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Particle Modelling with the Discrete Element Method 
A success story of PARDEM (www.pardem.eu)

1. General

Bulk handling, transport and processing of particulatematerials such
as powders and granules are integral to a wide range of industrial pro-
cesses in many fields [1,2] or natural, geophysical phenomena and haz-
ards like landslides [3]. Particulate systems are difficult to handle and
display unpredictable behaviour, which represents a great challenge
for both design and operation of unit operations and plants, but also
for the research community of Powders and Grains [4,5].

Granular materials and powders consist of discrete particles such as
individual sand-grains, agglomerates (comprising ofmany primary par-
ticles), or bonded solid materials like sandstone, ceramics, or some
metals or polymers sintered during additive manufacturing. The prima-
ry particles can be as small as nano-metres, micro-metres, or
millimetres [6] covering multiple scales in size and a variety of
mechanical interaction mechanisms. Those interactions include friction
and a variety of cohesive forces [7,8], which becomes more and more
important the smaller the particles are. All these particle systems have
a particulate, usually disordered, inhomogeneous and often anisotropic
micro-structure, which is at the core ofmany of the challenges one faces
when trying to understand powder technology and granular matter.

2. Fluid- and solid like behaviour

Particle system as a bulk shows a completely different behaviour as
one would expect from the individual particles. Collectively, particles
can either flow like a fluid or at rest like a solid. In the former case, in
rapid flows, granular materials are collisional and inertia-dominated
and compressible similar to gases. In the latter case, particle assemblies
are solid-like and thus can form, for example, sandpiles or slopes that
can remain static for a long time. In between is the dense and slow
flow regimes that connect the extremes and is characterized by the
transitions (i) from static to flowing (failure, yield) or vice-versa (ii)
from fluid to solid (jamming).

At the particle and contact scale, the most special property of particle
systems is their dissipative, frictional, and possibly cohesive nature. Here
dissipation means that the fluctuating kinetic energy at particle scale is
irrecoverably lost by a number of mechanisms including contact friction
and contact plastic deformation. The transition from fluid to solid can be
caused by dissipation alone,which tends to slowdownmotion. The tran-
sition from solid to fluid (initiation of flow) is due to failure and instabil-
ity, when dissipation is not sufficient to prevent the system fromyielding
which then evolves into a flowing regime.

3. Particle simulation by DEM

Besides experiments, the methods used to explore the behaviour of
particle systems involve continuum theory solvers, numerical particle
simulations and micro–macro transition methods, where the latter in
general attempt to connect the particle (micro) scale with the process
(macro) scale that can usually, due to the enormous number of particles,
only be modelled using continuum methods.

The complexity of particle systems as described above is such that
the study of bulk flow behaviours at the scale of unit-operations or so-
called element tests are often a considerable challenge. In order to un-
derstand and model the bulk behaviour using particle simulations,
new particle-contact experiments need to be developed, for example,
nano-indentation equipment becoming increasingly deployed [9].
However detailed contact information is only available for idealizedma-
terials such as glass spheres [9,10] or rather large particleswith complex
interactions [11], whereas realistic, industrially relevant fine powders
can hardly be measured. They involve a multitude of shapes and struc-
tures that do not allow for conclusive data, but possibly can bemodelled
by the so-called meso-scale models [12–14] which catch the essential
phenomenological features but are not directly related to the interac-
tion parameters of the primary particles. These meso-scale models rep-
resentmanyparticles as an entity, and as such allow for themodelling of
much larger systems.

On the macro-scale, it is noted that the particulate nature and the
salient details of the contact mechanics are not adequately captured
in the constitutive relations that are needed to solve the continuum
equations. The influence of the particles on the bulk behaviour has
to be better understood to ultimately provide effective predictive
tools for particulate flows. One promising development in bridging
from micro-mechanical insights at particle- and contact-level to
the next generation of superior continuum models will come from
the coarse-graining methodologies.

In recent decades, the Discrete Element Method (DEM) [15] that
models the motion and interaction of individual particles has become
very popular as a computational tool to model granular systems in
both academia and industry. To date, not only due to increasing com-
puter power available, considerable scientific advances have been
made in the development of particle simulation methods, resulting in
an increasing use of DEM. However, careful verification of the various
numerical codes and validation of the simulation results with closely
matching experimental data is essential to establish DEMas awidely ac-
cepted tool able to produce satisfactory quantitative predictions with
added value for design andoperation of industrial processes. One funda-
mental step towards this goal is the determination of the simulation
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parameters for the DEM particle model. Contrary to the more
established CFD codes [16], so far only very few examples and no best
practice guidelines or norms are available for the verification, calibra-
tion and validation of DEM simulations [17].

4. Overview of the special issue

The papers within this special issue cover a significant effort by the
authors, in the framework of the EU-FP7 Marie Curie ITN (Initial Train-
ing Network) PARDEM (see www.pardem.eu) in deploying various as-
pects of DEM. A range of industrial application examples are studied
(silo flow [18], mixing [19], and segregation [20]); for large, granular
particles aswell as two-phase systems (fluidized beds [21] or pneumat-
ic conveying [22]); and cohesive powders (conepenetration anduncon-
fined strength testing [23], dosing of cohesive foodpowder [24]), aswell
as the more fundamental issues of fine powder testing with different
devices and the extremely slow stress-relaxation in such systems [25].
On the macroscopic level several important questions are addressed,
such as the effect of the particle size-ratio on the bulk stiffness of gran-
ularmixtures [26] aswell as the asymmetry of stress tensor arising from
a micropolar formulation [27]. Furthermore, DEM results are compared
to the prediction of a micropolar hypoplastic continuummodel [28]. Fi-
nally the critical issue of the scaling of model parameters with particle
size for both cohesionless and cohesive systems is addressed [29], and
the micro–macro transition parameters are studied in detail using a
model silo flow of non-spherical particles [30] that involves stagnant/
static zones, shear bands as well as the rapidly flowing core.

In all of these papers, the investigation of various element tests and
model experiments, the calibration of DEM models, the micro–macro
(coarse graining) transition and the understanding of the bulk flow be-
haviour based on particle and contact properties provide novel, deeper
insights into the mechanics governing these granular and powder han-
dling processes. These papers demonstrate clearly the considerable po-
tential of this powerful numerical technique to provide answers to
fundamental questions and innovative solutions to industrial problems.
They also highlight some challenges that must still be overcome to
transform DEM from a well established scientific tool into an efficient,
reliable industrial predictive tool.
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