Differences in sit-to-stand, standing sway and stairs between communitydwelling fallers and non-fallers: A review of the literature.

Abstract

Background: Falls are extremely common and have a significant impact on an individual's wellbeing. Individuals who fall often display altered function however to date no synthesis pertaining to the nature of these alterations is available. Such information is important to guide assessment and management strategies. Objectives: To appraise and synthesize literature directly comparing communitydwelling elderly fallers with non-fallers across tasks of sit-to-stand, standing postural sway with eyes open and stairs.

Methods: A structured search of Medline, SPORTDicuss, Science Citation Index, OAIster, CINAHL, Academic Search Complete, Science Direct and Scopus databases was conducted in July 2017. Articles were limited to peer-reviewed in the English language comparing elderly community-dwelling fallers to non-fallers.

Results: Eight articles were included relating to sit-to-stand, seven for postural sway and one for stairs. Fallers stood from sitting significantly slower, with lower linear velocity and maximum power than non-fallers. This was best observed when arms were not used and when the stand was attempted as quickly as possible. Fallers displayed significantly greater sway path lengths and centre of pressure velocity compared with non-fallers, but only when assessed in narrow or near narrow stance. Fallers used less force during stepping up compared with non-fallers. Conclusion: The findings of this review suggest that activities of daily living may be

able to discriminate between fallers and non-fallers therefore offering the potential for community based assessment of fallers.

Introduction

Globally falls are the second largest cause of accidental injurious deaths and the most common cause in individuals over the age of 65. ^{1,2} Non-fatal falls are extremely common and have a significant impact on a person's well-being, often resulting in pain, injury and loss of confidence and independence. ^{2,3} The National Institute for Health and Care Excellence (NICE) identify people aged 65 and over being at the highest risk of falls with approximately 30% of over 65s falling at least once a year. ^{4,5} Currently 18% of the UK population is within this age bracket with this percentage projected to increase continuously over the next 30 years. ⁶ As well as the detrimental effects falling can have on a person's health and well-being they also have a significant financial impact, estimated to be costing the NHS over £2.3 billion each year. ⁴

Falls risk and falls management is known to be multifactorial and often involves rehabilitation aimed to improve physical function. In order for targeted rehabilitation to be developed a clear identification of impairments is required. Currently a multitude of tests have been proposed to differentiate fallers from nonfallers. Tests such as functional reach ⁷ or Berg balance assessment ⁸ provide data limited to a single point in time, and require subjective interpretation. Furthermore they require the individual to conduct a specific set of balance tests and therefore do not relate to usual daily function. Moreover although these tests may be clinically useful they do not provide information relating to specific biomechanical impairments. Observational clinical tests provide information relating to a person's ability to perform those tasks and generally rely on a practitioner's observational acuity to identify the area of limitation.

More recently prospective studies have proposed the use of monitoring daily activities through wearable sensors or camera-based technology. In addition similar technologies have been used to identify falls events. ^{9,10} Such methods could offer an attractive future opportunity to conduct assessments of daily tasks to identify impairments in physical function related to falls. In order to achieve this a detailed understanding of how fallers differ in physical function during activities of daily living to non-fallers is required.

The aim of this literature review was to identify, appraise and synthesize the published evidence directly comparing community-dwelling elderly fallers with non-fallers across three common daily living tasks. These tasks are: standing from a seated position, postural control in two-legged standing and walking up and down stairs.

Method

Search Strategy

Three separate systematic searches of electronic databases (Medline, SPORTDicuss, Science Citation Index, OAIster, CINAHL, Academic Search Complete, Science Direct and Scopus) were conducted, each pertaining to a different functional task to be reviewed within this article: sit to stand (STS), using stairs and the postural sway associated with static double leg stance. These tasks were selected as they represent activities that would normally be performed daily within the home. All searches were conducted in July 2017. The Boolean search terms used for each search can be seen in table 1. The searches were limited to peer-reviewed, English language journal articles.

Table 1

Duplicates were removed automatically by the search tool. The remaining articles were reviewed based on their titles and abstracts against the inclusion and exclusion criteria. Articles not excluded were retrieved and the full text used to determine their suitability. The reference lists of eligible articles were then examined for any further studies that could be included. A flow diagram outlining this process for each search can be seen in figures 1, 2 & 3. Two authors independently completed the data extraction and review process with any areas of uncertainty resolved by consensus.

Figures 1-3

Inclusion and Exclusion Criteria

The minimum age for participants was set at 65, as this is the population at highest risk of falling ⁴ and widely accepted in developed countries as a definition of 'elderly.' ¹¹ Where a minimum age criteria was not specified in an article it was included if the mean age minus two standard deviations was 65 or greater. All participants were required to be community dwelling. The articles needed to directly compare elderly fallers to elderly non-fallers in either a retrospective or cross-sectional design. Reviews, conference proceedings and discussion pieces were excluded, as were purely prospective studies. Articles concerning treatment or rehabilitation where data could not be extracted were also excluded as were those

investigating falls in balance impairing conditions such as stroke or Parkinson's disease.

Quality Appraisal and Data Extraction

Data pertaining to specific areas of methodology and results were extracted and can be seen in tables 2, 3 & 4. As the focus of this review was on the comparison of performance of daily tasks between fallers and non-fallers, data extraction concentrated on the biomechanical performance metrics and the measurement of such tasks. This information should serve to inform clinicians as the likely physical impairments of daily living which may serve as rehabilitation targets or to help identify fallers, where self-disclosure isn't forthcoming. The methodological quality of the articles was assessed using the 'National Institutes of Health's Quality Assessment Tool for Observational Cohort and Cross-sectional Studies' ¹² as seen in table 5. This tool was selected following the recommendations of Wardle & Steel ¹³ for critically appraising the quality of cohort and cross-sectional studies within a systematic review. This tool consists of 14 questions for which an article can achieve a yes, no, cannot determine, not applicable or not reported response.

