
A Mixed Hybrid Finite Volumes Solver for

Robust Primal and Adjoint CFD

by

Mattia Oriani

Submitted in partial full�lment of the requirements for the degree of

Doctor of Philosophy

School Of Engineering And Materials Science

Queen Mary, University of London

United Kingdom

November 2017

Statement of Originality

I, Mattia Oriani, con�rm that the research included within this thesis is my own work

or that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published

material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge break any UK law, infringe any third party's copyright

or other Intellectual Property Right, or contain any con�dential material.

I accept that the College has the right to use plagiarism detection software to check the

electronic version of the thesis.

I con�rm that this thesis has not been previously submitted for the award of a degree by

this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Signature: Mattia Oriani

Date: 29th November 2017

To Erin Frances Kelly.

Abstract

In the context of gradient-based numerical optimisation, the adjoint method is an e�cient

way of computing the gradient of the cost function at a computational cost independent

of the number of design parameters, which makes it a captivating option for industrial

CFD applications involving costly primal solves. The method is however a�ected by

instabilities, some of which are inherited from the primal solver, notably if the latter does

not fully converge. The present work is an attempt at curbing primal solver limitations

with the goal of indirectly alleviating adjoint robustness issues.

To that end, a novel discretisation scheme for the steady-state incompressible Navier-

Stokes problem is proposed: Mixed Hybrid Finite Volumes (MHFV). The scheme draws

inspiration from the family of Mimetic Finite Di�erences and Mixed Virtual Elements

strategies, rid of some limitations and numerical artefacts typical of classical Finite Vol-

umes which may hinder convergence properties. Derivation of MHFV operators is illus-

trated and each scheme is validated via manufactured solutions: �rst for pure anisotropic

di�usion problems, then convection-di�usion-reaction and �nally Navier-Stokes. Tra-

ditional and novel Navier-Stokes solution algorithms are also investigated, adapted to

MHFV and compared in terms of performance.

The attention is then turned to the discrete adjoint Navier-Stokes system, which is assem-

bled in an automated way following the principles of Equational Di�erentiation, i.e. the

di�erentiation of the primal discrete equations themselves rather than the algorithm

used to solve them. Practical/computational aspects of the assembly are discussed, then

the adjoint gradient is validated and a few solution algorithms for the MHFV adjoint

Navier-Stokes are proposed and tested. Finally, two examples of full shape optimisation

procedures on internal �ow test cases (S-bend and U-bend) are reported.

i

Acknowledgments

This work has received funding from the European Union's Seventh Framework Pro-

gramme for research, technological development and demonstration through the �About-

Flow� project, under grant agreement number 317006.

I owe my deepest gratitude to my industrial supervisor, Dr. Guillaume Pierrot, whose

invaluable help went far beyond his job description: the present work would not have

been possible without his continued commitment, guidance, patience, enthusiasm and

outstanding expertise on a vast array of topics, both related to CFD (adjoint method,

numerical schemes) and software development (data structures, abstraction, code opti-

misation).

I am thankful to my academic supervisor, Dr. Jens-Dominik Müller, for giving me the

opportunity and encouraging me to join the AboutFlow Initial Training Network: this

not only culminated in the present work, but also e�ectively launched my current career

as a CFD software developer.

I was lucky to work in close collaboration with the other Early Stage Researchers in the

AboutFlow project, which led to several inspiring discussions and ideas, some of which are

re�ected in this thesis. I also thank my colleagues at ESI Group and in particular those

who shared with me the experience of being industry-based PhD candidates: Athanasios

Liatsikouras for his help with meshing, setting up and running of test cases and his

cooperation regarding mesh morphing tools; Gabriel Fougeron for sharing his impressive

mathematical knowledge and understanding of numerical methods; George Eleftheriou

for his support on all technical issues.

A special mention goes to my friends in Paris, London and Milan for their amazing ability

to put up with me during the most di�cult times. I would like to thank my family, as

well: my beloved parents, Anna and Leonardo; my sister Irene and her partner Carlo;

my sister Chiara, her husband Garry and their little Erin, who was born shortly after

the start of this project and has made everything better since.

