l
i∂ψ

l
i

Γ[ψ̂,ψ]. Assuming the systems
are self-averaging for N→∞ and computing the disorder
average (denoted by the upper line) Γ[ψ̂,ψ], the disorder-
averaged overlaps can be obtained ql= 1

N

∑
i=1 〈ŝlisli〉. For

convenience, we introduce the field doublet H l≡ [ĥl, hl]T .
Expressing the GF Γ[ψ̂,ψ] by macroscopic order param-
eters and averaging over the disorder yields the saddle-
point integral Γ=

∫
{dqdQ}eNΨ[q,Q] where Ψ[...] is [12]

Ψ = i

L∑
l=0

Qlql + log

∫ L∏
l=1

dĥldhl
∑
{ŝl,sl}

M [ŝ, s, ĥ, h], (4)

and the effective single site measure M [...] has the fol-
lowing form for both continuous and binary weights

M [ŝ, s, ĥ, h] = P (ŝ0)δŝ0,s0e
−i

∑L
l=0Q

lŝlsl

×
L∏
l=1

{
eβŝ

lĥl

2 coshβĥl
eβs

lhl

2 coshβhl
e−

1
2 (Hl)T ·Σ−1

l ·H
l√

(2π)2|Σl(ql−1)|

}
. (5)

The Gaussian density of the local field {ĥl, hl} in (5)
comes from summing a large number of random variables
in ĥl and hl. The precision matrix Σ−1

l , linking the ef-
fective field ĥl and hl, measures the correlation between
internal fields of the two systems and depends on the
overlap ql−1 of the previous layer. In the limit N →∞
the GF Γ is dominated by the extremum of Ψ. Variation
with respect to Ql gives rise to saddle-point equations of
the order parameters ql = 〈ŝlsl〉M [...], where the average
is taken over the measure M [...] of (5). The conjugate
order parameter Ql, ensuring the normalization of the
measure, vanishes identically. It leads to the evolution
equation [12]

ql=

∫
dĥldhl tanh(βĥl) tanh(βhl)

e−
1
2 (Hl)T ·Σ−1

l ·H
l√

(2π)2|Σl|
. (6)

The overlap evolution is somewhat similar to dynami-
cal mean field relation in [14], but the objects investigated
and the remainder of the study are different. We focus on
the function-space landscape rather than the sensitivity
of function to input perturbations.

Densely connected continuous weights–In the first sce-
nario, we assume weight variables ŵlij to be indepen-
dently drawn from a Gaussian density N (0, σ2) and the
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perturbed weights to have the form wlij=
√

1− (ηl)2ŵlij+

ηlδwlij , where δwlij are drawn from N (0, σ2) indepen-
dently of ŵlij . It ensures that wlij has the same variance
σ2. The parameter ηl quantifies the strength of pertur-
bation introduced in layer l. In this case the covariance
matrix between the local fields ĥl and hl takes the form

Σl(η
l, ql−1) = σ2

[
1

√
1− (ηl)2ql−1√

1− (ηl)2ql−1 1

]
,

(7)
leading to the close form solution of the overlap as β→∞,

ql =
2

π
sin−1

(√
1− (ηl)2ql−1

)
. (8)

Of particular interest is the final-layer overlap given the
same input for the two system under specific perturba-
tions qL({ηl}, q0 = 1). The average error ε= 1

2 (1 − qL)
measures the typical distance between the two mappings.

The number of solutions at a given distance (error) ε
away from the reference function is indicative of how dif-
ficult it is to obtain this level of approximation at the
vicinity of the exact function. Let the N -dimensional
vectors ŵl,i and wl,i denote the weights of the i-th per-
ceptron of the reference and perturbed systems at layer
l, respectively; the expected angle between them is θl =
sin−1 ηl. Then the perceptron wl,i occupies on average
an angular volume around ŵl,i as Ω(ηl) ∼ sinN−2 θl =
(ηl)N−2 [17, 18]. The total weight-space volume of the
perturbed system is Ωtot({ηl}) =

∏L
l=1

∏
i(η

l)N−2, and
the corresponding entropy density is

Scon({ηl}) =
1

LN2
log Ωtot({ηl}) ≈

1

L

L∑
l=1

log ηl. (9)

In the thermodynamic limitN →∞, the set of perturbed
functions at distance ε away from the reference function
is dominated by those with perturbation vector {η∗l},
which maximizes the entropy Scon({ηl}) subject to the
constraint qL({ηl})=1−2ε. The result of {η∗l} for a four-
layer network, shown in Fig. 2(a), reveals that the dom-
inant perturbation η∗l to the reference network decays
faster for smaller l values; this indicates that closer to the
reference function, solutions are dominated by functions
where early-layer weights match better the reference net-
work. Consequently, high-ε function are ruled out faster
during training through the successful alignment of ear-
lier layers, resulting in the increasing concentration of
low-ε functions and better generalization. We denote the
maximal weight-space volume at distance ε away from
the reference function as Ω0(ε) ≡ Ωtot({η∗l}).

