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Abstract—In this paper, we propose a compact network called
CUNet (compact unsupervised network) to address the image
classification challenge. Contrasting the usual learning approach
of convolutional neural networks, learning is achieved by the sim-
ple K-means on diverse image patches. This approach performs
well even with scarcely labelled training images, greatly reducing
the computational cost, while maintaining a high discriminative
power. Furthermore, we propose a new weighted pooling method
in which different weighting values of adjacent neurons are
considered. This strategy leads to improved classification since the
network becomes more robust against small image distortions. In
the output layer, CUNet integrates feature maps obtained in the
last hidden layer, and straightforwardly computes histograms
in non-overlapped blocks. To reduce feature redundancy, we
also implement the max-pooling operation on adjacent blocks to
select the most competitive features. Comprehensive experiments
on well-established databases are conducted to validate the
classification performances of the introduced CUNet approach.

Index Terms—Unsupervised Learning, Convolutional Network,
Image Classification, K-means.

I. INTRODUCTION

IMAGE classification is a challenging task in computer
vision, especially when the image databases and intra-class

variability are large and continue increasing. Numerous efforts
have been made over the last decades to address this difficult
task. Among others, the bag-of-features (BoF) model has
shown reasonable performance. It works by extracting local
features from the images, e.g. SIFT, vector quantizing them
and then representing images as histograms of such visual
words. Clearly and unfortunately, in a BoF representation the
spatial information is neglected. An extension of BoF, Spatial
Pyramid Matching (SPM), takes into account of the spatial
information of images, improving the classification perfor-
mance on relatively small benchmarks like Caltech101 and
Caltech256. However, such model designs fail to demonstrate
competitive performance on mid-scale datasets such as STL-
10 or large-scale datasets such as CIFAR-10. While parallel
processing based on distributed resources [1] seems to have
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overcome the bottleneck introduced by the increasing scales
of image datasets, the fundamental solution to this problem
should still be derived from the processing algorithms. The
search for such solutions has attracted considerable interest.
A major stream of research relies on the use of mid-level
features [2, 3] and the feature learning approach in general [4,
5, 6].

In recent years, deep convolutional neural networks (C-
NNs) have demonstrated outstanding capabilities for large-
scale image classification [7]. These results have encouraged
extensive studies towards better CNN architectures [8, 9, 10].
Trained with sufficient and diversified datasets, the improved
CNNs successfully obtain exceptional performance on visual
recognition tasks. The success of CNNs is mainly attributed to
their ability in learning rich mid-level image representations
instead of hand-designed low-level features. Typically, the
convolutional neural networks adopt a three-stage formulation,
including the filter bank convolution, neuron activation, and
pooling stages. Among these stages, filter bank convolution
plays a central role. To learn an effective filter bank at each
convolution stage, a variety of methods have been proposed,
such as the restricted Boltzmann machines (RBM) [11, 12],
regularized auto-encoders and their variations [11]. In gener-
al, previous CNNs optimize the filter bank by utilizing the
stochastic gradient descent (SGD) method on a large number
of labelled images. Such approaches are largely dependent
on the expertise of parameter initiation and fine tuning. In
addition, such filter learning procedures are computationally
very intensive. The emergence of GPU computing [13] and
dedicated fast deep learning frameworks, like Caffe, to some
extent facilitate the learning procedures in CNNs. However,
the fundamental problem of extremely high computational
cost in such algorithms still remains. Furthermore, traditional
CNNs take a supervised approach and rely on large-scale train-
ing sets to produce good performance. Nowadays, the available
image data grows exponentially, making the associated image
labels more and more scarce. the lack of labelled training
samples becomes another major problem that hampers the
application of CNNs in the image classification domain.

To remove the uncertainty in CNNs’ filter bank learning
procedure, researchers proposed another mathematically justi-
fied model, namely, the wavelet scattering networks (ScatNet)
[14, 15]. ScatNet is similar with CNNs except for the design of
its filter bank. The filter bank in ScatNet is a set of predefined
wavelet operators. In this way, the weights learning procedure
in traditional CNNs is avoided. Despite its simple design of
the wavelet filter bank, the outcome reported in [14] and [15]
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Fig. 1: The CUNet structure.

have verified that ScatNet can achieve superior performance on
handwritten digit and texture recognition, based on a similar
multistage architecture as in CNN. However, such predefined
filter bank fails to capture the discriminative information in
datasets of other image types. They are not generalisable and
cannot handle different image understanding tasks in a broader
domain.

