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Abstract: Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with 

reference to provenance data, has revealed that an extensive pre-glacial drainage 

system developed there in the Pliocene - Early Pleistocene, with both similarities and 

differences in comparison with the present-day Odra (Oder) system. This foreland is at 

the northern edge of an intensely deformed upland, metamorphosed during the Variscan 

orogeny, with faulted horsts and grabens reactivated in the Late Cenozoic. The main 

arm of pre-glacial drainage of this area, at least until the early Middle Pleistocene, was 

the palaeo-Nysa Kłodzka, precursor of the Odra left-bank tributary of that name. 

Significant pre-glacial  evolution of this drainage system can be demonstrated, including 

incision into the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) 

and again in the early Saalian (Odranian), which resulted in burial of the pre-glacial 

fluvial archives by glacial and fluvio-glacial deposits. No later ice sheets reached the 

area, in which the modern drainage pattern became 

established, the rivers incising afresh into the landscape and forming post-Saalian 

terrace systems. Issues of compatibility of this record with the progressive uplift 

implicit in the formation of conventional terrace systems are discussed, with particular 

reference to crustal properties. 
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16 ABSTRACT: 
 

17 Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with reference to 

18 provenance data, has revealed that an extensive pre-glacial drainage system developed there in the 

19 Pliocene – Early Pleistocene, with both similarities and differences in comparison with the present- 

20 day Odra (Oder) system.  This foreland is at the northern edge of an intensely deformed upland, 

21 metamorphosed during the Variscan orogeny, with faulted horsts and grabens reactivated in the 

22 Late Cenozoic. The main arm of pre-glacial drainage of this area, at least until the early Middle 

23 Pleistocene, was the palaeo-Nysa Kłodzka, precursor of the Odra left-bank tributary of that name. 

24 Significant pre-glacial evolution of this drainage system can be demonstrated, including incision into 

25 the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) and again in the early 

26 Saalian (Odranian), which resulted in burial of the pre-glacial fluvial archives by glacial and fluvio- 

27 glacial deposits.  No later ice sheets reached the area, in which the modern drainage pattern became 

28 established, the rivers incising afresh into the landscape and forming post-Saalian terrace systems. 

29 Issues of compatibility of this record with the progressive uplift implicit in the formation of 

30 conventional terrace systems are discussed, with particular reference to crustal properties, which 

31 are shown to have had an important influence on landscape and drainage evolution in the region. 
 

32 Keywords Pliocene – Early Pleistocene, Ziębice Group, Elsterian glaciation, Odranian (early Saalian) 

33 glaciation, palaeodrainage, crustal properties, Polish Sudetes 
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35 INTRODUCTION 
 

36 The Sudeten (Sudety) Mountains, or Sudetes, form a NW–SE-trending range with its western end in 

37 Germany and separating SW Poland from the Czech Republic (Czechia). With its highest peak 

38 reaching 1603 m, this represents an uplifted block of rocks metamorphosed during the Variscan 

39 orogeny, in the late Devonian to early Carboniferous (Don and Zelaźniewicz, 1990).  The Variscan 

40 involved complex faulting and thrusting, forming horsts and graben-basins, the latter infilled during 

41 later tectonically quiescent geological episodes, prior to significant reactivation of these structures in 

42 the Neogene–Quaternary (Oberc 1977; Dyjor, 1986, Mignoń, 1997).  The foreland region north of 

43 these mountains, into which these structures extend, is drained by the Odra (Oder) and several of its 

44 left-bank tributaries, the main river flowing NW and then northwards, forming the western 

45 boundary of Poland, towards the Baltic (Fig. 1).  An earlier, somewhat different drainage pattern in 

46 the Sudeten Foreland is evident from the subsurface preservation of buried valley fragments, 

47 recognized from boreholes and quarries and now largely buried by glacigenic and later fluvial 

48 sediments (Krzyszkowski et al., 1998; Michniewicz, 1998; Przybylski et al., 1998). It is apparent, 

49 therefore, that this drainage system was disrupted by glacial advances of Scandinavian ice from the 

50 north and NW (Krzyszkowski, 1996; Krzyszkowski and Ibek, 1996; Michniewicz, 1998; Salamon, 2008; 

51 Salamon et al., 2013; Fig. 1).  The drainage has also been disrupted during the Quaternary by slip on 

52 the Sudeten Marginal Fault, the effects of which are readily visible in terms of vertical offset in 

53 terrace heights either side of the faultline (e.g., Krzyszkowski et al., 1995, 1998, 2000; Krzyszkowski 

54 and Bowman, 1997; Krzyszkowski and Biernat, 1998; Krzyszkowski and Stachura, 1998; Migoń et al., 

55 1998; Štěpančíková et al., 2008; cf. Novakova, L., 2015).  To these glacial and tectonic influences can 

56 now be added the effects on Quaternary landscape evolution of a complex history of crustal 

57 behaviour, potentially related to the characteristics of the Proterozoic to Palaeozoic crust in the 

58 region, as will be discussed in this paper. 
 

59 The repeated glaciation of this region has been well researched and is documented by the glacigenic 

60 deposits that form much of the surface cover, burying the evidence for the aforementioned pre- 

61 glacial drainage.  The most extensive glaciation was that during the Elsterian, the ‘Sanian glaciation’ 

62 of Polish nomenclature (Marks, 2011). This glaciation, assumed to have occurred during Marine 

63 Isotope Stage (MIS) 12 (Krzyszkowski et al., 2015), may not have been the first within the study area, 

64 as there are well-developed cold-stage minima within the marine oxygen isotope record in the latest 

65 Early Pleistocene, in MIS 22, and the early Middle Pleistocene: especially MIS 16, represented by the 

66 Don glaciation in the northern Black Sea region (e.g., Turner, 1996; Matoshko et al., 2004). No pre- 

67 MIS 12 glacigenic deposits have been recognized in the Sudetic marginal region, however, and it is 

68 clear that any such glaciation was less extensive than that in the Elsterian. The next most extensive 

69 glaciation was the Early Saalian (Odranian), with a limit typically 0–18 km short of the Elsterian 

70 (Sanian) ice front (Fig. 1, inset); it is generally attributed to MIS 6 (Marks, 2011). Then followed the 

71 Late Saalian glaciation, termed the Middle Polish Complex or Wartanian, and the Weichselian (last) 

72 glaciation, the North Polish Complex or the Vistulian.  The highest massifs within the Sudetes 

73 supported small-scale local Weichselian glaciers (Migoń, 1999; Traczyk, 2009) and such glaciers 

74 would also have existed during earlier major glaciations, albeit with little effect on foreland drainage 

75 evolution. 



76 The study area coincides with the southern edge of the northern European glaciated zone in which 

77 fluvial drainage courses have been strongly influenced by repeated glaciation from the north. That 

78 zone, from the western Baltic states through Poland and into Germany, is characterized by broadly 

79 west–east aligned valleys that were formed when drainage from the south was deflected towards 

80 the Atlantic by ice sheets blocking the lower courses of the various Baltic rivers: the urströmtäler of 

81 Germany and pradolina of Poland (e.g., Kozarski, 1988; Marks, 2004). Deflection of drainage by the 

82 Elsterian and, later, by the Odranian ice is likely to have influenced the modern position of the river 

83 valleys in the lowland north of the Sudetic margin (Krzyszkowski,2001). 
 

84 The major existing rivers of the Sudeten foreland have well-developed terrace systems that record 

85 valley incision since the most recent glaciation of the region, which was during the Odranian, given 

86 that the later Late Saalian (Wartanian) and Weichselian (Last Glacial Maximum: LGM) ice sheets 

87 failed to reach the mountain front (Fig. 1, inset). Terrace systems are well documented in the two 

88 largest Sudetic tributaries of the Odra, the Bystrzyca (Berg, 1909; Krzyszkowski and Biernat, 1998) 

89 and the Nysa Kłodzka (Zeuner, 1928; Krzyszkowski et al., 1998), as well as in several of the smaller 

90 systems. The Quaternary record in this area was thoroughly reviewed in a 1998 special issue of 

91 Geologia Sudetica (Krzyszkowski, 1998) that was dedicated to Frederick E. Zeuner, who conducted 

92 his doctoral research in the region (Zeuner, 1928; see online supplement, Fig. S1), from which he 

93 formulated many of his influential views on river-terrace formation (Zeuner, 1945, 1946, 1958, 

1959). Since the formation of the Fluvial Archives Group 

95 debate about the genesis of river terraces has led to a consensus that they are generally a result of 

96 uplift, with strong climatic and isostatic influences (e.g., Maddy, 1997; Antoine et al., 2000; 

97 Bridgland, 2000), the latter seen to vary in relation to crustal type (Westaway et al., 2003, 2006, 

98 2009; Bridgland and Westaway, 2008a, b, 2012, 2014; Bridgland et al., 2012, 2017). 
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Landscape evolution in the study area has been complex, with combined influences from glaciation, 

active faulting and regional crustal processes. The present-day topography is almost entirely the 

result of post-glacial fluvial erosion, in combination with the various processes that modify valley- 

side slopes and convey sediment into valley bottoms. ‘Post-glacial’ in this region means post-Sanian 

(Elsterian) or post-Odranian (Early Saalian), these being the only Pleistocene glacials during which ice 

sheets are known to have reached the Sudetic Foreland (see above; Fig. 1, inset). The modern 

valleys have thus formed since these ice sheets encroached upon the region and their flanks 

preserve latest Middle Pleistocene–Late Pleistocene river-terrace sequences (Fig. 2). These valleys 

are incised into a landscape substantially formed in late Middle Pleistocene glacigenic deposits, 

including diamictons, outwash sands and gravels and lacustrine sediments (Krzyszkowski, 1998, 