Results

Study characteristics

Sit to Stand

Eight relevant articles were identified from the search process related to sit-to-stand (STS). ¹⁴⁻²¹ These studies consisted of seven retrospective cohort studies ^{14-19,21} and one combined retrospective and prospective cohort study ²⁰ and were all published between 2010 and 2017. A data extraction table for these eight studies can be seen in table 2. The studies ranged in number of participants from 38 – 212 with a total of 698 participants across all studies consisting of 330 fallers and 368 non-fallers. Mean age of participants ranged from 70-81 years old and between 63-85% were female. Falls history was defined as one or more fall (not trip or slip) in the previous 12 months. Two studies used the outcome measure of duration taken to complete a five time sit-to-stand (5TSTS), ^{14,15} five investigated a single STS, ^{14,18-21} two explored sit to walk ^{16,17} and one, walk to sit. ¹⁷ A wide variety of techniques and equipment were used to assess the characteristics of STS including force plates, ^{14,18-20} a stop watch ¹⁵ or kinetic motion camera, ¹⁵ a bespoke pulley system, ²¹ and a combined accelerometer and gyroscope either worn as a pendent around the neck ¹⁶ or on a belt around the low back. ¹⁷

Postural Sway

Seven relevant articles were identified from this specific search. ^{18,22-27} These studies consisted of six retrospective cohort studies ^{18, 22,24-27} and one combined prospective and retrospective cohort study ²³ and were all published between 2004 and 2016. A data extraction table for these studies can be seen in table 3. The studies ranged in number of participants from 23 - 212 with a total of 646 participants across all studies consisting of 240 fallers and 406 non-fallers. Mean age of participants ranged from

78-85 years old and between 58-90% were female. Falls history ranged from one fall in the previous 12 months to 2 or more falls in previous 6 months. Six articles used force plates to measure their participants' postural sway ^{18,23-27} and one article used a marked vest and a camera. ²² There was relatively large heterogeneity between studies regarding foot positioning of participants with generally limited description throughout.

Stairs

The initial search yielded 308 articles after exact duplicates were removed. Of these 267 were excluded based on their title or abstract. After reviewing the full texts of the 41 remaining articles against the inclusion and exclusion criteria, only one article ¹⁸ was appropriate for inclusion. On review of this article's reference list no further articles were identified for inclusion. The data extraction table for this article can be seen in table 4. This article consisted of 212 participants, 99 fallers and 113 non-fallers. Mean age of participants was 78% and 85% were female. Falls history was defined as 2 or more falls in the previous 6 months. They assessed participants using a force plate while they stepped onto and down from a step.

Quality

Overall study quality was rated as a percentage of relevant items on the appraisal tool. Articles concerning sit-to-stand ranged from having 33% of items present to 83% of items present. Regarding postural sway articles ranged from 40% to 73% of items present and for stairs 44% of items present. The quality appraisal review identified common threats to the validity within the studies. None of the studies focusing on STS or stairs, and only two of the seven postural control studies gave justification for their chosen sample size. Justification of sample size is a way to determine if the study has been correctly powered to find a difference in the key outcome variable. Under powering a study could prevent identification of significant differences between fallers and non-fallers, if one is to be found, and can therefore lead to erroneous conclusions being drawn from the data.

All but two of the articles analyzed in this review did not measure the exposure of interest prior to the outcomes or allow an appropriate time frame for the outcome to be demonstrated following the exposure. The first of these is important as it allows the researcher to know if the outcome was present prior to the exposure or whether it has arisen following it; regarding the aim of this study, if a person had differences in their STS or other functional task prior to falling or only since. Allowing a suitable time frame is important for observational studies to be able to fully analyze the relationship between the exposure and outcome.

The majority of articles included in this review were retrospective cohort studies and therefore did not meet these criteria due to the inherent limitations in this experimental design. This means that it is difficult to determine from the studies if any differences in the measures applied to and compared with fallers and non-fallers were present prior to participants falling. Eleven articles failed to assess different levels of exposure in relation to the outcomes. Understanding the potential 'dose response relationship' multiple falls may produce is important but is not the focus of this review, which is to identify differences between those who have fallen and those who have not. Therefore dose response is beyond the scope of the current review; meaning the validity of the results in the studies reviewed has not been affected by this methodological limitation.

Only one of the articles reviewed reported whether outcome assessors were blinded to group allocation. Blinding is generally considered to be important in controlled studies to avoid the potential for operator bias. However, this was commonly overcome in the articles reviewed by automation of the outcome measure assessment, i.e. computer programs to collect data. Although many of the articles reviewed with regards to STS identified potential baseline confounding variables several articles either did not report these or state whether or not these were adjusted for if they were identified. Differences in characteristics such as age or gender may result in differences between groups which can be attributed to these variables as opposed to whether they are a faller or not.

Over half of the postural control studies failed to specify where the participants were from, except for being community dwelling. Defining the study population is important as it can give rise to factors that may explain variance in results within the study or between studies. This gap in description may not strongly affect the actual results of the study but will limit the extrapolation of its data to a wider population.

Despite these limitations it is possible to draw some summaries pertaining to the aims of this review. Regarding sit-to-stand, fallers take longer to complete STS and this is evident regardless of how this is timed (i.e. STS or 5STS). However it has been shown that individual movement phases in STS were no more discriminative than the total movement. Moreover, individuals who have fallen display lower linear velocity during STS and reduced maximum power output during STS. It is unclear, due to conflicting findings, whether fallers generate lower vertical ground reaction force.

It is worthy of note that one study was in contrast to the findings outlined above. This study did not utilize a STS protocol instead required the participants to sit to walk. This eliminates the necessity to control for anterior propulsion of the centre of mass and the requirement to decelerate this to stationary on completion of the STS, as seen in the other studies. This may explain why this study is in contraction to the bulk of others investigating STS.

Regarding postural control fallers demonstrate greater CoP velocity and greater CoP path length but only in stance with feet close together (narrow stance). Occasionally these differences are evident in normal stance but not always. Furthermore there are conflicting findings pertaining to greater sway displacement in AP and ML directions, CoP ML path lengths and larger area of CoP.

Regarding stairs just one study demonstrated that fallers apply less force to the step during a step up, no such differences were evident during stepping down.

Discussion

The aim of this review was to synthesize the evidence pertaining to the differences between community-dwelling elderly fallers and non-fallers. The heterogeneity of the studies demonstrated differences in overall quality, however no studies were removed on quality grounds as none were identified as fundamentally flawed. In order to fully understand why their remains areas of conflicting evidence and to be able to apply this knowledge to practice some additional discussion is required.

It is clear that the time taken to complete the task of sit to stand was different between fallers from non-fallers. This was a consistent finding across the three studies that investigated it. ^{14-15,18} The magnitude of difference was greater during a single STS (32-44%)^{14,18} compared to 5TSTS (14-24%).^{14,15} This suggests that the performance over a shorter period is sufficient to identify this impairment in fallers. It is likely that these two tasks have different underlying constructs, with the single STS utilizing an explosive single motion requiring acceleration and power whereas 5TSTS requiring a level of power endurance to complete the task repeatedly. This result is counter-intuitive as it would be expected that having to perform the same task repeatedly, fatigue would result in a gradual divergence between groups. One explanation for this is that fallers may be more fearful or apprehensive of standing for the first time. In contrast when standing up multiple times, individual's confidence may increase and with it, the speed at which they perform the task. No studies have reported on whether the first STS took significantly longer than the fifth, but this 1st:5th ratio might offer specific insights into this concept.

