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We present theoretical results for the radiative rates and doping-dependent photoluminescence
spectrum of interlayer excitonic complexes localized by donor impurities in MoSe2/WSe2 twisted het-
erobilayers, supported by quantum Monte Carlo calculations of binding energies and wave-function
overlap integrals. For closely aligned layers, radiative decay is made possible by the momentum
spread of the localized complexes’ wave functions, resulting in radiative rates of a few µs−1. For
strongly misaligned layers, the short-range interaction between the carriers and impurity provides
a finite radiative rate with a strong asymptotic twist angle dependence ∝ θ−8. Finally, phonon-
assisted recombination is considered, with emission of optical phonons in both layers resulting in
additional, weaker emission lines, red shifted by the phonon energy.

I. INTRODUCTION

Recent advances in the study of two-dimensional (2D)
materials have allowed the realization of van der Waals
(vdW) heterostructures consisting of vertically stacked
2D layers, resulting in unique properties and potential
novel device applications1–5. The layers forming these
heterostructures are only weakly bound by vdW forces,
and largely retain their individual characteristic proper-
ties. Yet, the weak interlayer coupling allows the different
properties of various 2D materials to be combined.

One such family of vdW heterostructures are hetero-
bilayers of 2D transition metal dichalcogenides (TMDs),
which have attracted much interest due to their unique
optical properties, dominated by strongly bound exci-
tonic complexes6,7 and spin- and valley-dependent opti-
cal selection rules8,9. The most commonly studied het-
erobilayers are of the form MoX2/WX2, with X = S
or Se, due to their type-II (staggered) band alignment,
in which the lowest conduction-band (CB) edge and the
highest valence band (VB) edge are spatially confined to
different layers10,11. In this configuration, electrostatic
interactions between electrons and holes across the het-
erostructure result in the formation of interlayer exci-
tonic complexes, whose constituent carriers are spatially
separated in the out-of-plane direction. Optical signa-
tures of these interlayer complexes have been reported
in photoluminescence (PL) experiments12–14, where new
PL peaks are observed in the spectra of bilayer regions.
These signatures appear at energies below the monolayer
photoemission lines, due to the smaller interlayer band
gap in the staggered band configuration.

Photoemission by free interlayer excitons is limited
by the relative interlayer angle θ and the incommen-
surability of the two TMD lattices δ, resulting in a
momentum-space mismatch ∆K ≈ K

√
δ2 + θ2 between

the conduction- and valence-band edges, as shown in Fig.
2(b). Radiative recombination becomes effectively in-
direct, and thus suppressed by energy and momentum
conservation15. These constraints are relaxed when in-
terlayer excitons and larger excitonic complexes localize
about charged defects, such as donor ions, which are
commonly observed as dopants in real samples. For-

mation of these complexes is favored by the long inter-
layer exciton lifetimes resulting from the spatial separa-
tion of their carriers, which allow for their localization
by the deep potential wells provided by the ions. The
spread in momentum space of these localized complexes
opens the possibility for a finite radiative matrix element
M ∝

∫
d2r ei∆K·rΨ(r), where Ψ(r) is the envelope wave

function of the complex.

In this paper, we provide a theory for the radiative
recombination of localized interlayer complexes in TMD
heterostructures of the form MoX2/WX2, where the car-
riers are bound to a donor ion in the MoX2 layer. Focus-
ing specifically on MoSe2/WSe2 encapsulated in hexago-
nal boron nitride (hBN), we use variational and diffusion
quantum Monte Carlo (VMC and DMC) simulations16,17

to evaluate the binding energies and wave-function over-
lap integrals of complexes involving one or two holes in
the WSe2 layer and up to four electrons in the MoSe2

layer, accounting for bilayer and encapsulation screening
effects. We discuss the energetics and stability of these
complexes based on their binding energies, and the ro-
bustness of our results against uncertainty in model pa-
rameters, such as the carrier effective masses and screen-
ing lengths.

Motivated by the binding energies obtained from
our quantum Monte Carlo (QMC) calculations and PL
experiments18, we study the radiative recombination of
the two simplest complexes consisting of MoX2 electrons
and a single WX2 hole bound to an impurity center: a
donor ion and an exciton (D0

c′hv), and a donor-bound
trion (D0

c′Xvc′). We predict the qualitative PL spectrum
from these complexes for closely aligned TMD hetero-
bilayers, and estimate the asymptotic behavior of their
PL signals in the regime of strong misalignment based
on general kinematics and perturbation theory. Our re-
sults indicate a rapid decay of the PL signals from the
most relevant donor-bound interlayer complexes with the
interlayer twist angle (θ), resulting from the asymptotic
behavior Γ ∼ θ−8 of the radiative rates at strong mis-
alignment. As a consequence, we expect that optical sig-
natures from these complexes can be detected only in
closely aligned crystals. Our results provide a new per-
spective for the interpretation of recently reported lumi-
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FIG. 1. (a) Simulated PL spectrum of donor-bound inter-
layer complexes in an aligned (θ = 0) MoSe2/WSe2 bilayer
encapsulated in hexagonal boron nitride, for an electron den-
sity of ne = 0.9nD, with nD being the donor density. Dashed
lines indicate PL from phonon-assisted recombination. Solid
lines are taken to have Gaussian shape with width 2σ = 60
meV, and the interlayer gap is Ẽg = 1.5 eV. The vertical gray
dashed lines in (a) and (c) indicate the position of the free in-
terlayer exciton Xvc′ . (b) Radiative rates of the D0

c′hv (per
hole) (solid blue) and D0

c′Xvc′ (solid red) complexes, and their
phonon-assisted replicas (dashed), in the large and small twist
angle (θ) limits. The rates have a strong angular dependence,
with asymptotic behavior ∼ θ−8 for radiative decay driven by
short-range interactions, and ∼ θ−4 for phonon-assisted pro-
cesses. The gray lines for intermediate twist angles θ = 2–6◦

have been interpolated by hand. (c) Simulated PL spectrum
in the limit of heavy n-doping, showing the appearance of the
donor-bound trion (D0

c′Xvc′) line when ne > nD. Parameters:
nh = 1011 cm−2 and nD = 1013 cm−2.

nescence spectra of closely-aligned TMD heterobilayers,
where the interlayer portion of the spectrum has been
attributed to delocalized interlayer exciton states12.

The remainder of this paper is organized as follows. In
Sec. II we discuss the model Hamiltonian for the TMD
heterobilayer, describe our approach to calculating its op-
tical properties, and present our DMC results for the
binding energies of the main interlayer impurity-bound
complexes. In Sec. III, we address the PL signatures of
these complexes, assuming good alignment between the
TMD monolayers in the heterostructure, and estimate
the asymptotic behavior of their radiative decay with
twist angle in Sec. IV. We consider the effects of electron-
phonon interactions in Sec. V, and we find that longi-

tudinal optical phonon modes can introduce red shifted
replicas to the main PL lines. Finally, we estimate the
evolution of the PL spectrum of the two main donor-
bound interlayer complexes with doping in Sec. VI. Our
conclusions are summarized in Fig. 1, and discussed in
Sec. VII.

II. MODEL

A. Electrostatic interactions in a bilayer system

The reduced dimensionality of a monolayer TMD leads
to modified electrostatic interactions between its charge
carriers below a characteristic length scale r∗ = 2πκ/ε
(in Gaussian units), determined by the monolayer’s in-
plane dielectric susceptibility κ, and the (average) dielec-
tric constant ε of its environment19,20. In a TMD het-
erobilayer, further screening effects must be considered.
The resulting interactions between same-layer carriers V
in one layer and V ′ in the other, and the interlayer inter-
action W, have Fourier components (Appendix A)

V(q) =
2π
(
1 + r′∗q − r′∗qe−2qd

)
εq [(1 + r∗q)(1 + r′∗q)− r∗r′∗q2e−2qd]

, (1a)

V ′(q) =
2π
(
1 + r∗q − r∗qe−2qd

)
εq [(1 + r∗q)(1 + r′∗q)− r∗r′∗q2e−2qd]

, (1b)

W(q) =
2π e−qd

εq [(1 + r∗q)(1 + r′∗q)− r∗r′∗q2e−2qd]
, (1c)

where q is the wave vector, d is the interlayer distance,
and r∗ and r′∗ are the corresponding monolayer screening
lengths.

Previous works on monolayer TMDs have focused on
interactions of the Keldysh form19 to study their exci-
tonic spectra and optical properties6,20–23. For bilayers,
this potential form is obtained from Eqs. (1a)–(1c) in the
long-range limit (q � 1/r∗, 1/r′∗) as

V<(q) = V ′<(q) =
2π

εq [1 + (r∗ + r′∗)q]
, (2a)

W<(q) =
2π

εq [1 + (r∗ + r′∗ + d)q]
. (2b)

By contrast, in the short-range limit (q � 1/r∗, 1/r′∗) we
obtain for the intralayer interactions

V>(q) =
2π

ε r∗q2
, V ′>(q) =

2π

ε r′∗q2
, (3)

revealing the absence of screening from the opposite
layer in this regime. More strikingly, the short-range
interlayer potential vanishes exponentially as W>(q) =
2π e−qd/(ε r∗r′∗q

3). Neither of these features is captured
by extrapolation of Eqs. (2a) and (2b) to large wave num-
bers.
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FIG. 2. (a) Schematic of type-II band alignment in a TMD
heterobilayer. The CB and VB of the two layers are shifted
relative to each other by energies ∆c and ∆v, respectively,
giving an interlayer gap of Ẽg. (b) The Brillouin zones (BZs)
of the misaligned TMD monolayers, with Gn and G′n their
main reciprocal lattice vectors. Their K valleys are separated
by a momentum vector ∆K, due to the nonzero misalignment
angle θ and to the difference in lattice constants.

B. Photon emission by donor-bound complexes

As in the monolayer case24–27, optical properties of
the heterobilayer are determined by excitonic complexes
formed by excess electrons and holes in the sample. Stag-
gered (type-II) band alignment, in which the main elec-
tron and hole bands belong to opposite layers, is typical
of TMD heterostructures10. This is shown schematically
in Fig. 2(a) for a MoX2/WX2 structure, where X = S
or Se represents a chalcogen; the main electron and hole
bands are labeled c′ and v, respectively, and the primed
(unprimed) band labels correspond to the MoX2 (WX2)

layer. Given the reduced band gap Ẽg [Fig. 2(a)], the
lowest-energy exciton states are spread across the het-
erostructure, formed by c′-band electrons and v-band
holes bound by the interaction W(q)12,13,28.

The optical activity of interlayer excitons in TMD
bilayers is strongly constrained by the interlayer align-
ment. As shown in Fig. 2(b), the relative twist angle and
lattice incommensurability between the two layers pro-
duces a mismatch between their Brillouin zones (BZs).
Thus, bright interlayer excitons in MoX2/WX2 struc-
tures, consisting of same-valley c′-band electrons and
v-band holes, have a finite center-of-mass momentum
∆K = K′ − K. Due to energy and momentum con-
servation, photon emission by interlayer excitons is only
allowed when29 ∆K ≈ 0.

The above restrictions are relaxed when excitons and
other excitonic complexes are bound to impurity centers
in the sample, such as charged defects and donor ions.
These complexes are localized within some characteris-
tic length a∗0, the Bohr radius of the complex, such that
their momentum-space wave functions are finite up to
momenta of order 1/a∗0. As a result, the recombination
rates of impurity-bound interlayer complexes are deter-
mined by the large-momentum tail of their wave function,
and thus by the short-range interaction [Eq. (3)].