Motivated to address the above problems in the literature,
in this paper, we propose a compact unsupervised network
(CUNet) for image classification. Inspired by ScatNet, this
network aim to employ a neat design in its filter bank while
keeping it generalisable for potential applications. The filter
bank is constructed by applying the classical K-means on a
set of randomly extracted image patches. Here, image labels
are not necessary because un-supervised learning of the filters
can be achieved through K-means. After the convolution, the
Rectified Linear Units (ReLUs) are maintained to activate
neurons, followed by a proposed weighted pooling strategy.
Subsequent hidden layers are constructed in the same way,
except that the filter banks are learned from previous feature
map patches. In the output layer, each neuron is binary-
mapped, and each group of feature maps are synthesized into
a coarse representation of the input image. Then, histograms
are computed in each non-overlapped block, followed by the
max-pooling operation on adjacent blocks to reduce feature
redundancy and select the most competitive features.

The contribution of CUNet can be summarized in three
aspects:

(1) The compact and un-supervised manner of filter
bank learning avoids the initialization and fine tuning of
millions of parameters. This approach significantly reduces
the computation load, and more importantly, overcomes
the problem of lacking image labels for training. Thus,
CUNet effectively avoids falling into a local optimum which
traditional CNN usually suffers from;

(2) The proposed weighted pooling jointly considers the
effects of all the activations in the pooling region. It helps
improve the network robustness to small image distortions;

(3) The histogram formation is achieved in a straight-
forward manner. We choose to compute histograms in
multiple blocks in order to help obtaining the spatial
information to a certain extent. The max-pooling trick

further improve the feature competitiveness.
The rest of the paper is organized as follows: Section 2

analyses the related works; Section 3 gives the formulation
details of CUNet; Section 4 provides comprehensive exper-
imental results to validate the performance of CUNet; and
finally, Section 5 concludes the paper with directions for future
work.

II. RELATED WORK

Convolutional networks have recently demonstrated im-
pressive progress in a variety of image classification and
recognition tasks [13, 23]. The promising perspective of CNNs
encourages researchers to make further attempts for better
performance. Multiple layers of unpooled convolution have
been utilized lately with considerable success [7], despite that
such architectures must be carefully designed and sized using
good intuition along with extensive trial-and-error experiments
on a validation set. The work in [19] proposes to transfer
image representations learned with CNNs on large datasets
to other visual recognition tasks with limited training data.
Some success has been achieved when reusing the ImageNet
representation to compute mid-level image representation for
the PASCALVOC dataset, at the cost of intensive and challeng-
ing training on ImageNet. Besides, the representation learned
from larger datasets may incur overfitting issues when the
knowledge is transferred to smaller datasets. In [8], a new
activation function called maxout is proposed to avoid pitfalls
such as missing to use many filters of a model, so that
the training of deeper networks becomes possible. Compared
with conventional convolutional layers which perform linear
separation, the maxout network is more potent as it can
separate concepts that lie within convex sets. However, maxout
network imposes the prior that instances of a latent concept
lie within a convex set in the input space, which does not
necessarily hold.

In [9], a NIN network is proposed, which is composed of
mlpconv layers. It uses multi-layer perceptrons to convolve
the input and a global average pooling layer as a replacement
for the fully connected layers in conventional CNN. While
mlpconv layers model the local patches better and the global
average pooling prevents overfitting globally, NIN still faces
the difficulty in training and fine tuning millions of parameters.
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The training of recurrent neural networks usually involves
the vanishing and exploding gradient problems. The work in
[16] proposes a new multi-task feature selection algorithm, by
utilizing the common knowledge of multiple tasks as supple-
mentary information to facilitate decision making. The work in
[17] demonstrates a new clustering algorithm which employs
both manifold information and discriminant information for
data clustering. In [18], a semi-supervised learning algorithm
is reported for image representation inference. The works in
[21, 23] show that appropriate active learning method would
improve the performance of image classification. In [20], a
gradient norm clipping strategy is proposed to deal with the
exploding gradients problem, and used a regularization term
that prevents the error signal from vanishing as it travels
back in time to relieve the vanishing gradient restriction.
Though some improvements on the gradient training have been
achieved, the work in [20] still fails to simplify the inherent
complexity of current neural networks.