2013). Evidence from boreholes and quarry exposures has shown that this glacigenic sedimentation 

was overprinted onto a pre-glacial drainage system, recognizable as a complex pattern of palaeo- 

valleys now entirely buried beneath the modern land surface.  Thus pre-glacial fluvial sediments, 

which have been attributed to the Pliocene, Lower Pleistocene and lower Middle Pleistocene, are 

generally buried beneath later Pleistocene deposits and occupy a relatively low position with the 

landscape, especially in basin situations (see above).  This is in apparent conflict with the 

expectations of standard river-terrace stratigraphy, in which progressively older deposits would be 

anticipated in positions progressively higher above the modern valley floor. This standard terrace 

stratigraphy has, however, been shown to occur only in association with certain, albeit widespread 

and common, crustal types, as will be explained in the next section. 
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120 Relation of fluvial archives to crustal type 
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Westaway et al. (2003) made the important observation that classic river terrace staircases do not 

occur in regions of cold, ancient and densely crystallized crust, particularly the cratons that represent 

fragments of the earliest continental lithosphere.  They attributed this phenomenon to the absence 

of mobile lower crust in such regions, which they realised was essential to provide a positive-

feedback response to erosional isostatic uplift, the same uplift that has caused terrace staircases to 

form on younger crust, including in areas remote from tectonic influence (see Westaway, 2001, 

2002, a, b; Westaway et al., 2002, Bridgland and Westaway, 2008a, b, 2014). Subsequent reviews of 

fluvial archives from different crustal provinces showed distribution patterns that can be related to 

crustal type; in this the northern Black Sea hinterland, ~1000 km to the ESE of the present research 

area, represents a valuable case-study region, where the range of dating proxies is exemplary 

(Bridgland and Westaway, 2008a, b, 2014; Bridgland et al., 2017; cf. Matoshko et al., 2004; Fig. 3). 

The significant differences in preservation patterns of fluvial archives between crustal provinces with 

different characteristics point to important contrasts in landscape evolution, in particular relating to 

the extent of valley incision (Westaway et al., 2003, 2009), as well as the propensity for loss of fluvial 

archives to erosional processes, which will be greater in areas of dynamic and rapidly uplifting crust.  

Investigations have led to the concept that these geomorphic effects are controlled by a 

combination of crustal properties, namely heat flow (see Fig. 4C) and the 

depth of the base of the felsic crustal layer, since these properties govern the thickness of the plastic 

crustal layer beneath the brittle upper part of the crust, the base of which corresponds to a 

temperature of ~350 °C. Thus, if this plastic layer is absent, as in cratonic regions, the crust is 

extremely stiff and thus ultra-stable.  If the mobile layer is thick (thickness >~6 km), it plays a major 

role in isostatic adjustment, and continuous uplift occurs, at rates that vary in response to rates of 

erosional forcing and thus to climate change (see Fig. 3).  On the other hand, if this layer has an 

intermediate thickness (~4–6 km), a more complex isostatic response occurs, characterized by 

alternations of uplift and subsidence, possibly because under such conditions the isostatic responses 

in the mobile lower crust and in the asthenospheric mantle occur at comparable rates but on 

different timescales (Westaway and Bridgland, 2014). 
 

 
Different patterns of fluvial sediment preservation are indeed evident in Poland, and can be 

interpreted according to the different crustal regions within which they occur (see Fig. 4). The 

occurrence of buried Pliocene and Lower Pleistocene fluvial deposits, as reported in the present 

study region, has also been observed in the middle reaches of the Vistula river system (Mojski, 1982; 

Bridgland and Westaway, 2014; Fig. 5), the catchment of which accounts for 56% of Poland. The 

Middle Vistula flows across the East European Platform (EEP), a crustal province consolidated during 

the Early or Middle Proterozoic that is relatively stable in comparison with the younger crust to the 

west, including that beneath the Sudeten Mountains, which is part of the Variscan province, 

stretching from SW Poland to western Europe (southern England–Iberia; Fig 4).  Further SE within 

the EEP, patterns of fluvial-archive preservation in which older deposits are buried by younger 

terraced sequences have again been observed, for example in the valley of the River Don, one of the 

northern Black Sea rivers, near Voronezh (Matoshko et al., 2004; Bridgland and Westaway, 2008a, b, 

2014; Fig. 3). The alternation between uplift and subsidence implicit in these preservation patterns 
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has been ascribed to the properties of the crust of the EEP; such crust is highly consolidated and 

relatively cold, with a lower mobile layer of limited thickness (probably a few kilometres at most), 

making it very much less dynamic than younger crustal types (Westaway and Bridgland, 2014; 

Bridgland and Westaway, 2017; cf. Kutas et al., 1979). 
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Further north, the Lower Vistula, in its course towards the Baltic, flows across a region that would 

appear to have experienced continuous subsidence during the late Middle and Late Pleistocene, as 

indicated by the stacking of younger Pleistocene deposits, including fluvial, glacial and even marine 

sediments, above older (cf. Marks, 2004). This could reflect the wider influence of isostatically 

induced subsidence of the long-standing depocentre of the Baltic basin, where the crust has been 

progressively depressed beneath the sedimentary load. In marked contrast there are areas in the 

extreme SE of Poland, in the uppermost Vistula catchment, which display the only extensive 

staircases of river terraces in the country, similar to those on the younger, more dynamic crust of 

NW Europe.  These terrace staircases (Fig. 5) can be found in the catchments of the Rivers Dunajec 

(Zuchiewicz, 1992; Olszak, 2011) and San (Starkel, 2003), as well as in other tributaries of the Vistula 

that drain the continental crust forming the Western Carpathian Mountains (e.g., Zuchiewicz, 2011; 

Pliszczyńska, 2012). These archives generally occur on crust bordering the Western Carpathians that 

was affected by the Caledonian orogeny and is thus more dynamic than that of the EEP.  (For a 

description of the Late Cenozoic palaeogeographical evolution of this area see Brud, 2004.)  As 

Bridgland and Westaway (2014) noted, the headwaters of the San are close to those of the Dniester, 

a river flowing southwards to the Black Sea that has an impressive and well-dated terrace staircase 

(Matoshko et al., 2004; Fig. 3B). Thus, despite their flowing in opposite directions, the San and the 

Dniester have similar styles of fluvial archive preservation, attributable to the nature of the crust in 

that region rather than hydrological or base-level influences (cf. Bridgland and Westaway, 2014). 

Elsewhere in Poland there is localized downwarping as a result of salt diapirism, particularly at 

Bełchatów, near Łódź (Krzyszkowski, 1995; Krzyszkowski and Szuchnik, 1995; Wieczorek et al., 2015). 
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Bridgland and Westaway (2014) suggested that, although the prevalence of stacked sequences in 

northern Poland might reflect proximity to the Baltic Basin, aspects of the fluvial archive 

preservation pattern in Central Poland that have traditionally been attributed to the effects of 

glaciation, or glaciation interspersed with marine transgression (e.g., Marks, 2004), might instead 

result from the characteristics of the crust. They envisaged three provinces within the Vistula: (1) an 

upstream, uplifting province, with well-developed terraces, (2) a central province in which the 

comparative stability of the EEP is dominant and (3) a downstream (northern) province with 

increasing influence of subsidence around the Baltic Basin and the effects of repeated glaciation. 
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The fluvial sedimentary archives in parts of the Sudetic foreland suggest inversion in vertical crustal 

movement, with alternation of subsidence and uplift, as surmised previously in systems such as the 

Don (Westaway and Bridgland, 2014; Bridgland et al., 2017; Fig. 3D).  In previous reviews of the 

preservation patterns shown by fluvial archives, in which causal linkages have been observed with 

crustal type, such archives indicative of alternating subsidence and uplift were found to be 

associated commonly with Early or Middle Proterozoic crustal provinces with thick ‘roots’ of mafic 

material at the base of the crust, restricting the thickness of the mobile lower crustal layer 

(Westaway and Bridgland, 2014; Bridgland et al., 2017).  In the Sudetes this phenomenon is 
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apparent in basinal areas, which are separated by structural ridges (horsts) of older, generally 

crystalline rocks (Dyjor, 1986; see above). 
 

EVIDENCE FOR PRE-GLACIAL RIVER SYSTEMS IN THE SUDETEN 

FORELAND 
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Quarrying and boreholes have allowed the reconstruction of considerable detail with regard to river 

sytems that existed in the Sudetic Foreland in pre-glacial times (i.e., prior to the Elsterian ice advance, 

which is the meaning of pre-glacial in this region).  It should be noted, however, that this 

reconstruction is based on small ‘windows’ of subsurface evidence, providing limited scope for 

detailed reconstruction of areal three-dimensional form.  Beneath the Sanian and Odranian glacial 

deposits, fluvial sediments of several different types have been recorded, much work having been 

done in order to characterize and distinguish these, in particular clast-lithological analysis of their 

gravel components and heavy-mineral analysis of sand grains (Czerwonka et al., 1994; Krzyszkowski 

and Bowman, 1997; Krzyszkowski et al., 1998; Przybylski et al. 1998; Krzyszkowski, 2001; 

Krzyszkowski and Karanter, 2001; Krzyszkowski, 2013). Many of these early fluvial deposits are 

kaolinitic, from the weathering of gneiss, gabbro, serpentinite, schist and other feldspathic rocks, 

which, in company with a dominance of rudaceous quartz, gave rise to the term ‘white gravels’; they 

have also been referred to as the ‘preglacial series’ (Dyjor 1983, 1986, 1987a, b, 1993; Jahn et al. 

1984; Dyjor et al. 1992). The matching of these components to source areas is illustrated in Fig. 6. 

