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Abstract: Dispersion entropy (DispEn) is a recently introduced entropy metric to quantify the1

uncertainty of time series. It is fast and so far, it has demonstrated very good performance in the2

characterisation of time series. It includes a mapping step but the effect of different mappings has3

not been studied yet. Here, we investigate the effect of linear and nonlinear mapping approaches4

in DispEn. We also inspect the sensitivity of different parameters of DispEn to noise. Moreover, we5

develop fluctuation-based DispEn (FDispEn) as a measure to deal with only the fluctuations of time6

series. Furthermore, the original and fluctuation-based forbidden dispersion patterns are introduced7

to discriminate deterministic from stochastic time series. Finally, we compare the performance8

of DispEn, FDispEn, permutation entropy, sample entropy, and Lempel-Ziv complexity on two9

physiological datasets. The results show that DispEn is the most consistent technique to distinguish10

various dynamics of the biomedical signals. Due to their advantages over existing entropy methods,11

DispEn and FDispEn are expected to be broadly used for the characterization of a wide variety of12

real-world time series.13

Keywords: Nonlinear analysis; permutation entropy; dispersion entropy; fluctuation-based14

dispersion entropy; forbidden patterns15

1. Introduction16

Searching for patterns in signals and images is a fundamental problem and has a long history [1].17

A pattern denotes an ordered set of numbers, shapes, or other mathematical objects, arranged based on18

a rule. Elements of a given set are usually arranged by the concepts of permutation and combination19

[2]. Combination means a way of selecting elements or objects of a given set in which the order of20

selection does not matter. However, the order of objects is usually a crucial characteristic of a pattern21

[1,2]. In contrast, the concept of permutation pattern indicates an arrangement of the distinct elements22

or objects of a given set into some sequences or orders [2–5]. Permutation patterns have been studied23

occasionally, often implicitly, for over a century, although this area has grown significantly in the last24

three decades [6].25

However, the concept of permutation pattern does not consider repetition. Repetition is an26

unavoidable phenomenon in digitized signals. Furthermore, permutation considers only the order of27

amplitude values and so, some information regarding the amplitudes may be ignored [7,8]. To deal28

with these issues, we have recently introduced dispersion patterns, taking into account repetitions [9].29

The probability of occurrence of each potential dispersion or permutation pattern makes a key role30

to define the entropy of signals [9–11]. Entropy is a powerful measure to quantify the uncertainty of31

time series [9,11]. Assume we have a probability distribution s with N potential patterns {s1, s2, . . . , sN}.32

Based on the Shannon’s definition, the entropy of the distribution s is −∑N
k=1 Pr{sk} log(Pr{sk}),33
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where Pr{sk} is the probability of occurrence of pattern sk [11]. When all the probability values are34

equal, the maximum entropy occurs, while if one probability is certain and the others are impossible,35

the minimum entropy is achieved [9,11].36

Over the past three decades, a number of entropy methods have been introduced based on37

Shannon entropy (ShEn) and conditional entropy (ConEn), respectively denoted the amount of38

information and the rate of information production [9,12–14]. The widely-used sample entropy39

(SampEn) [14] is based on ConEn [14], whereas popular permutation entropy (PerEn) and newly40

developed dispersion entropy (DispEn) [9] are based on ShEn [10] (we compare these methods and41

also evaluate the relationship between the parameters of DispEn and SampEn in Section 6).42

SampEn denotes the negative natural logarithm of the conditional probability that two series43

similar for m sample points remain similar at the next sample, where self-matches are not considered44

in calculating the probability [14]. For detailed information, please refer to [14]. SampEn leads to45

undefined or unreliable entropy values for short time series and is not fast enough for long signals46

[15,16].47

PerEn, which is based on the permutation patterns or order relations among amplitudes of a48

time series, is a widely-used entropy method [10]. For detailed information about the algorithm of49

PerEn please see [10]. PerEn is conceptually simple and computationally quick. Nevertheless, it has50

three main problems directly derived from the fact that it considers permutation patterns. First, the51

original PerEn assumes a signal has a continuous distribution, therefore equal values are rare and52

can be ignored by ranking them based on the order of their emergence. However, while dealing with53

digitized signals with coarse quantization levels, it may not be appropriate to simply ignore them54

[17,18]. Second, when a time series is symbolized based on the permutation patterns (Bandt-Pompe55

procedure), only the order of amplitude values is taken into account and some information with regard56

to the amplitudes may be ignored [8]. Third, it is sensitive to noise (for further information, please see57

Section 6).58

To deal with the aforementioned shortcomings of PerEn and SampEn at the same time, we have59

very recently developed DispEn based on symbolic dynamics or patterns (here, dispersion patterns)60

and Shannon entropy to quantify the uncertainty of time series [9]. The concept of symbolic dynamics61

arises from a coarse-graining of the measurements, that is, the data are transformed into a new signal62

with only a few different elements. Thus, the study of the dynamics of time series is simplified63

to a distribution of symbol sequences. Although some of detailed information may be lost, some64

of the invariant, robust properties of the dynamics may be kept [19–21]. Of note is that since the65

original DispEn is based on the amplitude-based symbols of signals [9], it might also be referred to as66

amplitude-based DispEn. Nevertheless, we will only use the term DispEn for conciseness.67

The results showed that DispEn, unlike PerEn, is sensitive to change in simultaneous frequency68

and amplitude values and bandwidth of time series and that DispEn outperformed PerEn in terms of69

discrimination of diverse biomedical and mechanical states [9]. As DispEn needs to neither sort the70

amplitude values of each embedding vector nor calculate every distance between any two composite71

delay vectors with embedding dimensions m and m + 1, it is fast [9]. The good performance of DispEn72

to distinguish different dynamics of real time series was also shown in [22–24].73

In this article, we investigate the effect of different parameters and mapping algorithms on the74

ability of DispEn to quantify the uncertainty of signals for the first time. Note that these issues were not75

the scope of our last paper, which developed DispEn [9]. Furthermore, herein, we also develop for the76

first time fluctuation-based DispEn (FDispEn) taking into account the fluctuations of signals. FDispEn77

is based on Shannon entropy and the differences between adjacent elements of dispersion patterns,78

named fluctuation-based dispersion patterns. We also introduce the concepts of forbidden amplitude-79

and fluctuation-based dispersion patterns and show that they can be used to distinguish deterministic80

from stochastic time series. Additionally, we compare both DispEn and FDispEn with commonly used81

metrics (SampEn, PerEn, and Lempel-Ziv complexity) in the analysis of two real-world datasets.82
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2. Methods83