Overall, these approaches all more-or-less suffer from the
intensive computation load and the lack of labelled data for
training. With a clear goal to address these issues, we propose
the filter bank learning procedure that is designed to work
in a compact and unsupervised manner. The neat design
ensures its high efficiency. More importantly, by abandoning
the initialization and fine tuning of millions of parameters, and
the system is no longer restricted by the limitation of scarce
annotation on images. The proposed CUNet does not use any
image transformations or other regularization such as dropout
or maxout [8], but focuses on four main steps: preprocessing
image patches, learning the K-means filter bank, computing
histograms and selecting the most competitive histogram bins.
This concise design reduces the computation cost, and at
the same time guarantees superior performance compared to
existing delicate network designs.

III. COMPACT UNSUPERVISED NETWORK

In this section, we present the detailed formulation of our
proposed CUNet. The two-layer CUNet structure is illustrated
in Fig.1, and the output layer is illustrated in Fig.2. In the next
subsections, we will elaborate each component of the block
diagram.

A. The pre-processing of the input layer

Suppose we are given N input training images {Xn}Nn=1

of size W ×H × d, where d = 1 for gray images and d = 3
for RGB ones. CUNet begins by extracting random patches
from the training images {Xn}Nn=1. Each w × h patch can
be denoted as a vector in RM of pixel intensity values, with
M = w×h×d. Then, we can construct a dataset containing T
randomly extracted patches, P = {p1, · · · , pt, · · · , pT }, where
pt ∈ RM . Given this patch dataset, we apply some necessary
pre-processing operations on P to obtain better configuration.

It is a common practice for vision tasks to perform some
simple normalization steps before attempting to generate
features from the input data. In this work, each patch pt
is normalized by subtracting the mean and dividing by the
standard deviation of its elements. After normalizing each

input vector, we apply the whitening operation over the whole
dataset P . In [29], the superiority of whitened images over
non-whitened has been discussed. Then, we obtain the pre-
processed input dataset P̄ = {p̄1, · · · , p̄2, · · · , p̄T }. Assuming
that the number of filters in the first layer is K1, we run
K-means on P̄ to acquire the filter bank, denoted as D1 =
{d1, · · · , dk1 , · · · , dK1} ∈ RM×K1 where each centroid dk1

will act as a convolution filter in the subsequent convolution
stage.

B. The formulation of the hidden layer

We maintain the typical processing stages of traditional
CNNs, i.e., filter convolution, pooling and neuron activation.
In this section, we will describe in details each stage with its
special design in CUNet.

Filter convolution: Given the first layer’s convolution filter
bank D1 = {d1, · · · , dK1} , we convolve each training image
Xn with the K1 filters:

O1
n = Xn ⊗D1, n = 1, · · · , N, (1)

where O1
n =

{
f
1(1)
n , · · · , f1(k1)

n , · · · , f1(K1)
n

}
is the first

layer’s feature map set of Xn, f1(k1)
n is the feature map of Xn

convolved by the filter dk1
, and ⊗ denotes the 2D convolution

operation.
Nonlinear activation: Then, the neurons in the feature

maps need to be activated through a pre-defined activation
function. The Tangent function f(x) = tanh(x) and Sigmoid
function f(x) = (1 + e−x)−1 are commonly used in previous
networks and have been proved to be effective. However,
considering the training time, these saturating nonlinearities
are much slower than the non-saturating nonlinearity f(x) =
max(0, x). Following [24], we refer to the neurons activated
by this nonlinearity as Rectified Linear Units (ReLUs). In [13],
it has been verified that deep convolutional neural networks
with ReLUs train several times faster than their equivalents
with tanh units. Therefore, CUNet adopts ReLUs to accom-
plish subsequent process. In fact, we have tried the Tangent
function and Sigmoid function in CUNet and found that they
are not competitive with the ReLUs.

Weighted pooling: To ensure the network robustness a-
gainst small distortions, we set a pooling layer after the
activation layer, as most of the traditional CNN architectures
do. Conventional pooling usually uses either max pooling
or average pooling. Max pooling always captures the largest
response values, but may lose the useful information of the
smaller ones. As for average pooling, it aggregates local
statistics information by preventing large response values
overwhelming and small values being ignored. However, since
average pooling treats each neuron equally, the usefulness of
each neuron’s response is considered the same. The work
in [22] proposes stochastic pooling, which replace the con-
ventional deterministic pooling operations with a stochastic
procedure. It randomly picks the activation within each pool-
ing region according to a multinomial distribution defined
by the activities within the pooling region. Obviously, the
choice of the multinomial distribution has dominating effect on
the pooling performance. Inspired by these previous pooling
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strategies, we propose a new pooling method called weighted
pooling. It considers each neuron’s response as well as the
usefulness of its response. That is, each neuron in the pooling
region owns a weighting factor representing the usefulness
of its response. Suppose that the pooling window is of size
pw × ph, the response value of each neuron is ai,j with
i = 1, · · · , w; j = 1, · · · , h. Then, the pooling results of the
pw × ph window can be calculated according to Eq.(2):