They lie above the Upper Miocene – Lower Pliocene Poznań (Clay) Formation , sometimes with 

channel or palaeo-valley geometries apparent from the subsurface data (Ciuk and Piwocki, 1979; 

Ciuk and Pożaryska, 1982; Peryt and Piwocki, 2004). Indeed, there is some evidence of incision and 

even terrace formation within the preglacial sequence (see online supplement, Figs S2 and S3), much 

of which is however a continuation of the stacked basin-fill represented by the Neogene Poznań 

Formation. The pre-glacial fluvial deposits can be collectively described under the name Ziębice 

Group, this being the amalgam of several formations, representing different pre-glacial river 

systems, defined by their heavy mineral content and non-quartz gravel-clast petrography 

(Czerwonka and Krzyszkowski, 2001; Table 1; Figs 7 and 8). The Ziębice locality in central Poland, 

formerly called Münsterberg, was where fluvial ‘white gravel’ sediments, lacking Scandinavian 

material, were first described (Jentzsch and Berg, 1913; Frech, 1915; Lewiński, 1928, 1929; Zeuner, 

1928; Krzyszkowski et al., 1998; Przybylski et al., 1998;Czerwonka and Krzyszkowski, 2001; online 

supplement Fig. S1). 
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Emplacement of the Ziębice Group as a whole can probably be attributed in part to increased 

mountain uplift and active faulting in the Sudetes and their foreland, perhaps resultant from the 

global climatic cooling that characterized the mid-Pliocene (e.g., Westaway et al., 2009); 

downthrown fault basins would have guided the main drainage lines.  Each component formation 

represents sequences deposited by a specific fluvial system originating in the Sudeten Mountains. 

Within the group as a whole, four informal members (I–IV) have been recognized (Czerwonka and 

Krzyszkowski, 2001), their distinction being broadly age dependent, which is why they have not been 

formally defined, although there are no means for precise dating. These members are variously 

represented within the different formations, only two of which have all four members (Table 1; Fig. 

9), with each numbered member believed to have been formed approximately synchronously in the 

different rivers across the region.  The supposed ages of the members are relative and rely on 
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superposition (see online supplement) and sporadic but rare preservation of biostratigrahical 

evidence (Czerwonka and Krzyszkowski, 2001; see below).  Supplementary evidence for 

distinguishing between the members comes from erosional hiatuses at the bases of Members 1, III 

and IV and for the distinct widening of the valley systems between Members I and III (Czerwonka 

and Krzyszkowski, 2001; compare Figs 9 and 10).  The sedimentology and range and type of facies 

suggests a meandering fluvial regime for Members I – III, especially away from the mountain front, 

and a braided river envrionment for member IV (Czerwonka and Krzyszkowski, 2001).  Systematic 

analyses have been undertaken from exposures and boreholes, including sand heavy mineralogy and 

gravel clast lithology, arguably the most valuable, combined with particle-size analysis, quartz (sand) 

grain angularity–roundness analysis and palaeocurrent measurements (Czerwonka et al., 1994; 

Krzyszkowski and Bowman, 1997; Przybylski et al. 1998; Krzyszkowski et al., 1998; Krzyszkowski and 

Karanter, 2001; Krzyszkowski, 2001; Table 1; see online supplement). 
 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

As summarized in Table 1, six main pre-glacial river systems have been recognized, each with 

characteristic heavy-mineral signatures and some with distinctive clast-lithological assemblages. 

These are (1) the Palaeo-Odra, characterized by a zircon–rutile heavy-mineral assemblage and gravel 

clasts of Carpathian origin, represented by the Chrząszczyce Formation, (2) the Palaeo-Biała 

Głuchołaska (staurolite-amphibole mineralogy), represented by the Dębina Formation, (3) the 

Palaeo-Nysa Kłodzka (staurolite–garnet/amphibole–garnet), represented by the Kłodzko–Stankowo 

Formation, (4) the Palaeo-Bystrzyca (zircon, sillimanite and various) , represented by the Bojanice 

Formation (as well, potentially, as the Pogalewo and Wichrów formations), (5) the Palaeo- 

Strzegomka (sillimanite–garnet), represented by the Mielęcin–Wołów Formation, and (6) the Palaeo- 

upper Bóbr/Kaczawa (andalusite), as represented by the Rokitki–Bielany Formation. Of these the 

Palaeo-Nysa Kłodzka appears to have been the trunk river throughout the ‘pre-glacial’ period (see 

Figs 9–12). Evidence for four additional systems has been recognized but is more localized; these 

are the Palaeo-Wierzbiak, represented by the Snowidza Formation, the Palaeo-Budzówka, 

represented by the Ząbkowice Formation, and two other local rivers, near Bardo/Potworów and 

Szydłów, identified only by gravel-clast analysis (Przybylski et al., 1998) and impossible to match with 

existing rivers. 
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These drainage systems probably originated during the Early Miocene, since the Miocene–Lower 

Pliocene Poznań Formation is thought to represent the low-energy sediments of anastomosing river 

or inland-delta environments (Peryt and Piwocki, 2004), which, from the available evidence, 

persisted with relatively little change until disrupted by glaciation in the Middle Pleistocene. It 

should be noted that those formations with ‘double-barrelled’ names (Kłodzko–Stankowo, Mielęcin– 

Wołów and Rokitki–Bielany) are traced for significant distances from the mountain front and have 

‘proximal’ type locailties (giving the first part of the name) near the Sudetes and ‘distal’ type localities 

further downstream. The lack of Scandinavian clasts in these various pre-glacial fluviatile sediments 

distinguishes them from the glacial deposits (Elsterian and Lower Saalian) and from the terrace 

deposits of the post-glacial rivers, in which reworked glacially-derived material occurs (Schwarzbach, 

1955; Jahn, 1960, 1980; Czerwonka and Krzyszkowski, 1992; Krzyszkowski 1995, 2013; 

Czerwonka et al. 1997). 
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Turning to the informal members, I–III have generally been attributed to the Pliocene–lowermost 

Pleistocene and IV to the lower Middle Pleistocene (Cromerian Complex). This seemingly points to a 

hiatus spanning much of the first half of the Pleistocene, although there may well be unrecognized 
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representation of this interval amongst sequences that are notoriously difficult to date and which 

include components that have yet to be defined and characterized fully.  Alluvial-fan sediments occur 

within all members at localities near the mountain front. The Pliocene members can be presumed to 

represent rivers draining northwards to join the erstwhile Baltic River, which existed as a major east–

west flowing system at that time (e.g., Gibbard, 1988).  The drainage represented by members I–III 

was sinuous, as indicated by sediment geometry (Figs 9–11) as well as sedimentology (see above), in 

contrast to the braided-river deposits of member IV. This perhaps indicates sedimentation of 

members I–III during periods of temperate and relatively moist climate, whereas 

member IV records more variable conditions, with evidence of both temperate (interglacial) and cold 

(periglacial) climates. This contrast could, indeed, be a reflection of climatic cooling in the Early 

Pleistocene, a trend that would culminate in the glaciations of the Baltic region in the Middle 

Pleistocene. 
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The evidence for different pre-glacial rivers, precursors of the modern drainage of the Polish Sudetic 

margin, will be described in east to west sequence, starting with the Palaeo-Odra, the post-glacial 

successor of which forms the principle arm of the modern regional drainage. 

 

305 The Palaeo-Odra (Chrząszczyce Formation) 
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Within the research area the Chrząszczyce Formation, which is thought to represent the main 

palaeo-Odra river, is restricted to locations >20 km from the Sudetic mountain front, entering the 

region from the south-east in the area south of Opole (Figs 7 and 9–11). It has been studied at 

relatively few localities at and to the west of Opole and west of Wrocław, with representation only 

of Members I–III (Table 1; Figs 9–11). Only at Chrząszczyce, the type locality ~5 km SSW of Opole 

(Figs 7 and 8; online supplement, Fig. S4), have all three of these members been observed. Gravel 

analysis has only been possible from the Member III sediments at Ose (Figs 7 and 8), where the 

occurrence of Carpathian siliceous rocks (silicified limestones and sandstones, radiolarites, etc.) 

amongst a quartz-dominated assemblage provides important support for origin within the Odra 

catchment (Czerwonka and Krzyszkowski, 1992).  There are subtle changes in heavy mineralogy 

between members I–III (Table 1): all have assemblages dominated by zircon, with staurolite and 

tourmaline, plus garnet in members I and III and rutile in II and III. Member III at Tulowice has 

yielded plant macrofossils (leaves and fruit) with close affinity to those of the underlying uppermost 

Poznań Formation: i.e. not older than late Pliocene (Przybylski et al., 1998). 

 

321 The Palaeo-Biała Głuchołaska (Dębina Formation) 
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This is a relatively minor formation, representative of a subordinate river, the most south-easterly 

that drained the Sudetes Mountains within the study area.  Only Member I has been recognized, 

made up of quartzose gravels with a staurolite–amphibole heavy-mineral suite (Table 1). It has been 

recognized at a small number of sites from Strybowice to the type locality at Dębina, ~30 km SSW of 

Opole (Fig. 7). Although its occurrences trace a course from SSW to NNE, the petrography of the 

Ziębice Group as a whole, plus knowledge of the bedrock surface, suggests that the palaeo-river 

turned sharply to the NW in the vicinity of Dębina to a confluence with the Palaeo-Nysa Kłodzka, 
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rather than continuing NNE-wards to join the palaeo-Odra (Fig. 9). It uncertain whether any of the 

Dębina Formation sequences continue upwards into Member II but the existence of a Palaeo-Biała 

Głuchołaska flowing NE from the Sudetes has been reconstructed for that time-span, joining a 

considerably wider Palaeo Nysa Kłodzka (Fig. 10) in comparison with that reconstructed for Member 

I.  The continued existence of such a river during later times can only be speculative (Krzyszkowski et 

al., 1998). 