ii

Table of Contents

Abstract i

Acknowledgments ii

Table of Contents iii

List of Figures vii

List of Tables x

List of Symbols xii

List of Abbreviations xv

1 Introduction 1

1.1 Context and motivation . 1

1.2 Starting point and objectives . 3

1.3 Plan of the thesis and contribution . 6

2 The Adjoint Method 8

2.1 Numerical optimisation . 8

2.2 Adjoint-based sensitivity analysis . 11

2.2.1 State-of-the-art industrial adjoint CFD 11

2.2.2 Formulation of the continuous adjoint equations 12

2.2.3 Discrete adjoint via linear algebra 14

2.2.4 Continuous vs. discrete adjoint . 17

2.2.5 Physical interpretation of adjoint �elds 19

2.3 Practical aspects of discrete adjoints . 21

2.3.1 Algorithmic Di�erentiation . 21

2.3.2 Automatic Di�erentiation . 25

2.3.3 Equational Di�erentiation . 28

iii

2.4 Challenges of discrete adjoints . 31

3 Mixed Hybrid Finite Volumes 34

3.1 Mixed Virtual Elements . 34

3.2 Basic MVE concepts . 35

3.2.1 Discrete spaces and scalar products 36

3.2.2 Divergence and �ux operators . 38

3.3 Mixed Hybrid Finite Volumes for pure anisotropic di�usion 40

3.3.1 MHFV local scalar product . 40

3.3.2 Hybrid pure anisotropic di�usion operator 44

3.3.3 Inversion of the local scalar product matrix 47

3.3.4 Link with classical Finite Volumes 50

3.3.5 Boundary conditions . 55

3.4 Validation of MHFV for pure anisotropic di�usion problems 56

3.4.1 h-convergence for pure anisotropic di�usion 56

3.4.2 Comparison of weight types . 60

4 MHFV Convection-Di�usion-Reaction 62

4.1 Addition of convective �uxes . 62

4.1.1 Centred schemes . 63

4.1.2 First-order upwinding . 68

4.1.3 θ-Scheme . 70

4.1.4 Uni�ed framework for convective schemes 71

4.1.5 Hybrid convection-di�usion-reaction operator 72

4.1.6 Boundary conditions . 73

4.2 Stabilised second-order convection schemes 73

4.2.1 Streamline-Upwind Petrov-Galerkin 74

4.2.2 Second-order upwinding . 77

4.2.3 Flux limiters . 78

4.2.4 Weighted Least-Squares . 80

4.2.5 Upwind Least-Squares . 82

4.3 Validation of MHFV for convection-di�usion-reaction problems 84

4.3.1 Low-Pe h-convergence for basic convective schemes 84

4.3.2 Low-Pe validation of the Hybrid θ-Scheme 88

4.3.3 High-Pe h-convergence for Hybrid First and Second-Order Upwind-

ing . 89

4.3.4 Comparison of stabilisation techniques 91

5 MHFV Incompressible Navier-Stokes 97

iv

5.1 The Navier-Stokes scheme . 97

5.1.1 Discrete variables and preliminary notation 98

5.1.2 Hybrid momentum operator . 100

5.1.3 Full MHFV Navier-Stokes operator 103

5.1.4 Boundary conditions . 105

5.2 Solution algorithms for incompressible Navier-Stokes 107

5.2.1 SIMPLEC . 108

5.2.2 Block-Coupled . 113

5.2.3 Augmented Lagrangian . 114

5.3 Validation of MHFV for incompressible Navier-Stokes 117

5.3.1 h-convergence for Navier-Stokes . 117

5.3.2 Lid-driven cavity test case . 120

5.3.3 Algorithm performance . 123

5.3.4 Benchmark against classical Finite Volumes 127

6 MHFV Discrete Adjoint Navier-Stokes 130

6.1 Assembly of the adjoint system . 130

6.1.1 Full MHFV discrete adjoint Navier-Stokes 130

6.1.2 Reverse assembly of the adjoint system 132

6.1.3 Graph colouring . 135

6.1.4 Reverse assembly with i-Adjoint 140

6.1.5 Considerations on FD-based assembly 141

6.1.6 Reduced reverse assembly . 143

6.2 Solution algorithms for adjoint Navier-Stokes 146

6.2.1 Adjoint SIMPLEC . 146

6.2.2 Adjoint Velocity-Coupled . 148

6.2.3 Adjoint Augmented Lagrangian . 148

6.3 Adjoint shape optimisation and mesh morphing 149

6.3.1 Preliminary notation . 150

6.3.2 Rigid Motion Mesh Morpher . 151

6.3.3 Final gradient computation . 152

6.4 Validation of MHFV adjoint Navier-Stokes 155

6.4.1 Sensitivity and gradient validation 155

6.4.2 Performance of colouring algorithms and reduced assembly 158

6.4.3 Algorithm performance . 160

7 Applications 164

7.1 S-bend . 164

7.2 U-bend . 167

v

8 Conclusions and Future Work 172

8.1 Conclusions . 172

8.2 Future work . 174

Appendix A The Spalart-Allmaras Turbulence Model 177

Appendix B Under-Resolved Lid-Driven Cavity 180

Appendix C Author's Publications 182

Bibliography 183

vi

List of Figures

2.1 Basic �owchart of a generic gradient-based optimisation loop. 9

2.2 Di�erent paths to adjoint derivation: continuous (purple) and discrete

(green). 17

2.3 Magnitude of the drag-adjoint velocity �eld around a cylinder, Re = 20

[235]. 21

2.4 Example of a limit cycle occurring in the non-linear �xed-point iteration:

x = f (x). 32

3.1 Location of degrees of freedom for MVE spaces on a generic 2D polygonal

mesh. 36

3.2 MHFV notation for main geometric/inertial quantities. 41

3.3 Location of MHFV variables in a cell. 44

3.4 Face-to-face stencil for a generic 2D poligonal mesh. 47

3.5 Non-orthogonal cells and NOC decomposition of ~F 51

3.6 Re�nement sequence for a 2D polygonal distorted mesh. 56

3.7 Pure anisotropic di�usion: h-convergence. 58

3.8 Pure anisotropic di�usion: solution �eld φ for di�erent re�nement values

- polygonal distorted mesh. 59

3.9 Distortion sequence for a 2D quadrilateral mesh. 60

3.10 Pure anisotropic di�usion: errors for di�erent weight types on a sequence

of progressively distorted meshes. 61

4.1 Hybrid �rst-order upwinding: convective �ux across F as seen from an

upwind and downwind cell. 68

4.2 Barth-Jespersen limiter (cell-based) illustrated on a 1D domain: recon-

structed value φFe at face Fe from cell C0, without and with limiting. . . 79

4.3 Mixed Centred (MIXC): h-convergence. 87

4.4 Hybrid Centred (HYBC): h-convergence. 87

4.5 Hybrid First-Order Upwind (HUPW1): h-convergence. 87

vii

4.6 Hybrid θ-Scheme (HTHE): h-convergence on a polygonal distorted mesh

for di�erent values of θ. 88

4.7 Re�nement sequence for a 2D quadrilateral distorted mesh. 90

4.8 Hybrid First and (unlimited) Second-Order Upwinding (HUPW1 and HUPW2):

h-convergence on a quadrilateral distorted mesh for a convection-dominated

problem. 90

4.9 Smith-Hutton test case setup. 91

4.10 Smith-Hutton outlet pro�les of φF for di�erent stabilisation schemes. . . . 93

4.11 Smith-Hutton solution �eld φ for di�erent stabilisation schemes. 94

4.12 Limited/stabilised schemes: h-convergence on the Smith-Hutton test case. 95

5.1 Examples of Oseen sparsity patterns for a 2D Navier-Stokes problem [25]. 105

5.2 First-order pressure scheme (PRS1): h-convergence. 119

5.3 Second-order pressure scheme (PRS2): h-convergence. 120

5.4 Lid-driven test case setup. 120

5.5 Lid-driven cavity, Re = 102: results comparison. 121

5.6 Lid-driven cavity, Re = 103: results comparison. 122

5.7 Lid-driven cavity, Re = 104: results comparison. 122

5.8 Lid-driven cavity solution �eld (velocity magnitude
∥∥∥~U∥∥∥) for di�erent val-

ues of Re. 123

5.9 SIMPLEC, Re = 102: performance. 124

5.10 SIMPLEC, Re = 103: performance. 124

5.11 Block-Coupled (BCPL), Re = 102: performance. 125

5.12 Block-Coupled (BCPL), Re = 103: performance. 125

5.13 Augmented Lagrangian (AL), Re = 102: performance. 126

5.14 Augmented Lagrangian (AL), Re = 103: performance. 126

5.15 S-bend test case: geometry, mesh and boundary conditions. 127

5.16 Convergence history of momentum residuals: MHFV (second-order, ULSQR-

stabilised) vs. classical FV (second-order, Barth-Jespersen limiter). 128

5.17 S-bend: velocity magnitude (m/s), cross-section. 129

5.18 S-bend: pressure (N/m2), cross-section. 129

6.1 Finite Di�erences error dependence on delta (step-length) [63]. 134

6.2 Coloured graph for Jacobian assembly of (6.11). 136

6.3 MHFV stencils for the full Oseen system, determining the Navier-Stokes

incidence graph. 137

6.4 Coloured graph for adjoint right-hand side assembly for (6.16). 138

6.5 Examples of stencil de�nitions (in red) for RMMM. 151

6.6 S-bend: geometry and mesh. 155

viii

6.7 S-bend: nodal sensitivity �eld. 158

6.8 �Inlet-outlet� test case setup. 160

6.9 Adjoint SIMPLEC: convergence history at di�erent Re. 161

6.10 Adjoint Velocity-Coupled: convergence history at di�erent Re. 162

6.11 Adjoint Augmented Lagrangian: convergence history at di�erent Re. . . . 163

7.1 S-bend: optimisation convergence history. 165

7.2 S-bend: sections of the original shape (black) and optimised (red). 166

7.3 S-bend: velocity magnitude (m/s) at di�erent cross-sections. 166

7.4 Schematics of a secondary �ow (pair of counter-rotating Dean vortices) in

the cross-section of a curved duct. 167

7.5 U-bend: geometry, mesh and boundary conditions. 168

7.6 U-bend: optimisation convergence history. 169

7.7 U-bend: original shape (black) and optimised (red) of the bend. 170

7.8 U-bend: velocity magnitude (m/s). 171

B.1 Under-resolved lid-driven cavity, Re = 102: results comparison. 181

B.2 Under-resolved lid-driven cavity, Re = 103: results comparison. 181

B.3 Under-resolved lid-driven cavity, Re = 104: results comparison. 181

ix

List of Tables

3-A Pure anisotropic di�usion - polygonal distorted mesh: errors and conver-

gence rates. 58

3-B Pure anisotropic di�usion - Cartesian mesh: errors and convergence rates. 59

4-A Mixed Centred (MIXC) - polygonal distorted mesh: errors and convergence

rates. 84

4-B Hybrid Centred (HYBC) - polygonal distorted mesh: errors and conver-

gence rates. 85

4-C Hybrid First-Order Upwind (HUPW1) - polygonal distorted mesh: errors

and convergence rates. 85

4-D Mixed Centred (MIXC) - Cartesian mesh: errors and convergence rates. . 85

4-E Hybrid Centred (HYBC) - Cartesian mesh: errors and convergence rates. . 86

4-F Hybrid First-Order Upwind (HUPW1) - Cartesian mesh: errors and con-

vergence rates. 86

4-G Hybrid θ-Scheme (HTHE) - polygonal distorted mesh: errors and conver-

gence rates for at di�erent values of θ. 88

4-H Behaviour of MHFV centred and upwind convective schemes on a coarse

mesh for an increasingly convection-dominated problem. 89

4-I Hybrid First and Second-Order Upwind (HUPW1 and HUPW2) - quadri-

lateral distorted mesh: errors and convergence rates. 91

4-J Smith-Hutton test case: errors and convergence rates for �ux limiters. . . 96

4-K Smith-Hutton test case: errors and convergence rates for stabilisation

strategies. 96

5-A First-order pressure scheme (PRS1) - polygonal distorted mesh: errors and

convergence rates. 118

5-B Second-order pressure scheme (PRS2) - polygonal distorted mesh: errors

and convergence rates. 118

x

5-C First-order pressure scheme (PRS1) - Cartesian mesh: errors and conver-

gence rates. 118

5-D Second-order pressure scheme (PRS2) - Cartesian mesh: errors and con-

vergence rates. 119

6-B S-bend test case: comparison of FD and adjoint gradient components for

�ve randomly selected handle nodes. 157

6-C S-bend, �rst-order scheme (PRS1): performance of colouring algorithms. . 159

6-D S-bend, second-order scheme (PRS2): performance of colouring algorithms. 159

6-E Performance of full and reduced reverse assembly 160

6-F Adjoint SIMPLEC and VCPL: optimal α values, iteration count and VCPL

speedup at di�erent Re. 162

xi

List of Symbols

Geometric and inertial quantities

d number of spatial dimensions

|C| volume of cell C

|F | area of face F

~xC centroid of C

~xF centroid of F

sFC conventional cell-face ordering sign between C and F
~F unsigned area vector of F
~FC area vector of F outward w.r.t. C

F iC area vector of F outward w.r.t. C (i-th component)

h mesh coarseness indicator (typically: maximum cell-to-cell centroid distance)

MHFV nomenclature and operators

Qh space of cell-averaged scalars

Xh space of face �uxes

X̂h broken space of (one-sided) face �uxes

(·)C degree of freedom for cell C

(·)F degree of freedom for face F

(·)∂C mapping to the boundary faces of C (oriented accordingly where applicable)

(·)X
h

de Rham map in Xh

(·, ·) canonical dot product

〈·, ·〉Qh scalar product in Qh

〈·, ·〉Xh scalar product in Xh

MC local inner product matrix

NC local inner product matrix with convective term

∇GC Gauss gradient approximation on C

xii

∇L,λC least-squares, λFC-weighted gradient approximation on C

∇L,µC least-squares, µC′C-weighted gradient approximation on C

H global scalar product operator

K di�usive �ux operator

D divergence operator

FK hybrid anisotropic di�usion operator

FK,~U,η hybrid anisotropic convection-di�usion-reaction operator

Fν,~U hybrid isotropic convection-di�usion operator (for momentum equation)

G gradient operator (acting on cell-averaged pressure)

D divergence operator (acting on hybrid velocity components)

MHFV variables and quantities

φ cell-averaged generic scalar in Qh

φC cell-averaged generic scalar at cell C

φ̃ hybrid generic scalar

φF hybrid generic scalar at face F

u cell-averaged velocity in Qh

ui cell-averaged velocity in Qh (i-th component)

~uC cell-averaged velocity at cell C

uiC cell-averaged velocity at cell C (i-th component)

ũ hybrid velocity

ũi hybrid velocity (i-th component)

~uF hybrid velocity at face F

uiF hybrid velocity at face F (i-th component)

p cell-averaged pressure in Qh

pC cell-averaged pressure at cell C

pFC pressure reconstructed at face F from cell C

V generic �ux in Xh (di�usive, convective-di�usive or momentum)

VFC generic �ux through F as seen from C

U convecting �ux in Xh

UFC convecting �ux through F as seen from C

UuwFC upwind convecting �ux through F as seen from C

UdwFC downwind convecting �ux through F as seen from C

η cell-averaged reaction coe�cient in Qh

ηC cell-averaged reaction coe�cient at cell C

f cell-averaged generic source term in Qh

fC cell-averaged generic source term at cell C

xiii

f̃ hybrid generic right-hand side

giC cell-averaged i-th momentum source term at cell C

g̃ hybrid momentum right-hand side

g̃i hybrid momentum right-hand side (i-th component)

λFC stabilisation weight for F relative to C

KC cell-averaged di�usivity tensor at cell C

νC cell-averaged kinematic viscosity at cell C

PeFC local downwind Peclet number at F as seen from C

ReF local Reynolds number

Adjoint MHFV nomenclature

J cost/objective function

A Navier-Stokes tangent matrix (Jacobian)

F̃ Jacobian momentum block

M generic mesh morphing operator

m generic mesh morphing right-hand side

rNS Navier-Stokes residual

r̃u momentum residual

r̃u
i momentum residual (i-th component)

rp continuity residual

g∗ adjoint Navier-Stokes right-hand side

g̃u
∗ adjoint hybrid momentum right-hand side

g∗p adjoint continuity right-hand side

ũ∗ adjoint hybrid velocity

p∗ adjoint cell-averaged pressure

α shape parameters

δα displacement applied to shape parameters

x nodal coordinates

δx displacement of nodal coordinates

sA gradient

xiv

List of Abbreviations

AC Arti�cial Compressibility

AD Algorithmic/Automatic Di�erentiation

AL Augmented Lagrangian

ATC Adjoint Transpose Convection

BCPL Block-Coupled

BJC Cell-Based Barth-Jespersen

BJF Face-Based Barth-Jespersen

CAD Computer Aided Design

CAE Computer Aided Engineering

CFD Computational Fluid Dynamics

DDM Domain Decomposition Method

ED Equational Di�erentiation

ENO Essentially Non-Oscillatory

FD Finite Di�erences

FE Finite Elements

FPI Fixed-Point Iteration

FTL FORTRAN Template Library

FV Finite Volumes

FVSG Finite Volumes Scharfetter-Gummel

GD Grad-Div

HFE Hybrid Finite Elements

HMM Hybrid Mimetic Mixed

HTHE Hybrid θ-Scheme

HUPW1 Hybrid First-Order Upwind

HUPW2 Hybrid Second-Order Upwind

HYBC Hybrid Centred

ILU Incomplete Lower-Upper

LBB Ladyshenskaya-Brezzi-Babu²ka

xv

LCO Limit Cycle Oscillation

LSC Least-Squares Commutator

LSQ Least-Squares

LSR Linear Solver Replacement

MFD Mimetic Finite Di�erences

MFE Mixed Finite Elements

MFV Mixed Finite Volumes

MHFV Mixed Hybrid Finite Volumes

MINS Minimal Symmetric

MIXC Mixed Centred

MMS Method of Manufactured Solutions

MPFA Multipoint Flux Approximation

MVE Mixed Virtual Elements

NOC Non-Orthogonal Corrector

ORTN Orthogonal Non-Symmetric

ORTS Orthogonal Symmetric

OVRN Over-Relaxed Non-Symmetric

OVRNA Over-Relaxed Non-Symmetric with Anisotropy

OVRS Over-Relaxed Symmetric

PCD Pressure Convection-Di�usion

PDE Partial Di�erential Equation

PRS1 First-Order Pressure Scheme

PRS2 Second-Order Pressure Scheme

RANS Reynolds-Averaged Navier-Stokes

RMMM Rigid Motion Mesh Morphing

SA Spalart-Allmaras

SHCFP Soft Handle CAD-Free Parametrisation

SIMPLE Semi-Implicit Method for Pressure Linked Equations

SIMPLEC SIMPLE-Consistent

SPD Symmetric Positive-De�nite

SUPG Streamline-Upwind Petrov-Galerkin

TVD Total Variation Diminishing

ULSQR Upwind Least-Squares

VCPL Velocity-Coupled

VNKC Cell-Based Venkatakrishnan

VNKF Face-Based Venkatakrishnan

WENO Weighted Essentially Non-Oscillatory

WLSQR Weighted Least-Squares

xvi

Chapter 1

Introduction

1.1 Context and motivation

Flow control, intended as an attempt to control the mechanical and/or the thermody-

namic state of a �uid in order to achieve a desired purpose [112], has been a practice

of man since ancient times: dams, sluices, canals, valves, ducts etc. are all examples

of �ow control. Applied to the modern �eld of aerodynamics, the primary role of �ow

control often becomes that of reducing the adverse e�ects of some undesirable physical

phenomena connected with the �ow of a �uid.