Presult = wi,j ∗ ai,j (2)

where wi,j is the weight of ai,j . In this paper, we compute
each neuron’s value in proportion to the pooling region as
its weight, i.e., wi,j =

ai,j∑
i

∑
j ai,j

. The proposed weighted
pooling will capture different proportions of local information
of each neuron in the original feature map, thus leading
to a better local representation. To reveal the effect of the
proposed weighted pooling method, we conducted experiments
in Section 4 to compare the network performance under dif-
ferent pooling strategies. Conventionally, a pooling operation
summarizes the non-overlapping neighbourhoods containing
adjacent units. Such an approach reduces the computation
complexity but leads to coarse pooling results. To be acquire
a more precise pooling, CUNet applies an overlapping sliding
window with a stride s for fine grained results.

The three main stages: convolution, non-linear activation
and weighted pooling, form a complete layer of CUNet. Note
that these three steps maintain a feature map that is of the
same size with the original input image. The convolution and
pooling operations both pad the images (or feature maps) with
zeros. We tested the model with a fix-sized feature map and
observed that it outperformed traditional models with feature
maps whose sizes change. The second layer has a similar
formulation with the first layer, except that the filter bank
D2 is obtained by running K-means on the patches randomly
extracted from the first layer’s output. Although stacking
multiple layers together can lead to higher level features, as
reported in some works like [9], we find that more layers
than two only bring subtle performance improvement. Thus,
the proposed CUNet adopts a two-layered architecture, while
a deeper model can be implemented in the same approach,
where necessary.

C. The design of the output layer
The detailed design of the output layer is illustrated in Fig.2.

In the second layer, each of the K1 feature maps f1(k1)
n has

K2 outputs F 2(k1)
n =

{
f
2(1)
n , f

2(2)
n , · · · , f2(K2)

n

}
. First, each

set of the K2 feature maps are binary-mapped, i.e. each unit
value is set as 1 if it is positive and 0 if non-positive. The
resulting feature maps are composed of ones and zeros, and
thus are referred to as B-maps. Such crude mapping inevitably
leads to loss of some useful feature information. To integrate
the complementary feature information into the B-maps, we
take the inspiration from [25] and transform the K2 B-maps
in F

2(k1)
n into an integer-valued image by multiplying each

feature map with a coefficient λi:

I =

K2∑
i=1

λif
2(k2)
n , (3)

where λi = 2i−1, f2(k2)
n is the k2-th B-map in F

2(k1)
n . The

ordering and weighting of the K2 B-maps do not affect the
network performance.
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Fig. 2: Details of CUNet output layer.

For each of the K1 feature maps in O1
n , we can obtain

its corresponding image Ik1
with k1 = 1, · · · ,K1. Next, the

histogram of each Ik1
can be computed and used as the final

image representation. To ensure the model’s robustness against
image geometric variances, the histograms are computed in a
sliding-window manner. The work in [25] has demonstrated
the effectiveness of such a histogram extraction approach in
matching images of highly variable scenes. However, we argue
that this histogram computing approach may cause feature
redundancy in high dimensionality. In order to avoid this
issue, we execute max-pooling operation on histogram bins in
adjacent blocks. In particular, for the adjacent w×w blocks, we
select the maximum bins in each block, leading to one single
histogram. Such max-pooling operation helps obtain the most
competitive image features, avoids feature redundancy, and
keeps the feature dimension in a reasonable range. Finally, we
concatenate the histograms gained from each group of w×w
blocks as the image feature, followed by a classification of
images based on a linear SVM.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of CUNet on four benchmark-
ing datasets: STL-10, Caltech101, CIFAR-10 and MNIST. The
networks used for these four datasets all consist of two stacked
layers, followed by a linear SVM classifier. More particular
experimental settings are presented in the subsequent sections.
For the comparison purpose, we directly quote results from
the literature since it is often not possible to reproduce their
results, largely due to subtle engineering details.
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A. The Classification Performance

1) CIFAR-10: The CIFAR-10 dataset is composed of 10
classes of natural images, among which 50,000 are used
for training and 10,000 are for testing. The images are of
a uniform size 32 × 32. Images of each class vary largely
in object position, size, colors and textures. Besides, the
background of each image shows significant differences.