 

336 The Palaeo-Nysa Kłodzka (Kłodzko–Stankowo Formation) 
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This formation accounts for the vast majority of the pre-glacial series, being represented at sites over 

an area of considerable width from its proximal type locality (see above) at Kłodzko, in the south (in 

the Kłodzko [intermontane] basin) eastwards towards (but not reaching) Opole and then northwards 

to Wrocław and beyond (Fig. 7). This distribution demonstrates the dominance of the Palaeo-Nysa 

Kłodzka during pre-glacial times (Figs 9–12). Its distal type locality, at Stankowo (Fig. 7, site [1]), is at 

the northern periphery of the study area, ~20 km NE of Leszno (Fig. 1; supplement, Fig. S5). The 

recognition of this formation is based on a gravel clast lithology reflecting the characteristic geology 

of the Kłodzko Basin, including gneisses and other cystalline rocks, notably porphyries, together with 

Mesozoic sandstones and ‘flint’ (Table 1; Figs 6 and 7). The heavy mineralogy is complex and 

regionally variable, also changing from staurolite–garnet dominance in Members I–III 

to garnet and amphibole in Member IV (Table 1). 
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With the formation represented at >50 sites (Figs 7 and 8), the comparative distribution of the 

different members reveals significant changes in the course of this trunk river, with Member I tracing 

a relatively confined WSW–ENE reach from Kłodzko to Gnojna (Fig. 7 [35]), diverging northwards 

from the modern Nysa Kłodzka course, and then a wider but still confined reach (in comparison with 

younger members) from here to Wrocław and Taborek (Fig. 7 [3]), by which point the Palaeo-Odra 

was converging from the east (Fig. 9).  At the time of Member II emplacement, both reaches were 

considerably wider, that east of Kłodzko spreading southwards to envelop the course of the modern 

river, whereas in its northward-flowing reach it extended eastwards to meet the Palaeo-Odra ~10 

km west of Opole and spread out north-eastwards across the foreland to encompass an area from 

that of its earlier course across to that around Ostrów Wielkolpolski and beyond (Fig. 10). 
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By Member III times the palaeo-river had been diverted from near Ziębice into a more confined 

northerly course towards Wrocław, sweeping across the area south and east of this city towards 

Ostrów Wielkolpolski, turning northwards as it met the palaeo-Odra, by this time of almost equal 

size, and other drainage from the east, possible the ‘Bełchatów River’, as recognized in central 

Poland at the large lignite quarry by the same name (Krzyszkowski, 1995; Krzyszkowski et al., 2015; 

Fig. 11). 
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By member IV times there is little evidence that the Palaeo-Nysa Kłodzka extended north-eastwards 

of the modern Odra course, except in the area NW of Wrocław. This suggests that a Palaeo-Odra 

closely following its modern valley had come into existence by this time, perhaps as a result of early 

Middle Pleistocene glaciation (Zeuner, 1928; Fig. 12), otherwise poorly documented because its 

extent was less than the ice sheets of the Elsterian, the suggestion being that the line of the Odra 
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across the northern edge of the Sudetic foreland might be of early ice-marginal (‘pradolina’) origin 

(see above). 

 

372 The Palaeo-Budzówka (Ząbkowice Formation) 
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The Budzówka is a minor left-bank tributary of the Nysa Kłodzka, joining the latter ~20 km 

downstream of Kłodzko.  Its pre-glacial forebear is represented by probable Member IV deposits that 

occur at two sites, the Ząbkowice type locality [73] and Albertów [107] (Figs 7, 8 and 12). These 

deposits are characterized by gravel in which the dominant clast type is Sowie Góry gneiss, with 

subordinate quartz and other siliceous rocks; there is a garnet–amphibole heavy mineral suite (Table 

1). 

 

380 The Palaeo-Bystrzyca (Bojanice, Wichrów and Pogalewo formations) 
 

381 

382 

383 

384 

385 

386 

387 

The River Bystrzyca, which is the next important Odra tributary moving to the NW along the Sudetes 

margin, flows through the town of Świdnica on its SW–NE course towards a confluence with the 

trunk river ~7 km NW of Wrocław; ~15 km upstream of that confluence it receives a substantial left- 

bank tributary, the Strzegomka (Fig. 7). Pre-glacial versions of both these rivers are represented 

amongst the Ziębice Group sediments, although with courses that appear to have been entirely 

separate until the trunk river was reached; at that time the latter was the Palaeo-Nysa Kłodzka (Figs 

9–12. 
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Three different pre-glacial formations are potential products of deposition by the palaeo-Bystrzyca. 

First is the Bojanice Formation, of which Members II, III and possibly IV occur in the vicinity of 

Świdnica, in the form of porphyry-rich quartz gravels, also containing melaphyre, Sowie Góry gneiss 

and quartzite, although the uppermost (potentially Member IV) deposits lack rudaceous 

components (Table 1).  The heavy minerology of these upper deposits is dominated by sillimanite, 

whereas that of the gravelly facies is dominated by zircon and garnet (Table 1). 
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The Wichrów Formation is represented by a small group of sites, of which the Wichrów type locality 

is one, ~20–30 NNE of Świdnica, in the modern catchment of the Strzegomka tributary (Figs 7 and 

8[45]).  Only the basal part of the sequence is present, with Member I and a possible extension into 

Member II, sharing the zircon-rich mineralogy of the lower members within the Bojanice Formation 

(Table 1). Despite its modern location within the tributary catchment, the Wichrów Formation sites 

seem likely to represent a downstream continuation of the palaeo-Bystrzyca from the Świdnica area 

(Fig. 9). 
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The Pogalewo Formation is identified in the area much further from the mountain front, to the north 

of the modern River Odra downstream of Wrocław.  Members I, II and III are all recognized, albeit at 

different sites (Figs 7 and 8).  Member I is identified only at the Pogalewo type locality [31], on the 

northern side of the Odra valley ~30 km downstream of Wrocław (Fig. 9; online supplement Fig. S3). It 

is the only member of this formation to have yielded rudaceous material, this being quartz gravel 

with local flint and a trace of porphyry; it has a zircon–tourmaline-rutile heavy mineralogy (Table 1). 
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Further upstream (both within the modern Odra system and the pre-glacial palaeovalley), ~5–10 km 

east from Pogalewo, is a small cluster of sites that represent Member III, which have the same 

dominant mineralogy but with additional epidote, kyanite, amphibole and staurolite (Table 1). The 

intervening Member II, although perhaps represented by the uppermost deposits at Pogalewo, is 

optimally recorded much further downstream, at Chałupki [51], ~30 km SW of Głogów (Fig. 7).  The 

mineralogy of this member is different again, with kyanite in addition to the zircon–tourmaline– rutile 

suite but lacking epidote, amphibole and staurolite (Table 1).  Although given a separate name, the 

deposits of the Pogalewo Formation are most readily interpreted as more distal (downstream) 

palaeo-Bystrzyca sediments, implying a separate northward course far from the mountain front, 

especially during emplacement of Member II (Fig. 10). 

 

418 The Palaeo-Strzegomka (Mielęcin–Wołów Formation) 
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As noted above, the modern River Strzegomka joins the Bystrzyca ~15 km upstream of the confluence 

between the combined river and the Odra. Prior to the Middle Pleistocene, however, it seems likely 

that the precursors of these rivers maintained separate courses to the trunk palaeo- Nysa Kłodzka 

(Figs 9–11). The palaeo-Strzegomka is represented by the Mielęcin–Wołów Formation, as is apparent 

from the preservation of that formation at sites close to the mountain front within the modern 

Strzegomka catchment, including the Mielęcin (proximal) type locality (Fig. 7 [47]; online supplement 

Fig. S6). The deposits here comprise quartzose–porphyry-rich gravels representing Members I–III, 

also containing local siliceous rocks (flint), conglomerate, spilite, diabase, greenschist and quartzite 

from the Wałbrzych Upland, Strzegom granite and local schist (phyllite), as well as a sillimanite–

garnet heavy-mineral suite (Table 1; Fig. 6).  The distal type locality, at Wołów, where 

only Member I is represented, is located north of the modern Odra, approximately equidistant 

between Wrocław and Głogów (Fig. 8 [32]). Member IV of the Mielęcin–Wołów Formation is 

recognized at two sites, Sośnica [43], in the modern Bystrzyca valley upstream of its confluence with 

the Strzegomka, and Brzeg Dolny 3 [108], north of the modern Odra, where it overlies Member I of 

the Kłodzko–Stankowo Formation (Figs 8 and 12; online supplement Fig. S2). This upper member 

lacks gravel but is characterized by a sillimanite-dominated heavy mineralogy (Table 1). 

 

436 The Palaeo-upper Bóbr/Kaczawa (Rokitki–Bielany Formation) 
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The next Odra tributary north-westwards along the mountain front is the River Kaczawa, which has a 

confluence with the trunk river ~20 km downstream from Legnica.  Its pre-glacial forebear, however, 

had a catchment that penetrated deeper into the mountain zone, including areas now drained by 

the headwaters of the Bóbr, a yet more westerly Odra tributary that flows NW from the Sudetes to 

join the trunk river well to the west of the study area (Fig. 7).  This is indicated by the characteristic 

clast lithology of the Rokitki–Bielany Formation, which has rudaceous sediments representing all 

four members with contents that show drainage from the Bóbr catchment: these are quartzose 

gravels with porphyry, Karkonosze granite, crystalline rocks, schist, quartzite, with the addition, in 

Member IV, of Cretaceous sandstone and Wojcieszów limestone (Table 1).  The heavy mineralogy is 

characterized by andalusite and tourmaline, with the addition of epidote in Member I and of kyanite, 
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zircon, garnet, amphibole and sillimanite in Member IV (Table 1). The proximal type locality of this 

formation, Rokitki [55], is situated in the Kaczawa valley, ~ 8 km upstream of its catchment with the 

Nysa Szalona, a right-bank tributary (Fig. 7). Members I–III are attributed to a palaeo-Bóbr–Kaczawa 

that drained northwards, to the west of Legnica, towards Głogów (Figs 9–11). Member IV of this 

formation is recognized only at sites in the interfluve area between the Strzegomka and the 

Kaczawa, at Kępy [95] and Bielany [50] (Fig. 12; online supplement Fig. S7), where it overlies older 

members of the Mielęcin–Wołów Formation that represent the earlier northward drainage of the 

palaeo- Strzegomka (see above; Figs 1 and 9).  Bielany is the distal type locality of th#e Rokitki– 

Bielany Formation, although it lies further south than Rokikti (Fig. 7 [50]). The most northerly 

Mielęcin–Wołów site is Polkowice [62], <20 km south of Głogów, where only Member III occurs (Figs 

7, 8 and 11). 
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Fluvial tracts of more localized rivers have been traced.  The Snowidza Formation, known from a 

single locality (Fig. 8), represents a possible ancestral River Wierzbiak, the modern river of the same 

name being a right-bank Kaczawa tributary that joins the latter ~10 km downstream of Legnica (Fig. 