To provide a concrete example, consider aeronautical �ows: here, the target is usually

the reduction of the resistance to motion of an object moving in a �uid: the drag force

FD or, in non-dimensional terms, the drag coe�cient cD of an aircraft. Drag reduction

not only reduces fuel burn (thus reducing direct operating costs), but also and most

importantly reduces pollution and CO2 and NOx emissions, which has been the focus

of numerous international agreements as well as independent initiatives in the past few

decades due the public's increased awareness of matters related to sustainability and

eco-e�ciency [76]. Noise reduction is also often mentioned in this context. Although

improvement in general has been saturating since the beginning of the 21st century, until

a �game-changer� is found (i.e. a somewhat �revolutionary� aircraft design) �ow control

technologies remain one of the most relevant research areas for aerospace. Examples

include passive techniques (e.g. natural laminar �ow, which aims at delaying transition

to turbulent �ow in the boundary layer by controlling the pressure gradient via appropri-

ate aerofoil shaping; vortex generators, protrusions or bumps on the wing surface which

deliberately trigger turbulence in an attempt to delay �ow separation, hence reducing

pressure drag), and active techniques, requiring an input of energy (e.g. blowing-suction

1

Chapter 1. Introduction 2

holes either injecting or sinking momentum in the boundary layer of an aerofoil, depend-

ing on whether laminar or turbulent �ow is desired; heating-cooling at the aerofoil's

surface, in order to either trigger or delay turbulence). Similar techniques have also been

introduced in trades other than aerospace, such as automotive [142] or wind power [197].

Computer Aided Engineering (CAE) is today one of the primary tools employed in

industrial design processes; in particular the automotive, aviation, space and shipbuild-

ing industries extensively rely on Computational Fluid Dynamics (CFD) - focus of this

thesis - to simulate and predict product performance. The popularity of CAE software,

combined with the need to supplement the design chain with e�cient, robust and pos-

sibly automated procedures towards improvements in �ow control techniques, has given

rise to the �eld of numerical optimisation.

Numerical optimisation has been expanding at an astonishing rate during the last few

decades, in particular for CFD - although there is a constantly increasing emphasis on

the interdisciplinary nature of the �eld [12]. The idea is to make use of CFD analysis

within numerical procedures in order to achieve a desired optimal �ow behaviour in the

simulations and thus, assuming that the computational model is accurate enough, in the

real product. More speci�cally, a numerical optimisation problem aims at determining

the values of a set of design parameters which will optimise the e�ciency of the item

being designed in terms of one or more objective or cost functions, while respecting given

constraints. For instance, for a wind turbine blade a possible formulation of the problem

could be �for a given chord length, �nd the aerofoil pro�le that will minimise the drag

whilst maintaining a given lift value�, or �for a given aerofoil pro�le, �nd the twist of the

blade that will maximise the power production of the turbine�.

The way a numerical optimisation process interacts with CFD depends on the spe-

ci�c approach. So-called zero-order optimisation methods (including iterative stochastic

strategies such as Evolutionary Algorithms [210]) only require evaluation of cost function

values; they are global techniques, ideal in the early stages of the optimisation when the

goal is to explore a large design space - wide ranges of parameter values and combina-

tions - and identify promising areas. They require a large number of CAE simulations per

cycle, hence their feasibility in industrial settings heavily depends on the computational

cost of each run. Substantial costs in CPU time are a notorious drawback of industrial

CFD; therefore, in this context, deterministic procedures and in particular gradient-based

methods [12] are typically a more viable option. These algorithms make use of the gradi-

ent of the cost function with respect to the design parameters (sensitivity) to perform an

iterative local search around a certain design state (see Section 2.1); they are particularly

�tted to the later stages of the optimisation process, or when the starting point is known

to be near-optimal.

Chapter 1. Introduction 3

In gradient-based methods, sensitivity computation for the current state is required

at each optimisation cycle. E�cient and accurate sensitivity analysis is a non-trivial task

that has driven research to produce a variety of approaches in the past three decades

[189]. Amongst them the adjoint method (Section 2.2), pioneered by Pironneau [196]

and Jameson [131], is arguably the best candidate in terms of CPU-time e�ciency: it

allows sensitivity computation at a cost independent of the number of parameters and

proportional to the number of cost functions being considered - typically only a few, if

not just one. The potential bene�ts of adjoint methodologies towards industrial design

processes, which operate under tight constraints in terms of time and resources, are

evident. As a consequence, governmental bodies have recently been receptive to a number

of proposals for research projects intended to advance investigation on the topic whilst

facilitating cooperation between industry and academia.

The present thesis was funded by one of such projects: AboutFlow1, an Initial Train-

ing Network (ITN) - funded by the European Commission - aimed at tackling stability

and robustness issues of adjoint solvers for industrial CFD. The project ran from Novem-

ber 2012 to October 2016, it appointed a total of fourteen Early Stage Researchers (ESR)

across the EU, and it enlisted �ve academic and four industrial partners including ESI

Group2 (France), host institution for the research presented here. AboutFlow was pre-

ceded by the FlowHead3 project (mainly focused on adjoint for automotive applications)

and was followed by the similar IODA4 (concerned with integration of CAD into auto-

mated, adjoint-driven optimisation processes).

1.2 Starting point and objectives

The critical point of the adjoint method lies in the numerical solution of the adjoint (dual)

equation, a linear PDE similar in complexity to the governing �ow equations themselves

(primal - typically the Navier-Stokes equations). The continuous adjoint approach (Sec-

tion 2.2.2) derives the adjoint PDE at the continuous level and then discretises it, while

the discrete approach (Section 2.2.3) derives the adjoint problem directly from the CFD-

discretised primal. Regardless of the approach, solving the adjoint Navier-Stokes is not

straightforward and often su�ers from stability issues. In the continuous case, discreti-

sation schemes for the adjoint require their own stability analysis which is yet to be

fully investigated [122, 181]. In the discrete case, stability of the adjoint is understood

1http://about�ow.sems.qmul.ac.uk/
2https://www.esi-group.com/
3http://�owhead.sems.qmul.ac.uk/
4http://ioda.sems.qmul.ac.uk/

Chapter 1. Introduction 4

to be intimately connected with that of the primal. More speci�cally, when the primal

is solved via a �xed-point iterative algorithm (FPI) and the iterator is inherited by its

adjoint counterpart, convergence of the latter depends on the contractivity of the original

FPI iterator: it will be shown in Section 2.4 how a stalling/stagnating primal solution,

despite being able to produce acceptable CFD results, may lead to a diverging discrete

adjoint.

Considerable progress has been made towards devising robust solution strategies capa-

ble of tackling unstable discrete adjoint systems [47, 75, 243]. The present thesis shares

the same motivation, but follows a di�erent (and complementary) route: the focus is

placed instead on the spatial discretisation scheme of the primal itself, and in particular

on those features that may hamper convergence. The approach is arguably more radical

and less explored by adjoint communities, who generally limit themselves to acknowledg-

ing that, for complex cases, the necessity of full primal convergence places an unrealistic

robustness requirement on conventional �ow solvers [141]. The discretisation schemes

found in industrial CFD codes often feature a number of numerical artefacts - imple-

mented within classical methods such as Finite Volumes (FV) - intended to produce

satisfactory results on models that are challenging in terms of physics and/or geometry;

the introduction of such artefacts comes is some cases at the expense of an only partially

converged solution. In Section 2.4, �ux limiters and Non-Orthogonal Correctors (NOC)

are reported as �tting examples of such artefacts. Hence the primary objective is to inves-

tigate alternative CFD discretisation schemes that are, as much as possible, consistent

and stable without the need for additional numerical fabrications, under the hypothe-

sis that this may indirectly alleviate convergence problems a�ecting the corresponding

discrete adjoint.

To that end, the Mixed Virtual Element (MVE) method [15, 39] is identi�ed as a

promising candidate for a starting point (Section 3.2). MVE is the most recent evolu-

tion of Mimetic Finite Di�erences (MFD), a family of methods originally proposed by

Brezzi, Lipnikov and Shashkov [42] towards the numerical solution of anisotropic di�u-

sion problems featuring complex geometries and/or discontinuous material properties.

MFD/MVE schemes for pure di�usion problems have been extensively investigated over

the last two decades, while the development of convection-di�usion-reaction operators

(especially for convection-dominated regimes) and Navier-Stokes is ongoing. A reference

book on the topic was recently published by Beirão da Veiga et al. [20]. In the context

of this thesis, attractive features of MVE-like schemes include their inherent consistency

and stability which is independent of mesh �quality� in the FV sense (the mesh can indeed

be composed of highly general polyhedral cells, including strongly non-orthogonal faces

and non-convex shapes), as well as their fully implicit nature [16] which removes the need

Chapter 1. Introduction 5

for additional features such as the above-mentioned NOCs, thus facilitating convergence

to stricter tolerances.

Less stringent requirements on mesh quality constitute a further bene�t of MVE for

CFD-based shape optimisation. A gradient-based shape optimisation process needs to

update the shape of the computational boundary at each cycle. Rather than re-meshing

- which is not trivial to automate - it is desirable to adapt the existing mesh to the new

shape whilst respecting an iso-connectivity constraint, i.e. without altering the number

of nodes, faces and cells or the incidence graphs amongst these, which also preserves

consistency of the discrete adjoint sensitivity. The task is usually carried out by mesh

morphers (see Section 6.3). Standard morphers may struggle to maintain FV-adequate

mesh quality in later stages of the deformation process; in such circumstances the mesh-

independent nature of MVE is advantageous. Antonietti et al. [7, 8] demonstrated this

on simple cases of control and shape optimisation problems.

The main axe of research for the present thesis is identi�ed based on these considera-

tions: the primary objective is to derive a spatial discretisation strategy capable of tack-

ling convection-dominated CFD problems of industrial interest whilst exhibiting some of

the desirable traits typical of MVE schemes - consistency, stability, mesh-independence

and the ability to converge fully. The Mixed Hybrid Finite Volumes (MHFV) scheme

presented in the main body of this thesis (Chapters 3 through 5) is developed to that

end. The work is limited to the steady-state, incompressible Navier-Stokes problem, in

order to be able to engage with existing MVE literature and build upon it.

A secondary topic of interest concerns solution algorithms for incompressible Navier-

Stokes. Industrial codes often rely on the so-called SIMPLE-type segregated algorithms

[86, 229], developed speci�cally for Oseen-type problems such as Navier-Stokes (see Sec-

tion 5.2.1). Such schemes are known to su�er from stalling [136, 158]. Modern com-

puting capabilities allow to consider alternative Oseen preconditioning techniques that

were previously deemed unfeasible, often because of excessive memory requirements. If

these novel schemes exhibit better convergence behaviour, then they may have a direct

positive impact on the discrete adjoint robustness issues discussed above. To that end,

the present work outlines the adaptation of some existing algorithms to MHFV.

It is understood that, while the discrete adjoint context provides a motivation and

starting point, the subjects treated in the core of this work are intended to move towards

bene�ts that extend beyond the subject of adjoint-based numerical optimisation, since

improvements on the stability, accuracy and performance of CFD solvers are desirable

regardless of adjoint computation.

Chapter 1. Introduction 6

1.3 Plan of the thesis and contribution

An introduction to the main concepts of the adjoint method (discrete in particular) and

the motivation for the remainder of the thesis are provided in Chapter 2. The MHFV

anisotropic di�usion operator is derived following the principles of MVE in Chapter 3.

MHFV is then extended to convection-di�usion-reaction problems in Chapter 4. The

MHFV steady-state incompressible Navier-Stokes operator is derived in Chapter 5. In

Chapter 6, the attention turns to describing and validating the speci�c methodology

deployed for assembling and solving the MHFV discrete adjoint Navier-Stokes. Chapter

7 illustrates practical examples of full optimisation processes using the MHFV primal

and adjoint solvers. Chapter 8 draws conclusions and outlines areas with potential for

future work.

As mentioned, the main contribution of this thesis consists in assessing how an

improvement on the primal CFD scheme - namely from classical FV to a MVE-like

strategy - impacts the behaviour of its corresponding discrete adjoint. The present work

includes incremental research upon previous literature along several axes, summarised as

follows:

� In Chapter 2 the concept of Equational Di�erentiation (ED) is introduced. Although

not novel per se, ED formalises a speci�c way of deriving discrete adjoints which is

functional in the investigation on solution algorithms carried out in Chapter 6.

� In Chapter 3, an original comparison is drawn between MVE and classical FV and

exploited to suggest a number of novel choices for the weighting coe�cients appear-

ing in the MHFV �ux stabilisation term (Section 3.3.4). The scheme is validated

and an experimental comparison is drawn among the various weight expressions.