In particular, we learn K1 = 40 filters of size 5 × 5 in
the first layer and K2 = 8 filters of size 5 × 5 in the second
layer. The size of weighted pooling in both the two layers are
set as 2×2, and the pooling windows overlap with one pixel
stride. The blocks for histogram computing are all of size 4×4,
non-overlapped. After acquiring the block-wise histograms, we
select the maximum bins over the adjacent 2 × 2 = 4 blocks
to build one single histogram.

TABLE 1 presents the classification accuracies of different
methods on CIFAR-10. We observe that CUNet, with weighted
pooling, achieves desirable performance among these methods.
Besides, the results show that the pooling strategy influences
the final classification performance when all the other settings
remain the same. Among the three pooling strategies, namely,
our proposed weighted pooling, the prevalent max and average
pooling, weighted pooling shows the best performance - about
0.38% higher than max pooling and 0.85% higher than average
pooling. Note that the same filter banks used in weighted
pooling are employed in max and average pooling. This is
to avoid the potential influence from filters randomly learned
by K-means. This setting is similarly applied in experiments
on the STL-10, Caltech101 and MNIST datasets for a fair
evaluation.

TABLE I: Comparison of accuracy(%) by different methods
on CIFAR-10 without data augmentation.

Methods Accuracy(%)
CUNet + Weighted pooling 80.31

CUNet + Max pooling 79.93
CUNet + Average pooling 79.46

Tiled CNN [26] 73.10
Improved LCC [27] 74.50

KDES-A [28] 76.00
K-means (Triangle,4000features) [29] 79.60

Cuda-convnet2 [30] 82.00
CKN-CO [10] 82.18

Discriminative SPN [31] 83.96
TIOMP-1/T (combined, K= 4,000) [32] 82.20

2x PDL (1600 codes) [33] 78.71

2) STL-10: The STL-10 dataset consists of colour images
of 96 × 96 pixel size, belonging to 10 different classes. This
dataset similarly organised with CIFAR-10 while providing
fewer training samples (500 per class) and test samples (800
per class). This set-up forces algorithms to rely on acquired
prior knowledge of image statistics. We down-sampled the
STL-10 images into 32×32 pixels for a simpler configuration.

Experimental settings on STL-10 are similar to that of
CIFAR-10 experiments, except that K1 = 30 filters are
employed. TABLE 2 gives the comparison of results from
different methods on STL-10. We observe that CUNet, with
weighted pooling, provides more desirable performance com-
pared to the previous works. With the same settings elsewhere,

weighted pooling in CUNet helps increase the classification
accuracy by 0.6% compared to max pooling and by 0.4%
compared to average pooling.

TABLE II: Comparison of accuracy(%) by different methods
on STL-10 without data augmentation.

Methods Accuracy(%)
CUNet + Weighted pooling 63.00

CUNet + Max pooling 62.40
CUNet + Average pooling 62.60
2x PDL (1600 codes) [33] 58.28

CKN-CO [10] 62.32
EPLS [34] 61.00

Discriminative SPN [31] 62.30
sparse TIRBM (combined) [32] 58.70

To further demonstrate the performance of CUNet, some
sample images are listed from each class in Fig.3, and the
classification accuracy of each class is given next to the
corresponding image classes. From the results, it can be
observed that higher accuracy can commonly be achieved in
the classification of simpler classes, such as airplane(81.38%),
ship(81.00%) and car(80.13%). These classes of objects usu-
ally entails relatively distinctive and coherent visual appear-
ances. Besides, they are rigid objects and thus rarely in-
cur confusing variations such as activity variance. In con-
trary, the classes of living objects, such as monkey(53.50%),
cat(43.50%) and dog(31.00%), commonly lead to lower accu-
racies. From the sample images, it can be observed that animal
classes often includes various sub-categories with different
appearances, and the animals are in different poses, with a
high probability of occlusion. All these factors increase the
difficulty in classifying these classes.

airplane (81.38%)

bird (56.13%)

car (80.13%)

cat (43.50%)

deer (64.50%)

dog (31.00%)

horse (72.88%)

monkey (53.50%)

ship (81.00%)

truck (64.13%)

Fig. 3: Example images of each class and their classification
accuracies in STL-10.