In this section, we describe DispEn and FDispEn in detail.84

2.1. Dispersion Entropy (DispEn) with Different Mapping Techniques85

Given a univariate signal x = {x1, x2, . . . , xN} with length N, the DispEn algorithm is as follows:86

1) First, xj(j = 1, 2, . . . , N) are mapped to c classes with integer indices from 1 to c. The classified87

signal is uj(j = 1, 2, . . . , N). A number of linear and nonlinear mapping techniques, introduced in88

Subsection 2.3, can be used in this step.89

2) Time series um,c
i are made with embedding dimension m and time delay d according to um,c

i =90

{uc
i , uc

i+d, . . . , uc
i+(m−1)d}, i = 1, 2, . . . , N − (m − 1)d [9,10]. Each time series um,c

i is mapped to a91

dispersion pattern πv0v1 ...vm−1 , where uc
i = v0, uc

i+d = v1,. . . , uc
i+(m−1)d = vm−1. The number of92

possible dispersion patterns assigned to each vector um,c
i is equal to cm, since the signal um,c

i has m93

elements and each can be one of the integers from 1 to c [9].94

3) For each of cm potential dispersion patterns πv0 ...vm−1 , relative frequency is obtained as follows:

p(πv0 ...vm−1) =
#{i
∣∣i ≤ N − (m− 1)d, um,c

i has type πv0 ...vm−1 }
N − (m− 1)d

(1)

where # means cardinality. In fact, p(πv0 ...vm−1) shows the number of dispersion patterns of πv0 ...vm−195

that is assigned to um,c
i , divided by the total number of embedded signals with embedding dimension96

m.97

4) Finally, based on the Shannon’s definition of entropy, the DispEn value is calculated as follows:

DispEn(x, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)

(2)

As an example, let’s have a series x = {3.6, 4.2, 1.2, 3.1, 4.2, 2.1, 3.3, 4.6, 6.8, 8.4}, shown on the top98

left of Figure 1. We want to calculate the DispEn value of x. For simplicity, we set d = 1, m = 2, and99

c = 3. The 32 = 9 potential dispersion patterns are depicted on the right of Figure 1. xj (j = 1, 2, . . . , 10)100

are linearly mapped into 3 classes with integer indices from 1 to 3, as can be seen in Figure 1. Next,101

a window with length 2 (embedding dimension) moves along the signal and the number of each of102

dispersion patterns is counted. The relative frequency is shown on the bottom left of Figure 1. Finally,103

using Eq. 2, the DispEn value of x is equal to −( 2
9 ln( 2

9 ) +
2
9 ln( 2

9 ) +
2
9 ln( 2

9 ) +
1
9 ln( 1

9 ) +
1
9 ln( 1

9 ) +104

1
9 ln( 1

9 )) = 1.7351.105

If all possible dispersion patterns have equal probability value, the DispEn reaches to its highest106

value, which has a value of ln(cm). In contrast, when there is only one p(πv0 ...vm−1) different from zero,107

which demonstrates a completely certain/regular time series, the smallest value of DispEn is obtained108

[9]. Note that we use the normalized DispEn as DispEn
ln(cm)

in this study [9].109

2.2. Fluctuation-based Dispersion Entropy (FDispEn)110

In some applications (e.g., in computing the correlation function and in spectral analysis), it is needed111

to remove the (local or global) trend from the data [25,26]. In this kind of algorithms, after detrending112

the local or global trends of a signal, the fluctuations are evaluated [25,26]. For example, in the popular113

detrended fluctuation analysis technique, the local trends of a signal are first removed [27].114

When only the fluctuations of a signal is relevant or local trends of a time series are irrelevant [25–27],115

there is no difference between dispersion patterns {1, 3, 4} and {2, 4, 5} or {1, 1, 1} and {3, 3, 3}. That is,116

the fluctuations of {1, 3, 4} and {2, 4, 5} or {1, 1, 1} and {3, 3, 3} are equal. Accordingly, we introduce117

FDispEn in this article.118

In fact, FDispEn considers the differences between adjacent elements of dispersion patterns, termed119

fluctuation-based dispersion patterns. In this way, we have vectors with length m− 1 which each of120



Version March 7, 2018 submitted to Entropy 4 of 21

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#11

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

Potential Dispersion Patterns

                              #21                              

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#31

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#12

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#22

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#32

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#13

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#23

Embedding Dimension

1 2

N
u

m
b

e
r 

o
f 

C
la

s
s
e

s

1

2

3

#33

Sample Point
1 2 3 4 5 6 7 8 9 10

A
m

p
lit

u
d
e

0

5

10
Original Signal

Sample Point
1 2 3 4 5 6 7 8 9 10

C
la

s
s
 N

u
m

b
e
r

1

2

3

Classified Signal

Dispersion patterns
#11 #21 #31 #12 #22 #32 #13 #23 #33P

ro
b
a
b
ili

ty
 V

a
lu

e

0

0.1

0.2

0.3
Probability of Each Potential Dispersion Pattern

Figure 1. Illustration of the DispEn algorithm using linear mapping of x =

{3.6, 4.2, 1.2, 3.1, 4.2, 2.1, 3.3, 4.6, 6.8, 8.4} with the number of classes 3 and embedding dimension 2.

their elements changes from −c + 1 to c− 1. Thus, there are (2c− 1)m−1 potential fluctuation-based121

dispersion patterns. The only difference between DispEn and FDispEn algorithms is the potential122

patterns used in these two approaches. Note that we use the normalized FDispEn as FDispEn
ln((2c−1)m−1)

123

herein.124

As an example, let’s have a signal x = {3, 4.5, 6.2, 5.1, 3.2, 1.2, 3.5, 5.6, 4.9, 8.4}. We set d = 1,125

m = 3, and c = 2, leading to have 32 = 9 potential fluctuation-based dispersion patterns126