� In Chapter 4, the original scheme by Droniou [70] for convection-dominated regimes

is extended to second-order accuracy. A number of FV and FE-inspired stabilisation

strategies are then adapted to the MHFV framework - �ux limiters, Streamline-

Upwind Petrov-Galerkin (SUPG), Weighted Least-Squares (WLSQR) - and a novel

one speci�c to MHFV is introduced: Upwind Least Squares (ULSQR, Section 4.2.5).

Validation and comparisons are carried out on purposely designed test cases.

� In Chapter 5, the Navier-Stokes scheme by Droniou and Eymard [72] is extended

to second-order accuracy for both velocity and pressure variables. Existing solution

algorithms are then adapted to the scheme (Section 5.2), including a MHFV-speci�c

version of the traditional SIMPLEC and the novel Augmented Lagrangian (AL)

preconditioner. Validation and performance are assessed against benchmark cases.

Chapter 1. Introduction 7

� In Chapter 6, the solution algorithms devised for the MHFV primal are adapted to

the adjoint system, and their performance is compared.

The MHFV solver developed for this thesis was coded in ESI Group's in-house FORTRAN

Template Library (FTL) framework [193], a toolbox which supplements the FORTRAN

language with object-oriented and templating capabilities. The project is currently

known internally by the working title MimFlow.

Chapter 2

The Adjoint Method

2.1 Numerical optimisation

Optimisation processes - as described in the introduction - fall into the category of min-

imisation problems, where one seeks to �nd the minimum of a given function within

a certain design space. An optimisation problem in the context of aerodynamics/�uid

dynamics involves:

� an objective or cost function J (e.g. drag force), the function to be minimised;

� a set of design or control variables α (which e.g. control size and shape of a turbine

blade), representing those parameters that can be controlled directly in the design

process;

� a set of state variables W (e.g. velocity, pressure, density);

� a set of governing equations (e.g. the Navier-Stokes equations), relating the value

of state variables to that of control variables;

� a set of constraints (e.g. minimum thickness of the blade, �xed lift value, maximum

chord length).

The present work will deal with shape optimisation problems, where the design vari-

ables de�ne or control the shape of the object being designed; therefore, the terms

�design/control variables� and �shape parameters� will occasionally be used interchange-

ably.

There is a wide range of numerical methods aimed at the solution of minimisation

8

Chapter 2. The Adjoint Method 9

problems. Amongst them are stochastic methods such as Evolutionary or Genetic Algo-

rithms [210]: these, in analogy with the Darwinian evolutionary model, start by generat-

ing several random combinations of design variables, i.e. a generation of individuals, then

select the ��ttest� ones - those which, upon numerical solution of the governing equa-

tions, produce lower values for the cost function - and mutate and cross-breed them in an

attempt to evolve, generation after generation, towards the optimal con�guration. Such

methods however, because of their nature, typically require a large number of evaluations

per generation - easily in the order of thousands for a case with as few as 10-15 design

variables; the number increases very rapidly with the size of the design space. This is

ultimately unfeasible in most CFD applications, where each evaluation of the cost func-

tion requires a full �ow solve and, for industrial cases, each of the �ow solves typically

entails a considerable computational expense [167].

initial guess for
solve � � �

compute �

compute gradient

��

�� ?
YES

found minimum
NOoptimiser:

returns new �

Figure 2.1: Basic �owchart of a generic gradient-based optimisation loop.

Therefore, in the context of industrial CFD optimisation, gradient-based algorithms

are often preferred. The idea is to start with an initial con�guration of design variables

α and, at each cycle, compute ∇J = dJ
dα , i.e. the gradient or sensitivity of the cost

function, in order to iteratively reach a local minimum of J where ‖∇J‖ = 0. The

process is schematically represented in Figure 2.1. Unlike stochastic methods, gradient-

based optimisation only traces a one-dimensional path along a descent direction. If

the �landscape� (i.e. the gradient �eld) is smooth and isotropic, convergence will be

independent of the number of design variables. In practice, many �ne design spaces do

lead to anisotropic gradient �elds and non-smooth behaviour. An appropriate choice

of parametrisation, i.e. a selection of control variables leading to a reasonably smooth

gradient �eld, is then important (but this topic will not be discussed in this thesis).

Bartholomew-Biggs [12] reports the following examples of popular gradient-based

methods:

� Steepest descent method : at each design iteration n the gradient ∇Jn is computed,

and pn = −∇Jn is taken as the direction which causes J to decrease most rapidly;

a line search is performed to �nd the minimum of J along pn, then the process

is repeated until ‖∇J‖ is su�ciently small. The method is intuitive and easy to

implement, but convergence is slow.

Chapter 2. The Adjoint Method 10

� Newton method : J is approximated locally at αn as a quadratic function via a

truncated Taylor series:

J (αn + sn) ≈ J (αn) + sTngn +
1

2

(
sTnHnsn

)
where sn is an arbitrary step in the design space, gn = ∇Jn is the gradient vector

and Hn the Hessian matrix; the direction minimising such a model is thus pn =

−H−1
n gn. A line search is performed along pn (often inexact, i.e. not �nding the

actual minimum but ensuring su�cient reduction of J), then the process is repeated

until ‖gn‖ falls below a set tolerance. The method exhibits quadratic convergence;

however computation of the Hessian and computation of pn are rather expensive.

Besides, the method needs safeguarding where Hn is not positive-de�nite, or else

might converge to a maximum or even diverge.

� Quasi-Newton methods: these are based on the same quadratic approximation as

the Newton method; however, rather than requiring computation of the Hessian,

they construct an approximation of it (or of its inverse directly) and addition-

ally enforce its positive-de�niteness. The advantage is the elimination of Hessian

computation; convergence is found to be super-linear, but slower than that of the

Newton method.

Clearly the blocking factor of any gradient-based algorithm is the gradient computation

itself, which has to be performed at each iteration. Arguably the most straightforward

method is via Finite Di�erences (FD), which allows to compute an approximate direc-

tional derivative of J by introducing a perturbation δαk in the design variables:

∂J

∂αk
≈ J (α+ δαk)− J (α)

δαk
.

FD-based gradient computation is however unfeasible in an industrial CFD context for

the following reason: in order to assemble the full gradient ∇J , one must compute as

many directional derivatives as the number of design variables - each stemming from a

perturbation in direction of one design variable only. Therefore, the assembly of the full

gradient requires computing J(α + δαk), and thus solving the governing equations, for

as many times as the number of design variables. In a situation involving a high number

of parameters (in the order of thousands or greater) and generally very expensive CFD

solves, the computational cost of the FD approach quickly becomes prohibitive.

The FD method also su�ers from the well-known issue of having to choose an appro-

priate step-length δαk: if chosen too large, truncation error will incur; if chosen too

small, round-o� error will incur. The tangent linearisation approach [167] provides a

Chapter 2. The Adjoint Method 11

solution to this problem - i.e. it allows to compute exact directional derivatives - but still

scales with the number of design variables and requires as many extra solves.

Conversely the adjoint method, described in the following section, allows computing

all components of the sensitivity vector ∇J at a cost that is essentially independent of

the number of design variables, and roughly equivalent to that of one extra CFD solve.

2.2 Adjoint-based sensitivity analysis

Adjoint equations for �uid dynamics have been investigated since as early as the 1970's

(see e.g. Pironneau [196]) and subsequently pioneered throughout the 1980's and 1990's,

most prominently by Jameson [131, 132] who, in cooperation with others, applied the

method to optimal control theory and shape optimisation combined with the Euler [201]

and Navier-Stokes [134] equations, developing what is known today as the continuous

adjoint approach (see Section 2.2.2). The adjoint method proved itself to be an incredibly

powerful tool since its early stages, as testi�ed by numerous examples of cost-e�ective

gradient computation for shape optimisation of complex structures for aerodynamics,

such as 2D aerofoils [201], 3D aircraft wings [134] or even complete 3D aircraft con�gu-

rations [202]. More recently, interesting developments have also surfaced for automotive

applications, which up until recent years were lagging behind; notable examples of indus-

trial relevance include shape optimisation of individual car components such as exhaust

systems [122], external car aerodynamics [181, 190] and noise reduction [185]. Adjoint-

based shape optimisation for turbo-machinery applications [228, 242] is also becoming

increasingly popular.

2.2.1 State-of-the-art industrial adjoint CFD

The adjoint approach is nowadays acknowledged as a powerful innovation in optimisation

processes. Considerable e�orts have been made in recent years to improve its feasibility

when it comes to full-sized, complex industrial cases and improve the robustness of the

method, to a point where its inclusion as a standard feature in commercial CFD solvers

and its systematic usage for industrial optimisation cycles is now a reality.

While showing continued interest in academic research advances, the CFD industry

has meanwhile taken steps to be able to provide a �rst generation of mainstreamed, user-

friendly adjoint solvers. Two prominent examples are ANSYS, who currently include

Chapter 2. The Adjoint Method 12

adjoint capabilities in standard releases of their �agship CFD solver Fluent1, and CD-

adapco (recently acquired by Siemens2), who o�er similar features in their multi-physics

tool STAR-CCM+3; both of these are based on the discrete adjoint approach (see Section

2.2.3). On the other hand, a continuous adjoint solver is included in the standard release

of the popular open-source toolbox OpenFOAM4. Several other OpenFOAM-based con-

tinuous adjoint implementations exist, e.g. the one currently maintained by ENGYS5. A

high-performing discrete adjoint based on the Auotmatic Di�erentiation (AD, see Section

2.3.2) of a subset of OpenFOAM has also been developed at RWTH University, Aachen

[223, 224].

There also exist several CAE software companies that, while not yet including adjoint

capabilities in their customer releases, do possess in-house tools which allow them to per-

form adjoint computations as consultants. ESI Group - host institution for the research

presented here - developed the i-Adjoint library [193, 220]: an independent tool capable

of automatically generating a discrete adjoint of a CFD solver with minimal code intru-

sion (through a Finite Di�erencing-based reverse assembly, see Section 6.1.4), provided

that certain user subroutines are available. i-Adjoint in particular is the tool used for

the developments presented in this work, and its functionalities shall be described in

more detail in Chapter 6. Finally, there are also instances of adjoint codes developed

by research partners in conjunction with manufacturing companies, if not directly by

their own R&D departments, and integrated with their in-house CFD solvers; an exam-

ple is the HYDRA6 code (discrete, AD-based), extensively employed by Rolls-Royce7 in

particular for turbomachinery applications.

2.2.2 Formulation of the continuous adjoint equations

The earliest derivation of the adjoint approach, outlined below, was formulated via a

Lagrange multiplier argument [131, 196] operating directly on the original continuous

problem before it is discretised. This is today referred to as continuous adjoint ; Pironneau

[196], Jameson [131, 134], Baysal and Eleshaky [14], Anderson and Venkatakrishnan [5],

are early examples of the derivation of the continuous adjoint �ow equations (Euler and

Navier-Stokes in particular).

1http://www.ansys.com/products/�uids/ansys-�uent
2https://www.siemens.com/
3https://mdx.plm.automation.siemens.com/star-ccm-plus
4https://www.openfoam.com/
5https://engys.com/
6https://www.mpls.ox.ac.uk/research-section/the-hydra-code-rolls-royces-standard-aerodynamic-

design-tool
7https://www.rolls-royce.com/

Chapter 2. The Adjoint Method 13

The cost function J = J (W (α) ,α) is typically a scalar quantity that depends

directly on both the design variables α and the state variables W (also referred to as

�ow variables in a CFD context), the latter being themselves dependent on α through

the governing equations of the problem. A shape perturbation δα results in a change in

J as:

δJ =
∂J

∂W
δW +

∂J

∂α
δα (2.1)

where the �rst term represents the contribution caused by changes in the �ow �eld, and

the second is the change associated directly with the shape modi�cation δα. According

to the principles of control theory, the governing equations of the �ow are considered as

a constraint. The equations are symbolically written as

R (W (α) ,α) = 0 (2.2)

to highlight the dependence of W and α within the �ow domain. Expression (2.2) is

referred to as the primal problem, and it represents the set of partial di�erential equations

(PDEs) modelling the �ow behaviour (e.g. the Euler or Navier-Stokes equations). Since

(2.2) is to be satis�ed for any admissible con�guration of α it follows that, linearising

the constraint about a certain state, it always holds that:

δR =
∂R

∂W
δW +

∂R

∂α
δα = 0 . (2.3)

Adding this constraint to (2.1) via a Lagrange multiplier W ∗, the change in cost function

becomes

δJ =
∂J

∂W
δW +

∂J

∂α
δα−W ∗T

(
∂R

∂W
δW +

∂R

∂α
δα

)
=

(
∂J

∂W
−W ∗T ∂R

∂W

)
δW +

(
∂J

∂α
−W ∗T ∂R

∂α

)
δα .