The Hamiltonian for the heterobilayer in the free-
carrier basis is

Ĥ = Ĥ0 + Ĥt + Ûintra + Ûinter, (4)

where the zeroth-order Hamiltonian Ĥ0, describing the
CB and VB electrons of the two individual layers, is given
in second quantization as

Ĥ0 =
∑
α

∑
k,τ,σ

Eα(k)c†α,τ,σ(k)cα,τ,σ(k). (5)

c†α,τ,σ(k) creates an electron of spin projection σ =↑, ↓
and momentum k relative to the τK valley (τ = ±) of
band α = c′, v′, c, v. The band dispersions are

Ev′(k) = −∆v −
~2k2

2m′v
, (6a)

Ev(k) = −~2k2

2mv
, (6b)

Ec′(k) = Ẽg +
~2k2

2mc′
, (6c)

Ec(k) = Ẽg + ∆c +
~2k2

2mc
, (6d)

where ∆c (∆v) is the spacing between the electron (hole)
band edges [Fig. 2(a)].

The tunneling Hamiltonian, describing electron hop-
ping between the layers, is given by30,31

Ĥt =
∑
τ,σ

∑
G,G′

∑
k,k′

δτK+k+G,τ ′K′+k′+G′e
−iG0·r0

×
[
tcc(k + τK + G)c†cτσ(k)cc′τ ′σ(k′)

+ tvv(k + τK + G)c†vτσ(k)cv′τ ′σ(k′)
]

+ H.c.,

(7)

where tcc(k) and tvv(k) represent interlayer hopping
strengths between the CBs and VBs; G and G′ corre-
spond to the reciprocal lattice vectors of the hole and
electron layers; and the Kronecker delta enforces mo-
mentum conservation in the tunnelling process. r0 is a
vector within the unit cell representing the in-plane shift
between the metal atoms of the two TMD monolayers,
such that a general stacking configuration is parameter-
ized by r0 and θ. We focus on configurations with close
angular alignment but general r0; this is a type of pseudo
“AA” stacking better suited to describe experimental sit-
uations. Correspondingly, we use the ab initio hopping
terms reported in Ref. [31] for AA stacked (r0 = 0, θ = 0)
MoS2, for estimation purposes. These values are small (a
few meV) compared to all other scales in the problem, re-
flecting the vdW and electrical quadrupole nature of the
interlayer interactions. As a result, Ĥt can be treated
within perturbation theory. Furthermore, since tαα(k)
decays rapidly with k, we truncate the sums over G and
G′ to the two main Bragg vectors31 [Fig. 2(b)], and set
tcc(τK) ≈ tcc = 2.5 meV and tvv(τK) ≈ tvv = 16 meV.

Finally, the direct electrostatic interactions between
carriers, and between carriers and a positive donor ion of
effective charge Zdonor, are given by
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Ûintra =
e2

S

∑
τ1,τ2
σ1,σ2

∑
k1,k2,ξ

[ ∑
α,β=v,c

V(ξ)

(1 + δα,β)
c†α,τ1,σ1

(k1 + ξ)c†β,τ2,σ2
(k2 − ξ)cβ,τ2,σ2(k2)cα,τ1,σ1(k1)

+
∑

α,β=v′,c′

V ′(ξ)

(1 + δα,β)
c†α,τ1,σ1

(k1 + ξ)c†β,τ2,σ2
(k2 − ξ)cβ,τ2,σ2

(k2)cα,τ1,σ1
(k1)

]

−Zdonore
2

S

∑
τ,σ

∑
k,ξ

∑
α=v′,c′

V ′(ξ)c†α,τ,σ(k + ξ)cα,τ,σ(k),

(8a)

Ûinter =
e2

S

∑
τ1,τ2
σ1,σ2

∑
k1,k2,ξ

∑
α=v,c

∑
β=v′,c′

W(ξ) c†α,τ1,σ1
(k1 + ξ)c†β,τ2,σ2

(k2 − ξ)cβ,τ2,σ2
(k2)cα,τ1,σ1

(k1)

−Zdonore
2

S

∑
τ,σ

∑
k,ξ

∑
α=v,c

W(ξ) c†α,τ,σ(k + ξ)cα,τ,σ(k),

(8b)

where S is the sample area. The donor ion is treated as
a dispersionless scatterer, and is assumed to be present
in the MoX2 (electron) layer. Henceforth, we assume
that a donor yields a single electron to the TMD and set
Zdonor = 1.

The radiative recombination of electrons and holes is
driven by the light-matter interaction

Ĥr =
eγ

~c
∑
q

∑
k,τ,σ

√
4π~c
V q

c†v,τ,σ(k− q‖)cc,τ,σ(k)a†τ (q),

(9)

in the WX2 layer and an analogous term Ĥ ′r in the MoX2

layer. Here, γ(′) is given by the in-plane momentum ma-
trix element between c(

′) and v(′) band states, evaluated
at the ±K points of the BZ32. a†τ (q) creates a photon
of momentum q and in-plane polarization τ , determined
by the electron’s valley degree of freedom, where τ = +
(τ = −) represents right-handed (left-handed) circular
polarization. The photon momentum q = q‖ + q⊥ is
split into its in-plane and out-of-plane components, re-
spectively, and V = SL, with L the height of the optical
cavity in which the sample is embedded.

Let |Ψ〉 be an interlayer excitonic eigenstate of the

Hamiltonian Ĥ0 + Ûintra + Ûinter of energy EΨ. Photon
emission through the term Ĥr requires the recombining
carriers to be in the same TMD layer. This is allowed by
the perturbation Ĥt, giving the first-order correction to
the wave function,

|Ψ(1)〉 =
∑
n

〈n|Ĥt|Ψ〉
En − EΨ

|n〉, (10)

where the sum runs over the eigenstates |n〉 of Ĥ0 +

Ûintra + Ûinter, with energies En. The resulting rate of
radiative recombination is then given by Fermi’s golden
rule as

ΓΨ =
2π

~
∑
f

∣∣∣〈f ∣∣[Ĥr + Ĥ ′r
]∣∣Ψ(1)

〉∣∣∣2 δ(Ef − EΨ), (11)

where {|f〉} is the set of possible final states, containing
one additional photon. As discussed below, the relevant
matrix elements in Eq. (11) can be evaluated numerically
in QMC.

III. RECOMBINATION OF DONOR-BOUND
INTERLAYER COMPLEXES

A. Model parameters

We now discuss the optical emission signatures of
the most relevant donor-bound interlayer excitonic com-
plexes predicted by VMC and DMC simulations. For
concreteness, we will focus on MoSe2/WSe2 heterobi-
layers (X=Se); parameters relevant to this pair of ma-
terials are shown in Table I. Furthermore, we assume
that the heterobilayer is encapsulated in bulk hBN, and
set the dielectric constant to ε = 4. Our chosen value
of 4 corresponds to the high-frequency dielectric con-
stant of hBN, which is reasonable as the exciton bind-
ing energy is considerably larger than the highest optical
phonon frequency of hBN. In principle, the anisotropic
nature of the encapsulating hBN supplies an effective
dielectric constant ε̄ =

√
ε‖ε⊥ and renormalizes the in-

terlayer distance d by a factor
√
ε‖/ε⊥, where ε‖ and

ε⊥ are the in-plane and out-of-plane dielectric constants
(see Appendix A). However, taking ε‖(∞) and ε⊥(∞)
from various sources we find that 3.1 <

√
ε‖ε⊥ < 4.5

and 0.71 <
√
ε‖/ε⊥ < 0.9533–36. This justifies, in part,

our use of ε = 4 and our use of the unmodified physi-
cal layer separation, but as a check of the robustness of
our results, we have also considered a few other dielectric
environments for a restricted set of charge complexes.

The Hamiltonian of Eq. (4), without Ĥt (i.e., with
charges being fixed in their layers), was solved using
DMC for various numbers of excess electrons and holes,
and in the presence of donor impurities in the MoSe2

layer. Our DMC total energies are statistically exact: we
have not considered any complexes containing indistin-
guishable fermions, and therefore the ground-state wave
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functions are nodeless, so that no fixed-node error is in-
curred. The technical details of our DMC calculations
are given in Appendix B 1. Binding energies for free and
impurity-bound excitons and trions, in different dielec-
tric environments, are reported in Table II. DMC bind-
ing energies for a wider range of charge-carrier complexes
in heterobilayers are reported in Table V in Appendix
B 2. A number of donor-bound complexes with up to
four electrons and two holes are predicted to be stable.
A detailed account of the sensitivity of the binding en-
ergy of D0

c′Xvc′ to our choices of model parameter (mc′ ,
mv, r∗, r′∗, d, and ε) is given in Appendix B 3.

TABLE I. Model parameters for MoSe2 and WSe2, extracted
from Refs. 21, 23, 32, 37, and 38, and the heterobilayer
MoSe2/WSe2 extracted from Refs. 10, 12, and 39. The inter-

layer gap Ẽg was estimated from the luminescence spectrum
reported in Ref. 12, considering the exciton binding energies
of Table II. From left to right, the single-layer parameters are:
lattice constant a, VB and CB masses mv and mc, screening
length r∗ in a vacuum environment, and momentum matrix
element γ. The heterobilayer parameters are: valence and
conduction interlayer spacing ∆v and ∆c, interlayer band gap
Ẽg, and interlayer distance d.

a (Å) mv/m0 mc/m0 r∗ (Å) γ (eV Å)
MoSe2 3.30 0.44 0.38 39.79 2.53
WSe2 3.29 0.34 0.29 45.11 3.17

∆v (eV) ∆c (eV) Ẽg (eV) d (Å)
MoSe2/WSe2 0.36 0.36 1.5 6.48

The simplest interlayer excitonic complex is a donor-
bound exciton D0

c′hv, where D0
c′ represents a positive

donor ion that has been neutralized by binding an elec-
tron from band c′, and hv a hole from band v. (When
complex labels appear as subscripts in formulas, we will
suppress the v and c subscripts for clarity.) DMC simu-
lations predict that this complex is unbound due to the
screening of the interlayer interaction between holes and
the strongly bound neutral donor state D0

c′ , whose bind-
ing energy is Eb

D0 = −229.03 meV (Table II). We there-
fore consider the recombination of a neutral donor D0

c′

with delocalized holes in band v.
Adding one more electron we obtain a donor-bound

trion. Alternatively, this complex can be viewed as an
interlayer exciton Xvc′ bound by a neutral donor D0

c′ ,
leading to the notation D0

c′Xvc′ . Remarkably, this larger
complex is stable up to ∼ 256 K, with binding energy
Eb

D0X ≈ 22.52 meV (Table II) for the most energetically
favorable dissociation channel into a neutral donor D0

c′

and an interlayer exciton Xvc′ .
In the following sections we calculate the photoemis-

sion rates of these two complexes using the formalism
described in Sec. II.

B. D0
c′hv: Neutral donor and free hole

The initial state for the recombination process of a neu-
tral donor and a free hole is given in second quantization

TABLE II. Binding energies Eb of some charge-carrier com-
plexes in a MoSe2 monolayer, a WSe2 monolayer, and a
MoSe2/WSe2 heterobilayer in different dielectric environ-
ments including: vacuum on both sides, SiO2 on one side and
vacuum on the other, bulk hBN on one side and vacuum on
the other, and bulk hBN on both sides. In the heterobilayer
it is assumed that the donor ion and electrons occur in the
MoSe2 layer, while the holes are confined in the WSe2 layer.
The material parameters are listed in Table I. The DMC error
bars are everywhere smaller than 0.2 meV.