The sub-sections of STS are believed to represent differing levels of challenge for an individual. The forward lean, propulsion-to-upright and standing phase require different muscle action, control of the centre of mass and perturbation challenges.¹⁴ Therefore it is possible that sub-sectioning STS may offer more insight into the impairment evident in fallers. Only one study explored the preparation phase, the rising phase and the stabilization phase and found a significant difference in the time taken to complete each of these various stages.¹⁴ As this was only assessed in one study it is not clear if such a finding is due to the sample used or indeed reflects a true overall increase in time taken to complete the whole task, regardless of sub-section. This may suggest a general, centrally controlled response to the task by which the nervous system 'chooses' to take longer over the whole task, providing more time to process the shifting centre of mass. Such generic 'down gearing' has been observed in other clinical conditions such as back pain. ^{28,29} This suggests that the individual physiological element limiting the capacity of the sub-section (i.e. muscle power for the propulsive phase) is not the element limiting the task. A central control mechanism overrides this, choosing to take longer to complete tasks. However it could also be the case that each of the limiters for each of these sub-sections are impaired and thus the resultant increase to complete the sub-section relates to specific impairments in that sub-section. An example would be the propulsive phase limited by muscle power and the standing phase limited by impairments in response to centre of mass perturbation. If each underlying physiological construct for each sub-phase were impaired in the faller, then each sub-section would result in a greater time to complete as seen in the study in this review.

The findings from this study suggest that time taken to complete STS (and single 5TSTS) were able to identify difference in fallers and non-fallers, however the

additional value of the breakdown of specific sub-sections requires further exploration.

Chair height is believed to affect a person's ability to complete a STS and a variety of heights were used in the studies. Some studies chose a fixed chair height, commonly 45cm. ^{14-16,20} This standardized approach fails to accommodate for the variety of heights of participants resulting in greater or lesser knee flexion angles. Others ^{14,21} accommodated participant anthropometrics using adjustable height chairs; aiming to achieve approximate knee flexion angles of 90°. However, other studies failed to adequately describe chair height. It is likely that the lower the chair height or greater the knee flexion angle, the greater the challenge to the individual which, in this case, may demonstrate greater differences between fallers and non-fallers. The findings of this review illustrate that for time taken to complete a STS or 5TSTS was greater in fallers, regardless of chair height. This suggests a pragmatic approach to chair selection is recommended for the assessment of STS and 5TSTS.

The addition of an arm push during STS would alter the complexity of the task by modifying the base of support and reducing the propulsion required from the leg musculature. The majority of studies ^{14,15,18-21} identified this as a potential issue. For time taken to complete a STS or 5TSTS two studies requested arms across the chest, ^{14,15} one instructed the participants not to use their arms ¹⁸ and one did not mention this detail.¹⁶ Interestingly those studies identifying a significant difference in duration to complete STS all prevented the addition of the arms. The study in conflict to these results ¹⁶ did not provide any details pertaining to use of arms. The crossed arm technique potentially represents an atypical movement pattern offering an additional challenge in terms of altering the location of the centre of mass, as well as increasing the challenge on the leg musculature and preventing righting reactions from the arms required for maintaining balance. It is possible that the additional demands result in divergence in performance between the two groups. From a clinical perspective the findings are clear that STS without the use of arms or having arms fixed to the chest is able to detect differences between fallers and non-fallers, however it is not clear (as it was not investigated) whether performance of STS using arms differs between fallers and non-fallers.

Instructions to the participants on how quickly to complete the tasks varied between studies. Three studies ^{14,15,21} asked participants to move as fast as possible, while others ^{16,18,19} allowed for a self-selected speed. Asking an individual to complete tasks as fast as possible requires them to utilize the absolute capacity of their function. Moving rapidly challenges the ability to generate rapid muscle activity³⁰ however it also challenges the balance system, requiring faster feedback and feedforward to iteratively control the movement of the centre of mass. Moreover rapid motion may also challenge fear of falling, where an individual is not willing to 'push' the movement through fear of the consequences. It may be for these reasons that those studies employing a 'fast as possible' instruction demonstrate significant differences in time to complete STS between fallers and non-fallers. ^{14,15} In contrast, the study employing a self-selected speed failed to demonstrate a difference. ¹⁶ It is therefore possible that the habitual movement strategies employed by both groups are similar in terms of STS speed with differences only becoming evident when additionally challenged.

During standing the width of a person's stance determines the base of support and has an inherent influence on standing balance. Therefore the manipulation of the base of support from wide stance to narrow stance is likely to challenge the postural control mechanisms to a greater extent. ³¹ There were a wide variety of foot positions

used when studying postural control, ranging from narrow stance (feet touching), to wide stance. Interestingly, of the four articles studying the CoPv, two found a significant difference between fallers and non-fallers ^{23,25} and this was determined when participants were in narrow and near narrow (2cm heel separation) stance. In contrast, those studies that did not find a difference ^{25,26} assessed participants in a wider stance. This finding was consistent for CoP path length where difference were found with narrow^{23,25} but not wide stance.²⁵ Therefore this suggests intrinsic differences are evident between fallers and non-fallers in postural sway, however only when employing a narrow or near narrow stance. However this was only the case for the variables of CoP path length and CoPv. The direction specific breakdown of CoP path length and sway did not demonstrate any additional information. AP CoP path length was found consistently not to be different between fallers and non-fallers.^{23,27} Conflicting findings were evident for the ML CoP path length, ^{23,27} however it was unclear how the outcome metrics were calculated in Park et al.²⁷ making the direct comparison difficult. The variables of CoP sway distance in the AP and ML directions where observed in four studies, no direction specific differences were found ^{23,25-27} with only one detecting a difference. ²³ These results overall question the relevance of directional breakdown suggesting this additional detail may not be beneficial in identifying fallers from non-fallers.

Therefore the findings of this review suggest that the outcomes of CoP path length and velocity during postural sway be used if trying to identify differences between fallers and non-fallers during a near narrow or narrow stance.