({(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}). Then, xj (j = 1, 2, . . . , 10) are127

linearly mapped into 2 classes with integer indices from 1 to 2 ({1, 1, 2, 2, 1, 1, 1, 2, 2, 2}). Afterwards, a128

window with length 3 moves along the time series and the differences between adjacent elements are129

calculated ({(0, 1), (1, 0), (0,−1), (−1, 0), (0, 0), (0, 1), (1, 0), (0, 0)}). Afterwards, the number of each130

fluctuation-based dispersion pattern is counted. Finally, using Eq. 2, the DispEn value of x is equal to131

−( 1
8 ln( 1

8 ) +
1
8 ln( 1

8 ) +
2
8 ln( 2

8 ) +
2
8 ln( 2

8 ) +
2
8 ln( 2

8 )) = 1.5596.132

2.3. Mapping Approaches used in DispEn and FDispEn133

A number of linear and nonlinear methods can be used to map the original signal xj(j = 1, 2, . . . , N)134

to the classified signal uj(j = 1, 2, . . . , N). The simplest and fastest algorithm is the linear mapping.135

However, when maximum or minimum values are noticeably larger or smaller than the mean/median136

value of the signal, the majority of xj are mapped to only few classes. To alleviate the problem, we137

can sort xj(j = 1, 2, . . . , N) and then divide them into c classes in which each of them includes equal138

number of xj (DispEn or FDispEn with sorting method).139

We also use several nonlinear mapping techniques. Many natural processes show a progression from140

small beginnings that accelerates and approaches a climax over time (e.g., a sigmoid function) [28,29].141

When there is not a detailed description, a sigmoid function is frequently used [29–31]. Well-known142

log-sigmoid (logsig) and tan-sigmoid (tansig) transfer functions are respectively defined as:143

yj =
1

e−
xj−µ

σ

(3)

yj =
2

1 + e−2
xj−µ

σ

− 1 (4)
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Figure 2. Mean and SD of results obtained by the DispEn and FDispEn with logsig and different values
of embedding dimension and number of classes for 40 realizations of univariate white noise. Logarithm
scale for both the axis is used.

where σ and µ are the standard deviation (SD) and mean of time series x, respectively.144

The cumulative distribution functions (CDFs) for many common probability distributions are145

sigmoidal. The most well-known such example is the error function, which is related to the CDF of a146

normal distribution, termed normal CDF (NCDF). NCDF of x is calculated as follows:147

yj =
1

σ
√

2π

xj∫
−∞

e
−(t−µ)2

2σ2 dt (5)

Each of the aforementioned techniques maps x into y = {y1, y2, . . . , yN}, ranged from α to β. Then,148

we use a linear algorithm to assign each yj to a real number zj from 0.5 to c + 0.5. Next, for each149

element of the mapped signal, we use uc
j = round(zj), where uc

j denotes the jth element of the classified150

signal and rounding involves either increasing or decreasing a number to the next digit [9]. It is worth151

noting that DispEn with NCDF and DispEn with linear mapping were compared by the use of several152

synthetic time series and four biomedical and mechanical datasets [9]. The results illustrated the153

superiority of DispEn with NCDF over DispEn with linear mapping.154

3. Parameters of DispEn and FDispEn155

3.1. Effect of Number of Classes, Embedding Dimension, and Signal Length on DispEn and FDispEn156

To assess the sensitivity of DispEn and FDispEn with logsig, and PerEn to the signal length,157

embedding dimension m, and number of classes c, we use 40 realizations of univariate white noise.158

Note that we will show why logsig is an appropriate mapping technique for DispEn and FDispEn159

to characterize signals. The mean and SD of results, depicted in Figure 2, show that DispEn and160

FDispEn need a smaller number of sample points to reach their maximum values for a smaller number161

of classes or smaller embedding dimension. This is in agreement with the fact that we need at least162

ln(cm) [9] and ln((2c− 1)m−1) sample points to reach the maximum value of DispEn and FDispEn,163

respectively. The profiles also suggest that the greater the number of sample points, the more robust164

DispEn estimates, as seen from the errorbars.165
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3.2. Effect of Number of Classes and Noise Power on DispEn and FDispEn166

We also inspect the relationship between noise power levels and DispEn with different number167

of classes. To this end, we use a logistic map added with different levels of noise power. Signals168

created by biological systems are usually nonlinear and most likely include deterministic and stochastic169

components [13,32–34]. The reason why the logistic map is very popular in this field (e.g., [10,14,35,36])170

is that its behavior changes from periodicity to non-periodic nonlinearity when α changes from 3.5171

to 4 [37–39]. We then added white Gaussian noise (WGN) to the signal since real signals, especially172

physiological recordings, are frequently corrupted by different kinds of noise [40]. Additive WGN is173

also considered as a basic statistical model used in information theory to mimic the effect of random174

processes that occur in nature [41].175

This analysis is dependent on the model parameter α as: xj = αxj−1(1− xj−1), where the signal x176

was generated with the different values α (e.g., 3.5, 3.6, 3.7, 3.8, 3.9, and 4). The length and sampling177

frequency of the signal are respectively 500 sample points and 150 Hz. In case α equals to 3.5, the178

time series oscillates among four values. For 3.57 ≤ α ≤ 4, the series is chaotic, albeit it has segments179

with periodic behaviour (e.g., α ≈ 3.8) [39,42,43]. We added 40 independent realizations of WGN with180

different signal-to-noise-ratios (SNRs) per sample, ranging from 0 to 30 dB, to the logistic map.181

To compare the sensitivity of each method to WGN, we calculate NrmEntN as the entropy value of182

each signal with noise over the entropy value of its corresponding signal without noise (NrmEntN =183

entropy of a series with noise
entropy of a series without noise ).184

The average and SD values of results obtained by the DispEn using logsig with different number of185

classes computed from the logistic map whose parameter (α) is equal to 3.5, 3.6, 3.7, 3.8, 3.9, or 4 with186

additive 40 independent realizations of WGN with SNR 0, 10, 20, 30 dB are shown in Figure 3(a), (b),187