Binding energy (meV)
System ε

Xvc′ X−vc′c′ D0
c′ D0

c′Xvc′

hBN/MoSe2/hBN 4 194 16.2 260 21.0
hBN/WSe2/hBN 4 160 13.6 215 18.1
vac./MoSe2/WSe2/vac. 1 206 6.2 540 40.3
SiO2/MoSe2/WSe2/vac. 2.45 123 5.1 329 30.1
hBN/MoSe2/WSe2/vac. 2.5 121 5.2 324 29.9
hBN/MoSe2/WSe2/hBN 4 84.2 4.1 229 22.5

by

|D0;kh〉 =
1√
S

∑
k

χ̃k c
†
c′,τ ′,σ′(k)cv,τ,σ(kh)|Ω〉, (12)

where χ̃k =
∫
χ(r)e−ik·r d2r is the Fourier transform of

the donor-atom wave function centered at the donor site.
Relative to the neutral vacuum, the state’s energy can be
written as ED0(kh) = Ec′(0) − Ev(kh) − Eb

D0 , with Eb
D0

the binding energy.

In the close-alignment limit and in the absence of in-
tervalley scattering, the complex described by Eq. (12)
can decay through radiative recombination only if τ ′ = τ .
Furthermore, spin-valley locking37 and the known band
ordering of MoSe2 and WSe2 monolayers32 further re-
quire that σ = σ′. Considering single-photon final states
of the form |f〉 = a†τ (q) |Ω〉, with polarization determined
by the valley quantum number, and assuming a small
twist angle θ ≈ 0◦, Eqs. (10) and (11) give the radiative
decay rate

Γ<D0h =
4Ẽg |F (r0)|2

~
e2

~c

[
tvvγ

′

~c∆v
− tccγ

~c(∆c + Eb
D0)

]2

×
∣∣∣∣∫ d2r ei∆K·rχ(r)

∣∣∣∣2 nh,

(13)

where nh is the hole density of the sample, and the
stacking-dependent function F (r0) = 1 + e−iG1·r0 +
e−iG2·r0 is introduced by the momentum-conservation
rule in Eq. (7) (see also Fig. 10 in Appendix C). To eval-
uate Eq. (13), we obtain the wave function χ(r) of the
donor-bound electron by solving the two-body problem
with a finite-elements method, as detailed in Appendix E.
Note that a finite amplitude for radiative recombination
depends critically on the electron-hole asymmetry, and
on having different tunneling strengths between the CBs
and the VBs of the two layers, owing to the symmetry
properties of the band states.
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C. D0
c′Xvc′ : Donor-bound interlayer trion

As discussed above, a donor-bound trion D0
c′Xvc′ can

be viewed as an interlayer exciton bound to a neutral
donor ion. Defining the interlayer exciton Xvc′ and D0

c′

energies as EX = Ec′(0)−Ev(0)−Eb
X and ED0 = Ec′(0)−

Eb
D0 , respectively, the energy of a D0

c′Xvc′ complex can be

expressed as ED0X = ED0 +EX−Eb
D0X, where Eb

D0X is the
binding energy defined with respect to the most favorable
dissociation channel into D0

c′+Xvc′ . The corresponding
eigenstate is given by

|D0X〉 =
1

S3/2

∑
kh,k1,k2

Φ̃kh,k1,k2

× c†c′,τ ′,σ(k1)c†c′,−τ ′,−σ′(k2)cv,τ,σ(kh)|Ω〉,
(14)

with its two electrons belonging to opposite valleys, thus
minimizing their mutual repulsion [see Eqs. (1a) and
(1b)]. In this case, we consider decay into states of the
form |f〉 = a†τ (q)|D0〉, which are energetically favorable
given the large binding energies of D0

c′ bound states. The
corresponding radiative rate for close interlayer align-
ment is given by

Γ<D0X ≈
4Ẽg

~
e2

~c
|F (r0)|2

×
∣∣∣∣∫ d2r

∫
d2r′ ei∆K·rχ∗(r′)Φ(r, r, r′)

∣∣∣∣2
×
[

tvvγ
′

~c(∆v + Eb
D0X + Eb

X)
− tccγ

~c(∆c + Eb
D0X + Eb

X)

]2

.

(15)

The donor atom in the final state can be in its ground
state, or in any excited state allowed by angular mo-
mentum conservation. This constitutes a series of ra-
diative subchannels, and in principle results in a series
of lines with energies determined by the donor atom
spectrum. The main subchannel, corresponding to the
ground state χ1s(r), produces the main emission line at

E∗ = Ẽg − (Eb
D0X + Eb

X). The first radially symmetric ex-
cited state, χ2s(r), will produce an additional line ∼ 167
meV above the main line. The overlap integrals between
the ground-state donor-bound trion and the 1s and 2s
neutral donor states were evaluated using VMC, and the
latter was found to be two orders of magnitude smaller.
We conclude that excited states can be neglected, and
henceforth only the 1s subchannel will be considered. In
the case of ∆K = 0, the integral in Eq. (15) is given by∣∣∫ d2r

∫
d2r′ χ∗(r′)Φ(r, r, r′)

∣∣2 = 1.47 (see Appendix B 5
for details).

To summarize Sec. III, Fig. 1(b) shows the
radiative rates of D0

c′hv and D0
c′Xvc′ in an

hBN/MoSe2/WSe2/hBN heterostructure, for small twist

angles and using the maximum value of |F (0)|2 = 9.
Alternatively, we may average this function within the
unit cell, leading to 〈|F (r0)|2〉 ≈ 3. The large-angle
asymptotic behavior of the radiative rate shown in Fig.
1(b) is discussed next.
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FIG. 3. Diagrams for the radiative recombination of neutral
donors D0

c′ with free holes hv. The solid (dashed) line rep-
resents a free hole (electron); the donor impurity center is
represented by a “×” symbol, and the D0

c′ state by “×” in a
dashed circle. Horizontal lines correspond to interlayer tun-
neling, wavy lines to Coulomb scattering, and the triangular
vertex represents radiative recombination.

IV. ASYMPTOTIC BEHAVIOR FOR LARGE
INTERLAYER TWIST ANGLES

To estimate the quenching of radiative decay as the
misalignment angle grows, we evaluate the asymptotic
behavior of the radiative rate for large valley mismatch
|∆K| >∼ 1/a∗0 from a perturbative treatment of the short-
range interactions (3). In this regime, the rate of ra-
diative decay of intralayer complexes is determined by
the tail of the momentum-space wavefunction extending
toward the opposite layer valley, and which is governed
by the large-momentum portion of the interaction term
(8a). Thus, we formally split Ûintra = Û<intra + Û>intra and

Ûinter = Û<inter + Û>inter, where “large” (>) momentum
corresponds to wave vectors >∼ 1/a∗0. Let |Ψ0〉 be an ex-
citonic state of energy E0

Ψ, of the Hamiltonian

ĤLR = Ĥ0 + Û<intra + Û<inter, (16)

containing the long-range approximation to the carrier-
carrier and donor-carrier interaction. The interactions
Û<intra and Û<inter are given by the expressions (8a) and

(8b), respectively, with the substitutions V(′)(ξ) −→
V(′)
< (ξ) and W(ξ) −→ W<(ξ) [see Eqs. (2a) and (2b)].

The state |Ψ0〉 is perturbed by the interlayer tunneling

term Ĥt, as well as the short-range interaction Û>intra, ob-

tained by substituting V(′)(ξ) −→ V(′)
> (ξ) in Eq. (8a) [see

Eq. (3)]. As shown in Eq. (3), these terms are inversely
proportional to the square of a large wave number, and
thus may be treated perturbatively. Furthermore, the
short-range interlayer term is exponentially suppressed,
and can be ignored altogether. As a consequence, short-
range impurity scattering can take place exclusively in
the electron layer, where the impurity centers are located
(see diagrams of Fig. 3).

In second-order perturbation theory, the correction to
the wave function relevant for photon emission is given
by

|Ψ(2)
0 〉 =

∑
m,n

〈n|[Ĥt + Û>intra]|m〉〈m|[Ĥt + Û>intra]|Ψ0〉
(E0

m − E0
Ψ)(E0

n − E0
Ψ)

|n〉,

(17)
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FIG. 4. Diagrams for the first radiative recombination chan-
nel of the D0

c′Xvc′ complex. The bound hole recombines with
the electron from the nearest valley in the opposite layer, as-
sisted by short-range Coulomb interactions with the donor
impurity. The remaining electron stays bound to the impu-
rity center, forming a neutral donor atom.

where the sums run over the eigenstates |n〉 of ĤLR,
with energies E0

n. Introducing the light-matter interac-
tion [Eq. (9)], we focus on the diagrams of Fig. 3 for the
D0
c′hv complex, and those of Fig. 4 for D0

c′Xvc′ .
In general, all diagrams must be considered when eval-

uating the radiative decay rate. For simplicity, however,
we assume that the CB and VB spacings remain the

largest scales in the problem, such that ~2∆K2

2mα
� ∆c, ∆v.

In this approximation, two out of the four diagrams for
D0
c′hv radiative decay cancel out approximately, leaving

only the contributions from the diagrams of Figs. 3(a)
and 3(b) (see Appendix C). The resulting radiative de-
cay rate for D0

c′hv in the large twist angle (>) limit is

Γ>D0h ≈
64π2e4Ẽg

~ε2r′∗2∆K4

e2

~c

[ mc′

~2∆K2

]2 [ tccγ
~c∆c

− tvvγ
′

~c∆v

]2

× |χ0(0)|2 |F (r0)|2 nh,

(18)

where the emitted photon energy is given by E∗ =
Ẽg−Eb

D0 . Finally, χ0(r) is the D0
c′ wave function obtained

from the Keldysh approximation Hamiltonian ĤLR, not
to be confused with the full bilayer interaction bound
state χ(r). As before, we evaluate the wave function
using the finite-element method, and obtain |χ0(0)|2 =
2.678× 10−3Å−2 (Appendix E). We point out that eval-
uating the wave function χ0(r) with the Keldysh poten-
tial ignores the formal wave vector cutoff that defines
Eq. (16). That is, this solution considers short range in-
teractions within the Keldysh approximation, which, as
discussed in Sec. II A, overestimate the screening length.
Nonetheless, this approximation mainly affects the fast
oscillating (large momentum) part of the wave function,
whereas Eq. (18), and Eqs. (19) and (20) below, only
depend on the smooth, small momentum part. The er-
ror incurred by this approximation is proportional to the
perturbation squared, and thus beyond our first-order
approximation.