3) Caltech101: Caltech101 dataset contains 101 classes,
including animals, vehicles, flowers, etc. with significant visual
variation of the objects and the background. The number of
images per category varies from 31 to 800. For experimental
convenience, we convert all the images into grey scale, and
resize them into 32 × 32 without keeping the aspect ratio.
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Following the traditional settings, we randomly select 15 and
30 training images per class, including the background classes.
TABLE 3 presents the classification results on Caltech101. In
the cases of both 15 and 30 training images per class, we train
K1 = 30 filters. Other settings are the same with CIFAR-10.

From TABLE 3, we observe that the proposed CUNet with
weighted pooling achieves the best performance among the
state-of-the-arts methods based on raw pixels. It is worth
noting that in our experiment setting, all images are resized
into 32× 32 pixels without keeping the aspect ratio, while in
previous works image aspect ratios are usually kept. Still, the
proposed CUNet shows its competitive capability of classifi-
cation on Caltech101. Similar to the experiments on CIFAR-
10 and STTL-10, the propose weighted pooling successfully
outperforms max pooling and average pooling.

TABLE III: Comparison of accuracies(%) by different meth-
ods on Caltech101

Training size 15 30
CUNet + Weighted pooling 58.62 66.72

CUNet + Max pooling 58.00 66.34
CUNet + Average pooling 58.14 66.48

CDBN [38] 57.70 65.40
ConvNet [39] 57.60 66.30

DeconvNet [40] 58.60 66.90
Chen et al. [36] 58.20 65.80
Zou et al. [37] - 66.50

Fig.4 shows some classification results of Caltech101. Here,
some classes that are semantically similar are considered. It
is interesting to observe that the classification accuracies of
each pair of similar classes largely differ. For example, the
classification accuracy of the class Faces is 76.90%, which
is about 19.77% lower than the class Faces easy(96.67%).
From the example images, it can be seen that the faces in the
Faces easy class are placed in the center of the images and
little background is included. In comparison, the faces in class
Faces class are arbitrarily positioned in the images, and all the
images present a complex background. Therefore, the Faces
class is more difficult to classify than the Faces easy class.
Besides, when the images are uniformly resized, the Faces are
often get distorted, which makes the classification of this class
more difficult. Similarly, the classification results of the two
class Chair and Windsor chair show great difference. The
accuracy of the class Chair is 23.40%, which is 69.28% lower
than that of the Windsor chair class (92.68%). As shown
in the example images, the objects in Chair demonstrate
significant visual variance and the background is relatively
complex. In comparison, the intra-class variance of Windsor
chair is subtle, and the background is much simpler than that
of Chair. Thus, it is not a surprise that Windsor chair is much
better classified than Chair. Similar observations can be made
for the listed classes Cougar body (50.82%) and Cougar face
(47.54%), Crocodile head (16.67%) and Crocodile (2.86%).
From the above analysis, CUNet has superior classification
performance in the classes with simple background and small
little intra-class variance. However, we also admit that CUNet
shows less competitiveness for the classes that have more
complex background and greater intra-class variance.

4) MNIST: The basic MNIST dataset consists of 28 × 28
grey-scale images of handwritten digits from 0 to 9. It has
10,000 training, 2,000 validation, and 10,000 testing samples.
For the same of experimental convenience in the baseline, we
resize the MNIST images into 32 × 32 pixels, and keep all
other settings the same with the aforementioned three datasets,
except that the number of filters is K1 = 5.

TABLE 4 presents the classification error rates on basic
MNIST from different methods. Again, the proposed weighted
pooling outperforms the average and max pooling. Since
MNIST is a relatively simple dataset, all methods perform
well with very small differences. The subtle difference in
their performance is not statistically significant and thus is
not analysed here.

TABLE IV: Comparison of error rates(%) obtained by differ-
ent methods on MNIST without data augmentation.