(2.4)

It is now easily veri�ed that, choosingW ∗ such that it satis�es the dual or adjoint problem(
∂R

∂W

)T
W ∗ =

(
∂J

∂W

)T
, (2.5)

the �rst term in (2.4) vanishes. Hence the change in objective can be expressed as

δJ =

(
∂J

∂α
−W ∗T ∂R

∂α

)
δα (2.6)

and, taking the limit for δα → 0, one obtains the sensitivity of J , i.e. its gradient with

respect to design variables α, required by each optimisation cycle of most gradient-based

algorithms. The approach allows gradient computation at the extra cost of discretis-

ing and solving the adjoint problem (2.5), which is a set of PDEs similar in form and

Chapter 2. The Adjoint Method 14

complexity to the primal problem. The advantage is that (2.6) is independent of the

bothersome term δW , the computation of which would require as many extra primal

solves as the number of design variables, if one were to opt for e.g. a FD approach. This

is where the power of adjoint methods becomes evident: sensitivity computation comes

at a computational cost comparable to that of a �ow �eld evaluation and, as antici-

pated, it is made essentially independent of the number of design parameters - barring

the computation of ∂J
∂α and ∂R

∂α , the cost if which is negligible compared to that of a pri-

mal solve. This is paramount in aerodynamic shape optimisation problems of industrial

interest, where a primal run can incur a signi�cant computational cost and the number of

design parameters can be in the order of millions (potentially, each surface node can be

a design parameter); without the adjoint approach, gradient-based optimisation in such

cases would be practically unfeasible.

2.2.3 Discrete adjoint via linear algebra

In contrast to the continuous method, a second approach known as discrete adjoint starts

by considering the primal as the set of discrete governing equations, rather than the orig-

inal PDE. The Lagrange multipliers approach from the previous section is still applicable

in this case. Alternatively, a discrete adjoint may be derived via a linear algebraic pro-

cedure, as presented by e.g. Giles and Pierce [101] and Müller [167], which is arguably

more compact/straightforward to develop; the procedure is outlined below. In order

not to confuse this speci�c context with the continuous formulation of Section 2.2.2, it is

worth introducing here a di�erent, more speci�c notation for the discrete primal problem:

r (w (α) ,α) = 0 . (2.7)

Here, α represents a �nite set of nα design parameters and w the vector of degrees

of freedom of the discrete primal, i.e. the discrete �ow �eld. For shape optimisation,

the choice of α could fall in principle on the coordinates of all mesh nodes lying on the

surface to be optimised, which is sometimes referred to as the in�nite-dimensional problem

[167]. Such a choice allows each surface node to move independently thus maintaining

the richest possible design space, but it is likely to violate practical feasibility of the

�nal shape and/or aesthetic constraints as the optimisation progresses. It is therefore

common practice to select shape parameters di�erently, e.g. as a set of �handle� nodes

that control surface deformation whilst enforcing a certain degree of smoothness [148],

or as CAD-based parameters [115, 172, 204, 241, 245].

Assuming that the problem at hand counts a total of nw degrees of freedom for

the discrete state variables, then w is a vector of size nw belonging to the �nite space in

Chapter 2. The Adjoint Method 15

which the discrete state variables are de�ned, and r stands for the nw-sized residual vector

resulting from the operator - typically non-linear for CFD - arising from the discretisation

of the �ow equations. In other words, (2.7) represents the residual vector that a CFD

solver drives to zero when solving for a steady-state w. As expressed in (2.7), r depends

on the discrete �ow �eld w as well as on the set of nα shape parameters α. Once again,

according to the principles of control theory, the discrete primal (2.7) acts as a constraint

to be satis�ed regardless of the value of α, a constraint that can be written in linearised

form as
∂r

∂w

∂w

∂α
= − ∂r

∂α
(2.8)

or, in compact notation:

AV = F . (2.9)

On the left-hand side of (2.9) one can identify the nw×nw matrix A = ∂r
∂w as the Jacobian

of the primal system about a converged state w satisfying (2.7), and the nw ×nα matrix

V = ∂w
∂α representing the change in each degree of freedom of w caused by a change in

each shape parameter in α. On the right-hand side, the nw × nα matrix F = − ∂r
∂α holds

the (negative) partial derivatives of the residual vector with respect to a shape change,

i.e. the direct dependency of r on α. Introducing J as the discrete cost function

J = J (w (α) ,α) , (2.10)

its sensitivity with respect to α:

dJ

dα
=
∂J

∂α
+
∂J

∂w

∂w

∂α
(2.11)

can be rewritten as
dJ

dα
=
∂J

∂α
+ gTV (2.12)

where g =
(
∂J
∂w

)T
is the (transposed) vector of partial derivatives of J with respect to the

discrete �ow variables w. The dual (adjoint) problem is then introduced; in a discrete

framework, it takes directly the form of a linear system:(
∂r

∂w

)T
w∗ =

(
∂J

∂w

)T
i.e.

AT w∗ = g

(2.13)

with w∗ being the discrete adjoint �eld. If a w∗ is found that satis�es (2.13), then the

following equivalence:

gTV =
(
ATw∗

)T V = (w∗)T AV = (w∗)T F (2.14)

Chapter 2. The Adjoint Method 16

implies that the sensitivity vector (2.12) can alternatively be computed as

dJ

dα
=
∂J

∂α
+ (w∗)T F . (2.15)

The advantage of using the dual formulation becomes clear when comparing the two

sensitivity expressions (2.12) and (2.15). The former requires knowledge of matrix V =
∂w
∂α , which must be determined such that constraint (2.9) is satis�ed; in practice, this

means solving nα linear systems, with each solution providing a column of V. The

adjoint sensitivity, on the other hand, only requires knowledge of the adjoint �ow �eld

w∗ (which is obtained by solving the adjoint system (2.13)) and the assembly of terms ∂J
∂α

and (w∗)T F = − (w∗)T ∂r
∂α which, as mentioned in the continuous scenario, is inexpensive

compared to a primal solve. Therefore, the gradient of J is obtained at the cost of solving

one linear system of the same size and similar complexity as the primal, independently

of the number nα of shape parameters.

The discrete adjoint as outlined above assumes the presence of only one cost function

J , and therefore only one gradient to be computed. This assumption simpli�es the

argument and re�ects most real-life optimisation problems, where typically the objective

is to either minimise one quantity (such as drag, pressure drop, etc.) or, in the case of

multi-objective optimisation, a combination of two or more which, in practice, reverts to

minimising a single cost function. This is however, from a mathematical viewpoint, a

speci�c case of a more general formulation involving nJ cost functions. If the goal was to

compute gradients of each J separately, then the sensitivity dJ
dα and the term g in (2.12)

would algebraically be represented by nJ × nα matrices. This would give rise in (2.13)

to nJ adjoint systems, to be solved for nJ adjoint �elds w∗ (i.e. one adjoint problem

per cost function). In the extreme case of a problem featuring several cost functions and

only one shape parameter, expression (2.9) would reduce to a single linear system to be

solved for V (now a vector), and subsequently all nJ sensitivities could be computed at

once via (2.12) at a cost essentially independent of nJ itself. Such an approach (tangent

linearisation) would therefore be more advantageous when dealing with a case with fewer

design parameters than cost functions (nα � nJ). However, as stated above, in a typical

CFD shape optimisation application it is found that nα � nJ : typically one cost function

only, against a large number of shape parameters; in the in�nite-dimensional case, where

α represents the coordinates of all surface nodes, nα could be in the order of millions.

This highlights once again the superiority of the dual/adjoint approach and its potential

in �ow optimisation problems of industrial interest.

Chapter 2. The Adjoint Method 17

2.2.4 Continuous vs. discrete adjoint

As mentioned, the continuous adjoint approach operates at the level of the original PDE

and yields an adjoint equation (2.5) also in the form of a set of PDEs which requires a

suitable discretisation in order to be solved numerically. Conversely, a discrete adjoint

starts with the already discretised primal and leads directly to the formulation of the dis-

crete adjoint problem in the form of a linear system (2.13). Hence the continuous adjoint

follows a di�erentiate-then-discretise path, while the discrete adjoint follows discretise-

then-di�erentiate, as shown in Figure 2.2.

continuous primal

continuous adjoint

discrete primal

discrete adjoint

differentiate

discretise

differentiate

discretise
solve

Figure 2.2: Di�erent paths to adjoint derivation: continuous (purple) and dis-
crete (green).

Both paths ultimately produce a linear discrete adjoint operator, but they do not

commute: the produced adjoint system will be di�erent, and so will be the sensitivity

vector. In terms of gradients, the di�erence between the two can be expressed as stated

by Nadarajah [174]: a continuous adjoint will compute the inexact gradient of the exact

cost function, while a discrete adjoint will produce the exact gradient of the inexact cost

function. To clarify: the continuous approach relies on a formulation of the dual problem

(2.5) in the form of a set of PDEs, which in turn leads to the exact continuous expression

of the adjoint sensitivity (2.6) (under the assumption that the cost function J is indeed

continuously di�erentiable with respect to α). The adjoint problem itself takes a form

similar to that of the primal, meaning that if the primal is a set of PDEs for which the

analytical solution cannot be found, the same will be true for its adjoint counterpart.

The adjoint problem will thus have to be discretised and solved numerically, typically

via discrete operators and solution algorithms similar to those used for the primal; this

introduces a discretisation (truncation) error in the computed adjoint �eld W ∗, and this

error is ultimately re�ected in the gradient computed via (2.6). Conversely, the discrete

approach leads to an adjoint formulation which is already in a discrete form - the linear

system (2.13). Assuming that this system can be solved down to an arbitrarily small

tolerance, then the sensitivity computed via (2.15) will be the exact gradient of the

inexact (discrete) cost function J (2.10).

Either approach has its relative merits and drawbacks, extensively discussed in the lit-

erature [100, 167, 173, 174]. Despite the dichotomy being strongly marked in the adjoint

Chapter 2. The Adjoint Method 18

community, attempts have been made to bridge the gap between continuous and dis-

crete adjoint by showing theoretical asymptotic equivalence between the two on in�nitely

re�ned meshes, at least for certain CFD discretisation schemes [133, 194]; continuous-

discrete hybrid approaches have also been developed [217]. In terms of implementation

a continuous adjoint seems to be a favourable choice since, once the dual problem is

formulated at a PDE level, a well modularised CFD library will allow a developer to

write an adjoint solver with relative ease by recycling data structures, discrete operators

and solution algorithms used in the primal solver. There is of course the caveat that,

beforehand, one must analytically derive not only the dual PDE but also the dual bound-

ary conditions, as shown by e.g. Giles et al. [100]. While the duals of the most common

continuous operators and boundary condition types do not pose an issue and their deriva-

tion can be found in the literature, this is not the case when e.g. a non-standard operator

or new boundary condition type is added to the primal solver and thus its continuous

adjoint counterpart must also be derived, which requires some lengthy and error-prone

preliminary work. A typical example in CFD is the implementation of turbulence mod-

els for Reynolds-Averaged Navier-Stokes (RANS), which usually entails the addition of

extra PDEs to the problem and potentially new types of boundary conditions as well,

such as when a wall function approach is employed. Considerable work in this sense was

carried out recently notably by Giannakoglou's research team at the National Technical

University of Athens (NTUA) [184, 186].

When dealing with discrete adjoints, on the other hand, deriving the Jacobian of a

discrete operator is arguably more straightforward than a continuous one and is attainable

even by the less analytically skilled developers, since it often just requires familiarity with

derivative expressions of basic mathematical operations; it is however easily as error-prone

(if not more) than the continuous case. Hand-derivation does require a full thorough

knowledge of the discrete operators featured in the primal solver; there are however

alternative ways of assembling the adjoint system (2.13), such as Finite Di�erences or

Algorithmic/Automatic Di�erentiation (see Section 2.3), which do not require any hand-

derivation at all and can be automated.