With the perturbation Û>intra, there are two possible
channels for radiative recombination of the D0

c′Xvc′ com-
plex, resulting in different final states, and thus two sep-
arate lines in the PL spectrum. The first process in-
volves one of the electrons and the hole scattering from
the donor impurity and subsequently recombining, emit-
ting a photon and leaving behind a neutral donor as the
final state. This is analogous to the decay process con-
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FIG. 5. Diagrams for the second radiative recombination
channel of the D0

c′Xvc′ complex. The bound hole recombines
with the electron from the nearest valley in the opposite layer,
assisted by short-range Coulomb interactions with the second
electron, at the far valley. The latter recoils and unbinds from
the donor impurity.

sidered in Sec. III C, and the corresponding diagrams are
shown in Fig. 4. Similarly to the D0

c′hv complex case,
the leading approximation to the amplitude is the sum
of two diagrams, giving a radiative rate

Γ>D0X ≈
64π2e4Ẽg

~ε2r′∗2∆K4

e2

~c

[ mc′

~2∆K2

]2 [ tccγ
~c∆c

− tvvγ
′

~c∆v

]2

×
∣∣∣∣∫ d2r χ∗0(r)Φ0(0, 0, r)

∣∣∣∣2 |F (r0)|2 ,
(19)

where the emitted photon energy is given by E∗ =
Ẽg − (Eb

D0X + Eb
X), and Φ0(rh, re, re′) is the D0

c′Xvc′ wave
function in the Keldysh approximation.

A second radiative decay process is possible, where the
recombining electron and hole scatter with the second
electron, at the far valley. The latter electron recoils and
is unbound from the impurity, taking some amount of
kinetic energy and producing a shift in the emission line.
The corresponding diagrams are shown in Fig. 5, and
give a recombination rate

Γ
′>
D0X =

48π2e4Ẽg

~ε2r′∗2∆K4

e2

~c

[ mc′

~2∆K2

]2 [ tccγ
~c∆c

− tvvγ
′

~c∆v

]2

×
∫
d2r |Φ0(r, r, r)|2 .

(20)

The photon energy in this case is given by E∗ = Ẽg −
Eb

D0 − Eb
D0X − Eb

X − ~2∆K2

2mc′
, and the corresponding line

in the PL spectrum is red shifted with respect to that
of the first channel by ∼ 100 meV. Notice the absence
of the interference term |F (r0)|2. For this decay channel,
the three tunneling processes encoded in Eq. (7) result in
different momenta for the recoiling electron, and conse-
quently in three distinguishable final states that cannot
interfere.

The overlap integrals between the initial- and final-
state wave functions given in Eqs. (19) and (20) were

evaluated in VMC for the Hamiltonian ĤLR. We ob-

tain
∣∣∫ d2r χ∗0(r)Φ0(0, 0, r)

∣∣2 = 6.94 × 10−7 Å−4, and∫
d2r |Φ0(r, r, r)|2 = 3.22 × 10−7 Å

−4
, respectively (see

Appendix B 5).
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Equations (18), (19), and (20) show that the radiative
channels considered for the two complexes decay with
the interlayer twist angle as θ−8, in the limit ∆K �
1/r∗, 1/r′∗. This is shown in Fig. 1(b) for angles larger
than 6◦. Our analysis indicates that, even in the case
of localized impurity-bound states, the observation of
photoluminescence from interlayer excitonic complexes
in TMD bilayers requires near perfect alignment between
the two layers.

V. PHONON-ASSISTED RECOMBINATION

Electron-phonon (e-ph) interactions introduce yet an-
other channel for radiative recombination. Similarly to
the electron recoil process discussed above, when phonons
are emitted during the recombination of a given com-
plex, they absorb part of the energy and produce a red
shifted replica in the PL spectrum. The following anal-
ysis is carried out in terms of the VMC wave functions
|Ψ〉 discussed in Sec. III, evaluated with the exact bilayer

interactions V(′)(ξ) and W(ξ).
The e-ph interaction Hamiltonian is given by

Ĥe-ph =
∑
α=v,c

∑
τ,σ

∑
k,q,ν

gν,α(q)√
S

(b†h,ν,−q + bh,ν,q)

× c†α,τ,σ(k + q)cα,τ,σ(k)

+
∑

α=v′,c′

∑
τ,σ

∑
k,q,ν

gν,α(q)√
S

(b†e,ν,−q + be,ν,q)

× c†α,τ,σ(k + q)cα,τ,σ(k),

(21)

where b†Λ,ν,q (bΛ,ν,q) is the creation (annihilation) oper-
ator for a phonon of momentum q and mode ν in the
electron (Λ = e) or hole (Λ = h) layer, which couples to
an electron in band α = c′, v′, c, v with strength gν,α(q).

We consider the longitudinal optical (ν = LO), ho-
mopolar (ν = HP), and longitudinal acoustic (ν = LA)
phonon modes allowed by the lattice symmetry. The e-ph
couplings are given by

gLO,α(q) =
1

A

√
~

2ρ(Mr/M)ωLO

2πZαe
2

1 + qr∗
,

gHP,α(q) =

√
~

2ρωHP
Dα,

gLA,α(q) =

√
~

2ρωLA
Ξα q,

(22)

where ρ is the mass density, Mr is the metal-and-two-
chalcogen system reduced mass, M is the total mass of
the unit cell, and A is the unit-cell area of the correspond-
ing TMD layer. ων is the phonon frequency, which we
approximate as a constant for the optical modes, and as
ωLA = cLA q for the LA mode, with cLA being the sound
velocity. Z is the Born effective charge, r∗ is the screen-
ing length, and Dα and Ξα are the deformation potentials

of the optical and acoustic modes, respectively. The vari-
ous parameters are taken from Refs. [40–43], and summa-
rized in Table III. We focus on the low-temperature limit,
where phonon occupation is low and phonon absorption
can be neglected.

Perturbative corrections to the interlayer excitonic
state |Ψ〉 by the interlayer hopping and e-ph interactions
are given by

|Ψ(2)〉 =
∑
m,n

〈n|[Ĥt + Ĥe-ph]|m〉〈m|[Ĥt + Ĥe-ph]|Ψ〉
(Em − EΨ)(En − EΨ)

|n〉.

(23)
The relevant diagrams for radiative recombination with
phonon emission are shown in Figs. 6 and 7 for D0

c′hv
and D0

c′Xvc′ , respectively. In both figures, panels (a)–(d)
correspond to single-phonon emission in the hole layer
(WSe2), whereas panels (e)–(h) correspond to single-
phonon emission in the electron layer (MoSe2). Al-
though, in principle, the two sets of diagrams give sep-
arate lines at energies determined by the phonon en-
ergy in each layer, the parameters reported in Table III
show that these lines are within only a few meV of each
other. For simplicity, we assume that the two layers have
the same optical-phonon energies and the same acoustic-
phonon sound velocities, producing a single line in the
PL spectrum. The resulting radiative rates are given in
the limit of large twist angle (>) by (Appendix D)

Γ>,νD0h ≈
48Ẽg

~
e2

~c

[
γ′tvv
~c∆v

− γtcc
~c∆c

]2

nh

×
[(

mvgν,v(∆K)

~2∆K2

)2

+

(
mc′gν,c′(∆K)

~2∆K2

)2
]
,

(24a)

Γ>,νD0X ≈
48Ẽg

~
e2

~c

[
γ′tvv
~c∆v

− γtcc
~c∆c

]2

×
[(

mvgν,v(∆K)

~2∆K2

)2

+

(
mc′gν,c′(∆K)

~2∆K2

)2
]

×
∫
d2r

∣∣∣∣∫ d2r′ χ∗(r′)Φ(r, r, r′)

∣∣∣∣2 .
(24b)

The VMC estimate of the overlap of χ(r′) with Φ(r, r, r′)
is 3.85× 10−4 Å−2; see Table VII.

In the small-twist-angle limit (<), phonon emission
from D0

c′hv complexes is dominated by the diagram of
Fig. 6(a). In that process, the phonon is emitted by a
hole in the WSe2 layer, which then tunnels to recom-
bine with the electron bound to the donor impurity. By
contrast, all other diagrams shown in Fig. 6 involve ion-
ization of the donor atom, which is suppressed by the
large binding energy of the D0

c′ complex. The radiative
rates for D0

c′hv can thus be approximated by (Appendix
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TABLE III. Electron-phonon coupling parameters for LO, HP, and LA phonon modes. ωLO and ωHP are the LO- and HP-mode
frequencies, cLA is the speed of sound for the LA mode, ρ is the mass density, Dα and Ξα are the deformation potentials of the
optical and acoustic modes, respectively, Mr/M is the ratio of the metal-and-two-chalcogen system reduced mass to the total
mass of the unit cell, and Z is the Born effective charge.

~ωLO (meV) ~ωHP (meV) cLA (cm/s) ρ (g/cm2) Dc (eV/Å) Dv (eV/Å) Ξc (eV) Ξv (eV) Mr/M Z
MoSe2 37 30 4.8× 105 4.5× 10−7 5.2 4.9 3.4 2.8 0.235 1.8
WSe2 31 31 4.4× 105 6.1× 10−7 2.3 3.1 3.2 2.1 0.249 1.08

⇥

⇥⇥ ⇥

⇥ ⇥

⇥

⇥

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Diagrams for the radiative recombination of the D0
c′hv

complex with phonon scattering. The top four diagrams cor-
respond to phonon emission in the WSe2 layer and the bottom
four diagrams correspond to phonon emission in the MoSe2

layer.

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7. Diagrams for the radiative recombination of the
D0
c′Xvc′ complex with phonon scattering and D0

c′ in the final
state. The top four diagrams correspond to phonon emission
in the WSe2 layer and the bottom four diagrams correspond
to phonon emission in the MoSe2 layer.

D)

Γ
<,ν=LO/HP
D0h ≈ 2Ẽg

π~
e2

~c

[
γ′tvv
~c∆v

]2
[

3 |gν,c′(∆K)|2(
~ων + Eb

D0

)2
+
mv|gν,v(∆K)|2 |F (r0)|2

~3ων

∣∣∣∣∫ d2r ei∆K·rχ(r)

∣∣∣∣2
]
nh,

(25a)

Γ<,LA
D0h ≈

2Ẽg

π~
e2

~c
mv Ξ2

v

~2ρc2LA

[
γ′tvv
~c∆v

]2

×
∣∣∣∣∫ d2r ei∆K·rχ(r)

∣∣∣∣2 |F (r0)|2 nh.

(25b)

In the D0
c′Xvc′ case at small twist angles, the phonon

emission process is suppressed by the ionization of the
complex in the intermediate state and the overlap inte-
gral between the initial D0

c′Xvc′ and final D0
c′ states. The

rates are given by

Γ
<,ν=LO/HP
D0X =

4Ẽg

~
e2

~c
|F (r0)|2 |gν,v(0)|2 + 3|gν,c′(0)|2

(~ων + Eb
D0X + Eb

X)2

×
[
γ′tvv
~c∆v

− γtcc
~c∆c

]2 ∫
d2r

∣∣∣∣∫ d2r′ χ∗(r′)Φ(r, r, r′)

∣∣∣∣2 ,
(26a)

Γ<,LA
D0X =

Ẽg√
2~3cLA

e2

~c
(mv +mc′)

3/2√
Eb

D0X + Eb
X

[
γ′tvv
~c∆v

− γtcc
~c∆c

]2

×
[
|F (r0)|2 Ξ2

v

ρ

∣∣∣∣∫ d2r

∫
d2r′ e−i∆K·rχ∗(r′)Φ(r, r, r′)

∣∣∣∣2
+

3Ξ2
c′

ρ′

∣∣∣∣∫ d2r

∫
d2r′ ei∆K·rχ∗(r′)Φ(r, r, r′)

∣∣∣∣2
]
,

(26b)

where ρ and ρ′ are the mass densities of WSe2 and MoSe2,
respectively (Table III).