7).  The sole representation of the Snowidza Formation is probably equivalent to Member I of other 

Ziębice Group formations (Fig. 8).  The deposits of two other local rivers have been recognized (Fig. 

7) in the vicinity of Bardo [96–97], Potworów [98–99]and Szydłów [101] on the basis of gravel-clast 

petrography (Przybylski et al., 1998). These occurrences are again of probable Member I affinity 

(Fig. 8). 
 

 
 
 

DATING THE ZIĘBICE GROUP 
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Much of the dating of the individual components of the Ziębice Group is dependent on their relative 

stratigraphical positions within the sequence and their relation to the underlying Poznań Formation 

and overlying Middle Pleistocene glacial deposits. At Gnojna (~55 km NE of Kłodzko; Fig. 7: [35]) 

palynological analyses of the uppermost member of the Poznań Formation, immediately below 

member I of the Kłodzko–Stankowo Formation, have yielded a flora indicative of the earliest Pliocene 

(Sadowska, 1985; Badura et al., 1998a).  A similar Early Pliocene flora has been obtained from 

Sośnica (Stachurska et al., 1973; Sadowska, 1985, 1992; Fig. 7 [43]), where it is overlain by member 

IV of the Mielęcin–Wołów Formation. Macrofossil analysis of the Poznań Formation at Ziębice, 

Sośnica and Gnojna have revealed the presence of Late Miocene to Early Pliocene leaves and fruits 

(Kräuzel, 1919, 1920; Łańcucka-Środoniowa et al., 1981; Krajewska, 1996). These 

occurrences provide a maximum (limiting) age for the Ziębice Group 
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A very few sites have yielded palaeobotanical remains from sediments of Ziębice Group formations. 

At Kłodzko (Figs 7 and 8 [68]; online supplement Fig. S8) an organic deposit was recorded at the top 

of a sequence that potentially represented member II and/or member III of the Kłodzko–Stankowo 

Formation (cf. Krzyszkowski et al., 1998). Pollen and macrofossils from this deposit have been 

attributed to the Reuverian Stage of the Late Pliocene (Jahn et al., 1984; Sadowska, 1995). Poorly 

preserved leaf macrofossils from member III of the Chrząszczyce Formation at Tułowice (~15km SW 
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of Opole; Figs 7 and 8 [74]) represent a temperate-climate assemblage of trees and shrubs that 

cannot be dated with precision but is unlikely to be older than late Pliocene (Przybylski et al., 1998). 

The fossiliferous deposits here are thus attributed to the palaeo-Odra, although they overlie 

member II deposits that are attributed to the palaeo-Nysa Kłodzka and thus the Kłodzko–Stankowo 

Formation (Fig. 8). Further west, nearer the modern Nysa Kłodzka and in sediments attributed to 

the Kłodzko–Stankowo Formation, organic remains and leaf impressions have been found at 

Niemodlin 2 [80] and Magnuszowiczki [83] in member II (Figs 7 and 8); Przybylski et al. (1998) noted 

that the leaf impressions occurred in laminated silty alluvial sediments. 
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Zeuner (1928, 1929) described pre-glacial organic deposits at Jonsbach (now Janowiec) that would 

appear to have been part of member IV of the Kłodzko–Stankowo Formation (Figs 2, 7 [72], 8 and 

12): part of a pre-glacial fluvial (‘white gravel’) sequence ~11 m thick, located just downstream of the 

Sudeten Marginal Fault (cf. Krzyszkowski et al., 1998). The limited pollen record (Stark and 

Overbeck, 1932; Badura et al., 1998b; Krzyszkowski et al., 1998) lacks Tertiary relics and is thus 

suggestive of the early Middle Pleistocene (Cromerian Complex).  Attempts to relocate these 

deposits and provide a more detailed analysis have proved unsuccessful. 
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This is meagre evidence upon which to base an age model for the Ziębice Group, but broad inference 

from these data points to Pliocene–earliest Pleistocene deposition of members I–III and to early 

Middle Pleistocene emplacement of member IV.  That inference concurs well enough with the 

sedimentological evidence for a meandering fluvial regime during deposition of members I–III and a 

braided gravel-bed river at the time of member IV emplacement (Czerwonka and Krzyszkowski, 

2001; see above), given that the change could readily be attributed to the greater severity of cold- 

stage climatic episodes in the early Middle Pleistocene, following the Mid-Pleistocene Revolution. 

The latter, which saw the transition to 100 ka glacial–interglacial climatic cyclicity (e.g., Maslin and 

Ridgwell, 2005), has been noted to have had a profound effect on valley evolution in many parts of 

the world, notably causing enhanced valley deepening and concomitant isostatic uplift (e.g., 

Westaway et al., 2009; Bridgland and Westaway, 2014;.cf. Stange et al., 2013). 
 

 
 
 

POST-GLACIAL LANDSCAPE EVOLUTION OF THE SUDETIC MARGIN 
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Following the Middle Pleistocene glaciation of the Sudetic foreland, the present-day rivers, 

established in the courses they still occupy, have incised their valleys by varying amounts.  In the 

vicinity of the Bardo Gorge (sites 96 and 97, Fig. 7), in an uplifting inter-basinal location, the Nysa 

Kłodzka has cut down >50 m below the level of the Odranian till, forming five terraces during the 

process (Krzyszkowski et al., 2000; Fig. 2A), presumably in response to post-Odranian regional uplift 

(Krzyszkowski and Stachura, 1997; Krzyszkowski et al., 1998, Migoń et al., 1998; Starkel 2014), 

perhaps with a component of glacio-isostatic rebound (cf. Bridgland and Westaway, 2014). 
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As Krzyszkowski et al. (1995, 2000) have shown, the amount of fluvial incision (and thus of uplift) 

differs markedly on either side of the Sudetic Marginal Fault, the displacement suggesting ~15–25 m 

of additional uplift on the upthrow side (related to continued elevation of the Sudeten Mountains) 

since formation of the ‘Main Terrace’, the oldest post-Elsterian river terrace. Previous authors have 

ascribed this main terrace to the Odranian, since it is overlain by till of that age (e.g., Krzyszkowski 
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and Biernat, 1998; Krzyszkowski et al., 2000); it is essentially the starting point for post-glacial 

incision by the Sudetic marginal rivers such as the Bystrzyca and Nysa Kłodzka (Fig. 2).  If attribution 

of the Odranian to MIS 6 is correct then several terraces have been formed during the relatively 

short interval represented by the Late Pleistocene. Dating evidence is generally lacking, however. 

The following is a general summary of the sequence: 
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i.       Upper  terrace (erosional /depositional) ~10–18 m above alluvial plain (MIS 6; Wartanian) 

ii.       Middle Upper terrace (depositional) ~4–8 m above alluvial plain (MIS 3; mid-Weichselian) 

iii.       Middle Lower terrace (depositional) ~2–5 m above alluvial plain (MIS 2; Vistulian/ 

Weichselian /LGM) 

iv. Lower terraces of the recent alluvial plain (Holocene) - see Fig. 2. 
 
 

 

DISCUSSION: PLIOCENE–QUATERNARY LANDSCAPE EVOLUTION IN 

THE POLISH SUDETEN FORELAND AND THE WIDER REGION 
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The landscape of Poland represents a mosaic of crustal provinces, as illustrated in Fig. 4A and in more 
detail in Fig. 4B. The boundaries between these provinces have been delineated by many studies, 
initially outcrop investigations, later borehole studies and, most recently, deep controlled- source 
seismic-profiling projects (e.g., Grad et al., 2002, 2003, 2008; Hrubcová et al., 2005; Malinowski et al., 
2013; Mazur et al., 2015). NE Poland is thus known to be located within ancient (Early-Middle 
Proterozoic) continental crust overlying the relatively thick lithosphere of the EEP (see above).  The 
boundary between this region and the younger crustal province to the SW was first identified in the 
late 19th century in territory now in SE Poland and western Ukraine by Teisseyre (1893; Teisseyre 
and Teisseyre, 2002).  This boundary, nowadays known as the Teisseyre–Tornquist Zone (TTZ) or 
Trans-European Suture Zone, marks the suture of the Tornquist ocean, which formerly separated the 
ancestral continents of Baltica (to the NE) and Avalonia (to the SW), and closed during the Caledonian 
orogeny, when the crust SW of the TTZ experienced deformation (e.g., Grad et al., 
2003). At a later stage, SW Poland, including the Sudetes, was deformed during the Variscan 
orogeny, the northern and eastern limits of the region thus affected being now concealed in the 
subsurface by younger sediments. Figure 4B indicates one interpretation of these limits; Grad et al. 
(2003) provide another.  The Variscan orogeny in this part of Europe involved northward subduction 
of the Rheic ocean beneath the southern margin of Avalonia, followed by the continental collision 
between the Armorica continent (more specifically, its eastern part, Saxothüringia) and various 
microcontinents with Avalonia (e.g., Mazur et al., 2006).  The Sudeten massif in the extreme SW of 
Poland, in the core of the Variscan orogeny, experienced pervasive deformation, metamorphisim, 
and granitic magmatism. This region was also affected at this time by NW–SE-oriented left-lateral 
strike-slip faulting (including slip on the Sudetic Boundary Fault and Intra-Sudetic Fault), creating a 
collage of fragmented crustal blocks of extreme complexity (e.g., Aleksandrowski et al., 1997; 
Aleksandrowski and Mazur, 2002; Franke and Żelaźniewicz, 2002; Gordon et al., 2005; Jeřábek et al., 
2016; Kozłowski et al., 2016; Fig. 1). Much later, SE Poland was affected by Late Cenozoic plate 
motions, involving southward or south-westward subduction of the former Carpathian Ocean (Fig. 
3B); as a result, the mosaic of continental fragments affected by the Variscan orogeny in what is now 
Slovakia (which were formerly located further southwest) became juxtaposed against SE Poland 
(e.g., Plašienka et al., 1997; Szafián et al., 1997; Stampfli et al., 2001, 2002; Von Raumer et al., 2002, 
2003; Bielik et al., 2004; Schmid et al., 2004; Alasonati-Tašárová et al., 2009; Handy et al., 2014; 
Broska and Petrík, 2015). Thus the crustal structure of Poland is highly variable, reflecting the 
complex tectonic history of the wider region. 
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The ideas about different crustal types having very different landscape evolution histories presented 