Supervised learning is based on the introduction of
input-output example pairs. Introducing constraints, in
the form of P ≡ αLN2 examples provided by the ref-
erence function, the weight-space volume at small dis-
tance ε away from the reference function is re-shaped

as Ωα(ε) = Ω0(ε)(1 − ε)P in the annealed approxima-
tion [17, 18]; details of the derivation can be found in [12].
The typical distance ε∗(α)=argmaxεΩα(ε) can be inter-
preted as the generalization error in the presence of P
examples, giving rise to an approximate generalization
curves shown in Fig. 2(c). These are expected to be valid
in the small ε (large α) limit on which the perturbation
analysis is based. It is observed that typically a large
number of examples (α�10) are needed for good gener-
alization. This may imply that DLMs trained on realistic
data sets (usually α� 1) occupy a small, highly-biased
subspace, different from the typical function space ana-
lyzed here (e.g., the handwritten digit MNIST database
represents highly biased inputs that occupy a very small
fraction of the input space). Note that the results corre-
spond to a typical generalization performance under the
assumption of self-averaging, potentially with unlimited
computational resources and independently of the train-
ing rule used.

Densely connected binary weights–Once trained, net-
works with binary weights are highly efficient computa-
tionally, which is especially useful in devices with limited
memory or computational resources [19, 20]. Here we
consider a reference network with binary weight variables
drawn from the distribution P (ŵlij) = 1

2δŵl
ij ,1

+ 1
2δŵl

ij ,−1,
while the perturbed network weights follow the distribu-
tion P (wlij)=(1−pl)δwl

ij ,ŵ
l
ij

+plδwl
ij ,−ŵl

ij
, where pl is the

flipping probability at layer l. The covariance matrix

Σl(p
l, ql−1) =

[
1 (1− 2pl)ql−1

(1− 2pl)ql−1 1

]
, (10)

gives rise to overlaps ql as β→∞ of the form

ql =
2

π
sin−1

(
(1− 2pl)ql−1

)
. (11)

The entropy density of the perturbed system is given by

Sbin({pl}) =
1

L

L∑
l=1

−pl log pl − (1− pl) log(1− pl). (12)

Similarly, the entropy Sbin({pl}) is maximized by the per-
turbation vector {p∗l} subject to qL({pl}) = 1−2ε at a
distance ε away from the reference function. The result
of {p∗l} for a four-layer binary neural network is shown
in Fig. 2(b). Surprisingly, as ε decreases, the first-layer
weights are first to align perfectly with those of the refer-
ence function followed by the second-layer weights and so
on. The discontinuities come from the non-convex nature
of the entropy landscape Sbin({pl}) when one restricts the
perturbed system to the nonlinear ε-error surface satis-
fying qL({pl}) = 1−2ε. Nevertheless, there exists many
more high-ε than low-ε functions for densely-connected
binary networks (as indicated by the entropy shown in
the inset of Fig. 2(b)), and it remains to explore how low
generalization error functions could be identified.
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Figure 2. (Color online) Maximal-entropy perturbations as a
function of output error ε for a four-layer densely-connected
networks with (a) continuous weights and (b) binary weights.
Inset represents the growth in entropy with respect to ε.
(c) Generalization curves of densely-connected networks with
continuous weights by using the annealed approximation. In-
set demonstrates the classical asymptotic behavior of ε∗∼α−1

in the large α limit [18]. (d) Stationary magnetization m and
function error ε for sparsely connected MAJ-3 based DLM
as a function of perturbation probability p in networks with
binary weights. We show the evolution of (e) magnetization
and (f) internal activation error δ over layers. Note that p=0
corresponds to the reference network. All results are obtained
in the deterministic limit β →∞.