The position of a person's arms whilst standing has also been shown to have an effect on standing balance by shifting the centre of mass and centre of gravity. Despite this, two articles do not fully describe the protocol regarding arm position. ^{18,22} Four articles kept arms by the side ^{23,24,26,27} and one positioned them behind their back.²⁵ Fixing a person's arm position (such as behind their back) will have altered the available equilibrium and righting reactions available to control for postural sway. It could be argued that this would challenge the individual more. However arm position seemed not to be affect the ability to detect differences between fallers and non-fallers during postural sway.

Limitations

This study was limited by investigating healthy elderly people, removing articles pertaining to individuals with co-morbidities that could be considered to be associated with their falls. As it is commonplace for elderly individuals to have various co-morbidities, the extrapolation of our findings to these populations should be done with caution. There was also significant heterogeneity between the reviewed studies with regards to the techniques used to assess the different tasks and the level of descriptions of these tasks. Although in some cases this allowed extra conclusions to be drawn it has generally limited the depth to which the data could be synthesized. Only English language articles were included, which could result in publication bias and limit the generalizability of the results, however, the articles included in this study were from a wide variety of countries and cultures.

Conclusion

The findings of this review suggest that fallers differ from non-fallers with respect to how they complete activities of daily living. Fallers stood from sitting significantly slower, with lower linear velocity and maximum power than non-fallers. This was best observed when arms were not used and when the stand was attempted as quickly as possible. Fallers displayed significantly greater sway path lengths and centre of pressure velocity compared with non-fallers, but only when assessed in narrow or near narrow stance. Fallers used less force during stepping up compared with nonfallers. This demonstrates that activities of daily living can be used to identify impairments evident in fallers and therefore offer the potential for community based assessment of fallers.

References

- World Health Organization (WHO). Injuries and violence: the facts. Geneva, WHO Press; 2010.
- 2. Tian Y, Thompson J, Buck D, et al. Exploring the system-wide costs of falls in older people in Torbay. London: The King's Fund; 2013.
- WHO. WHO global report on falls prevention in older age. Geneva: WHO Press; 2007.
- 4. National Institute for Health and Care Excellence (NICE). Falls in older people: assessing risk and prevention. London: NICE; 2013. NICE guideline CG161.
- Todd C, Skelton D. What are the main risk factors for falls amongst older people and what are the most effective interventions to prevent these falls. Copenhagen: WHO Regional Office for Europe; 2004.
- Office for National Statistics. Overview of the UK population: July 2017. Newport: Office for National Statistics; 2017.
- Duncan PW, Studenski S, Chandler J, et al. Functional reach: predictive validity in a sample of elderly male veterans. J. Gerontol Med Sci. 1992;47(3):M93- M98.
- Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther. 2000;80(9):896-903.
- Drover D, Howcroft J, Kofman J, et al. Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features. Sensors. 2017;17(6):e1321.
- 10. Lee RY, Carlisle AJ. Detection of falls using accelerometers and mobile phone technology. Age Ageing. 2011;**40**(6):690-6.
- 11. Kowal P, Dowd JE. Definition of an older person: Proposed working definition of an older person in Africa for the MDS Project. Geneva: WHO; 2001.
- 12. Quality assessment tool for observational cohort and cross-sectional studies [Internet]. Maryland: National Heart, Lung and Blood Institute; 2014.

Available from: https://www.nhlbi.nih.gov/health-pro/guidelines/indevelop/cardiovascular-risk-reduction/tools/cohort

- 13. Wardle J, Steel A. Systematic reviews in integrative medicine: a clinician's guide to publications. Advances in Integrative Medicine. 2015;**2**(2):103-9.
- 14. Cheng Y, Wei S, Chen P, et al. Can sit-to-stand lower limb muscle power predict fall status? Gait Posture. 2014;**40**(3):403-7.
- Ejupi A, Brodie M, Gschwind YJ, et al. Kinect-based five-time-sit-to-stand test for clinical and in-home assessment of fall risk in older people. Gerontology. 2016;62(1):118-124.
- Ejupi A, Brodie M, Lord SR, et al. Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device. IEEE Trans Biomed Eng. 2017;64(7):1602-7.
- 17. Iluz T, Weiss A, Gazit E, et al. Can a body-fixed sensor reduce Heisenberg's uncertainty when it comes to the evaluation of mobility? Effects of aging and fall risk on transitions in daily living. J. Gerontol Med Sci. 2016;**71**(11):1459-65.
- Lázaro M, González A, Latorre G, et al. Postural stability in the elderly: fallers versus non-fallers. Eur Geriatr Med [online], 2011;2(1):1-5.
- 19. Liang S, Ning Y, Li H, et al. Feature selection and predictors of falls with foot force sensors using KNN-based algorithms. Sensors. 2015;**15**(11):29393-407.
- Panzer VP, Wakefield DB, Hall CB, et al. Mobility assessment: sensitivity and specificity of measurement sets in older adults. Arch Phys Med Rehabil. 2011;92(6):905-12.
- 21. Yamada T, Demura S, Takahashi K. Centre of gravity transfer velocity during sit-to-stand is closely related to physical functions regarding fall experience of the elderly living in community dwelling. Health. 2013;5(12):2097-103.
- Aoki M, Nishihori T, Jiang Y, et al. Damping control of balance in the medial/lateral direction and the risk of falling in the elderly. Geriatr Gerontol Int. 2013;13(1):182-9.
- Bauer CM, Gröger I, Rupprecht R, et al. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis. Z Gerontol Geriatr. 2016;49(3):232-6.

- Berger L, Chuzel M, Buisson G, et al. Undisturbed upright stance control in the elderly: part 2. Postural-control impairments of elderly fallers. J Mot Behav. 2005;37(5):359-66.
- 25. Melzer I, Benjuya N, Kaplanski J. Postural stability in the elderly: a comparison between fallers and non-fallers. Age Ageing. 2004;**33**(6):602-7.
- Merlo A, Zemp D, Zanda E, et al. Postural stability and history of falls in cognitively able older adults: the Canton Ticino study. Gait Posture.
 2012;36(4):662-6.
- Park JW, Jung M, Kweon M. The mediolateral CoP parameters can differentiate the fallers among the community-dwelling elderly population. J Phys Ther Sci. 2014;26(3):381-4.
- 28. Williams JM, Haq I, Lee RY. Is pain the cause of altered biomechanical functions in back pain sufferers? Hum Mov Sci. 2010;**29**(2):311-25.
- 29. Novy D, Simmonds M, Lee C. Physical performance tasks: what are the underlying constructs? Arch Phys Med Rehabil. 2002;**83**(1):44-7.
- 30. Lindermann U, Claus H, Stuber M, et al. Measuring power during the sit-tostand transfer. Eur J Appl Physiol. 2003;**89**(5):466-70.
- 31. Bonnet CT, Mercier M, Szaffarczyk S. Impaired mediolateral postural control at the ankle in healthy, middle-aged adults. J Mot Behav. 2013;**45**(4):333-42.