In Eqs. (24a)–(26b), the electron-layer contributions to
the decay rate contain a factor of three originating from
the tunneling process, which gives three distinct interme-
diate states with different emitted phonon wave vectors,
related by C3 symmetry. As a result, the interference fac-
tor appearing in the interaction-driven processes of Secs.
III and IV is absent in this case. For the hole layer,
however, the interference factor remains due to the mo-
mentum spread of the complex wave function, which lifts
the requirement that the hole be scattered exactly onto
the electron-layer valley in order to recombine.

Additional contributions to the LO phonon emission
come from e-ph interaction of a carrier in one layer with
an LO phonon in the other. This is made possible by
the long range of the LO phonon-induced potential. The
interlayer separation results in an exponential suppres-
sion of the potential in the interlayer distance and mo-
mentum transfer as e−∆Kd, which nonetheless is approx-
imately unity in the limit of close alignment. Thus, we
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D0

D0X

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

ne/nD

n/
n D

nh/nD

FIG. 8. Model for the density of complexes D0
c′ and D0

c′Xvc′

as a function of the electron density ne.

add this contribution to the LO-phonon-assisted recom-
bination rates for D0

c′hv and D0
c′Xvc′ complexes in the

small-twist-angle limit.
The total phonon emission rates for the two complexes,

combining the three phonon modes, are shown in Fig.
1(b) as functions of the twist angle. As mentioned above,
the phonon contribution to the recombination rate is
most significant for the D0

c′hv complex, being an order of
magnitude larger than for D0

c′Xvc′ . The LO phonon mode
in the hole layer (WSe2) is the dominant phonon-assisted
process overall, and gives a significant decay rate in the
small-twist-angle limit. As a result, we predict additional
phonon-replica lines in the PL spectrum, red shifted by
the phonon energy ~ωLO = 31 meV with respect to the
main D0

c′hv and D0
c′Xvc′ lines. The D0

c′hv phonon-replica
line gives the most dominant feature, with decay rates
comparable to the main D0

c′hv line.

VI. INTENSITY DEPENDENCE ON DOPING

In addition to the decay rates, the relative line in-
tensities also depend on the distribution of D0

c′h and
D0
c′Xvc′ complexes in the system. At charge neutrality,

neutral excitonic complexes such as D0
c′hv are energeti-

cally favorable, whereas additional electrons introduced
into the sample will bind to existing neutral donors to
form D0

c′Xvc′ complexes. Thus the relative population of
complexes can be controlled through doping.

In this section we model the evolution of the PL spec-
trum with the electron carrier density within the range
0 < ne ≤ 2nD, controlled by means of gating18. We
use a simplified zero-temperature model for the occupa-
tions of the two complexes, shown in Fig. 8. There are
two main regimes determined by the sample-dependent
donor density nD. In the p-doped regime, defined by
0 < ne < nD, added electrons neutralize the excess pos-
itive donors, forming D0

c′ complexes that can recombine
with the optically pumped holes. In this regime, the for-
mation of D0

c′Xvc′ complexes is energetically unfavorable,
and thus thermally suppressed until all donors have been
neutralized. By contrast, in the n-doped regime, defined

by nD < ne < 2nD, it is energetically favorable for addi-
tional electrons to bind with an existing neutral donor to
form either a charged donor state D−c′c′ (Table IV), or a
donor-bound trion D0

c′Xvc′ . For the latter case we must
consider that laser-pumped holes are scarce (nh � nD),
and thus the probability of forming a D0

c′Xvc′ complex
will be proportional to nh/nD. The increase in electron
density is accompanied by a decrease in D0

c′hv′ numbers,
and a much slower increase in the D0

c′Xvc′ population,
until the number of donor-bound trions in the system
equals the number of available holes. This is shown in
Fig. 8, and can be summarized as

nD0 =

{
ne, ne < nD

nD

[
1− ne−nD

nD

]
, nD < ne < 2nD

, (27)

and

nD0X =

{
0, ne < nD

nD
nh

nD

ne−nD

nD
, nD < ne < 2nD

. (28)

Eqs. (27) and (28), together with (13), show the de-
pendence of nD0 and nD0X on the hole density. This
dependence is critical for radiative recombination, given
the scarcity of holes by comparison to the donor density.
Thus, to give a realistic estimate of the intensity, we con-
sider the effects of non-radiative recombination of holes
through impurity-driven processes. The density of holes
lost through these processes per unit time can be writ-
ten as τ−1

0 nh, where τ−1
0 is the non-radiative decay rate.

Assuming that holes are laser-pumped at a constant rate
τ−1
pumpn0, where n0 is a constant with dimensions of in-

verse area, the hole density obeys the rate equation

ṅh = τ−1
pumpn0 − τ−1

0 nh, (29)

with the steady state solution nh = τ0τ
−1
pumpn0. In the

p-doped regime, delocalized holes can recombine non-
radiatively with the electrons present in the sample, and
the non-radiative lifetime can be assumed of the form
τ0 = c0/ne, with c0 a constant. Thus, writing the D0

c′hv
radiative intensity as ID0h = ΓD0hnD0 , we obtain the ex-
pression

ID0h =
4Ẽg |F (r0)|2

~
e2

~c

[
tvvγ

′

~c∆v
− tccγ

~c(∆c + Eb
D0)

]2

×
∣∣∣∣∫ d2r ei∆K·rχ(r)

∣∣∣∣2 c1,
(30)

where c1 = c0n0τ
−1
pump is a constant independent of the

electron density.
A similar argument can be made for the n-doped

regime. In this case, the intensity is given by ID0X =
ΓD0XnD0X, where the number of donor-bound trions can
be approximated as nD0X = nh(ne − nD)/nD. However,
in this regime the holes will be localized near the donor-
impurity sites forming D0

c′Xvc′ states, where they will be
in close proximity to two electrons with which they can
recombine non-radiatively. Thus, we may approximate
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FIG. 9. Simulated normalized PL spectra for a closely aligned
(θ ≈ 0◦) MoSe2/WSe2 heterobilayer, originating from the
D0
c′hv and D0

c′Xvc′ complexes at different electron densities
ne, given in terms of the fixed donor density nD. Dashed
curves correspond to the phonon replicas. The lines are as-
sumed to have Gaussian shapes of width 2σ = 60 meV, and
we use nh = 1011 cm−2 and nD = 1013 cm−2.

the non-radiative decay rate as τ0 = c0/2nD. This leads
to

ID0X =
(ne − nD)

2n2
D

c1ΓD0X. (31)

The resulting simulated PL spectrum is shown in Fig.
9 for different doping densities, given in terms of the
donor density in the MoSe2 layer. A Gaussian line-shape
was used for the lines with an experimentally motivated
broadening18 of 2σ = 60 meV. The spectrum shows the
three dominant lines, D0

c′hv, D0
c′Xvc′ , and the red-shifted

phonon replica of D0
c′hv, with the lines’ peak energies

determined by the DMC-obtained binding energies. The
three complexes evolve with doping as prescribed by Eqs.
(30) and (31). The D0

c′hv complex and its phonon replica
dominate for 0 < ne < nD; then, the D0

c′Xvc′ line grows
slowly in intensity in the n-doped regime, with a simul-
taneous reduction in the intensity of the D0

c′hv complex.
For the broadening used in the simulated PL spectrum,
the proximity of the three lines results in an intricate
line form, providing a signature in PL experiments for

the intrinsic structure of the interlayer emission line.
VII. CONCLUSIONS

The momentum mismatch between twisted and incom-
mensurate heterobilayer TMDs prevents efficient radia-
tive recombination of interlayer complexes composed of
electrons and holes localized on opposite layers. In this
paper we described mechanisms that bridge the momen-
tum gap involving donor impurities present in the hetero-
bilayer system, both at small and large twist angles. The
donor impurities were found to provide deep potential
wells (∼ 200 meV), resulting in strongly bound interlayer
complexes, as revealed by DMC calculations. Focusing
on the simplest multiparticle complexes, we estimate ra-
diative rates of up to a few µs−1 for the neutral donor
with a free hole D0

c′hv and the donor-bound trion D0
c′Xvc′

complexes for closely aligned layers, and a strong twist-
angle suppression for large misalignment with the asymp-
totic form ∝ θ−8. A comparable contribution was found
for the D0

c′hv complex from emission of optical phonons,
resulting in a total of three dominant and doping-tunable
lines in the PL spectrum. The D0

c′hv line and its phonon
replica are expected to dominate the emission spectrum
for electron densities below the sample-dependent donor
concentration; conversely, PL from the D0

c′Xvc′ complex
is expected to dominate the interlayer sector of the spec-
trum when the electron density exceeds the density of
donors.

Based on QMC simulations, we have shown that
our qualitative results are robust against uncertainty in
model parameters, such as the band effective masses, as
well as sample-dependent dielectric properties. There-
fore, our predictions provide a new perspective for inter-
preting recent experimental observations of interlayer lu-
minescence in heterobilayers of transition-metal dichalco-
genides.

All relevant data present in this publication can be
accessed at Lancaster University44.
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Appendix A: Long-range interaction between charge
carriers

1. Multilayer Keldysh interaction

Consider a vdW heterostructure of 2D semiconductors
comprised of N parallel layers (labelled i = 1, 2, . . . , N),
each having in-plane susceptibility κi and z-coordinate
di. Suppose this heterostructure is immersed in an
isotropic medium of dielectric constant ε. In practice
the dielectric constant is taken to be the average of the
dielectric constants of the media above and below the
heterobilayer.

Suppose that a test charge density

ρjtot(r, z) = ρj(r)δ(z − dj), (A1)

is present in layer j. The resulting electric displacement
field is

D = − ε

4π
∇φ(r, z)−

∑
i

κi[∇‖φ(r, di)]δ(z − di), (A2)

where ∇‖ is the 2D gradient operator (excluding the z-
component). Gauss’s law yields

ρj(r, z)δ(z − dj) = − ε

4π
∇2φ(r, z)

−
∑
i

κi[∇2
‖φ(r, di)]δ(z − di).

(A3)

Taking the Fourier transform gives

ρj(q)e−ikdj =
ε

4π
(q2+k2)φ(q, k)+q2

∑
i

κiφ(q, di)e
−ikdi ,

(A4)
which, after Fourier inversion in the k variable only, gives

ρj(q)e−q|z−dj | =
ε

2π
qφ(q, z) + q2

∑
i

κiφ(q, di)e
−q|z−di|.

(A5)
Evaluating Eq. (A5) at each layer (z = dl, l =
{1, 2, . . . , N}), we find

ρj(q)e−q|dl−dj | = q[ε/(2π)− κlq]φ(q, dl)

+ q2
∑
i 6=l

κiφ(q, di)e
−q|dl−di|, (A6)

which is a matrix equation

ρjl (q) =
∑
i

Mli(q)φi(q), (A7)

where

ρjl (q) = ρj(q)e−q|dl−dj |,

φi(q) = φ(q, di),

Mli =

{
q[ε/(2π) + κlq] if i = l
q2κie

−q|dl−di| otherwise
. (A8)

The solution to Eq. (A7) is a set of φi(q) ≡ ρj(q) ×
vji(q), with vji(q) being the Fourier components of the

interaction potential between layer j and layer i. If j = i
then this is the intralayer interaction in layer j. This pro-
cedure should, in general, be repeated for j = 1, 2, . . . , N ;
however, if there is sufficient symmetry (e.g., a mirror
symmetry about a plane through the center of the het-
erostructure) then only a subset of j values will require
explicit solution of Eq. (A7).