(c), and (d), respectively. We set m = 2 for DispEn [9]. Figure 3 suggests that the SD values for c = 6188

are considerably smaller than those for c = 5, 4, and 3. Moreover, the average of NrmEntN values for189

c = 6 is smaller than those for c = 7, and 8, showing less sensitivity to noise for c = 6. Thus, we set190

c = 6 for all the simulations below.191

Compared with DispEn, in the FDispEn algorithm, we have vectors with length m− 1 where each of192

their elements changes from −c + 1 to c− 1. Thus, we set m = 3 here. Like what we did for DispEn,193

we changed c from 4 to 9 for FDispEn. We found that c = 5 leads to stable results when dealing with194

noise (results are not shown herein). Thus, we set c = 5 for all simulations using FDispEn, although195

the range 3 < c < 9 results in similar profiles.196

Overall, the parameter c is chosen to balance the quantity of entropy estimates with the loss of signal197

information. To avoid the impact of noise on signals, a small c is recommended. In contrast, for a small198

c, too much detailed data information is lost, leading to poor probability estimates. Thus, a trade-off199

between large and small c values is needed.200

4. Evaluation of Mapping Approaches for DispEn and FDispEn201

To evaluate the ability of DispEn and FDispEn with different mapping techniques to distinguish202

changes from periodicity to non-periodic nonlinearity with different levels of noise, the described203

logistic map with additive noise is used. The average and SD of results obtained by the DispEn and204

FDispEn with different mapping techniques, and PerEn are depicted in Figure 4. The entropy values205

of the logistic map generally increase along the signal, except for the segments of periodic behavior206

(e.g., for α = 3.8), in agreement with Figure 4.10 (page 87 in [39]) and previous studies [43,44]. We set207

m = 2 and m = 3 for DispEn and FDispEn, respectively.208

As noise affects more on periodic oscillations, NrmEntN is larger for a small α. The range of mean209

values show that DispEn and FDispEn with different mapping algorithms, and PerEn are similar,210

while dealing with the different levels of noise power. The SD values suggest that when all signals211

have equal SNR values, the DispEn and PerEn values are stable for all the methods.212

The ranges of mean values show that DispEn with sorting method and linear mapping lead to the213

most stable results. Although DispEn with sorting method, unlike PerEn, takes into account repetitions,214
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Figure 3. Average and SD of NrmEntN = entropy of a series with noise
entropy of a series without noise values obtained by the

DispEn using logsig with different number of classes computed from the logistic map with additive 40
independent realizations of WGN with different noise power. NrmEntN compares the sensitivity of
DispEn to WGN with different SNRs.
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it considers only the order of amplitude values and thus, some information regarding the amplitudes215

may be discarded. For instance, DispEn with sorting method cannot detect the outliers or spikes which216

is noticeably larger or smaller than their adjacent values. For DispEn with linear mapping, when217

maximum or minimum values are noticeably larger or smaller than the mean/median value of the218

signal, the majority of xj are mapped to only few classes [9]. Thus, for simplicity, we use DispEn and219

FDispEn with logsig for all the simulations below.220

Noise is frequently considered as an unwanted component or disturbance to a system or data,221

whereas recent studies have shown that noise can play a beneficial role in systems [45,46]. In any case,222

it has been evidenced that noise is an essential ingredient in the systems and has a noticeable effect on223

many aspects of science and technology, such as engineering, medicine, and biology [45,46]. White,224

pink, and brown noise are three well-known kinds of noise signals in the real world. White noise is a225

random signal having equal energy across all frequencies. The power spectral density of white noise is226

as S( f ) = Cw, where Cw is a constant [46]. Pink and brown noise are random processes suitable for227

modelling evolutionary or developmental systems [47]. The power spectral density S( f ) of pink and228

brown noise are as Cp
f and Cb

f 2 , respectively, where Cp and Cb are constants [46,47].229

To evaluate the ability of DispEn and FDispEn methods with different mapping algorithms, and230

PerEn to distinguish the dynamics of different noise signals, we created 40 realizations of white, brown,231

and pink noise signals with different lengths changing from 10 to 1000 sample points. Note that, as the232

maximum value of PerEn is ln(m!) [48], we use normalized PerEn as PerEn
ln(m!) in this study. We set m = 4233

for PerEn [49], m = 2 and c = 6 for DispEn [9], and m = 3 and c = 5 for FDispEn as recommended234

before.235

Figure 5 shows that DispEn and FDispEn with different mapping approaches distinguish brown,236

pink, and white noise series with different lengths. Their results are in agreement with the fact that237

white noise is the most irregular signal, followed by pink and brown noise, in that order, based238

on the power spectral density of white, pink, and brown noise [45,46]. However, there are some239

overlaps between the DispEn with tansig, and PerEn values for short pink and white noise time series,240

suggesting a superiority of DispEn and FDispEn with different mapping approaches, except tansig,241

over PerEn.242

5. Univariate Entropy Methods vs. Changes from Periodicity to Non-periodic Nonlinearity243

Studies on physiological time series frequently involve relatively short epochs of signals containing244

informative periodic or quasi-periodic components [13,50,51]. Moreover, empirical evidence identifies245

nonlinear, in addition to linear, behavior in some biomedical signals [32,52,53]. Therefore, to find246

the dependence of univariate entropy approaches with changes from periodicity to non-periodic247

nonlinearity, a logistic map is used herein. This analysis is relevant to the model parameter α as:248

xj = αxj−1(1− xj−1), where the signal x = xj (j = 1, . . . , N) was generated varying the parameter α249

from 3.5 to 3.99. We employed a sliding window of 60 sample points with 80% overlap moves along250

the signal with a sampling frequency of 150 Hz and a length of 100 s (15,000 sample points). The signal251

is depicted in Figure 6. We set m = 2 for SampEn, DispEn, and FDispEn, and m = 3 for PerEn, as252

advised before.253

The results obtained by FDispEn, DispEn, PerEn, and SampEn for the logistic map are shown in254

Figure 6. For each of the methods, when 3.5 < α < 3.57 (periodic series), the entropy values are255

smaller than those for 3.57 < α < 3.99 (chaotic series), except those epochs that include periodic256

components (e.g., α ≈ 3.8) [39,42,43]. As expected, the entropy values, obtained by the entropy257

techniques generally increase along the signal, except for the downward spikes in the windows of258

periodic behavior (α ≈ 3.8). This fact is in agreement with Figure 4.10 (page 87 in [39]) and the other259

previous studies [10,16].260
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Figure 4. Average and SD of NrmEntN = entropy of a series with noise
entropy of a series without noise values obtained by the

PerEn, and DispEn and FDispEn with different mapping techniques computed from the logistic map
with additive 40 independent realizations of WGN with different noise power. NrmEntN compares the
sensitivity of each method to WGN with different SNRs.
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Figure 5. Mean and SD of entropy values obtained by DispEn and FDispEn with different mapping
techniques and PerEn, computed from 40 different white, brown, and pink noise signals.
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Figure 6. (a) Logistic map with parameter α changing from 3.5 to 3.99 and (b) entropy values of the
logistic map to understand better SampEn, PerEn, DispEn, and FDispEn.