Some other practical aspects to be taken into account when comparing continuous

and discrete adjoint are:

� Code maintenance: the continuous approach presents considerable di�culties in this

sense. Each time a new feature - a new boundary condition, a new model, a new

equation, etc. - is added to the primal, the adjoint solver has to be manually updated

after deriving and discretising the continuous adjoint of such feature. Similar issues

arise with a hand-derived discrete adjoint with the addition that, in this case,

modi�cations of the discretisation scheme itself must be taken into account as well,

Chapter 2. The Adjoint Method 19

lest the adjoint code no longer produce derivative values consistent with the primal.

An automatically generated discrete adjoint, however, is by de�nition not a�ected

by this. It should be stressed from now that �automated� does not necessarily imply

the use of Automatic Di�erentiation tools (described in Section 2.3.2), but rather

any process that aims at assembling the discrete adjoint system without resorting

to hand-derivation - hence without explicit knowledge of primal operators.

� Boundary conditions: in a continuous context, the adjoint of each type of boundary

condition must be derived by hand. In a discrete context, treating boundary condi-

tions is arguably more straightforward in the sense that, once applied in the primal

system, their consistent adjoint counterparts will naturally appear in the Jacobian

- and therefore in the adjoint system - and, in principle, no speci�c treatment is

required. Some literature [98, 167] however does discuss the treatment of hard

Dirichlet boundary conditions - the case of boundary values being enforced directly

on a subset of the degrees of freedom of the solution �eld, as in CFD node-based or

face-based solvers. In this scenario, the degrees of freedom corresponding to Dirich-

let boundaries are e�ectively eliminated from the problem and the right-hand side

augmented accordingly. If the primal solver takes care of the extraction, namely

by zeroing all matrix entries linking any other row of the residual expression to

a Dirichlet boundary, then it will be re�ected in the adjoint system. If not, then

special care must be taken: at the boundary, the adjoint �eld takes value ∂J
∂wD

(wD being the imposed value), which may scale very di�erently with respect to the

internal adjoint �eld and hence produce strong oscillations; in turn, convergence

may be impaired or even inhibited. Giles et al. [98] provide guidelines for treating

such cases.

2.2.5 Physical interpretation of adjoint �elds

It has been pointed out [101, 167] how adjoint �elds lend themselves to a physical inter-

pretation. This is hereby illustrated in the discrete adjoint case, but the same reasoning

can be extended to the continuous adjoint. Let a source term t be added to the discrete

primal (2.7):

r (w (α) ,α) = t . (2.16)

Di�erentiating the cost function J with respect to t gives

dJ

dt
=
∂J

∂α

∂α

∂t︸︷︷︸
=0

+
∂J

∂w

∂w

∂t
(2.17)

Chapter 2. The Adjoint Method 20

where the �rst term is null since the parameters α do not depend on t. Similarly,

di�erentiating the primal residual expression (2.16) leads to

∂r

∂w

∂w

∂t
+
∂r

∂α

∂α

∂t︸︷︷︸
=0

= I , (2.18)

(where I is the nw × nw identity matrix), i.e.

∂w

∂t
=

(
∂r

∂w

)−1

. (2.19)

Replacing now (2.19) in (2.17) and transposing yields(
dJ

dt

)T
=

(
∂r

∂w

)−T (∂J
∂w

)T
(2.20)

and a comparison with the adjoint system (2.13) leads to the conclusion:

w∗ =

(
dJ

dt

)T
. (2.21)

The adjoint �eld w∗ thus quanti�es the (�rst order) response of J to the introduction

of t in the primal. It reveals how an in�nitesimally small source term in the governing

equations is transferred to an in�nitesimal change in the cost function J , indicating the

direction of the locally optimal source term that should be added to the primal in order to

reduce the value of J . The physical interpretation of the perturbation is dictated by the

nature of the primal equation being considered: for instance, for the momentum equation

it will be dimensionally consistent with a force, and the resulting adjoint velocity �eld

will provide the (negative) direction of the optimal external force that should be exerted

on the �ow to reduce J .

Figure 2.3 is an example of a drag-adjoint velocity �eld ~U∗ (magnitude contour)

around a cylinder immersed in a low-Re �ow �eld, constrained via the incompressible

Navier-Stokes equations: locations where the magnitude of ~U∗ is larger correspond to

locations where the introduction of an in�nitesimal perturbation (i.e. an impulse intro-

duced as source term) will result in greater changes in terms of drag; the direction of

such perturbation will be determined by the direction of ~U∗ itself, not shown in �gure.

Therefore, by observing an adjoint �eld one can gain some physical insight into the

dynamics of a �ow that might be di�cult to learn from observing the �ow itself. However,

from an engineering viewpoint the adjoint state on its own is only of limited relevance;

a designer will typically be interested in computing the sensitivity of the cost function

Chapter 2. The Adjoint Method 21

Figure 2.3: Magnitude of the drag-adjoint velocity �eld around a cylinder,
Re = 20 [235].

with respect to a set of variables that can be directly controlled, i.e. the design param-

eters α. This sensitivity is given by the product of the adjoint solution with the source

term ∂r
∂α induced by a design variable as it arises in (2.15) [167]; this further clari�es

the role of adjoint variables as transfer weights, relating a change in cost function to a

�eld perturbation and down to the change in design variables that would cause such a

perturbation.

2.3 Practical aspects of discrete adjoints

As mentioned in Section 2.2.4, one of the most attractive features of discrete adjoints is

the fact that their assembly can be automated, meaning that modifying the primal does

not require any extra work on the adjoint side. The present work shall focus extensively

on modi�cations of the primal intended to improve certain properties of the corresponding

adjoint; in fact, an entire primal CFD solver will be developed de novo for this purpose.

For this reason, the discrete adjoint is hereby chosen as the preferred approach in the

context of this thesis. The following is a preliminary review of some practical aspects of

discrete adjoint implementation.

2.3.1 Algorithmic Di�erentiation

The concept of Algorithmic Di�erentiation (AD) is closely associated with discrete adjoint

code development. Griewank and Walther were at the forefront of the theoretical devel-

opments of AD, and authored the most comprehensive reference book on the topic [108].

The key idea of AD is to view an algorithm, or a computer program, no matter how com-

Chapter 2. The Adjoint Method 22

plex and lengthy, as a sequence of simple operations involving elementary mathematical

functions, each having a well known analytical derivative expression. By computing the

derivative value of each operation and applying the chain rule of di�erentiation to the

whole sequence, one can obtain the derivatives of the �nal result with respect to a set

of input variables. This is applicable to the task of computing cost function sensitivities

in gradient-based CFD optimisation: the computer program is the CFD solver itself, the

�nal evaluated quantity is the cost function J , and the set of input variables are the

design parameters α.

The concept is clari�ed here following guidelines by Hascoët [117]. Considering a

program that takes as input a vector-valued quantity α = α0 and performs a series of

np operations pk to ultimately compute a (vector) quantity j = p(α0), such a sequence

of operations can be written as

j = pnp ◦ pnp−1 ◦ . . . ◦ p1 (α0) (2.22)

where �◦� denotes function composition. Notice that expression (2.22) takes into account

the generic case involving multiple cost functions, i.e. j is an array of size nJ . As a

consequence, the required sensitivity of j is in fact a nα×nJ Jacobian matrix ∇j, its i-th
row holding all gradient components of the i-th cost function with respect to α. Denoting

by yk a vector representing the intermediate state of all program variables resulting from

the k-th operation, i.e.

yk = pk ◦ pk−1 ◦ . . . ◦ p1 (y0) (2.23)

with y0 = α0, and knowing the derivative expression p′k of each statement pk, a directional

derivative j̇ in direction ḋ can be evaluated at α = α0 by applying the chain rule:

j̇ = p′np
(
ynp−1

)
· p′np−1

(
ynp−2

)
· . . . · p′1 (y0) · ḋ . (2.24)

The direction ḋ is evidently a vector belonging to the design space of α and is referred

to as the seed of the di�erentiation chain, i.e. the vector of partial derivatives of each

element of α with respect to a single scalar variable. Hence, choosing a ḋ corresponding

to the direction of one element αi of α, i.e. a null vector except for ḋi = 1, the quantity j̇

evaluated via the derivative chain will be an array holding the partial derivatives of each

element of j with respect to parameter αi, evaluated at α = α0. In other words, when the

chain is seeded as described, a single evaluation of (2.24) yields the partial derivatives of

all cost functions with respect to one single design variable, i.e. a column of the Jacobian

∇j. By seeding (2.24) with the direction of each αi, the full sensitivity Jacobian can thus

be assembled. The computational cost of this operation is easily estimated: assuming

that evaluating the derivative value p′k of each expression pk is roughly as costly as

Chapter 2. The Adjoint Method 23

evaluating the expression itself (which is true for most common operators and functions),

and noticing that each original evaluation pk still needs to be performed in order to

obtain intermediate values yk, then a full evaluation of (2.24) comes at approximately

twice the cost of a run of the program itself, and therefore in the same order of magnitude.

However, since a computer program evaluates (2.24) from right to left, i.e. starting from

the seed, a full sensitivity computation would require evaluating (2.24) for as many times

as the number of design variables; this process, known as forward-mode AD, is essentially

the AD equivalent to the direct sensitivity computation de�ned by (2.12) via (2.9), and

su�ers from the same obvious practicality issues in engineering applications of industrial

interest, where costly CFD solves and large numbers of shape parameters make the

process prohibitively expensive in terms of runtime.

The concept of forward-mode AD can be further clari�ed via a simple example. The

following pseudo-code for the subroutine COST contains the sequence of instructions eval-

uating function J(x1, x2) = sin2 (x1) + cos2 (3x2):

Example 2.1.

SUBROUTINE COST(→x1,→x2,←J)

y1 = sin(x1)

y2 = y1*y1

y3 = 3*x2

y4 = cos(y3)

y5 = y4*y4

J = y2 + y5

END

where �→� and �←� denote input and output arguments, respectively. Applying the

concepts of forward-mode AD to di�erentiate the output J with respect to inputs x1 and

x2 yields:

Example 2.2.

SUBROUTINE DCOST(→x1,→dx1,→x2,→dx2,←J,←dJ)

y1 = sin(x1) ; dy1 = cos(x1)*dx1

y2 = y1*y1 ; dy2 = 2*y1*dy1

y3 = 3*x2 ; dy3 = 3*dx2

y4 = cos(y3) ; dy4 = -sin(y3)*dy3

y5 = y4*y4 ; dy5 = 2*y4*dy4

J = y2 + y5 ; dJ = dy2 + dy5

Chapter 2. The Adjoint Method 24

END

which is essentially a repetition of each instruction followed by its di�erential expres-

sion. The reader can easily verify how, for instance, seeding (initialising) dx1 = 1 and

dx2 = 0 returns in dJ the value of ∂J
∂x1

.

An alternative is reverse-mode AD. Let the scalar-valued function

j̄T · j = j̄T · p (α0) , (2.25)

i.e. a linear combination of components of j with weighting vector j̄, be considered. After

transposition, its gradient d̄ results in

d̄ = d̄ · p′T (α0) = p′T1 (y0) · . . . · p′Tnp−1

(
ynp−2

)
· p′Tnp

(
ynp−1

)
· j̄ . (2.26)

In this instance, the rightmost term j̄ constitutes a seed related to cost functions, rather

than design variables. Hence, in analogy with what observed for (2.24), the derivative

�direction� is now �xed in the space of j and the resulting vector d̄ may be interpreted

as the sensitivity with respect to α, evaluated at α = α0, of some combination of cost

functions weighted via j̄. Therefore, by seeding (2.26) with a null vector except for

j̄i = 1, the computed d̄ will hold the full gradient of the i-th cost function with respect

to all design variables, i.e. the i-th row of the sensitivity Jacobian ∇j. Since, again, a

computer program evaluates (2.26) from right to left, the �rst AD computation refers

to the transpose of p′np , i.e. the derivative expression of the last operation performed by

the original program. The transposed di�erentiation chain then accumulates derivative

values �in reverse� (hence the name reverse-mode), with p′T1 (y0) being evaluated last.