above were developed without reference to fluvial sequences in Poland, although data from 

neighbouring countries, such as Ukraine, were taken into account, as exemplified by the example of 

the northern Black Sea rivers (Fig. 3). Application of these ideas to Poland, and in particular to the 

data under consideration in this paper, thus provides a valuable test of the underlying theories. This 

task has been facilitated by the aforementioned deep seismic projects, from which have been 

published crustal transects with the required spatial resolution; indeed, some of the transects 

combine crustal structure and heat flow, for example those across Poland from SW to NE presented 

by Grad et al. (2003). The first such transect, likewise combining crustal structure and heat flow, was 

prepared in a similar location by Majorowicz and Plewa (1979); comparison between the two 

indicates the technical progress over the intervening decades, although the main features 

identifiable in the modern cross-sections can also be resolved on the older one. One aspect of 

particular importance for the present investigation is identification (from its relatively high seismic 

velocity) of the presence of mafic underplating at the base of the crust. Such a layer remains rigid (or 

brittle) under the temperatures typically experienced (<~550 °C) and thus behaves mechanically as 

part of the mantle lithosphere, any mobile lower-crustal layer present being restricted to shallower 

depths in the felsic lower crust.  The phenomenon was mentioned above in connection with Early or 

Middle Proterozoic crustal provinces in which fluvial archives point to past alternation subsidence 

and uplift. 
 

 

The seismic transect studied by Grad et al. (2003) crosses the TTZ ~150 km NW of Warsaw with ESE– 

WSW orientation, revealing a layer of mafic underplating at the base of the crust persisting from here 

to a point ~100 km NW of Wrocław.  According to Grad et al. (2003), emplacement occurred 

during magmatic rifting of eastern Avalonia from the Precambrian supercontinent Rodinia during the 

latest Proterozoic or Cambrian.  This layer is up to ~10 km thick, its top locally as shallow as ~25 km 

depth; it evidently extends beneath the external part of the Variscides, including the high-heat-flow 

region around Poznań, depicted in Fig. 4C, but no long-timescale fluvial sequences are evident in this 

region due to the effect of multiple glaciations. The subparallel transect studied by Grad et al. 

(2008) starts just SW of the TTZ, ~170 km west of Warsaw, crosses the Czech–Polish border in the 

extreme SW of Poland, then through the NW extremity of the Czech Republic before entering 

Germany.  It again reveals up to ~10 km of mafic underplating at the base of the crust, its top locally 

as shallow as ~22 km, persisting WSW for ~250 km and dying out in the vicinity of the Intra-Sudetic 

Fault Zone. Mafic underplating, with thickness up to ~8 km, its top locally as shallow as ~18 km, 

resumes in the western part of the Bohemian Massif near the Czech–German border, as the transect 

approaches Saxothüringia, the intervening crustal provinces (Barrandia, forming the central 

Bohemian Massif) being free of underplating.  The NW–SE seismic transect across the Bohemian 

Massif, reported by Hrubcová et al. (2005), confirms the presence of underplating beneath 

Saxothüringia but not beneath Moldanubia (the SE Bohemian Massif) or Barrandia. 
 

 

As already discussed, the structure of the Sudeten Mountains is complex; as a result of the Variscan 

left-lateral faulting it consists of small fragments of crustal blocks that have become juxtaposed. 

Jeřábek et al. (2016) have recently demonstrated that this process included transposition of 

Saxothüringian crust (presumably including its characteristic layer of mafic underplating) beneath 

fragments of Barrandia.  It would thus appear that mafic underplating persists beneath much of the 

Sudeten Mountains region, as Majorowicz and Plewa (1979) inferred, even though this was not 
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resolved in the Grad et al. (2008) study. The heat flow typically decreases southward across the 

Sudeten Mountains, reaching values of <70 mW m-2 in the Kłodzko area (Fig. 4C); it can thus be 

inferred that this effect, along with the presence of mafic underplating derived from Saxothüringian 

crust, constricts the mobile lower-crustal layer, resulting in the pattern of alternations of uplift and 

subsidence that are evident in the fluvial records, particularly in basinal areas (see above). A 

noteworthy record comes from Kłodzko [site 68], which gives its name to the Kłodzko Basin and is 

the proximal type locality of the Kłodzko–Stankowo Formation, which represents the pre-glacial 

River Nysa Kłodzka.  Here in the basin the pre-glacial gravels extend to below river level, suggesting 

the sort of reversal in vertical crustal motion described above.  This can be compared with the 

situation ~12km downstream at the Bardo Gorge, on the inter-basinal ridge (see above), where it is 

evident that uplift has been more continuous (Compare Figs 2A and 2B). 
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Another good example of the low level of the pre-glacial deposits in parts of the Sudetic Foreland, as 

well as their geomorphological inter-relationship, is the site at Brzeg Dolny in the Odra valley 

downstream of Wrocław [site 108], where Members I and II of the Kłodzko–Stankowo  Formation 

occur in superposition, their base ~10 m above the level of nearby Holocene valley-floor sediments. 

Member IV of the Mielęcin–Wołów Formation (representing the palaeo- Strzegomka) occurs nearby, 

incised to a lower level. Given the tributary status of the palaeo- Strzegomka, this relationship 

implies rejuvenation between the Pliocene (Member I) and early Middle Pleistocene (Member IV), 

when the latter river traversed an area formerly occupied by the pre-glacial Nysa Kłodzka; this is a 

clear example of terrace formation within the pre-glacial sequence (see online supplement Fig. S2). 
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In some parts of the Sudetes, thick plutons of highly radiothermal granite were emplaced during the 

Variscan orogeny, their radioactive heat production resulting in local heat-flow highs; for example, 

Bujakowski et al. (2016) inferred temperatures as high as ~390 °C at 10 km depth beneath the 

Karkonosze granite pluton (see Fig. 6 for location).  However, this is one locality where Jeřábek et al. 

(2016) inferred that the Variscan orogeny emplaced Saxothüringian crust beneath crust of 

Barrandian provenance, so that here it can be anticipated that the mafic underplating will constrict 

the mobile crustal layer, notwithstanding the high surface heat flow. 
 

 
South of the Sudeten Mountains, in the Bohemian Massif, rivers such as the Vltava and Labe 

(affluents of the Elbe) have substantial terrace staircases (e.g., Tyracek et al., 2004), with no 

indications of alternations in vertical crustal motion. The heat flow in the central Bohemian Massif is 

~50-60 mW m-2 (e.g., Čermák, 1979), less than in the Sudeten Mountains.  However, as already 

noted, the crust in this region, up to ~35 km thick in Barrandia (in which the Vltava terrace staircase 

is located) and up to ~40 km thick in Moldanubia, is free of mafic underplating (Hrubcová et al., 

2005). The felsic lower crust is thus much thicker in this region, and concomitantly much hotter near 

its base, than in the Sudeten Mountains. The different landscape response between these areas can 

thus be explained: the mafic underplating accounts, via the mechanism advocated by Westaway and 

Bridgland (2014), for the observed pattern of sedimentary archives in parts of the Sudetes; the 

importance of underplating is underlined by evidence for sustained upward vertical crustal motion, 

despite lower heat flow, in the central Bohemian Massif, where underplating is absent (cf. 

Štěpančíková et al., 2008). 
 

 

Wider crustal comparisons can also be made between fluvial sequences in the Sudeten Mountains 

and elsewhere in Poland. Comparison of Figs 4A and B indicates that the surface heat flow increases 
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from ~70 mW m-2 at the external (northern) margin of the Carpathians to ~80 mW m-2 along the 

Poland-Slovakia border, for example along the upper reaches of the River San.  No modern deep 

seismic profile in this area is known to the authors, but by analogy with other localities further NW it 

can be inferred that the region consists of ~40 km thick crust with ~10 km of mafic underplating (cf. 

Grad et al., 2003, 2008).  However, during the Late Cenozoic plate convergence this crust became 

buried beneath up to ~7 km of young sediment (e.g., Oszczypko, 1997).  The ‘thermal blanketing’ 

effect of this sediment will significantly raise the temperature in the underlying crust, reducing the 

constriction effect of the underplating on the thickness of mobile lower crust; 7 km of sediment of 

thermal conductivity 2 W m-1 °C-1 overlying crust in which the heat flow is 80 mW m-2 will raise the 

temperature in this bedrock by 7 km  80 mW m-2 / 2 W m-1 °C-1 or ~280 °C. Westaway and 

Bridgland (2014) suggested an analogous explanation for the disposition of the terrace deposits of 

the River Dniester in the Ukraine–Moldova border region further to the SE (see Fig. 3A). 
 