6. Comparison Between SampEn, PerEn and its Improvements, and Newly Developed DispEn261

and FDispEn262

In this Section, we compare the DispEn and FDispEn algorithms with the SampEn and PerEn-based263

methods.264

6.1. SampEn vs. DispEn and FDispEn265

In addition, DispEn, FDispEn, and SampEn have similar behavior when dealing with noise. In266

SampEn, only the number of matches whose differences are smaller than a defined threshold is counted.267

Accordingly, a small change in the signal amplitude due to noise is unlike to modify the SampEn value.268

Similarly, in DispEn and FDispEn, a small change will probably not alter the index of class and so, the269

entropy value will not change. Therefore, SampEn, DispEn, and FDispEn are relatively robust to noise270

(especially for signals with high SNR).271

The relationship between the number of classes c (DispEn and FDispEn) and threshold r (SampEn)
is inspected by the use of a MIX process evolving from randomness to periodic oscillations as follows
[35,43]:

MIXk = (1− zk)xk + zkyk (6)

where z = {z1, z2, . . . , zN} is a random variable which equals to 1 with probability p and equals272

to 0 with probability 1− p, x = {x1, x2, . . . , xN} denotes a periodic synthetic time series created by273

xk =
√

2 sin( 2πk
12 ), and y = {y1, y2, . . . , yN} is a uniformly distributed variable on [−

√
3,
√

3] [35,43].274

The time series was based on a MIX process whose parameter linearly varied between 0.99 and 0.01.275

Therefore, this series evolved from randomness to orderliness. The signal has a sampling frequency of276

150 Hz and a length of 100 s (15000 samples). The techniques are applied to 20 realizations of the MIX277

process using a moving window of 1500 samples (10 s) with 50% overlap. We used different threshold278

values r = 0.1, 0.2, 0.3, 0.4, and 0.5 of SD of the signal [14] for SampEn, and c = 2, 4, 6, 8 and 10 for279

DispEn and FDispEn.280

The results, depicted in Figure 7, show that the mean entropy values are the lowest in higher281

temporal windows, in agreement with the previous studies [35,43]. The results also show that the282

number of classes (c) in DispEn and FDispEn is inversely related to the threshold value r used in the283

SampEn algorithm. It is worth noting that SampEn, unlike DispEn and FDispEn, is not consistent as284
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Figure 7. (a) Average and SD of entropy values obtained by the DispEn, FDispEn, and SampEn with
different number of classes (for DispEn and FDispEn) and different threshold values (SampEn) using a
MIX process evolving from randomness to periodic oscillations. We used a window with length 1500
samples moving along the MIX process (temporal window).

Table 1. CVs of DispEn and FDispEn with logsig, and SampEn values for the MIX process with p = 0.5
and length 1000 samples.

Method c=2 c=4 c=6 c=8 c=10
DispEn 0.0021 0.0034 0.0045 0.0041 0.0048

c=2 c=4 c=6 c=8 c=10
FDispEn 0.0078 0.0064 0.0040 0.0043 0.0049

r=0.1×SD r=0.2×SD r=0.3×SD r=0.4×SD r=0.5×SD
SampEn 0.0604 0.0342 0.0224 0.0174 0.0150

r = 0.1 crosses the lines for other values of r. We set m = 2, 2, and 3, for respectively SampEn, DispEn,285

and FDispEn, as recommended before.286

To compare the results obtained by the entropy algorithms, we used the coefficient of variation (CV)287

defined as the SD divided by the mean. We use such a metric as the SDs of signals may increase or288

decrease proportionally to the mean. We inspect the MIX process with length 1500 samples and p = 0.5289

as a trade-off between random (p = 1) and periodic oscillations (p = 0). The CV values, depicted in290

Table 1, show that DispEn- and FDispEn results for different number of classes are noticeably smaller291

than those for SampEn with different threshold values, showing another advantage of DispEn and292

FDispEn over SampEn.293

In spite of its power to detect dynamics of signals, SampEn has two key deficiencies. They are294

discussed as follows:295

1. SampEn values for short signals are either undefined or unreliable, as in its algorithm, the296

number of matches whose differences are smaller than a defined threshold is counted. When297

the time series length is too small, this number may be 0, leading to undefined values [16,54].298

However, the results obtained by DispEn, FDispEn, and PerEn are always defined. To illustrate299

this issue, we created 40 realizations of white noise with length 50 sample points. The mean300

and median of DispEn, FDispEn, PerEn, and SampEn values for the 40 realizations are shown in301

Figure 8. The results show that SampEn, unlike DispEn, FDispEn, and PerEn, yield undefined302

values. Note that we set m = 2 for SampEn, DispEn, and FDispEn, and m = 3 for PerEn, as303

advised before.304

2. SampEn is not fast enough for real time applications and has a computation cost of O(N2) [55].305

In contrast, the computation cost of PerEn, DispEn, and FDispEn is O(N) [9,56].306
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Figure 8. Mean and median of results obtained by PerEn, SampEn, and DispEn and FDispEn with
logsig for 40 realization of white noise.