The same analysis can be shown to apply in the case
that the surrounding dielectric medium is anisotropic,
having dielectric tensor

ε̃ =

ε‖ 0 0
0 ε‖ 0
0 0 ε⊥

 , (A9)

provided the substitutions

di → Di =
√
ε‖/ε⊥di, (A10)

ε→ ε̄ =
√
ε‖ε⊥, (A11)

are also made.

2. Numerical evaluation of the bilayer Keldysh
interaction

In the bilayer case (N = 2), it is straightforward to
solve Eq. (A7) to obtain the intralayer (V and V ′) and
interlayer (W) potentials of Eqs. (1a)–(1c).

Continuum QMC calculations require the potential en-
ergy to be evaluated in real space. We therefore require
the inverse Fourier transforms of Eqs. (1a)–(1c), which
reduce to Hankel transforms due to the circular symme-
try of the interaction potentials.

At long range (small q), the intralayer interaction
V(q) = 2π/ {εq[1 + (r∗ + r′∗)q]} + O(q) reduces to the
monolayer Keldysh form19, with an effective screening
length reff

∗ = r∗ + r′∗. The inverse Fourier transform can
be performed analytically in this limit, giving

V(r) ≈ π

2ε(r∗ + r′∗)

× [H0(r/(r∗ + r′∗))− Y0(r/(r∗ + r′∗))]

+O(r−3), (A12)

where H0 and Y0 are a Struve function and a Bessel func-
tion of the second kind, respectively. Equation (A12) is
a good approximation at long range.

At short range (large q), the intralayer interaction of
Eq. (1a) again reduces to the monolayer Keldysh form,
but this time with reff

∗ = r∗, i.e., the second layer becomes
irrelevant. On the other hand, at very long range, the
monolayer Keldysh interaction is also valid, since V(q) =
2π/(εq) + O(1) at small q so that the interaction is of
Coulomb form. Thus the monolayer Keldysh interaction

V(r) ≈ π

2εreff∗

[
H0(r/reff

∗ )− Y0(r/reff
∗ )
]

+O(r−2), (A13)

is a reasonable approximation to the intralayer interac-
tion at both short and very long range.
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To evaluate the “full” intralayer interaction numeri-
cally, we used the quadrature method of Ogata45 to per-
form the Hankel transform of V(q) − 2π/ {εq[1 + r∗q]},
then added the result to the monolayer Keldysh inter-
action of Eq. (A13). Partitioning the interaction into a
long-range part and a numerically evaluated short-range
part ensures that the quadrature is relatively straight-
forward, and that we can introduce a cutoff at large r,
beyond which the numerical corrective term is negligible.

At small q, the interlayer interaction of Eq. (1c)
reduces to the displaced Coulomb form W(q) =

2πe−(r∗+r
′
∗+d)q/(εq) + O(q); hence the long-range inter-

layer potential in real space is given by

W(r) ≈ 1

4π

√
r2 + (r∗ + r′∗ + d)

2
+O(r−3). (A14)

At short range in real space the interlayer interaction
should be nondivergent. Equation (A14) satisfies this
qualitative requirement.

To evaluate the “full” interlayer interaction numeri-
cally, we performed the numerical Hankel transform of
W(q) − 2πe−(r∗+r

′
∗+d)q/(εq), then added the result to

Eq. (A14).
There is an alternative long-range approximation

to the interlayer potential, which is more like
the intralayer potential. Noting that W(q) =
2π/ {εq[1 + (r∗ + r′∗ + d)q]} + O(q), the long-range in-
terlayer potential reduces to a Keldysh potential with
reff
∗ = r∗ + r′∗ + d, giving

W(r) ≈ π

2ε(r∗ + r′∗ + d)

×
[
H0

(
r

r∗ + r′∗ + d

)
− Y0

(
r

r∗ + r′∗ + d

)]
+O(r−3). (A15)

This introduces unphysical singular behavior into the in-
terlayer interaction at short range.

Appendix B: QMC calculations

1. Technical details

We performed VMC and DMC calculations16,17 for
complexes of distinguishable charge carriers and fixed
ions interacting via the “full” bilayer potential [Eqs. (1a)–
(1c)] and the approximate small-q Keldysh form of the
potential [Eqs. (A12) and (A15)], as described in Ap-
pendix A 2. We used trial wave functions of Jastrow
form, where the Jastrow exponents contained smoothly
truncated polynomial particle-particle terms, ion-particle
terms, ion-particle-particle, and particle-particle-particle
terms46,47. Additional terms satisfying the analogs of the
Kato cusp conditions6,20,48 were applied to the trial wave
function between pairs of particles wherever there was a
logarithmic divergence in the interaction between them,
including the unphysical divergences in the approximate

Keldysh interaction. Free parameters were optimized us-
ing VMC with variance49,50 and energy minimization51

as implemented in the casino code52.

In our DMC calculations we used two DMC time steps
in the ratio 1:4 and corresponding target populations in
the ratio 4:1, allowing a simultaneous extrapolation to
zero time step and infinite population. Since the charge
carriers are distinguishable, there is no fixed-node error
and hence DMC provides exact ground-state solutions
to the effective-mass model of interacting charge carriers
with the chosen model interaction.

2. Energies of complexes in the
hBN/MoSe2/WSe2/hBN heterostructure

Table IV shows the total energies of charge-carrier
complexes in the hBN/MoSe2/WSe2/hBN heterostruc-
ture. For completeness we include results in which the
electrons are found in either layer; however, the results
of immediate relevance to this paper are those for which
the electrons are all found in the MoSe2 layer. DMC re-
sults for two-particle complexes agree with calculations
performed using Mathematica’s finite-element method53

(see Appendix E). Using total energies, one can assess
the most energetically favorable dissociations (see Table
V) and therefore calculate the binding energies of the
various complexes.

It is clear from Table V that the approximate Keldysh
interaction performs well at calculating binding ener-
gies provided the dissociation does not involve significant
changes to short-range pair distributions. As an extreme
case, the binding energy of an exciton, which is simply
equal to its total energy and hence does not benefit from
any cancellation of errors, is overestimated by 23% when
the approximate Keldysh interaction is used.

We are not aware of any published experimental results
on donor-bound interlayer complexes in heterobilayers,
but we discuss the validity of our results for intralayer
complexes in Appendix B 4.

3. Sensitivity to model parameters

We have performed test calculations to determine the
sensitivity of the DMC-evaluated D0

c′Xvc′ binding energy
to the model parameters mc′ , mv, r∗, r′∗, and d in the
hBN-encapsulated heterobilayer. Note that r∗ and r′∗ are
here the screening-length parameters in vacuum, so that
the screening lengths in a dielectric environment are r∗/ε
and r′∗/ε. We find that, upon variation of each of the
parameters in turn by ±10% from the values listed in
Table I, the D0

c′Xvc′ binding energy never varies by more
than 8% (1.8 meV), as shown in Table VI. The deriva-
tives of the binding energy with respect to the parame-
ters were evaluated numerically by the central difference
approximation. Nondimensionalizing lengths by the ex-
citon Bohr radius and energies by the exciton Rydberg,23

it is easy to show that the derivative of a binding energy
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TABLE IV. DMC total energies of various charge-carrier com-
plexes in the hBN/MoSe2/WSe2/hBN heterostructure calcu-
lated using the monolayer Keldysh approximation to the bi-
layer potential [Eqs. (A12) and (A15)] and using the full bi-
layer interaction [Eqs. (1a)–(1c)]. Primes (′) indicate that a
charge carrier is in the MoSe2 layer; otherwise the charge car-
rier is in the WSe2 layer. The subscripts c and v indicate
whether charge carriers are electrons (c) or holes (v). Donor
ions are always assumed to be in the MoSe2 layer, while ac-
ceptor ions are always assumed to be in the WSe2 layer. In-
terlayer complexes in which all the electrons are in the MoSe2

layer and all the holes are in the WSe2 layer are listed in the
upper section of the table; complexes in which some of the
electrons are in the WSe2 layer are listed in the lower section
of the table.

DMC total energy (meV)
Complex

Approx. Keldysh Bilayer potential
Xvc′ −103.958669(5) −84.232(1)
X−vc′c′ −108.1967(4) −88.32(3)
X+
vvc′ −88.12(2)

Xvc′Xvc′ unbound
Xvc′X

−
vc′c′ unbound

D0
c′ −163.2478711(5) −229.03306(1)

D−c′c′ −176.9426(3) −249.60(2)
D0
c′hv −163.4819(8) unbound

D0
c′Xvc′ −278.73(2) −335.781(4)

D0
c′X

+
vvc′ −340.891(6)

D−c′c′Xvc′ −292.83(1) −343.26(3)
D0
c′Xvc′Xvc′ unbound

D−c′c′Xvc′Xvc′ −430.9(1)
A0
v −205.24083(1)

A+
vv −223.56(1)

A0
vec′ unbound

A0
vXvc′ −309.411(4)

A0
vX−vc′c′ −315.021(8)

Xvc −114.601814(1) −140.4303329(4)
D0
c −124.890219(9) −102.5996(7)

X−vcc′ −120.6018(5) unbound
X−vcc −123.7189(5) −152.25(1)
D−cc′ −165.8499(5) unbound
D−cc −129.3199(9) unbound
D+Xvc −133.758(2) −141.716(8)
D0
c′Xvc −279.776(5) unbound

D−c′c′Xvc −301.81(1) unbound
D0
c′X
−
vcc −295.00(1) unbound

Eb with respect to the dielectric constant is

∂Eb

∂ε
= −1

ε

(
2r∗

∂Eb

∂r∗
+ 2r′∗

∂Eb

∂r′∗
+ d

∂Eb

∂d
+ 2Eb

)
, (B1)

allowing us to evaluate the sensitivity of the binding en-
ergy with respect to the dielectric constant. We find that
the binding energies are most sensitive to the screening
parameter r∗, followed by the dielectric constant ε, fol-
lowed by the electron and hole masses mc′ and mv, and
that the sensitivity to the layer separation d is relatively
weak. The sensitivity to the screening parameter r′∗ is
very weak in the present case, because only one hole re-
sides in the WSe2 layer.

We have also performed DMC calculations with ε = 4.5
(instead of ε = 4), finding that the Xvc′ , X−vc′c′ , D0

c′ , and

TABLE V. Dissociations of complexes and the associated
binding energies in hBN/MoSe2/WSe2/hBN. The naming
convention for the carrier complexes is explained in the cap-
tion of Table IV.

Binding energy (meV)
Dissociation process

Appr. Kel. Bilayer pot.