Figure Captions

Figure 1. PRISMA diagram for sit-to-stand search.

Figure 2. PRISMA diagram for stairs search.

Figure 3. PRISMA digram for postural sway search.

Boolean Function	Search terms
Sit to stand	
	Fall*
AND	Elderly OR aged OR older OR elder OR geriatric OR elderly
	people OR old people OR senior
AND	Sit-to-stand OR transfer* OR STS
AND	Kinematics OR biomechanics OR mechanics OR velocity OR
	kinetics
Stairs	
	Fall*
AND	Elderly OR aged OR older OR elder OR geriatric OR elderly
	people OR old people OR senior
AND	Stair* OR step*
AND	Kinematics OR biomechanics OR mechanics OR velocity OR
	kinetics
AND	Ascending OR descending OR going up OR going down OR
	walking up OR walking down OR using OR use
Postural Sway	
	Fall* (searched for within title)
AND	Elderly OR aged OR older OR elder OR geriatric OR elderly
	people OR old people OR senior
AND	Balance OR sway OR stability OR postural control
AND	Standing OR static
NOT	Training OR treatment OR intervention OR rehabilitation

Table 1 - Search terms for sit-to-stand, stairs and postural sway

Table 2 - Data extraction table for STS

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
Cheng et al. ¹⁴	 70 elderly participants 35 Non-fallers 35 Fallers Place of recruitment not specified Fallers: Age 77.5 ± 7.79 years Gender 63% male Body weight (BW) 60.58 ±12.89 kg Non-Fallers: Age 75.23 ± 6.43 years 67% male BW 60.84 ± 14.5 kg Faller definition: Self-reported history of falling within the last 12 months Fall definition: unintentional coming to a lower level not caused by any external force or influence 	 Sit to stand (STS) movement test from height adjustable armless chair with hips and knees at 90° flexion and ankle at 0° dorsiflexion Five time sit to stand (FSTST) from 45cm chair with arms crossed as quickly as possible Force plate under feet 	 Maximum vertical ground reaction force (MVGRF) (N/BW)% Max force generated normalized to body weight (BW) Maximum power (MP) (W/kg) Max product VGRF and vertical velocity of centre of mass normalized to BW Peak-to-trough VGRF difference per unit time (PtT/s) (N/s) Difference between max and min VGRF by time Preparation phase (PP) (s) Began with change of 2.5% in vertical force and ended when MVGRF reached Rising phase (RP) (s) Began at MVGRF and ended when the VGRF equaled the subject's BW Stabilization phase (SP) (s) Began when VGRF oscillated with 2.5% of subject's BW 	 Significant difference: MP significantly greater in nonfallers than fallers PP, RP and SP each significantly longer in F group than NF group No significant difference: MVGRF Total times for STS between fallers and non-fallers not compared post hoc
Ejupi et al. ¹⁵	• 94 community dwelling elderly participants from a retirement village in Sydney,	• 5TSTS as quickly as possible from a 45cm chair with arms crossed	 Total time to complete (s) Mean sit-to-stand velocity (vertical) (m/s) Mean sitting time (s) 	 Significant difference: Fallers slower than non-fallers for total time as measured by kinect and stopwatch

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
	 Australia 66 (70%) Female/28 (30%) Male 29 Fallers 65 Non-fallers Fallers: Age 80.6 ± 6.7 years BW 67.2 ± 10.8 kg Non-fallers: Age 79.3 ± 6.3 years BW 71.6 ± 13.7 kg Faller definition: One or more fall in the previous 12 months 	Measured using kinect motion camera and stopwatch	 Mean standing time (s) Mean stand-to-sit velocity (m/s) 	 Fallers had lower mean vertical velocity than non-fallers No significant difference: Mean sitting time Mean standing time Mean stand to sit velocity
Ejupi et al. ¹⁶	 94 community dwelling elderly participants living in Sydney, Australia. 64 female/30 male Age 79.9±6.5 years Faller definition: Self- reported fall within the last year Fall definition: an unexpected event in which the person comes to rest on the ground, floor or lower level 	 Stand from a 45cm chair, walk 10m and sit down on a second chair at a comfortable speed Pendent worn around neck under cloths consisting of a triaxial accelerometer and a barometetric air pressure sensor 	 STS: Duration (s) Max resultant acceleration of the sensor (m/s²) Max velocity of the sensor (m/s) Peak power (W) (assumption main components of force and velocity were vertical) Max forward lean (°) Direction of max acceleration or velocity not specified Acceleration signal's vector magnitude calculated Integration of acceleration to get velocity Power calculated by multiplying force (F=ma 	 Significant difference: Fallers had significantly lower max acceleration, max velocity and peak power compared to non-fallers No significant difference: STS duration Max forward lean

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
			 where mass is of the whole body) by velocity Duration estimated by the maximum of the absolute value of the wavelet coefficients 	
Lázaro et al. ¹⁸	 226 participants community dwelling elderly participants living in Madrid, Spain 113 recurrent fallers 113 controls 85% women and mean age of 78 ±5 years Faller definition: Had undergone two or more falls in the previous 6 months and had visited their GP or Geriatrician (self reported) 	 STS without any push off Exact method for test not well explained Performed on a Balance Master® force platform 	STS median time (s)	Fallers were significantly slower in STS compared to non-fallers
Liang et al. ¹⁹	 38 community dwelling elderly participants 23 Fallers 15 Non-fallers Fallers: 	 STS from an armless chair Performed stood on MatScan® system 	 Ground reaction force (GRF) of each foot during STS GRF normalized to patients body weigh and then sample entropy was calculated for each feature using m=2 and r=0.25 This was done using K pagrest paichbor rule 	 Fallers has significantly lower left and right foot vertical ground reaction forces in STS compared to non-fallers