6.2. PerEn and its Improvements vs. DispEn and FDispEn307

PerEn, DispEn, and FDispEn are based on the Shannon’s definition of entropy, reflecting the average308

uncertainty of a random variable [11,12]. Nevertheless, these techniques have the following main309

differences:310

1. PerEn considers only the order of amplitude values, and thus, some information regarding the311

amplitude values themselves may be ignored [18]. For example, the embedded vectors {1, 10, 2}312

and {1, 3, 2} have similar permutations, leading to the same motif (0,2,1) (m = 3) because the313

extent of the differences between sequential samples is not considered in the original definition314

of PerEn. To alleviate this deficiency, modified PerEn (MPerEn) based on mapping equal values315

into the same symbol was developed [17]. However, the second and third shortcomings were not316

addressed by MPerEn. Amplitude-aware PerEn (AAPerEn) deals with the problem with adding317

a variable contribution, depending on amplitude, instead of a constant number to each level in318

the histogram representing the probability of each motif [7]. It was also addressed by the use of319

modified ordinal patterns [57]. Mapping data to a number of classes based on their amplitude320

values makes DispEn and FDispEn deal with this issue as well.321

2. When there are equal values in the embedded vector, Bandt and Pompe [10] proposed ranking the322

possible equalities based on their order of emergence or solving this condition by adding noise.323

Considering the first alternative, for instance, the permutation pattern for both the embedded324

vectors {1, 2, 4} and {1, 4, 4} are (0,1,2) (m = 3). As another example, assume z1 = {1, 2, 2, 2}325

and z2 = {1, 2, 3, 4}. The PerEn with m = 3 of z1 is exactly the same as z2, both equalling 0326

although, unlike z1, z2 is strictly ascending. Adding noise may not lead to a precise answer327

because, for example, the embedded vector {1, 5, 5} has two possible permutation patterns as328

(0,1,2) and (0,2,1) and there are not any differences between them. It should be noted that this329

issue is particularly relevant for digitized signals with large quantization steps. Fadlallah et330

al, have recently proposed weighted PerEn (WPerEn) to weight the motif counts by statistics331

derived from the time series patterns [8]. However, WPerEn does not take into account the332

first and third alleviations of PerEn. It was addressed in AAPerEn [7] as well. Assigning close333

amplitude values to an equal class, FDispEn and DispEn deal with this deficiency.334
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Figure 9. Mean and median of results obtained by PerEn, SampEn, and DispEn and FDispEn with
logsig for 20 realization of xi = sin(i/20) + 0.3η.

Table 2. Comparison between DispEn and FDispEn and SampEn, PerEn, and AAPerEn in terms of
ability to characterize short signals, sensitivity to noise, type of entropy, and computational cost.

Characteristics DispEn FDispEn AAPerEn PerEn SampEn

Short signals reliable reliable reliable reliable undefined

Sensitivity to noise no no yes yes no

Type of entropy ShEn ShEn ShEn ShEn ConEn

Computational cost O(N) O(N) O(N) O(N) O(N2)

3. PerEn is sensitive to noise (even when the SNR of a signal is high), since a small change in335

amplitude value may vary the order relations among amplitudes. For instance, noise on z3 =336

{1, 2, 2.01} may alter the motif from (0,1,2) to (0,2,1). This problem is present for WPerEn,337

MPerEn, AAPerEn, and the approach developed in [57]. However, DispEn and FDispEn address338

the problem with mapping data into a few classes and thus, a small change in amplitude will339

probably not alter the (index of) class.340

To demonstrate this issue, let’s have twenty realizations of the signal xi = sin(i/20) + 0.3η with341

length 400 sample points, where η denotes a uniform random variable between 0 to 1. The342

original signal, and the mean and median of DispEn, FDispEn, PerEn, and SampEn values for343

the twenty time series are depicted in Figure 9. The results show that the mean PerEn of these344

realizations is close to the PerEn of a random signal (i.e. both are close to 1). In contrast, for the345

other entropy methods, there is a considerable difference between the entropy values and their346

corresponding maximum entropy. Of note is that we set m = 3 for DispEn and FDispEn, m = 2347

for SampEn, and m = 4 for PerEn.348

To summarize, the characteristics and limitations of DispEn [9], FDispEn, SampEn [14], AAPerEn349

[7], and PerEn [10] are illustrated in Table 2.350
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Table 3. Computational time of DispEn and FDispEn with logsig, SampEn, and PerEn with different
embedding dimension values and signal lengths.

Number of samples→ 300 1,000 3,000 10,000 30,000 100,000
DispEn (m = 2) 0.0022 s 0.0022 s 0.0025 s 0.0057 s 0.0080 s 0.0225 s
DispEn (m = 3) 0.0028 s 0.0035 s 0.0076 s 0.0115 s 0.0284 s 0.0888 s
DispEn (m = 4) 0.0084 s 0.0094 s 0.0205 s 0.0505 s 0.1422 s 0.4752 s

FDispEn (m = 2) 0.0022 s 0.0025 s 0.0028 s 0.0034 s 0.0062 s 0.0175 s
FDispEn (m = 3) 0.0025 s 0.0031 s 0.0038 s 0.0062 s 0.0150 s 0.0490 s
FDispEn (m = 4) 0.0054 s 0.0064 s 0.0120 s 0.0284 s 0.0699 s 0.2535 s
SampEn (m = 2) 0.0023 s 0.0208 s 0.1841 s 1.8478 s 16.8394 s 193.1970 s
SampEn (m = 3) 0.0022 s 0.0206 s 0.1808 s 1.8337 s 16.9200 s 189.4041 s
SampEn (m = 4) 0.0019 s 0.0193 s 0.1631 s 1.8322 s 16.5596 s 189.1037 s

PerEn (m = 2) 0.0014 s 0.0015 s 0.0016 s 0.0020 s 0.0034 s 0.0099 s
PerEn (m = 3) 0.0014 s 0.0016 s 0.0016 s 0.0024 s 0.0043 s 0.0115 s
PerEn (m = 4) 0.0015 s 0.0016 s 0.0019 s 0.0026 s 0.0054 s 0.0113 s

7. Computation Cost of DispEn, FDispEn, and PerEn351

In order to assess the computational time of DispEn and FDispEn with logsig, compared with PerEn,352

we use random time series with different lengths, changing from 300 to 100,000 sample points. The353

results are depicted in Table 3. The simulations have been carried out using a PC with Intel (R) Xeon354

(R) CPU, E5420, 2.5 GHz and 8-GB RAM by MATLAB R2015a. The number of classes for FDispEn and355

DispEn was 6. Additionally, DispEn and FDispEn with logsig were used for all the simulations.356