Reverse-mode AD thus requires nJ evaluations of (2.26) in order to compute the full

Jacobian ∇j, at a CPU cost that is roughly equivalent to that of nJ runs of the original

program, independently of nα. It is thus a viable option for problems with few objectives

but many shape parameters. There is an evident parallelism between reverse-mode AD

and discrete adjoint sensitivity analysis as de�ned by (2.15), which is why a code produced

by reverse-mode AD is usually referred to as adjoint code.

As an example, reverse-mode AD is applied to the pseudo-code from Example 2.1. In

this case the di�erentiated subroutine is:

Example 2.3.

SUBROUTINE COSTB(→Jb,↔x1b,↔x2b)

y5b = 1*Jb

y2b = 1*Jb

Chapter 2. The Adjoint Method 25

y4b = 2*y4*y5b

y3b = -sin(y3)*y4b

x2b = x2b + 3*y3b

y1b = 2*y1*y2b

x1b = x1b + cos(x1)*y1b

END

Assuming that a forward sweep of the original subroutine was performed and inter-

mediate y values stored, the reverse-di�erentiated code produces derivative values in x1b

and x2b. Seeding Jb = 1 (and initialising to zero x1b and x2b) leads, with a single

evaluation, to the computation of the complete gradient of J .

When multiple routines are called by the main program, the computational graph

for reverse-AD routines is a backwards re�ection of the primal graph: it starts with

the di�erentiated routine of the last primal instruction and goes through the call tree

in reverse, up to the input variables. Like for forward-mode, the computational cost

associated with a reverse-di�erentiated procedure is in the same order of magnitude as

the original routine. In fact Griewank shows that, under reasonable assumptions, �the

evaluation of a gradient requires never more than �ve times the e�ort of evaluating

the underlying function by itself� [108]; this bound includes the cost of �storing� and

�fetching� the required intermediate variables.

Besides being a powerful tool for implementing an adjoint code, reverse-mode AD also

sheds an interesting light on the matter as it allows to determine which output depends on

which input, and to what value. It has been observed [167] how the backwards structure

typical of an adjoint code leads the following interpretation: while a direct sensitivity

analysis (or forward-mode AD) answers to the question: �If a change is applied to a

design parameter, how does it a�ect all cost functions?�, the dual/adjoint approach (or

reverse-mode AD) views the problem in reverse, i.e. �If a perturbation is present in a cost

function, how does it arise from perturbations in the design parameters?�.

2.3.2 Automatic Di�erentiation

In principle, application of Algorithmic Di�erentiation to a piece of code - in both forward

and reverse-mode - requires no knowledge of what the code is computing as long as the

input and output variables are clearly de�ned. Provided that the primal source code is

accessible, one may proceed to di�erentiate each instruction as shown in the examples

in Section 2.3.1. The process is mechanical, tedious and time-consuming. However, and

more importantly: the process is rule-based and thus can be automated.

Chapter 2. The Adjoint Method 26

The mechanical nature of AD has driven research e�orts towards the development of

so-called Automatic Di�erentiation tools, also known by the initialism AD, often stand-

ing for either Algorithmic and Automatic Di�erentiation interchangeably. As the name

suggests, AD tools are software facilities that automatically produce the di�erentiated

version of a piece of code they are fed with; the developer only needs to provide the code,

de�ne the relevant input and output variables (design parameters and cost functions,

respectively), and specify whether forward or reverse-mode is sought. There are two

categories of AD tools: source transformation and operator overloading. Source trans-

formation modi�es the primal source code by adding variables holding derivative values

and lines of code to evaluate them (the code snippets shown in Examples 2.2 and 2.3 are

examples of forward and reverse-mode source transformation); operator overloading in

forward mode replaces �oating point variables with an augmented type which additionally

stores a di�erentiated value such that, for each operand acting on the original variable, its

corresponding derivative operand will act on the additional one, while in reverse mode it

keeps track of primal operands and results on a �tape� which is subsequently interpreted

in reverse to produce the adjoint. The online community portal Autodi�.org8 provides

an exhaustive list of AD tools currently available and o�ers an overview of recent trends

in the �eld.

Reverse-mode AD is indeed a powerful tool for considerably reducing the workload

of coding the discrete adjoint of a legacy CFD solver. Some of its drawbacks - and

state-of-the-art solutions - should also be mentioned:

� Memory consumption: as highlighted by the example in Section 2.3.1, values of

primal variables may be needed in the adjoint run; therefore, reverse-mode AD

requires in principle the full trajectory of the original code to be either stored or

recomputed, which in naïve implementation may lead to prohibitive memory con-

sumption or increased CPU time, respectively. Checkpointing is often put forward

as a suitable trade-o�: snapshots of the memory state are stored at given intervals

(checkpoints) during the primal run; the reverse run then computes the required

values by restarting the primal from the closest checkpoint. Checkpointing is also

essential in large transient CFD simulations, where knowledge of the states at each

time-step is necessary regardless of whether or not AD is used. Considerable e�orts

have been made, notably by Griewank and Walther [106, 107], in order to iden-

tify the theoretically ideal way of distributing checkpoints along the timeline of a

program. Several other practical checkpointing strategies [123, 236] have also been

proposed. Some AD tools can further optimise memory usage via activity analysis

[118], i.e. by identifying those variables whose di�erentiated counterparts would

8http://www.autodi�.org

Chapter 2. The Adjoint Method 27

hold null or otherwise useless values.

� Iterative processes: primal codes often perform �xed-point iterations (FPI) to evalu-

ate non-linear functions, starting from an initial guess until a convergence criterion

is satis�ed. It has been observed [55, 56, 96] that, in this case, a �brute-force�

application of the AD concept (i.e. the line-by-line di�erentiation of each primal

statement) can lead to erroneous results: the di�erentiated loop would be exe-

cuted for as many iterations as the primal, which is an arbitrary number (since it

depends on the initial guess) and therefore would not not guarantee convergence

of derivative values. Besides, the reverse-AD code would need to store all inter-

mediate values occurring at each cycle, which is unnecessary since FPI loops are

path-independent processes (i.e. only the converged value, and thus its derivative,

matters). State-of-the-art AD avoids brute-force di�erentiation of FPIs thanks to

the strategy presented by Christianson [56]: if the primal features an FPI solv-

ing for w such that Ψ (w (y) ,y) = 0, then graph construction and taping are

switched o� during the iterative procedure and, in the reverse-AD code, the loop

is replaced by the adjoint equation:
(
∂Ψ
∂w

)T
w∗ =

(
∂J
∂w

)T
, with the Jacobian ∂Ψ

∂w

evaluated at the converged w; it then follows dJ
dy = ∂J

∂y − (w∗)T ∂Ψ
∂y , after which the

conventional reverse-mode AD process is resumed. The article provides a recipe for

building ∂J
∂w and dJ

dy using AD, and points out that any suitable strategy (iterative

or not) may be considered for solving the adjoint equation. One such strategy is

suggested by the same author in an earlier publication [55] as a way of automating

the adjoint solution as well: if w = Φ (w,y) is the primal FPI iterator used to solve

Ψ (w,y) = 0, then an adjoint iterator ∂Φ
∂w may be obtained by reverse-di�erentiating

a single primal iteration after convergence, to be used in an adjoint FPI of the form

w∗,n+1 =
(
∂J
∂y

)T
+
(
∂Φ
∂w

)T
w∗,n. This approach essentially generates the adjoint

version of the primal FPI solution algorithm. An important result shown by Chris-

tianson is that, if the primal iterator is well behaved (attractive), then the adjoint

FPI is guaranteed to converge, and its asymptotic rate of convergence is the same

as that of the primal.

� Closed-source function calls: a primal may make use of procedures from third-party

libraries whose source code is not available and therefore cannot be submitted to

AD tools. In this case, the user must gain knowledge of the corresponding discrete

adjoint procedure and include it manually in the di�erentiated code. E�orts are

being made by AD tool developers to automate this process, where possible. Linear

Solver Replacement (LSR) is a typical example: some AD tools include directives

allowing the user to identify a location where the primal calls an external linear

algebra library to solve a linear system; the user needs only specify the relevant

Chapter 2. The Adjoint Method 28

inputs and outputs, and the tool automatically replaces the solve with its adjoint

counterpart. It should also be mentioned that, even in the open-source case, it is

often ine�cient/illogical to reverse-di�erentiate through a linear solver; for instance,

an iterative linear solver should be submitted instead to a treatment similar to the

one for FPIs described above.

� Code preparation: the automatic nature of AD does not imply that the tool will

always work �out of the box�. This is notably the case when dealing with commercial

legacy codes, which often contain a number of non-di�erentiable code statements

and language features (data structures, memory management, input/output han-

dling, etc.) unsupported by AD; these need to be manually rewritten or eliminated.

Some human intervention is also required if the goal is to improve the e�ciency of

the AD-generated code - speci�cally in reverse mode - which in turn requires in-

depth knowledge of the AD tool itself (to that end, several techniques are discussed

by Müller and Cusdin [64, 168]).

2.3.3 Equational Di�erentiation

The remarks from Section 2.3.2 make it clear that applying reverse-mode AD indiscrim-

inately to an entire CFD code (the �brute-force� approach) is not only impractical, but

also highly ine�cient - notably in terms of memory footprint - and not always logical.

In practice, this is not how AD is applied today to full CFD codes. Isolated parts of the

primal are submitted for AD treatment instead: the outputs of the resulting di�erenti-

ated routines are then interpreted in terms of linear algebra [97], and these routines are

assembled by a hand-written driver code to produce the full adjoint solver. Despite this,

when using AD, one risks focusing on the algorithmic premise of the method (i.e. AD

di�erentiates a computer program line-by-line, a process which is rule-based and thus

automatable) and losing sight of the corresponding equations being solved. This may

lead to consider the AD approach as a �special case� of discrete adjoint which operates

at the code level and is agnostic with respect to what is being solved, or to view AD as

the only viable way of obtaining a discrete adjoint code automatically.

To avoid that risk, the present work advocates the Equational Di�erentiation (ED)

philosophy (as named by Pierrot [195]). ED suggests developing discrete adjoints within

a framework where the distinction among equations, algorithms and coding tools is clear.

In other words, it encourages the developer to maintain the separation between the what

and the how : what the equations to be solved are, how they are solved and how the

required terms are assembled in practice. It should be stressed that ED is not intended

to introduce any new concepts: on the contrary, it imposes strict adherence to each step

Chapter 2. The Adjoint Method 29

outlined in the original de�nition of discrete adjont: obtain a discrete adjoint solution

which satis�es the adjoint system (2.13), then compute sensitivity through (2.15). While

ED demands these steps to be clearly distinguishable in the code, it does not impose any

constraints on the strategies and tools used for the assembly of the adjoint system (which

indeed may be done by AD, see below), on whether or not the process is automated, or

on the selected solution algorithm. The advantage - speci�cally in a research setting - is

that the user can switch and compare between strategies with relative ease: for instance,

the freedom of choice on solution algorithms allows to investigate a number of strategies

for the adjoint system (see Section 6.2) independently of how the primal is solved.

Any discrete adjoint code which exhibits this kind of �exibility �ts within the ED phi-

losophy; several instances can de facto be found in the literature. An exemplary imple-

mentation is the one presented by the DOLFIN-adjoint9 project: the approach looks

at the primal as a sequence of equation solves; in the FEniCS10 development frame-

work, this sequence is written in a high-level symbolic representation; DOLFIN-adjoint

takes advantage of this abstraction to automatically derive the corresponding sequence

of adjoint equations at the same level of abstraction (using AD-generated routines where

necessary), with the declared objective of maintaining a �clean separation between math-

ematical intention and computer implementation� [85].