Methods Error rate(%)
CUNet + Weighted pooling 1.80

CUNet + Max pooling 1.86
CUNet + Average pooling 1.90

CAE-2 [35] 2.48
ScatNet-2 [14] 1.27

B. Impact of the number of filters

In this section, we report further experiments to validate
the impact of filter number on the performance of CUNet.
We fix the experimental settings as aforementioned in Section
4.1 (i.e., the settings that achieved the best performance on
each dataset, while adjusting the number of filters in the first
layer. In particular, since CIFAR-10 is a relatively complicated
dataset, we vary K1 from 20 to 40. For the mid-scale datasets
STL-10 and Caltech101, we vary K1 from 10 to 30. For the
simpler dataset MNIST, we vary K1 from 5 to 15.
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Fig. 5: Impact of the filter number on classification accuracy.

Fig.5 illustrates the impact of the number of filters on
CUNet’s classification performance. As shown in Fig.5, the
classification accuracy generally improves when the number
of filters increases, despite of different datasets. However, the
improvements does not always last. When the number of filters
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reaches a saturated value, the improvement becomes subtle.
This is because, when the number of filters is larger than a
saturated value, some filters will be duplicated, introducing
no additional contribution or even bringing adverse effects.
Hence, the number of filters plays an important role in CUNet.

C. Impact of the block size

Fig.6 illustrates the impact of the block size on CUNet
performance. Here, the block size refers to the width and
height of the windows for histogram extraction. For each
dataset, we set the block size as 4 × 4, 8 × 8 and 16 × 16,
and fix the other settings as reported in Section 4.1. From
Fig.6, it can be observed that the classification performance
generally drops when the block size increases. Common for
all the datasets, the highest classification accuracy is achieved
when the block size is 4 × 4. When the block size increases
to 8× 8, the classification performance slightly declines, and
the declining continues when the block size further increases
to 16 × 16. However, it is worth mentioning that although
the classification accuracy goes down along with the increase
of block size, feature dimension also decreases, leading to a
reduction of computation load. In particular, when the block
size is 4×4, the feature dimension is K1×2K2×16. When the
block size is set as 8×8, the feature dimension is K1×2K2×4,
4 times smaller than that of 4× 4 block size. When the block
size is 16× 16, the feature dimension is K1× 2K2 × 1, which
is 1/16 of the feature dimension of block size 4× 4.
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Fig. 6: Impact of the block size on classification accuracy.

Based on the above analysis, the influence of block size on
CUNet is two-folded. On the one hand, the increase of block
size results in a decline classification accuracy. On the other
hand, feature dimension desirably decreases along with the
increase of the block size. Hence, the choice of the block size
is largely dependent on the specific requirements. If accuracy
is dominantly pursued, then a smaller block size should be
chosen. On the contrary, if the experimental devices struggles
to meet the dataset scale, choosing a larger block size may
help the experiments perform smoothly.

D. Discussion

The aforementioned experiments have successfully validat-
ed the effectiveness of CUNet from different aspects. Four
different datasets, namely, CIFAR-10, STL-10, Caltech101,
MNIST, are employed to test the performance of CUNet on
different image classification tasks. The classification perfor-
mance of CUNet are quantitatively compared with some the
state-of-the-art methods. In particular, the sample classification
output of some classes are visually presented to demonstrate
the desired performance of CUNet. From the results, it has
been shown that CUNet is superior in classifying static objects
with little inner-class variance, e.g. , airplane, ship and car.
In comparison, CUNet shows less advantage in classifying
dynamic objects with high intra-class variance, such as dog,
cat or monkey. Secondly, we test the effect of some key
settings of CUNet on classification performance: 1) it has
been proven that, despite of different datasets, more filters
will certainly help improve the classification performance,
but such increase becomes small when the number of filters
reaches a saturated value; 2) an increase of the block size
leads to declined classification performance, but at the same
time, some computation load can be desirably released due
to the reduction of feature dimensionality, and vice versa.
Good block sizes bring balance between the classification
accuracy and computation efficiency. A good choice of block
size should be decided based on the application requirements.

V. CONCLUSION

We propose a compact unsupervised network, namely, the
CUNet, that can handle various image classification tasks.
The main objective is to simplify the complicated processes
in traditional convolutional neural networks while achieving
equivalent performance. The compact design of CUNet avoids
the tuning of millions of parameters and does not require a nu-
merical optimization solver. Besides, the unsupervised learning
approach in the convolution filters resolves the issue of lacking
labelled training data, which convolutional neural networks
usually face. Experimental results verify that CUNet is highly
competitive among the state-of-the-art works. In future work, a
main target is to further improve CUNet, enabling it to handle
more challenging, large-scale benchmarking datasets in which
significant intra-class variance is present.
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Fig. 4: Classification results on Caltech101 using 15 training images per class.