The results show that the computation times of SampEn with different m are very close, while for357

DispEn, FDispEn, and PerEn, the larger the m value, the higher the computation time. PerEn is the358

fastest algorithm. For long signals and m = 2, 3, and 4, FDispEn is relatively faster than DispEn.359

For long time series, the running times of SampEn are considerably higher than those for DispEn,360

FDispEn, and PerEn. This is in agreement with the fact that the computation costs of DispEn, FDispEn,361

PerEn, and SampEn are respectively O(N), O(N), O(N), and O(N2) [9,55]. Of note is that the optimised362

implementation of PerEn was used in this article [57], whereas the straightforward implementations of363

DispEn and FDispEn were utilized.364

8. Forbidden Amplitude- and Fluctuation-based Dispersion Patterns365

In this section, we introduce forbidden amplitude- and fluctuation-based dispersion patterns and366

explore the use of these concepts to discriminate deterministic from stochastic time series. Forbidden367

patterns denote those patterns that do not appear at all in the analysed signal [18,58]. There are two368

reasons behind the existence of forbidden patterns. First, a signal with finite length does not have a369

number of potential patterns (false forbidden patterns). For example, the time series {1, 2, 3, 2.1, 1, 4}370

has only 4 permutations from 6 potential permutation patterns with m = 3. Thus, the permutations371

{231} and {312} can be considered as false forbidden patterns. The second reason is based on the372

dynamical nature of the systems creating a signal. When signals made by an unconstrained stochastic373

process, all possible permutation patterns are appeared and there is no forbidden pattern. In contrast,374

it was evidenced that deterministic one-dimensional maps always have forbidden permutation or375

ordinal patterns [58,59].376

Based on a null hypothesis, we illustrate that it is impossible that, for the embedding dimension m,377

we have all the dispersion patterns, but not all the permutation patterns.378

• Step 1: Null hypothesis. We have all the dispersion patterns, while the permutation pattern379

(`1, `2, . . . , `m) does not exist for the signal x.380

• Step 2: Rejection of null hypothesis. As the permutation pattern (`1, `2, . . . , `m) does not exist,381

we do not have any dispersion patterns sorted as (`1, `2, . . . , `m). This is in contradiction with382

the fact that we have all the dispersion patterns for x. Hence, the null hypothesis is rejected.383
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Figure 10. Mean and SD of the normalized number of forbidden amplitude- and fluctuation-based
dispersion and permutation patterns ( number of forbidden patterns

potential number of patterns ) as functions of the signal length.

• Step 3: Conclusion. When we have all the dispersion patterns, all the permutation patterns are384

present too. It confirms the fact that a forbidden permutation pattern leads to several forbidden385

dispersion patterns. Thus, if a signal is deterministic, and so, does not have several permutation386

patterns, there are a number of forbidden dispersion patterns. Consequently, lack of dispersion387

patterns, like permutation patterns [58,59], reflects the deterministic behavior of a signal.388

Conversely, when there is a forbidden dispersion pattern or fluctuation-based dispersion pattern for389

a signal, the time series is not stochastic. Thus, there is at least one forbidden permutation pattern as390

well. It is worth noting that the null hypothesis for FDispEn is similar.391

To illustrate this issue, an example is provided: we set m = 3 for DispEn, FDispEn and PerEn and392

c = 6 for DispEn and FDispEn. If the permutation pattern (2,3,1) does not exist for the signal x, we393

do not have the following dispersion patterns: (2,3,1), (2,4,1), (2,5,1), (2,6,1), (3,4,1), (3,5,1), (3,6,1),394

(4,5,1), (4,6,1), (5,6,1), (3,4,2), (3,5,2), (3,6,2), (4,5,2), (4,6,2), (5,6,2), (4,5,3), (4,6,3), (5,6,3), and (5,6,4); and395

fluctuation-based dispersion patterns: (1,-2), (2,-3), (3,-4), (4,-5), (1,-3), (2,-4), (3,-5), (1,-4), (2,-5), (1,-5),396

(1,-2), (2,-3), (3,-4), (1,-3), (2,-4), (1,-4), (1,-2), (2,-3), (1,-3), and (1,-2). This demonstrates that lack of a397

permutation pattern results in lack of several dispersion and fluctuation-based dispersion patterns.398

Accordingly, as permutation patterns are used to discriminate deterministic from stochastic series399

based on lack of permutation patterns [58,59], dispersion and fluctuation-based patterns are able to be400

utilized as well.401

The normalized number of forbidden (missing) dispersion and permutation patterns as a function of402

the signal length using the logistic map xt+1 = 4xt(1− xt) [59] for DispEn and FDispEn with logsig,403

and PerEn are shown in Figure 10. Note that the normalized number of forbidden patterns is equal to404

the number of forbidden patterns over the potential number of patterns (m!, cm, and (2c− 1)m−1 for405

respectively PerEn, DispEn, and FDispEn). As can be seen in Figure 10, for short signals we have a406

number of false forbidden patterns. The results evidence that more than half of the dispersion and407

permutation patterns are forbidden. On the whole, the results show that both the amplitude- and408

fluctuation-based dispersion patterns can be used to differentiate deterministic from stochastic time409

series.410

9. Applications of DispEn and FDispEn to Biomedical Time Series411

Physiologists and clinicians are often confronted with the problem of distinguishing different kinds412

of dynamics of biomedical signals, such as heart rate tracings from infants who had an aborted sudden413

infant death syndrome versus control infants [32], and electroencephalogram (EEG) signals from414

young versus elderly people [60]. A number of physiological time series, such as cardiovascular,415

blood pressure, and brain activity recordings, show a nonlinear in addition to linear behaviour [61–63].416

Moreover, several studies suggested that physiological recordings from healthy subjects have nonlinear417



Version March 7, 2018 submitted to Entropy 17 of 21

SP SS

E
n

tr
o

p
y
 M

e
a

s
u

re

0.55

0.6

0.65

0.7
DispEn with Logsig

Mean

Median

SP SS

E
n

tr
o

p
y
 M

e
a

s
u

re
0.4

0.45

0.5

FDispEn with Logsig
Mean

Median

SP SS

E
n

tr
o

p
y
 M

e
a

s
u

re

0.3

0.4

0.5

0.6

PerEn

Mean

Median

SP SS

E
n

tr
o

p
y
 M

e
a

s
u

re

0.3

0.4

0.5

LZC

Mean

Median

SP SS

E
n

tr
o

p
y
 M

e
a

s
u

re

0.2

0.3

0.4

0.5

0.6

SampEn

Mean

Median

Figure 11. Mean and median of results obtained by PerEn, LZC, SampEn, and DispEn and FDispEn
with logsig from salt-sensitive (SS) vs. salt protected (SP) rats’ blood pressure signals.