 
Comparison is also possible with the crust underlying the fluvial sequence laid down by the River 

Vistula in the Warsaw area.  As illustrated in Fig. 5D, Pliocene deposits here occur near the present 

river level, and Early Pleistocene deposits at a height ~30 m lower.  After these were laid down, the 

ancestral Vistula cut down to ~50 m below its present level before laying down a stack of Middle and 

Late Pleistocene sediments, including Holocene temperate-climate deposits overlying their Eemian 

and Holsteinian counterparts.  Overall, this sequence indicates a transition from uplift in the 

Pliocene and Early Pleistocene to subsidence thereafter.  Warsaw is ~50 km inside the EEP (Fig. 4B). 

From Grad et al. (2003) and Mazur et al. (2015), the crust is locally ~45 km thick with ~20 km of 

underplating at its base, overlain by ~19 km of basement and ~3 km of sediments, which are mainly 

Mesozoic (in contrast with the much thicker sequences dominated by Palaeozoic shale, closer to the 

TTZ). The surface heat flow in the Warsaw area is ~60 mW m-2 (Fig. 4C); if the sediment and 

basement are assumed to have thermal conductivities of 2.5 and 3.5 W m-1 °C-1, respectively, the 

~350 °C isotherm can be expected at ~19 km depth, making the mobile lower crustal layer ~6 km 

thick, within the range of values where alternations of uplift and subsidence have been observed in 

fluvial sequences elsewhere (Westaway and Bridgland, 2014).  Other fluvial sequences within the 

EEP, with alternations of uplift and subsidence evident, include those of the River Dnieper in Ukraine 

and the Rover Don in SW Russia (e.g., Westaway and Bridgland, 2014; Fig. 3). 
 

 
A final point on the effect of lateral variations of crustal properties, with resultant lateral variations in 

uplift, on the disposition of fluvial terrace deposits concerns the occasional occurrence of back- tilted 

fluvial deposits, in cases where rivers have flowed from regions of colder to warmer crust, with an 

example evident from the Sudetic margin.  It is evident that the ancestral drainage from the Sudeten 

Mountains was directed northward, from the Wrocław area and points further east to the Poznań 

area, before adjusting (probably around the start of the Early Pleistocene) to its modern 

configuration. Fig. 4C indicates that the former drainage was directed across the high heat-flow 

region between Wrocław and Poznań, raising the possibility that the subsequent drainage adjustment 

was the result of faster uplift of the latter region.  As already noted, the Grad et al. 

(2003) seismic profile passes through this high-heat-flow region, indicating that the top of the mafic 

underplating is at ~25 km depth and that the sedimentary sequence in the overlying crustal column 

is thin.  Assuming a thermal conductivity of 3.5 W m-1 °C-1 in the basement, as before, and a typical 

heat flow of ~90 mW m-2, the ~350 °C isotherm can be expected at a depth of ~14 km, making the 

thickness of the mobile lower crust ~11 km, significantly greater than in other parts of Poland and 
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high enough (based on comparisons with other regions) to sustain significant uplift rates.  Recorded 

heights of pre-glacial fluvial deposits in this region (Czerwonka and Krzyszkowski, 2001; Supplement, 

Table S1) indeed reveal evidence of back tilting. The best such evidence is provided by comparison of 

the heights of the Pliocene deposits along the ancestral River Odra, between Chrzaszczyce(Fig. 7 

[76/77]), Smardzow [33], 77.3 km further downstream, and Stankowo [1], 84.9 km further 

downstream, the latter site adjoining the confluence with the ancestral Nysa Kłodzka (Fig. 7). The 

top of the deposits assigned to Member I of the Ziębice Group is 180, 72, and 99 m a.s.l. at these 

sites, thus indicating back-tilting over the reach between Smardzow and Stankowo, the long-profile 

gradients being ~1.4 and ~-0.3 m km-1 along these two reaches, respectively.  Thus, if this river had 

an original gradient of ~1 m km-1, the deposit at Stankowo is now 81 m higher in the landscape, and 

that at Smardzow 34 m lower, than would be expected if all three sites had experienced the same 

history of vertical crustal motion.  In the absence of detailed modelling the precise sequence of 

processes in this region cannot be ascertained, but this pattern is consistent with the interpretation 

that lower-crustal material was drawn from beneath the Smardzow area to beneath the hotter 

Stankowo area, as a result of the lateral pressure gradient at the base of the brittle upper crust 

caused by the variation in heat flow between these two regions.  An established analogue of this 

effect is the back-tilting of the deposits of the early Middle Pleistocene Bytham River in the East 

Midlands of England; this river flows eastward from the northern part of the London Platform, a 

region of relatively low heat flow, into the higher-heat-flow zone of crustal deformation during the 

Caledonian orogeny, at the NE margin of Avalonia (Fig. 4A), its sediments now being gently tilted in 

an upstream direction (Westaway et al., 2015). 
 

 

The explanation for the fluvial archives in the marginal area of the Sudeten Mountains promoted 

here has a more general analogue in records from SW England, in the rivers of Cornwall and west 

Devon (Westaway, 2010).  In that region radiothermal Variscan granites are underlain by thick mafic 

underplating and the crust is relatively strong, as indicated by the minimal Late Cenozoic vertical 

crustal motions deduced from fluvial sequences. The principal difference is that the mafic 

underplating beneath SW England was emplaced after the Variscan orogeny, as a result of the 

Palaeocene British Tertiary Igneous Province magmatism, whereas the underplating beneath the 

Sudeten Mountains is evidently derived from fragments of pre-Variscan Saxothüringian crust. 
 

 
The different styles of fluvial archive preservation in the different parts of the European continent 

described above are an important consideration in the understanding of Quaternary stratigraphy in 

these regions, given that fluvial sequences provide valuable templates for the Late Cenozoic 

terrestrial record (Vandenberghe, 2002; Bridgland et al., 2004; Bridgland and Westaway, 2014).  It 

has been shown that the most stable regions, in which the fluvial archives suggest a complete or 

near absence of net uplift during the Quaternary, coincide with the most ancient cratonic crustal 

zones, such as parts of the EEP and in particular the Ukrainian Shield (Bridgland and Westaway, 

2008, 2014; Fig. 3). Such highly stable regions are the exception for the EEP, however; over much of 

its area there has been limited net uplift as a result of alternations of vertical crustal movements, 

resulting in periods of terrace generation with intervening periods of subsidence and burial.  In Fig. 

13 the fluvial archive from the Sudetic margin, using the optimal example of the Nysa Kłodzka at 

Bardo (see above), is compared with that of the River Don at Voronezh. Despite the differences in 

size (catchment area and, therefore, discharge) of the fluvial systems in question and the very 

different glacial influences (the Don here was reached only by glaciation in MIS 16), there are 
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significant points of comparison.  Contrastingly, the difference between the fluvial records from the 

EEP and those from the youngest and most dynamic European crust is quite profound, albeit that 

many of the comparisons made above are with crust of somewhat intermediate age, such as the 

Variscan and Avalonia provinces (Fig. 4).  This is because much of the youngest crust, in the Alpine 

and Carpathian provinces (Fig. 4), remains tectonically active (i.e., continues to be affected by active 

plate motions) and so has fluvial archives that are less clearly related to regional vertical crustal 

movements. 
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The rivers of the Polish Sudeten foreland have pre-glacial precursors, their courses recognized from 

sediments that generally underlie the Middle Pleistocene glacial deposits and which date from the 

Early Pliocene – Early Pleistocene, being substantially different from those of their modern 

successors. The pre-glacial fluvial formations are preserved in the subsurface, in part as buried 

valley fills, and recorded as the Ziębice Group. They were partly destroyed and buried by the Middle 

Pleistocene Scandinavian ice sheets that entered the Sudeten Foreland, covering the previously 

formed valleys with glacial deposits: the Elsterian (= Sanian) and the early Saalian (= Odranian). No 

post-Odranian ice sheet reached the Sudeten Foreland, where renewed incision (brought about by 

post-Odranian uplift) led to post-glacial river-terrace formation. In addition to glacial and tectonic 

influences on fluvial evolution, the overall pattern of fluvial archive preservation is commensurate 

with the Variscan crustal province in which they are developed.  However, the effects of mafic 

underplating, emplaced by the incorporation of pre-Variscan crustal material, may have been 

considerable, as this can explain reduced net Pleistocene uplift and reversals in vertical crustal 

motion, especially in basinal areas. Differential uplift in reflection of crustal type may have led to 

disruption of former downstream gradients in the palaeovalleys, with an example of back-tilting 

identified in the case of the Palaeo-Odra. In addition, some younger terraces can be shown to have 

been offset by slip on active faults of the Sudeten Marginal Fault system. 
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Figure 1 Geology and location of the research area.  The inset shows the limits of the various 

Quaternary glaciations of Poland and the course of the River Odra. Modified from 

Czerwonka and Krzyszkowski (2001). 
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Figure 2 Cross sections through key fluvial sequences in the study area: A - the River Nysa Kłodzka 

in the Bardo area (sites 96 and 97 in Figs 7 and 8), where the river has cut a gorge 

through an inter-basinal (progressively uplifting) ridge, the inset showing the sequence a 

few km downstream, in the Janowiec–Ożary  area  (s ites 72 and 71 in Figs 7 and 8); B - 

the sequence in the Kłodzko Basin in the Kłodzko–Leszczyna area (site 68 in Figs 7 and 

8), both modified from Krzyszkowski et al. (1998); C - The River Bystrzyca near 

Lubachów (modified from Krzyszkowski and Biernat, 1998); for location see FIg. 7. 
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Figure 3 The Rivers of the northern Black Sea region (modified from Bridgland and Westaway, 