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
	 42.85% male BW 65.92 ± 10.17 kg Non-fallers Age 69.93±4.51 years 45.83% male BW 58.33 ± 18.18 kg Faller definition: Self reported fall within the last year Not including falls from unavoidable environmental hazards such as a chair collapsing or walking on ice 			
Panzer et al. ²⁰	 74 community dwelling elderly participants 27 NF: age 75.1±6.5, 47 F: age 80.1±6.2 No difference between groups by sex Faller definition: Two or more non-injury falls within the last year or one or more injurious falls 	 STS from a 41.4cm height chair with arms crossed Performed on a single force plate 	 STS – Time (s), sway area and mediolateral (ML) and anteroposterior (AP) excursion Time was measured from the onset of AP force until the vertical force reached BW. Sway area was calculated from this point until variance was less than 1SD for more than 5 seconds. ML and AP excursion values were determined from anterior-posterior and vertical phases 	 Fallers had significantly larger STS sway areas and STS ML excursion Tasks with ICC<0.6 and P>0.01 were excluded from further evaluation
Yamada et	• 45 community dwelling elderly participants split into three groups of 15,	• STS while bare foot with feet shoulder width apart, 90° ankle angle, crossed arms and as	• Centre of gravity (CoG) transfer velocity from abdomen to spine as represented by crista iliaca transfer velocity measure by the	Non-fallers had significantly greater CoG maximum and mean transfer velocities compared to both faller

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
al. ²¹	 non-fallers, fallen once per year and fallen more than two times per year Non-fallers: Age 75.7 ± 4.8 year BW 53.0 ± 6.4 kg Single fallers: Age 75.7 ± 5.0 years BW 51.6 ± 8.4 kg Two or more falls per year Age 75.7 ± 4.8 years BW 55.9 ± 6.3 kg No gender info given Definition of past falls and fall not stated 	 quickly as possible from a chair adjusted to knee height of each patient Performed while participant connected to FITRO Dyne Premium – measures length of a pulled or returned cord from the bobbin, which works with a built in rotatory encoder. Subject wears belt around their waist to which the cord is attached to the left Crista iliaca position of the belt 	 time change of the pulled or returned cord length. Highest value and mean values used. (cm/s) ANOVA used for analysis between groups Tukey's honestly significant difference test used post-hoc 	 groups and the single fall group had significantly greater CoG maximum and mean transfer velocities compared to the multiple falls group Exact orientation of CoG movement velocity not stated
Iluz et al. ¹⁷	 71 elderly participants 38 healthy older adults 33 idiopathic elderly fallers Fallers Age 77.89 ± 4.99 years 66.66% women Non-fallers Age 78.65 ± 4.35 63.15% women No significant differences between fallers and non-fallers in baseline characteristics 	 Participants wore a small lightweight sensor on a belt on their lower back that consisted of a tri-axial accelerometer and gyroscope. Sensor worn for 3 consecutive days while performing normal activities at home Lying, standing, sitting and walking parts of signal identified Accelerometer collected acceleration signals in vertical, ML and AP directions and gyroscope provided yaw, pitch and roll 	 Sit to walk and walk to sit analyzed within data Temporal and distribution data collected, only temporal reported here Duration (msec), range (g), jerk (g/msec) and standard deviation of acceleration signal (SD) (g) were collected for each of the vertical, AP and pitch components of the temporal and distribution data sets for both sit to walk and walk to sit. Required pitch angular velocity to be above 15deg/sec in any transition Required the absolute value of change in the AP range between the mean of the first half and the mean of the second half transition 	 Significant difference Fallers had lower vertical STD of temporal walk to sit Fallers had lower AP STD of temporal walk to sit All other differences in variable were found to no be significant

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
	• Faller definition: At least 2 falls in the previous year		 window (window defined as 10s) was above 0.3g and that the range of the sitting part must be below 0.4g to confirm sitting Start and end of each transition identified by identifying max and min points in the signals Each axis expressed different aspects or components of the movement Post hoc analysis between fallers and older non-fallers 	

Note. BW, Body Weight; STS, sit-to-stand; kg, kilogrammes; FSTST, five time sit to stand test; MVGRF, maximum ground reaction force; N, Newtons; MP, maximum

power; VGRF, vertical ground reaction force; PP, preparation phase; RP, rising phase; SP, stabilization phase; s, seconds; m/s, metres per second; cm, centimetres; m, metres; W, Watts peak power; m/s², metres per second per second. GRF, ground reaction force; Anteroposterior, AP; ICC, intraclass correlation coefficient; SD, standard deviation;

CoG, centre of gravity; msec, milliseconds; g, gravity; ML, mediolateral.

Table 3 - Data	extraction	table for	postural	sway
----------------	------------	-----------	----------	------

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings
Date				
Aoki et al. ²²	 23 elderly participants who visited Gifu University Hospital, Japan 9 male/14 female 4 fallers 19 non-fallers No significant difference between average age of groups Fallers: Age 79.5 ± 2.4 years Non-fallers: Age 74.2 ± 6.8 years Self reported fall in the past year 	 Participants asked to maintain standing with a 30-degree angle between the medial sides of their feet and a heel-to-heel separation of approx. 2cm. Told to look ahead at a 2cm marker at eye level at a distance of 1.5m away. Participants wore a white vest with a 3cm diameter black circular marker attached on the back of the vest at the level of the fourth thoracic vertebrae. The marker on back was tracked by complementary metal oxide semiconductor camera (ARTCAM-130MI) located 1.5m behind participants back 60 seconds worth of tracking was recorded with a capture resolution set to 640 (x direction) X 480 pixels and recording 15 frames per second 	 Trunk sway speed in ML direction (TSSX) K_P/K_D ratio (Stiffness/Damping ratio) The image of the marker was binarized with a differentiating histogram method and the locus of the center of the image was recognized and recorded on the computer system The scalar of the locus on real coordinates could be calculated by the number of pixels equivalent to the diameter of the marker 	 Significant difference Fallers had significantly higher K_P/K_D ratios No significant difference: TSSX (mm/s)
Bauer et al. ²³	 75 community dwelling older adults 22 men/62 female 49 Non-Fallers Age 78.9±5.8 	 All trials were conducted by same two researchers Participants stood quietly for 30s Data was recorded for the last 25.6s 	 Mean speed of centre of pressure (CoP) in mm/s Surface of CoP movement (95% confidence elipse) in mm² Length of CoP trajectories in mm (Total, ML 	 Significant difference: Fallers had greater mean velocity in 2cm heel separation stance and narrow stance compared to non- fallers