X−vc′c′ → Xvc′ + ec′ 4.2380(4) 4.09(3)
X+
vvc′ → Xvc′ + hv 3.89(2)

Xvc′Xvc′ → Xvc′ + Xvc′ unbound
Xvc′X

−
vc′c′ → Xvc′ + X−vc′c′ unbound

D−c′c′ → D0
c′ + ec′ 13.6948(3) 20.57(1)

D0
c′hv → D0

c′ + hv 0.2340(8) unbound
D0
c′Xvc′ → Xvc′ + D0

c′ 11.52(2) 22.516(4)
D0
c′X

+
vvc′ → D0

c′ + X+
vvc′ 23.74(2)

D−c′c′Xvc′ → Xvc′ + D−c′c′ 11.93(1) 9.43(4)
D0
c′Xvc′Xvc′ → D0

c′Xvc′ + Xvc′ unbound
D−c′c′Xvc′Xvc′ → D−c′c′Xvc′ + Xvc′ 3.3(2)
A+
vv → A0

v + hv 18.32(1)
A0
vec′ → A0

v + ec′ unbound
A0
vXvc′ → A0

v + Xvc′ 19.938(4)
A0
vX−vc′c′ → A0

v + X−vc′c′ 21.46(3)

X−vcc′ → Xvc + ec′ 6.0000(5) unbound
X−vcc → Xv + ec 9.1170(5) 11.83(1)
D0
c′Xvc → Xvc + D0

c′ 1.926(5) unbound
D−c′c′Xvc → Xvc + D−c′c′ 10.26(1) unbound
D−cc′ → D0

c′ + ec 2.6020(5) unbound
D0
c′X
−
vcc → D0

c′ + X−vcc 8.03(1) unbound
D−cc → D0

c + ec 4.4297(9) unbound
D+Xvc → D+ + Xvc 19.156(2) 1.286(8)

TABLE VI. Derivatives of DMC binding energies Eb
D0
c′Xvc′

of

the interlayer donor-bound trion under variations δP of differ-
ent model parameters P . With the exception of the dielectric
constant ε, the parameters are varied by ±10% about the val-
ues listed in Table I and the central difference approximation
is used to estimate the derivative with respect to the param-
eter value. The binding energy when all the parameters take
the values listed in Table I is Eb

D0
c′Xvc′

= 22.516(4) meV. Note

that r∗ and r′∗ are here the screening lengths for a monolayer
in vacuum. The derivative of the binding energy with respect
to the dielectric constant ε was evaluated by the chain rule,
as described in the text.

P δP Eb
D0
c′Xvc′

(meV) ∂Eb
D0
c′Xvc′

/∂P

mc′
+10% 23.27(1)

20.7 meV/m0−10% 21.70(1)

mv
+10% 22.71(1)

6.20 meV/m0−10% 22.29(1)

r∗
+10% 20.96(1) −0.421 meV/Å−10% 24.31(1)

r′∗
+10% 22.46(1) −0.00691 meV/Å−10% 22.52(1)

d
+10% 22.93(1)

0.705 meV/Å−10% 22.02(1)

ε
+10% ∼ 20.97 −3.87 meV−10% ∼ 24.06

D0
c′Xvc′ binding energies are 76, 3.8, 207, and 20.7 meV,

respectively. This directly confirms that the sensitivity
to the precise value of the dielectric constant of the en-
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vironment is relatively weak. The value of ∂Eb
D0
c′Xvc′

/∂ε

found by the forward difference approximation is −3.63
meV, which is in reasonable agreement with the value
obtained using the chain rule, reported in Table VI.

4. Comparison of intralayer binding energies with
experimental results

For TMD monolayers, experimental agreement with
QMC calculations of the binding energies of charge-
carrier complexes employing the Keldysh interaction has
previously been addressed in Refs. 6 and 23. Trion bind-
ing energies are found to be in excellent agreement with
experimental results.

Relatively few experimental studies of charge-carrier
complexes in heterobilayers have been performed to date.
Ceballos et al. studied a SiO2/MoSe2/MoS2/vacuum
sample,54 performing PL measurements on monolayer
MoSe2, monolayer MoS2, and heterobilayer MoSe2/MoS2

regions of their sample. Gong et al. studied a
SiO2/MoS2/WS2/vacuum sample,55 again performing
PL measurements on each of the three distinct surface
regions. Both experiments, although studying different
TMD bilayers prepared by different means, observed only
small shifts in the dominant intralayer exciton lines on
moving from monolayer regions to bilayer regions. Our
heterobilayer results of Table V, in conjunction with
monolayer binding-energy fitting formulas presented in
Ref. 23 provide further support for this claim. The in-
tralayer exciton energy reported in Table IV for an exci-
ton Xvc in the WSe2 layer of a hBN/MoSe2/WSe2/hBN
heterostructure is −140.4 meV, whereas the exciton to-
tal energy in monolayer WSe2 encapsulated in hBN is
−159.7 meV, according to the monolayer fitting for-
mula. The intralayer negative trion X−vcc binding en-
ergy reported in Table V is 11.8 meV, whereas the fitted
negative-trion binding energy in monolayer WSe2 encap-
sulated in hBN is 13.6 meV. Thus the intralayer exciton
energy differs by about 19 meV from the monolayer ex-
citon energy, while the intralayer trion binding energy
differs by about 2 meV from the monolayer result.

In summary, intralayer binding energies in a heterobi-
layer are very similar to monolayer binding energies, and
hence the validity of our model may be judged by examin-
ing previously reported results for TMD monolayers.6,23

5. Calculation of the overlap integrals

a. VMC evaluation of the normalization integral of a
many-body wave function

Consider a complex of N quantum particles with un-
normalized wave function Φ(R), where R = (r1, . . . , rN )
is the 2N -dimensional vector of all particle coordinates.
Let Ψ(R) be a normalized, bound-state sampling wave
function, which ideally has a large overlap with Φ and

the same asymptotic behavior. Then∫
|Φ(R)|2 d2NR =

∫
|Ψ(R)|2

∣∣∣∣Φ(R)

Ψ(R)

∣∣∣∣2 d2NR

=

〈∣∣∣∣Φ(R)

Ψ(R)

∣∣∣∣2
〉
|Ψ|2

. (B2)

Hence we can evaluate the normalization of Φ by VMC
sampling of |Ψ(R)|2. We used the simple Jastrow form

Ψ(R) =

N∏
i=1

(√
2

π
ce−cri

)
, (B3)

for the sampling wave function, where the exponent c
is a positive, adjustable parameter that was chosen to
maximize the efficiency of the calculation.

b. Evaluation of overlap integrals

Numerical estimates of the various overlap integrals in
the expressions for the radiative recombination rates of
donor-bound trions in a hBN/MoSe2/WSe2/hBN system
are reported in Table VII. The ground state χ1s(re) and
the first excited state χ2s(re) of the neutral donor atom
(D0

c′) were calculated using a finite-element method (see
Appendix E). Using a VMC-optimized trial wave func-
tion Φ(rh, re1 , re2) for the ground state of the donor-
bound negative trion (D0

c′Xvc′), we employed a grid-
based method to evaluate those overlap integrals in Table
VII that can be reduced to one-dimensional radial inte-
grals. The remaining integrals were evaluated by a VMC
method, as described below.

Let Ψ be a sampling wave function, as defined in Ap-
pendix B 5 a. The overlap of the trion wave function with
the donor-atom wave function when an electron and a
hole are pinned vertically above one another is∫∫

χ∗(r1)Φ(r2, r2, r1) d2r1 d
2r2

=

∫
|Ψ(R)|2χ

∗(r2)Φ(r1, r2, r1)

|Ψ(R)|2 d4R

=

〈
χ∗(r2)Φ(r1, r2, r1)

|Ψ(R)|2
〉
|Ψ|2

. (B4)

The last expression can readily be evaluated by VMC
sampling of |Ψ|2, using accurate numerical representa-
tions of the donor-atom wave function χ(re) obtained in
the finite-element calculations.

The overlap integrals are precise to at least three signif-
icant figures; however there is an unknown error arising
from the fact that the trial wave function Φ(rh, re1 , re2)
only approximates the exact ground state.

Appendix C: Radiative recombination assisted by
short-range Coulomb interactions

Consider the wave function χ(r) for D0
c′ complexes in

the long-range (Keldysh) approximation described in Sec.
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TABLE VII. Overlap integrals required for calculations of
radiative recombination rates. Calculations are performed
for a hBN/MoSe2/WSe2/hBN system. Φ(rh, re1, re2) is the
ground-state wave function of the donor-bound negative trion,
with both donor and electrons in the MoSe2 layer and the
hole in the WSe2 layer (D0

c′Xvc′). χ1s(re) and χ2s(re) are
the ground-state and first-excited-state (rotationally invari-
ant) wave functions of the neutral donor atom in the MoSe2

layer (D0
c′).

Overlap Approx. Keldysh Bilayer pot.

|Φ(0,0,0)|2∫
|Φ|2 d6R 1.29× 10−9 Å−6 2.75× 10−9 Å−6

|∫ Φ(r,r,0) d2r|2∫
|Φ|2 d6R 8.09× 10−3 Å−2 6.08× 10−3 Å−2

∫
|Φ(r,r,0)|2 d2r∫
|Φ|2 d6R 1.28× 10−6 Å−4 1.38× 10−6 Å−4

∫
|Φ(r,r,r)|2 d2r∫
|Φ|2 d6R 3.22× 10−7 Å−4 2.37× 10−7 Å−4

|∫ χ1s(r)Φ(0,0,r) d2r|2∫
|Φ|2 d6R×

∫
|χ1s|2 d2r

6.94× 10−7 Å−4 1.21× 10−6 Å−4

|∫∫ χ1s(r
′)Φ(r,r,r′) d2r d2r′|2∫

|Φ|2 d6R×
∫
|χ1s|2 d2r

3.54 1.47∫ |∫ χ1s(r
′)Φ(r,r,r′) d2r′|2d2r∫

|Φ|2 d6R×
∫
|χ1s|2 d2r

5.90× 10−4 Å
−2

3.85× 10−4 Å
−2

|∫ χ2s(r)Φ(0,0,r) d2r|2∫
|Φ|2 d6R×

∫
|χ2s|2 d2r

2.01× 10−8 Å−4 1.13× 10−7 Å−4

|∫∫ χ2s(r
′)Φ(r,r,r′) d2r d2r′|2∫

|Φ|2 d6R×
∫
|χ2s|2 d2r

0.0379 0.0254∫ |∫ χ2s(r
′)Φ(r,r,r′) d2r′|2d2r∫

|Φ|2 d6R×
∫
|χ2s|2 d2r

1.04× 10−5 Å
−2

1.89× 10−5 Å
−2

IV. The complex state can be written in the form of Eq.
(12), with the substitution χ̃k −→ χ̃0

k, and short-range
electrostatic interactions and interlayer tunneling can be
treated as perturbations to this initial state. Setting
τ ′ = τ and σ′ = σ in Eq. (12), radiative decay is deter-

mined by the matrix element 〈τ,q|Ĥr|D0;kh〉(2), where
|τ,q〉 = a†τ (q) |Ω〉 is the final state in which a photon
of momentum q and the appropriate polarization τ has
been emitted after recombination of the bound electron
with the delocalized hole. The notation |A〉(2)

indicates
that the state includes corrections up to second order in
perturbation theory, in this case from the interlayer tun-
neling (Ĥt) and short-range interaction (Û>intra) terms.