Sparsely connected binary weights–Lastly, we consider
the sparsely connected DLM with binary weights; these
topologies are of interest to practitioners due to the re-
duction in degrees of freedom and their computational
and energy efficiency. The layered setup is similar to the
previous case, except that unit i at layer l is randomly
connected to a small number k of units in layer (l−1) and
its local field is given by ĥli(ŵ

l, ŝl−1)= 1√
k

∑
j A

l
ijŵ

l
ij ŝ

l−1
j

where the adjacency matrix Al represents the connectiv-
ity between the two layers. The perturbed network has
the same topology but its weights are randomly flipped
P (wlij)=(1−pl)δwl

ij ,ŵ
l
ij

+plδwl
ij ,−ŵl

ij
; the activation and the

joint probability of the two systems follow from (2) and
(3). Unlike the case of densely-connected networks, the
magnetization ml≡ 1

N

∑
i s
l
i also plays at important role

in the evolution of sparse networks. The GF approach
gives rise to the order parameter P l(ŝ, s)≡ 1

N

∑
i δŝli,ŝδsli,s

relating to the magnetization and overlap by P l(ŝ, s) =
1
4 (1 + ŝm̂l + sml + ŝsql).
The random topology provides an additional disorder

to average over. For simplicity, we assign the reference
weights to ŵlij=1, which in the limit β→∞ relate to the
k-majority gate (MAJ-k) based Boolean formulas that
provide all Boolean functions with uniform probability
at the large L limit [21, 22]. For a uniform perturbation
over layers pl=p we focus on functions generated in the
deep regime L→∞, where the order parameters take the
form

ml =
∑
{sj}

k∏
j=1

1

2

[
1 + sjm

l−1(1− 2p)
]
sgn

 k∑
j=1

sj

 , (13)
ql =

∑
{sj ,ŝj}

k∏
j=1

1

4

[
1 + ŝjm̂

l−1 + sjm
l−1(1− 2p) (14)

+sj ŝjq
l−1(1− 2p)

]
sgn

 k∑
j=1

ŝj

 sgn

 k∑
j=1

sj

 .
For finite k, the macroscopic observables at layer l

are polynomially dependent on the observables at layer
(l−1) up to order k. In the limit L→∞, the Boolean
functions generated depend on the initial magnetization
m0 = 1

N

∑
i s

0
i . Here, we consider biased case with ini-

tial conditions m̂0 = m0 > 0 and q0 = 1. The reference
function admits a stationary solution m̂∞ = 1, comput-
ing a 1-bit information-preserving majority function [22].
Both magnetization of the perturbed function m∞ and
the function error ε= 1

2 (1−q∞) exhibit a transition from
the ordered phase to the paramagnetic phase at some
critical perturbation level pc, below which the perturbed
network computes the reference function with error ε< 1

2 .
The results for k=3 are shown in Fig. 2(d). Interestingly,
the critical perturbation pc coincides with the location of
the critical thermal noise εc = 1

2 (1− tanhβc) for noisy
k-majority gate-based Boolean formulas; for k = 3, the
critical perturbation pc = 1

6 [15]. Below pc, there exist
two ordered states with m∞=±

√
(1−6p)/(1−2p)3 and

the overlap satisfies q∞ = m∞ [12], which is also remi-
niscent of the thermal noise-induced solutions [15]. How-
ever, the underlying physical implications are drastically
different. Here it indicates that even in the deep network
regime, there exists a large number

(
Nk
Nkp

)L
of networks

that can reliably represent the reference function when
p<pc. This function landscape is important for learning
tasks to achieve a similar rule to the reference function.
The propagation of internal error δ(l)≡ 1

2 (1− ql), shown
in Fig. 2(f), exhibits a stage of error-increase followed by
a stage of error-decrease for p<pc. Consequently a suc-
cessful sparse DLM requires more layers to reduce errors
and provide a higher similarity to the reference function
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when we approach pc, indicating the need of deep net-
works in such models.

In summary, we propose a GF analysis to probe the
function landscapes of DLM, focusing on the entropy
of functions, given their error with respect to a refer-
ence function. The entropy maximization of densely con-
nected networks at fixed error to the reference function
indicates that weights of earlier layers are the first to
align with reference function parameters when the er-
ror decreases. It highlights the importance of early-
layer weights for reliable computation [23] and sheds
light on the parameter learning-dynamics in function
space during the learning process. We also investigate
the phase transitions behavior in sparsely-connected net-
works, which advocate the use of deeper machines for
suppressing errors with respect to the reference function
in these models. The suggested GF framework is very
general and can accommodate other structures and com-
puting elements, e.g., continuous variables, other activa-
tion functions (such as the commonly used ReLU acti-
vation function [12]) and more complicated weight en-
sembles. In [12], we also demonstrate the effect of nega-
tively/positively correlated weight variables on the ex-
pressive power of networks with ReLU activation and
their impact on the function space, and investigate the
behavior of simple convolutional DLM. Moreover, the GF
framework allows one to investigate other aspect as well,
including finite size effects and the use of perturbative
expansion to provide a systematic analysis of the inter-
actions between network elements. This is a step towards
a principled investigation of the typical behavior of DLM
and we envisage follow up work on various aspects of the
learning process.
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