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings
Author & Date	 Participants 28 Fallers Age 79.4±6.9 Not significant difference in age between fallers and non-fallers Faller definition: Self reported falls the in past year Fall definition: 	 Task and Equipment Used Shoes removed throughout Told to look straight ahead at a point 90cm in front of them with their head up and their arms resting by their sides Instructed to maintain balance Heel distance 2cm and 30° angle between their feet Then narrow stance (ankles and toes touching) 	 Measurement and algorithms employed and AP) Amplitude of the CoP movement in ML and AP directions Quotient of both directions (AmpML/AmpAP) Coefficient of sway direction The frequency of the signal by means of fast Fourier transformations for the ML and AP signals Frequency content was divided into three 	 Findings Fallers had larger CoP movement area for both stances compared to non-fallers Fallers had longer path lengths for CoP movement in total and for ML axis for both stances Fallers had greater amplitudes of CoP movement in the 2cm heel separation stance compared to non- fallers
Porgon at	Fall definition: According to the criteria of the prevention of falls network Europe group	 Performed on a SATEL force plate Performed on a SATEL force plate 	 Frequency content was divided into three categories (0-0.5Hx, 0.5-2Hz, <2Hz) and the energy content for each sway frequency was reported Each of these variable were assessed in narrow stance and 2cm heel separation stance 	 Fallers had a significantly different coefficient of sway direction in the 2cm heel separation stance compared to non-fallers Fallers had higher energy content for all frequencies in the AP direction for both stances Fallers had a higher energy content of sway frequencies 0-0.5Hz in the 2cm heel separation stance Fallers had higher energy content of sway frequencies 0.5-2Hz and >2Hz in both the AP and ML axis in the 2cm heel separation stance No significant difference: All other variables
Berger et	 34 community dwelling elderly participants Sedentary individuals 	• Stood on triangular force platform in a position with feet adducted at 30° and heels separated by 9cm with their arms at their side and	 CoP trajectory automatically processed in different ways by specific software program CoG_H and CoP – CoG_V estimated using the biomechanical relationship in the frequency 	 Significant difference: Fallers had larger movement areas for both CoP – CoG_V and CoG_H compared to non-fallers

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings
Date				
	 walking less than 1 km/day 21 fallers 6 men/15 women Age 85.4 ± 9.3 years 13 Non-fallers 3 men/10 women Age 84.3 ± 6.8 years No significant differences between groups for age, height or weight of participants Faller definition: Self reported one or more falls in the last 12 months that were not related to a known intrinsic event 	 eyes open. Asked to decrease the amount of body sway as much as possible Three trials of 32 seconds sampled at 64 Hz and a rest period of similar duration between each trial Triangular force platform (pF01, Equi+, Aix les Bains, France) 	$\begin{array}{c} \mbox{domain between the amplitude ratio of the CoG_H and the CoP trajectories (CoG_H/CoP) \\ \hline This ratio included a low pass filter that took into account things like height and body weight for each participant \\ \hline The data was processed in two ways: it was analyzed through classical parameters such as area covered, the mean velocity and the variances for ML and AP axis but also using a frequency approach and a mathematical model termed fractional Brownian motion (FBM) on the various trajectories \\ \hline Classical and frequency parameters for the difference between the CoP and the vertical projection of the CoG (CP - CG_V) and the horizontal motion of the CoG (CG_H) motion in both axes \\ & Area (mm^2) \\ & Mean velocity (mm/s) \\ & RMS ML (mm) \\ & MF ML (Hz) \\ & FBM Parameters for CoP - CoG_V motion in both axes \\ & Time interval (\Delta t) ML (s) \\ & Mean square distance covered by a specific point (<\Delta x^2>) ML (mm^2) \\ & Shortest \Deltat (H_{sl}) ML \\ & \Delta t AP (s) \\ & < Ax^2 > AP (mm^2) \\ & < H_{sl} AP \end{array}$	 ○ Fallers had larger mean velocity for CoP – CoG_V compared to non- fallers ○ Fallers had larger RMS amplitudes for both CoP – CoG_V and CoG_H in both the ML and AP axis compared to non-fallers ○ Fallers had significantly larger <Δx²> in both the ML and AP direction for FBM parameters for CoP – CoG_V compared to non- fallers • No significant difference • All other variables

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings
Date				
			• FBM parameters for CoG_H motion in both axes $\circ <\Delta x^2 > ML (mm^2)$ $\circ Longest \Delta t (H_{II}) AP$ $\circ <\Delta x^2 > AP (mm^2)$ $\circ H_{II} AP$	
Lázaro et al. ¹⁸	 226 participants community dwelling elderly participants living in Madrid, Spain 113 recurrent fallers 113 controls 85% women and mean age of 78 ±5 years Faller definition: Had undergone two or more falls in the previous 6 months and had visited their GP or Geriatrician (self reported) 	 Modified Clinical Test for Sensory Interactions with Balance (mCTSIB) Exact method for test not well explained Performed on Balance Master® force platform 	• Subjects displacement of their CoG while standing (°/s)	No significant difference found between fallers and non-fallers
Melzer et al. ²⁵	 143 community dwelling elderly participants from Beer Shiva, Israel 19 fallers 	• Participants stood as still as possible on a single force plate with their hands folded behind their back in both a wide stance with their eyes open and a narrow	 COP path length (cm) COP velocity CoP Elliptical area (cm²) CoP ML sway (cm) CoP AP sway (cm) 	 Significant difference: Fallers had longer CoP path lengths in narrow stance compared to non- fallers Fallers had significantly larger

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings			
Date							
	 Mean age 78.4±1.3 16 males/3 females 124 non-fallers Mean age 78.4 ± Mean age 78.4 ± Mean age 78.4 ± 91 male/33 female No significant differences between groups in age, height, weight, foot length, gender, medication number, disease number, incontinence, dorsiflexion strength, plantar flexion strength, knee extension strength or knee flexion strength) Faller definition: At least 2 falls in the previous 6 months 	 stance with their eyes open (heels and toes touching) 20 seconds for each test Definition of wide stance not expressed in article 	 All variables given for both narrow and wide stances For balance measurements repeated measure analysis of variance (ANOVA) for the two groups 	 elliptical CoP movement areas in narrow stance compared to non-fallers Fallers had greater CoP velocities in narrow stance compared to non-fallers Fallers had significantly larger ML CoP sway in narrow stance compared to non-fallers No significant difference: All wide stance variables All other narrow stance variables 			
Merlo et al. ²⁶	 130 elderly participants recruited from the Memory Clinic of the Regional Hospitals of Mendrisio and Lugano, Switzerland 67 Non-fallers Age 79 ± 5 	 Pareticipants stood barefoot with their eyes open on a force plate for 30 seconds They were encouraged to maintain a relaxed position with arms at their sides Their foot position was standardized by use of a custom removable device 	 AP mean COP position (mm from heels) ML mean COP position (mm from heels midpoint) Sway mean velocity (mm/s) AP mean velocity (mm/s) ML mean velocity (mm/s) AP RMS displacement (mm) ML RMS displacement (mm) 	 Significant difference: Fallers had a greater AP mean CoP position compared to non-fallers and recurrent fallers Recurrent fallers had larger area of 95% confidence ellipse compared to non-fallers No significant difference: 			