2014; after Matoshko et al., 2002; 2004). A - The locations of parts B–D in relation to 

the Ukrainian Shield. B - Idealized transverse profile through the Middle–Lower Dniester 

terrace sediments, which represent a classic river terrace staircase (with approximately 

one terrace per 100 ka climate cycle following the Mid-Pleistocene Revolution) inset 

into Miocene fluvial basin-fill deposits. This region has higher heat flow than might be 

expected from its location at the edge of the EEP (see A), for reasons discussed in detail 

by Westaway and Bridgland (2014). C. - Transect across the Middle Dnieper basin,~100 

km downstream of Kiev (~240 km long), showing a record typical of an area with no 

considerable net uplift or subsidence during the Late Cenozoic, as typifies cratonic 

crustal regions (cf. Westaway et al., 2003). D. - Transect through the deposits of the 

Upper Don near Voronezh, showing a combined stacked and terraced sequence that 

points to fluctuation between episodes of uplift and of subsidence during the past ~15 

Ma. 
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Figure 4 Crustal characteristics.  A - Crustal provinces in the European continent and neighbouring 

areas. Modified from Pharaoh et al. (1997); the location of parts B and C is shown. B - 

Crustal provinces in Poland. Modified from Mazur et al. (2006). DFZ = Dolsk Fault Zone; 

OFZ = Odra Fault Zone.  C - Borehole heat flow measurement sites and resulting 

contours of surface heat flow in Poland. Modified from Bujakowski et al. (2016), using 

data from Szewczyk and Gientka (2009). Plus and minus signs are used to aid 

interpretation in grayscale; for the colour diagram, see the online pdf version. 
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Figure 5 Comparison of fluvial archives in different parts of the River Vistula system. A – location; 

B – Transect through the valley of the River Dunajec, central Carpathians (modified from 

Zuchiewicz, 1992, 1998); C –. Transect through the valley of the River San (after Starkel, 

2003); D – Idealized transverse sequence through the deposits of the Middle Vistula, 

based on data from upstream (Mojski, 1982) and downstream (Zarski, 1996; Marks, 

2004) of Warsaw. 
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Figure 6 Distribution of provenance indicator materials. Modified from Czerwonka and 

Krzyszkowski (2001). 
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Figure 7 Location of pre-glacial sites (identified by number, with different symbols for the various 

formations, which represent different river systems). For locality names see Fig. 8. 

Modified from Czerwonka and Krzyszkowski (2001). 
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Figure 8 Occurrence of the different pre-glacial fluvial formations and their constituent members, 

showing which are present at the various localities.  Numbers and symbols correspond 

with those in Figs 7 and 9–12. Modified from Czerwonka and Krzyszkowski (2001). 
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Figure 9 Palaeodrainage during emplacement of Member I deposits. Numbers and symbols 

correspond with those in Figs 7 and 8. Modified from Czerwonka and Krzyszkowski 

(2001). 
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Figure 10   Palaeodrainage during emplacement of Member II deposits. Numbers and symbols 

correspond with those in Figs 7 and 8. Modified from Czerwonka and Krzyszkowski 

(2001).  For key see Fig. 9. 
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Figure 11   Palaeodrainage during emplacement of Member III deposits. Numbers and symbols 

correspond with those in Figs 7 and 8; for key see Fig. 9. 
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Figure 12   Palaeodrainage during emplacement of Member IV deposits. Numbers and symbols 

correspond with those in Figs 7 and 8; for key see Fig. 9. 
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Figure 13   Comparison between the fluvial archives from the Sudetes, in the form of the Nysa 

Kłodzka (Krzyszkowski et al., 1998, 2000), and the River Don in the vicinity of Voronezh, 

Russia (showing suggested MIS correlations; see also Fig. 3D and Matoshko et al. (2004), 

who provided further stratigraphical details. 
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Table 1 Characteristic clast data (gravel petrography and heavy mineralogy) used in 

differentiation of Ziębice Group formations 
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Gravel lithologies 
 

Formation Member(s) Primary Secondary Others Heavy minerals Interpretation 

Chrząszczyce III quartz Carpathian  zircon, rutile, garnet, Main palaeo- 

   siliceous rocks  staurolite, tourmaline Odra 

 I–II    zircon, tourmaline,  
     staurolite [+ garnet in  
     Mbr I; + rutile, in Mbr II]  
Dębina I quartz quartzite  staurolite, amphibole Palaeo-Biała 

      Głuchołaska 

Kłodzko– IV various porphyry Permian (red), garnet, amphibole Palaeo-Nysa 
Stankowo  gneiss types quartz Carboniferous (grey)  Kłodzka 

  of the  and Cretaceous (white)   
  Kłodzko  sandstone,   
  Basin  Carboniferous mudstone,   
    siliceous rocks (local   
    flint)   
 I–III quartz porphyry, crystalline rocks staurolite, garnet,  
   siliceous rocks (including gneisses of (+ local admixtures of  
   (local flint) the Kłodzko Basin), zircon + rutile, andalusite  
    Permian (red) and + kyanite and sillimanite  
    Cretaceous (white)   
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     (in Mbr III epidote,  
     kyanite, amphibole,  
     staurolite)  
 I quartz  siliceous rocks (local zircon, tourmaline, rutie  
    flint), porphyry   
Wichrów I    zircon, tourmalline, Palaeo- 

     epidote, kyanite Bystrzyca or 

      local river 
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Wołów I–III quartz porphyry siliceous rocks (local sillimanite, garnet Strzegomka 

    flint), rocks from the   
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    diabase, greenschist,   
    quartzite), Strzegom   
    granite, local schist   
    (phyllite)   
Snowidza I    andalusite, zircon Palaeo- 

      Wierzbiak 

Rokitki– IV quartz porphyry crystalline rocks, schist, andalusite, kyanite, Palaeo-Bóbr 
Bielany    quartzite tourmaline, zircon, (upper Bóbr– 

    Cretaceous sandstone, garnet Kaczawa) 

    Wojcieszów limestone (amphibole, sillimanite)  
 I-III quartz Karkonosze other crystalline rocks, andalusite, tourmaline  
   granite quartzite [+ epidote in Mbr I]  

  porphyry   
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Fig. 51- Zi bice  [site 37], the locality in central Poland,formerly called  Munsterberg, where fluvial'white 

gravel' sediments,lacking Scandinavian  material,were first described (Jentzsch and Berg,1913;Frech, 

1915;Lewinski,1928,1929;Zeuner,1928).  The site gives its name to the  Zi bice Group (Czerwonka  and 

Krzyszkowski,2001). Photo by D. Krzyszkowski (1985). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. S2 – Brzeg Dolny [site 108]. Members I and II of the Kłodzko–Stankowo 

Formation, representing the palaeo-Nysa Kłodzka, with Member IV of the 

Mielęcin–Wołów Formation (Palaeo-Strzegomka) incised to a lower level. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S3 – Pogalewo [site 31], the type locality of the Pogalewo Formation, 
representative of the Palaeo-Bystrzyca river. . 
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Fig. 54-Chrzq_szczyce [site 77], type  locality of the Chrzq_szczyce Formation, 

representative of the Palaeo-Odra river. 



D 

STANKOWO 

E w  s  N 
 
 
 

2 
 

 

r. 

s 

6 

Sm 

 
 
 
 

 
STAN KOWO 3 

m w  E 

 
 
 
 
 

large eratics 

o)9rovels 

J :- ,;   J sand &  qrovot 

. CJmediOOl coarsl! sand 

fine  sand 
(with ripplemo.rksl 

100ssive  silt or cloy 

[:;,-:Jtill 

I''-.._'-) slumps 

3  OJ    sampilng 

r. 
2m 

 
STANKOWO 

 

1.2 & ) <100,0 m  a.s.l.)  2 

GRANI
 

SIZE
 

LII.I.I.OUY PI\  4[0"lC\ol HfA.Vl  .II!RA.S GRAVEL   Pt:ffio:iR Y     Q\,All  IDJiliJI,'CSS l 

"  "  .. et    r..w.Ml       
8 

rA:s »   4.)  110     on-•       20       u    i(   tt   't,.  :t .1   110       *"'" 
1.,)     1 

"""=" ---:-1 '--ni  
0/' 

 
0,9 

1,!1 

 
 
 
 
. .. !... 

 
IS 

V·l57' 
L •SlS% 

 
 
 
 
 
 

.,  r.umbcr of llfM\rll'eot s 
V - vt.ttor fUM o:,mu•h 
L •vWor  11111gn•lud• 

gotfl•l 

lilUTalllflt'obolt 

F?)tp!<lel t 

r:J>lQUfO\Ilt 

I!IIBia-lu••lo 

CZ!Jtir(on 
 
tf.lurmalirlt 

mm C)'<IMO 

t:J:Dpyrol!.cmc 

Or.rt1tl 

sylunol"i1e 

• b•:hre 

EJt Ct,tp 
 
("]otf!IW'IIflh!lro t; 

wucVtl  t l)'dilv 

[i:7) ,.....,.,,.Q portcur  I'CIRIIId 
q< <FI• 

CJ Hesozo:c!Or!!< tone GOOtJict qo.artz 

!liilJ) r.e-..ozooc  l•mtsiOI'JC 

 
 

Fig. 55- Stankowo [site  1], distal type locality of the Ktodzko-Stankowo Formation, 

near the northern margin of the study area. This represents the Palaeo-Nysa 

Ktodzka river. 



 
 

 

 
Fig. S6 – Mielecin [site 47], the proximal type locality of the Mielęcin–Wołów 
Formation, representative of the Palaeo-Strzegomka River. 
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Fig. 57- Bielany  [site 50], distal type locality of the  Rokitki-Bielany Formation, 

representing the Palaeo-B6br/Kaczawa. 



 

 
 
 
 

 
Fig. S8 – Kłodzko, proximal type locality of the Kłodzko–Stankowo Formation. 
Formation, representing the Palaeo-Nysa Kłodzka river. 
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