Table 4. Differences between results for SS vs. SSBN13 Dahl rats (blood pressure data), and for elderly
vs. young children (gait maturation dataset) obtained by DispEn and FDispEn with logsig, LZC,
SampEn, and PerEn based on the Hedges’ g effect size.

Dataset DispEn FDispEn PerEn LZC SampEn
Blood pressure 1.35 (very large) 0.46 (medium) 0.31 (small) 1.74 (huge) 0.84 (large)
Gait maturation 0.74 (large) 0.75 (large) 0.63 (medium) 0.16 small 0.79 (large)

complex relationships with ageing and disease [13]. Thus, there is an increasing interest in nonlinear418

techniques, especially entropy-based metrics, to analyse the dynamics of physiological signals. To419

this end, to evaluate the DispEn and FDispEn methods to quantify the degree of the uncertainty of420

biomedical signals, we use two publicly-available datasets from http://www.physionet.org. The421

proposed methods are compared with PerEn, Lempel-Ziv complexity (LZC), and SampEn.422

9.1. Blood Pressure in Rats423

We evaluate the ability of entropy methods and LZC on the non-invasive blood pressure signals424

from nine salt-sensitive hypertensive (SS) Dahl rats and six rats protected (SP) from high-salt-induced425

hypertension (SSBN13) on a high-salt diet (8% salt) for 2 weeks [34,64]. Each blood pressure signal was426

recorded using radiotelemetry for two minutes with sampling frequency of 100 Hz. The study427

was approved by the Institutional Animal Care and Use Committee of the Medical College of428

Wisconsin-Madison, US [34,64]. Further information can be found in [34,64].429

As the entropy approaches are used for stationary signals [10,14], we separated each signal into430

epochs with length 4 s (400 sample points) and applied the methods to each of them. Next, the average431

entropy value of all the epochs was calculated for each signal. The results, illustrated in Figure 11,432

show a loss of uncertainty with the salt-sensitive rats, in agreement with [64]. We set m = 4 for PerEn433

[49], m = 2 and r = 0.2 multiplied by SD of each epoch for SampEn, and m = 3 for both DispEn and434

FDispEn. The Hedges’ g effect size [65] was employed to assess the differences between results for435

SS versus SSBN13 Dahl rats. The differences, illustrated in Table 4, show that the best algorithm to436

discriminate the SS from SSBN13 Dahl rats is LZC, followed by DispEn, SampEn, FDispEn, and PerEn,437

in that order.438

9.2. Gait Maturation Database439

We also used the gait maturation database to assess the entropy methods to distinguish the effect440

of age on the intrinsic stride-to-stride dynamics [66]. A subset including 23 healthy boys and girls441

is considered in this study. The children were classified into two age groups: 3 and 4 years old (11442

subjects) and 11 to 14 years old children (12 subjects). Height and weight of the young and elderly443

groups were 105± 2 cm and 155± 10 cm, and 17.3± 0.7 kg, and 44.4± 2.7 kg, respectively. The time444
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Figure 12. Mean and median of results obtained by PerEn, LZC, SampEn, and DispEn and FDispEn
with logsig for young and elderly children’s stride-to-stride recordings.

series recorded from the subjects walking at their normal pace have the lengths of about 400-500445

sample points. For more information, please see [66].446

The results, depicted in Figure 12, show that the average entropy values obtained by DispEn and447

FDispEn with logsig, SampEn, and PerEn for the elderly children are larger than those for the young448

children, in agreement with previous studies [67,68]. The parameters values for the entropy methods449

are equal to those used for the blood pressure in rats. The differences for the elderly vs. young children450

based on Hedges’ g effect size are shown in Table 4. The results demonstrate that DispEn, FDispEn, and451

SampEn outperform PerEn and LZC to distinguish various dynamics of the stride-to-stride recordings.452

Overall, the results for the two real datasets demonstrate an advantage of DispEn and FDispEn with453

logsig over PerEn to distinguish different types of dynamics of the biomedical recordings. However,454

we acknowledge that there may be other datasets where PerEn outperforms DispEn and FDispEn. In455

any case, our results show the potential of DispEn and FDispEn for characterization of biomedical456

signals. Furthermore, the differences for the blood pressure and gait maturation datasets are shown457

that DispEn is the most consistent algorithm to distinguish the dynamics of signals for the real datasets.458

In spite of the promising findings and results for different applications aforementioned in this pilot459

study, further investigations on potential applications of DispEn and FDispEn are recommended.460

10. Conclusions461

In this paper, we carried out an investigation aimed at gaining a better understanding of our recently462

developed DispEn, especially regarding the parameters and mapping techniques used in DispEn. We463

also introduced FDispEn to quantify the uncertainty of time series in this article. The basis of this464

technique lies in taking into account only the local fluctuations of signals. The concepts of forbidden465

amplitude- and fluctuation-based dispersion patterns were also introduced in this study.466

The work done here has the following implications for uncertainty or irregularity estimation. Firstly,467

we showed that DispEn and FDispEn with logsig are appropriate approaches when dealing with noise.468

We also found that the forbidden amplitude- and fluctuation-based dispersion patterns are suitable469

to distinguish deterministic from stochastic time series. Additionally, the results showed that both470

DispEn and FDispEn with logsig distinguish various physiological states of the two biomedical time471

series better than PerEn. Finally, the most consistent method to distinguish the different states of472

physiological signals was DispEn with logsig, compared with FDispEn with logsig, LZC, PerEn, and473

SampEn.474

Due to their low computational cost and ability to detect dynamics of signals, we hope DispEn and475

FDispEn can be used for the analysis of a wide range of physiological and even non-physiological476

signals.477
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