The diagrams of Fig. 3 correspond to those correc-
tions to the wave function that are relevant for radia-
tive recombination in the large-twist-angle regime, where

Eb
D0 � ~2∆K2

2mα
. Following the order of the diagrams in the

figure, and assuming that kh, q � ∆K, the optical ma-
trix element for D0

c′hv recombination is given in terms of
the real-space impurity wave function by

〈τ,q|Ĥr|D0;kh〉(2) =

2∑
n=0

6πe3e−iGn·r0χ(0)

ε r′∗S(Cn3 ∆K)2

√√√√ 4π~c

L
√
q2
⊥ + q2

‖

×

− γtcc/~c(
Eb

D0 + ∆c

) (
Eb

D0 +
~2(Cn3 ∆K)2

2mc′

) +
γ′tvv/~c(

Eb
D0 + ∆v +

~2(Cn3 ∆K)2

2mc′
+

~2(Cn3 ∆K)2

2mv′

)(
Eb

D0 +
~2(Cn3 ∆K)2

2mc′

)
− γ′tvv/~c

∆v

(
∆v +

~2(Cn3 ∆K)2

2mv′

) +
γ′tvv/~c(

Eb
D0 + ∆v +

~2(Cn3 ∆K)2

2mc′
+

~2(Cn3 ∆K)2

2mv′

)(
∆v +

~2(Cn3 ∆K)2

2mv′

)
 ,

(C1)

where the Bragg vectors Gn and valley mismatch mo-
menta Cn3 ∆K = ∆K + (G′n − Gn) are shown in Fig.
10. The matrix element in Eq. (C1) can be written
in terms of the stacking-dependent function F (r0) =
1 + e−iG1·r0 + e−iG2·r0 (see Fig. 10). We additionally
assume that the CB and VB spacings remain a large

scale in the problem, such that ~2∆K2

2mα
� ∆c, ∆v. In

this approximation, the third and fourth terms in Eq.
(C1) cancel out, corresponding to the diagrams in Figs.
3(c) and (d). Substituting the resulting expression into
Eq. (11) gives Eq. (18), where the probability that the
hole state is occupied is introduced through the hole den-
sity N(kh). This analysis can be carried out for D0

c′Xvc′

complexes, yielding Eqs. (19) and (20).

The large momentum components introduced by the
short-range interaction terms are irrelevant in the small-
twist-angle regime, which is dominated by the small mo-
mentum sector of the wave function. In this case, the
optical matrix element is obtained from the perturbed
state |D0;kh〉(1), including first-order tunneling correc-
tions [Eq. (10)]. The optical matrix element is

〈τ,q|Ĥr|D0;kh〉 =

2∑
n=0

∫
d2r

ei(C
n
3 ∆K+kh+q)·r
√
S

χ(r)

×
√

4π ~ce2

SL q

[
tvvγ

′

~c∆v
− tccγ

~c
(
∆c + Eb

D0

)] e−iGn·r0 .

(C2)
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Substituting into Eq. (11) leads to Eq. (13), and simi-
lar procedures are used to obtain Eq. (15) for D0

c′Xvc′

complexes. Notice that the second radiative channel for
D0
c′Xvc′ discussed in the main text does not apply to this

regime. The small-twist-angle analogue to the recoil pro-
cess due to electron-electron interactions involves a small
momentum transfer, and is thus already contained in the
unperturbed state |D0X〉.

Appendix D: Phonon effects on radiative
recombination

The discussion of Appendix C can easily be adapted
to e-ph interactions, Ĥe-ph [Eq. (21)]. In the following
we adopt the assumptions introduced in Appendix C;

namely, ~2∆K2

2mα
, Eb

D0 � ∆c, ∆v. In addition, we use

~ωΛ,ν(ξ) � ∆c, ∆v, which is always valid in our cases
of interest.

In the large-twist-angle regime, consider the process
whereby the electron in a D0

c′ bridges the valley mismatch
by emitting a phonon in mode ν and momentum ξ, with
ξ ∼ ∆K, in either the electron (Λ = e) or hole (Λ = h)
layer. The electron recombines with a delocalized hole of
momentum kh, emitting a photon of momentum q and
polarization µ, leading to the final state

|τ,q; ν, ξ〉Λ = a†τ (q)b†Λ,ν,−ξ |Ω〉 . (D1)

Considering the phonon energies presented in Table III,

in this regime we have ~2∆K2

2mα
� ~ωΛ,ν , and the radiative

matrix elements with phonon emission can be approxi-
mated by

h〈τ,q; ν, ξ|Ĥr|D0;kh〉 ≈
χ̃(kh + ξ − Cn3 ∆K)

S
gv,ν(∆K)

×
√

4π~c
SL q

γ′tvv
~c∆v

[
2mv

~2∆K2
− 2mc′

~2∆K2

]
e−iGn·r0 ,

(D2a)

FIG. 10. (a) Reciprocal lattice vectors Gn and G′n of the
two layers, and valley mismatch vectors Cn3 ∆K (n = 0, 1, 2),
with the convention G0 = G′0 = 0. (b) The vectors Cn3 ∆K
are connected by G′n −Gn.

e〈τ,q; ν, ξ|Ĥr|D0;kh〉 ≈
χ̃(kh + ξ − Cn3 ∆K)

S
gc′,ν(∆K)

×
√

4π~c
SL q

γtcc
~c∆c

[
6mc′

~2∆K2
− 6mv

~2∆K2

]
e−iGn·r0 .

(D2b)

For large twist angle, finite values of the wave function
are obtained only if ξ ≈ Cn3 ∆K, resulting in three final
phonon states distinguishable by the direction of their
momenta, and interference effects are lost. Furthermore,
when substituting Eqs. (D2a) and (D2b) into the golden
rule [Eq. (11)], the stacking-dependent phases also dis-
appear. The result is Eq. (24a), and a similar proce-
dure leads to Eq. (24b) for the phonon-assisted decay of
D0
c′Xvc′ complexes.

The situation is more subtle in the small-twist-angle
regime, where interference effects are restored in pro-
cesses within the hole layer, and ~ωΛ,ν

<∼ ~2∆K2/(2mα),
such that the phonon dispersion becomes important. The
optical matrix elements are

h〈τ,q; ξ, ν|Ĥr|D0;kh〉 ≈
2∑

n=0

χ̃(k + ξ − Cn3 ∆K)

S

×
√

4π~c
SL q

 γ′tvv gv,ν(ξ)

~c∆v

(
~2ξ2

2mv
+ ~ων(ξ)

)
− γtcc gv,ν(ξ)

~c∆c

(
~2ξ2

2mv
+ ~ων(ξ) + Eb

D0

)
 e−iGn·r0 ,

(D3)

e〈τ,q; ξ, ν|Ĥr|D0;kh〉 =

2∑
n=0

χ̃(k + ξ − Cn3 ∆K)

S

×
√

4π~c
SL q

[
γtccgν,c′(ξ)

~c∆c

(
~ων(ξ) + Eb

D0

)
− γ′tvvgν,c′(ξ)

~c∆v

(
~ων(ξ) + Eb

D0

)] e−iGn·r0 .

(D4)

Following Ref. 31, we use tcc � tvv to simplify these
expressions. Using Fermi’s golden rule and integrating
over the photon momentum we obtain the decay rates

Γ<,νD0h ≈
∑
ξ

 |F (r0)|2 |gv,ν(0)|2(
~2ξ2

2mv
+ ~ων

)2 +
3 |gc′,ν(0)|2(
~ων + Eb

D0

)2


×
∫
d2r

∫
d2r′ ei(ξ−∆K)·(r′−r)χ(r)χ∗(r′)

× e2

~c
4Ẽgnh

~S

[
γ′tvv
~c∆v

]2

; ν = LO, HP,

(D5a)
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Γ<,LA
D0h ≈

∑
ξ

 |F (r0)|2 |gv,LA(ξ)|2(
~2ξ2

2mv
+ ~ cLAξ

)2 +
3 |gc′,LA(ξ)|2
Eb

D0
2


×
∫
d2r

∫
d2r′ eiξ·(r

′−r)χ(r)χ∗(r′)

× e2

~c
4Ẽgnh

~S

[
γ′tvv
~c∆v

]2

,

(D5b)

for optical and acoustic phonon modes, respectively.

The divergence at ξ = 0 in Eq. (D5b) makes the first
term dominant in the sum over ξ, and we can neglect
the second. The sum can be evaluated exactly in the
continuous limit. Defining F(x) = −x[Y1(x) + H−1(x)],
where Hn(x) and Yn(x) are the nth Struve function and
Bessel function of the second kind, respectively, we obtain

Γ<,LA
D0h ≈

e2

~c
Ξ2
v Ẽgmvnh

~3ρc2LA

[
γ′tvv
~c∆v

]2

|F (r0)|2

×
∫
d2r

∫
d2r′ eiξ·(r

′−r)χ(r)χ∗(r′)F
(

2mv~cLA|r′−r|
~2

)
.

(D6)

From the values reported in Table III we find that the
function F in the integrand decays over a characteristic
length scale of 100 nm, much greater than the spread of
the localized wave function χ(r). Therefore, to a good
approximation, we can substitute F(0) = 2/π to evalu-
ate the integral. The final results for all phonon modes
considered in Eqs. (25a) and (25b), and Eqs. (26a) and
(26b) are obtained by a similar procedure.

1s (Full)
2s (Full)
1s (Approx.)
2s (Approx.)
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2
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/Å
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FIG. 11. Probability distributions (|χ(r)|2) of the
first two radially symmetric donor atom states in
hBN/MoSe2/WSe2/hBN. The solid lines were obtained us-
ing the full bilayer potential Eq. (1a), and correspond to
states with binding energies Eb

1s = −229.03 meV and Eb
2s =

−61.73 meV. The dashed lines were obtained using the ap-
proximate intralayer Keldysh form Eq. (A12).

Appendix E: Finite-element calculation of two body
states in heterobilayer system

The Schrödinger equation for two particles interacting
through a radially symmetric potential U(r) is given by6,[

− ~2

2m1
∇2

e −
~2

2m2
∇2

h − e2U(r12)

]
Ψ = EΨ, (E1)

where the form of the interaction U between charge carri-
ers is explained in Appendix A 2, depending on the layer
in which each particle is found.

Transforming the coordinates to the relative motion
r = r1 − r2 and the center-of-mass motion R =
m1r1+m2r2
m1+m2

allows separation of the Schrödinger equa-
tion to the center-of-mass part whose solution is given
by the plane wave φ(R) = 1√

S
eiK·R and the energy

E = ~2K2

2(m1+m2) , and the relative-motion part given by[
− ~2

2µ
∇2 − e2U(r)

]
Ψ = EΨ, (E2)

where µ = m1m2/(m1 +m2) is the reduced mass.
Transforming the equation into dimensionless

quantities6,23 using the excitonic Bohr radius a∗0 = ε~2

µe2

and the excitonic Rydberg energy R∗y = µe4

2ε2~2 gives[
−∇̃2 − 1

R∗y
U(a∗0r̃)

]
Ψ = ẼΨ. (E3)

where r̃ = r/a∗0 and Ẽ = E/R∗y. Using separation of
variables the general solution is given by

Ψ(r) = R(r)Φ(φ), (E4)

where the angular-part solution is

Φ(φ) =
1√
2π
eilφ. (E5)

l = 0,±1,±2, . . . is the azimuthal quantum number with
Φ(φ) being an eigenfunction of the angular momentum
operator Lz = −i~ ∂

∂φ with eigenvalue ~l. The equation

for the radial part is

−R′′(r̃)− 1

r̃
R′(r̃) +

l2

r̃2
R(r̃)− ṽ(r̃)R(r̃) = ẼR(r̃), (E6)

where ṽ(r̃) = U(a∗0r̃)/R
∗
y. To solve Eq. (E6) numerically

we use the substitution u(r̃) = R(r̃)r̃, allowing us to im-
pose Dirichlet boundary conditions: u(r̃) = 0 at r̃ = 0
and r̃ =∞. The equation can be solved using the finite-
element method implemented in Mathematica53. For the
charged donor interacting with an electron in the MoSe2

layer, we have µ = m′c, and we solve Eq. (E6) using both
the approximate Keldysh interaction and the full bilayer
potential for the intralayer interaction between the donor
and electron. The normalized probability distributions
for the first two radially symmetric states (1s, 2s) ob-
tained using both potentials are plotted in Fig. 11.
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