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings			
Date							
	 43% male 45 Fallers Age 79 ± 6 42% male 18 Recurrent Fallers Age 81 ± 6 22% male Faller definition: One or two falls in the last year Recurrent faller definition: More than two falls in the last year 	 The distance between the centre of their heels ranged from 14 to 16 cm depending on foot size and the angle between each foot and the AP direction was 10° There was a visual target placed at eye level 1.5 m away One piezoelectric force plate was used in Mendrisio One strain gauge force plate was used in Lugano 	 Area of 95% confidence ellipse (mm²) Data collected using bioware software at a sampling frequency of 100 Hz Mean value tested using Kruskal-Wallis test Between group comparisons completed using Mann-Whitney test Comparisons between proportions were carried out by mean of the Fisher Exact test 	 Sway mean velocity AP mean velocity ML mean velocity AP RMS displacement ML RMS displacement 			
Park et al. ²⁷	 29 community dwelling elderly participans from four local senior welfare centers 3 men/26 women Mean age 78.9 ± 4.69 years 8 Fallers 21 Non-fallers 65 and over Faller definition: Self reported fall in the last year Fall Definition: An 	 Participants maintained quiet standing on a force with their eyes open and their arms by side There was 5 minute reset between data acquisition tasks and 30 seconds of data collection Completed in a battery with 3 other tasks in a random order Each task was repeated 3 times The first 6 seconds and last 3 seconds were excluded from analysis 	 CoP range and CoP displacement in the AP and ML axis All data analyzed using the Mann-Whitney U test 	 No significant difference: CoP range in the ML plane CoP range in the AP axis CoP distance in the ML axis CoP distance in the AP axis 			

Author &	Participants	Task and Equipment Used	Measurement and algorithms employed	Findings
Date				
	event causing a person to rest unintentionally on the ground or other lower level not due to any intentional movement, a major intrinsic event, or extrinsic force			

Notes. cm, centimeter; ML, mediolateral; mm, millimetres; s, seconds; CoP, centre of pressure; Anteroposterior, AP; Hz, Hertz; CoG, centre of gravity; RMS, root mean

square; MF, median frequency.

Table 4 - Data extraction table for stairs

Author &	Participants & faller	Task and Equipment Used	Measurement and Algorithms Employed	Findings
Date	definition			
Lázaro et al. ¹⁸	 226 participants community dwelling elderly participants living in Madrid, Spain 113 recurrent fallers 113 controls 85% women and mean age of 78 ±5 years Faller definition: Had undergone two or more falls in the previous 6 months and had visited their GP or Geriatrician (self reported) 	 Step up and down from a step Exact method for test not well explained Performed on a Balance Master® force platform 	 Force exerted through the participants legs expressed as a percentage of their BW Results reported: Lift-up index (left and right leg) and impact index (left and right leg) 	 Significant difference: Fallers had lower lift-up indexes for each leg compared to non-fallers No significant difference: Impact index for each leg

Notes. BW, body weight; GP, general practitioner.

	Research	Study		Subjects	Sample size				Exposure		Outcome				
	question	population		selected or	justification,	Exposure(s)	Time frame	Different levels	measures clearly	Exposure(s)	measures clearly	Outcome		Key potential	
	or	clearly	Participation	recruited from	power description	of interest	sufficient for	of exposure	defined, valid,	measured	defined, valid,	assessors	Loss of follow	v confounding	
	objective	specified	rate of	the same or	or variance and	measured	outcome to be	examined in	reliable and	more than	reliable and	blinded to	up after	variable	
	clearly	and	eligible	similar	effect estimates	prior to	shown if	relation to	implemented	once over	implemented	exposure status	baseline	measured and	Percentage
	stated	defined	persons ≥50%	6 population	provided	outcome(s)	present	outcome	consistently	time	consistently	of participants	≤20%	adjusted for	appraisal score
Aoki et al. 22	\checkmark	\checkmark	NR	\checkmark	×	×	×	×	\checkmark	NA	\checkmark	NR	NA	×	50%
Bauer et al. ²³	\checkmark	×	NR	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	NR	\checkmark	\checkmark	75%
Berger et al. ²⁴	\checkmark	×	NR	\checkmark	×	×	×	×	\checkmark	NA	\checkmark	NR	NA	\checkmark	50%
Cheng et al. ¹⁴	\checkmark	×	NR	NR	×	×	×	×	\checkmark	NA	\checkmark	NR	NA	\checkmark	50%
Ejupi et al. ¹⁵	\checkmark	\checkmark	NR	\checkmark	×	×	×	×	\checkmark	NA	\checkmark	NR	NA	NR	55%
Ejupi et al. ¹⁶	\checkmark	\checkmark	NR	\checkmark	×	×	×	×	\checkmark	NA	\checkmark	NR	NA	×	50%
lluz et al. ¹⁷	\checkmark	×	NR	NR	×	×	×	×	\checkmark	×	\checkmark	\checkmark	NA	\checkmark	45%
Lázaro et al. ¹⁸	\checkmark	\checkmark	NR	\checkmark	×	×	×	×	\checkmark	NA	×	NR	NA	CD	44%
Liang et al. ¹⁹	\checkmark	×	NR	\checkmark	×	×	×	×	\checkmark	NA	\checkmark	NR	NA	\checkmark	50%
Melzer et al. ²⁵	\checkmark	×	NR	\checkmark	\checkmark	×	×	×	\checkmark	NA	×	NR	NA	\checkmark	50%
Merlo et al. ²⁶	\checkmark	\checkmark	NR	\checkmark	\checkmark	×	×	\checkmark	\checkmark	NA	\checkmark	NR	NA	\checkmark	73%
Panzer et al. ²⁰	\checkmark	\checkmark	NR	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	NR	\checkmark	×	83%
Park et al. ²⁷	\checkmark	×	NR	\checkmark	×	×	×	×	\checkmark	NA	×	NR	NA	\checkmark	40%
Yamada et al. ²¹	\checkmark	×	NR	\checkmark	×	×	×	×	×	NA	\checkmark	NR	NA	NR	33%

Table 5 - Quality Assessment of Included Articles (CD = Cannot determine, NA = Not applicable, NR = Not reported)