Three ED-compatible implementations are hereby named and described:

� ED1 - hand-derived discrete adjoint : arguably the most transparent strategy, it

consists in deriving analytically the expressions corresponding to each entry of

the Jacobian ∂r
∂w , the adjoint right-hand side ∂J

∂w , the matrix ∂r
∂α and the direct

sensitivity ∂J
∂α , and implement routines that assemble them explicitly. The adjoint

system is then solved via any suitable algorithm. Examples of hand-derived descrete

adjoints include that presented by Giles et al. [98] and the NASA FUN3D11 code. As

mentioned before, the approach requires full knowledge of the residual expression, or

at least access to the source code from which it can be deduced. Manual derivation

is arguably the most e�cient strategy in terms of both memory footprint and

CPU time, but the derivation process is lengthy, error-prone and, as observed by

Nadarajah [173], it quickly grows in complexity along with the underlying CFD

schemes. It is also a�ected by maintenance issues because, each time a new scheme

or feature is implemented in the primal which modi�es the residual expression, its

corresponding relevant derivatives have to be implemented in the adjoint assembly

routines, which is problematic in an industrial context where several developers,
9http://www.dol�n-adjoint.org

10https://fenicsproject.org/
11https://fun3d.larc.nasa.gov/

Chapter 2. The Adjoint Method 30

not all necessarily aware of the details of adjoint functionalities, may be working

on the same code.

� ED2 - automatic reverse assembly : similar to the hand-derived case the goal is to

assemble the full Jacobian, adjoint right-hand side and the other sensitivity terms

arising in (2.15), but in an automated way so that, once a driver code is in place for

guiding the assembly and solution process, no further manual work is needed even

if the primal is modi�ed. The two main viable tools to achieve this are AD and

Finite Di�erencing (FD). For example, assuming that the primal contains a routine

RESIDUAL(→w,→α,←r) which computes the residual r (w,α) for a given w and α,

then the entries of the Jacobian ∂r
∂w can be computed either by: repeatedly calling

the (forward-mode) AD routine DRESIDUAL, seeding each time for a di�erent degree

of freedom of w; or repeatedly calling the original RESIDUAL routine, introducing

each time a perturbation δw on each degree of freedom of w, and then computing

the corresponding FD value. Either way, the cost of the process would scale in

principle with the cardinality of w, but this can be avoided thanks to colouring

algorithms (see Section 6.1.3). An analogous procedure allows to assemble e.g. the

adjoint right-hand side ∂J
∂w based on a routine COST(→w,→α,← J); in this case, if

AD is employed, then reverse-mode is preferable since it requires only one call to

the AD routine COSTB.

An AD-based reverse assembly has the advantage of always computing exact deriva-

tive values, barring non-di�erentiable terms. Conversely, a FD-based assembly does

in general introduce a truncation error depending on the chosen step-size (with

some exceptions, see Section 6.1.6), but on the other hand it also introduces some

smoothening, which may better represent how the Jacobian responds to a �eld per-

turbation in the vicinity of discontinuities in derivative values or small, non-physical

numerical oscillations in the discretisation scheme. The FD approach also has the

advantage of being non-intrusive: provided that interfaces such as RESIDUAL and

COST are available (usually as user subroutines in commercial CFD solvers), then

there is no need to modify - or indeed have access to - the source code within this

function.

� ED3 - AD reverse accumulation: this is a speci�c implementation of Christianson's

generic FPI treatment discussed in Section 2.3.2. Considering again the RESIDUAL

procedure mentioned above, it has been shown [97] how its reverse-AD counterpart

RESIDUALB(→rb,↔wb,↔αb) can be exploited to compute
(
∂r
∂w

)T
v (returned in

wb) for any vector v, namely by seeding rb= v and wb= 0. Furthermore, as

mentioned above, the adjoint right-hand side ∂J
∂w is easily computed through the AD

procedure COSTB(→ Jb,↔wb,↔αb). The two results combined allow to compute

Chapter 2. The Adjoint Method 31

the adjoint residual for a given adjoint state w∗, which can be used to solve the

adjoint system via an iterative algorithm of the form

P
(
w∗,n+1 −w∗,n

)
=

(
∂J

∂w

)T
−
(
∂r

∂w

)T
w∗,n . (2.27)

P can either be a diagonal matrix, thus giving rise to a matrix-free pseudo-timestepping

algorithm, or any preconditioner one may deem suitable - a common choice is to

reuse the (transposed) primal preconditioner, an option which shall be explored in

the present work (Section 6.2). The approach is popular amongst AD users (see

e.g. Giles et al. [98], Christakopoulos et al. [54], Courty et al. [61]). With respect

to both ED1 and ED2, ED3 has the advantage of not requiring storage of the full

Jacobian matrix. While it does limit the choice of the preconditioner P to one that

does not need explicit knowledge of the exact Jacobian (unlike e.g. those shown in

Sections 6.2.2 and 6.2.3), the range of choices is wide enough that the strategy is

considered as �tting within the ED philosophy.

2.4 Challenges of discrete adjoints

In the context of discrete adjoint CFD, how strict the tolerance should be on the primal

solution is a matter of debate. On one hand the Jacobian and adjoint right-hand side

are evaluated at the converged state, hence a poorly converged primal �eld necessarily

contributes to the error on the gradient; on the other hand it can be argued that, in

practice, strict gradient exactness is not required by an optimisation algorithm (unless

full convergence is sought) as long as the sensitivity is reasonably oriented towards the

right direction, as is the case in the continuous approach or even in discrete settings,

where it has been shown for some cases [74] how replacing the adjoint system with an

approximation - at the expense of gradient consistency - can lead to overall satisfactory

results in terms of optimisation.

However, in the case of a non-linear problem such as the steady-state Navier-Stokes,

it has been observed [37] that while it is often possible to obtain a reasonably converged

solution for the primal, di�culties arise when it comes to converging its adjoint equation.

Let r (w) = 0 be a non-linear primal which is solved via a FPI of the form

wn+1 = wn − P−1,nr (wn) (2.28)

where P denotes a generic, solution-dependent preconditioner, typically chosen such that

P−1 ≈
(
∂r
∂w

)−1
. This is notably the case for iterative schemes for the steady-state, incom-

Chapter 2. The Adjoint Method 32

pressible Navier-Stokes (see Section 5.2). Giles et al. [99] show that, if the (transposed)

primal iterator is inherited by the adjoint solver:

w∗,n+1 = w∗,n − P−T,N
((

∂rN

∂w

)T
w∗,n −

(
∂JN

∂w

)T)
(2.29)

(where the superscriptN denotes the last primal iteration, i.e. evaluation at convergence),

then convergence is guaranteed at an asymptotically equivalent rate as long as the primal

is contractive at convergence, in accordance with Christianson's theory of adjointed FPIs

[56] discussed in Section 2.3.2. It is well-known [212] that contractivity of an operator

depends on its spectral properties: it is contractive if all of its eigenvalues fall within

the unit sphere, and since the adjoint iterator is the transpose of the primal one at

convergence, their eigenvalues coincide.

� �

��0 ��1�2 �3

Figure 2.4: Example of a limit cycle occurring in the non-linear �xed-point
iteration: x = f (x).

Brezillon and Dwight [37] observe that, in many industrial cases, contractivity of the

adjoint operator is a�ected by a number of factors, the most frequent being a) insuf-

�cient primal convergence, and b) the primal FPI not being asymptotically convergent

itself. The �rst scenario implies that the computation has converged to the user-speci�ed

tolerance (which may be su�ciently small for mere engineering purposes) prior to the

asymptotic regime; in this case, imposing a stricter tolerance solves the issue. The second

scenario is more problematic: it occurs when the solver, rather than converging, stalls

around limit cycle oscillations (LCO) [47] with unstable eigenvalues. This is illustrated in

a simpli�ed way in Figure 2.4, where a non-linear FPI solving x = f (x) is plotted: start-

ing from the initial guess x0, the algorithm never reaches the exact solution x̂, stagnating

instead between x2 and x3. The behaviour of the adjoint FPI x∗ = ∂J
∂x + ∂f

∂xx
∗ depends

Chapter 2. The Adjoint Method 33

on where the primal is stopped: if stopped at x2 (zero slope), then it will immediately

converge to a wrong solution; if stopped at x3 (slope > 1, representative of a case with

eigenvalues outside the unit sphere), then it will diverge. Considerable work has been

done - mostly in the context of compressible RANS - to tackle adjoint convergence issues

when this scenario occurs: some authors [141, 164] attribute the LCO phenomenon to

an inherent (mild) �ow unsteadiness and thus treat the problem as unsteady, with the

cost function time-averaged over several cycles; others focus instead on enforcing FPI

contractivity for both primal and adjoint by working on stabilisation methods for linear

solvers, with popular choices being the Recursive Projection Method [47] or variants of

preconditioned GMRES combined with multigrid [75, 144, 243].

As anticipated, the present thesis turns the attention to the primal discretisation

schemes in an e�ort to eliminate features that may be partly responsible for the non-

convergent behaviour. Classical Finite Volumes (FV) schemes [229] are currently the most

widespread choice in the industry. The FVmethod is, in its basic formulation, a consistent

and stable strategy; however, its practical implementation in commercial CFD software

includes a number of numerical artefacts devised to allow tackling complex cases - in terms

of physics and/or geometry and meshing - which are known to prevent convergence down

to an arbitrarily small tolerance on residuals. Flux limiters (see Section 4.2.3) are a

�tting example: the usage of �ux/slope limiters, speci�cally in non-di�erentiable forms,

has long been known to prevent convergence to steady-state solutions [230, 231], and

researchers are actively investigating alternative limiter formulations to alleviate the issue

[165, 246]. A similar example is the usage of so-called Non-Orthogonal Correctors (NOC,

Section 3.3.4), quantities included in gradient approximations to take into account the

non-orthogonality of the grid: NOCs are typically treated explicitly, i.e. relegated to the

right-hand side of the primal system and updated at each iteration (deferred correction

[86]); it has been observed [135, 171] how, in order to prevent the iterative process

from becoming unbounded, some limiting on the correction is needed which can hamper

convergence to steady-state similarly to �ux limiters.

The main body of this thesis is devoted to the development of spatial discretisation

strategies for CFD that are rid as much as possible of such numerical artefacts, under the

hypothesis that this can improve primal convergence to steady-state and thus indirectly

alleviate the instabilities arising in the discrete adjoint.

Chapter 3

Mixed Hybrid Finite Volumes

3.1 Mixed Virtual Elements

In the last two decades, research has produced a new family of discretisation schemes for

CFD driven by the need for a method capable of dealing with generic settings in terms

of both discretised geometry (generic grids, including non-conforming, distorted, skewed,

or non-convex elements) and problem physics (anisotropic material properties, discon-

tinuities) without loss of accuracy or stability. Hydrogeology, oil reservoir simulation,

plasma physics, semiconductor modelling, biology are typically mentioned as potential

industrial applications [82] as they often call for simulations of both complex geometries

and/or anisotropic and heterogeneous material properties.

On of the earliest of these schemes, known as Mimetic Finite Di�erences (MFD),

was pioneered by Brezzi, Lipnikov and Shashkov [41, 42] who focused on the mimetic

nature of the method, i.e. the idea of constructing discrete operators that mimic key

properties of their continuous counterparts. The second-order accurate MFD scheme has

been extensively investigated and analysed since, and its power demonstrated initially

on the pure anisotropic di�usion problem (and similar) over generic polyhedral meshes

[41, 42, 49, 143, 151, 153]. A history of MFD is detailed in te recent book by Beirão da

Veiga, Lipnikov and Manzini [20]. Current trends are overviewed by Lipnikov, Manzini

and Shashkov [152]. Following the generalisation of MFD to higher orders of accuracy

[19, 23, 150] the scheme was recast as Mixed Virtual Element1 method (MVE) [15, 39],

a name that highlights the link with Mixed and Hybrid Finite Elements (MFE/HFE)

[40] and emphasises the virtual aspect of the scheme, i.e. the fact that MVE does not

1The scheme is referred to as either Mixed Virtual Element (MVE) or Virtual Element Method
(VEM). The present work adopts the former nomenclature.

34

Chapter 3. Mixed Hybrid Finite Volumes 35

require explicit knowledge and construction of shape functions, thus allowing for more

freedom in element shape. The MVE scheme has also been extended to general elliptic

problems including convection-di�usion-reaction [17, 20, 50], Stokes [21, 48] and, very

recently, steady incompressible Navier-Stokes [22].

A second community of researchers led primarily by Droniou and Eymard [71] has

developed a similar family of schemes, named either Hybrid Mimetic Mixed method

(HMM) [70] orMixed Finite Volumes (MFV) [71], thus highlighting the link with classical

Finite Volumes (FV). The development of HMM/MFV proceeded in parallel with that of

MVE, focusing on anisotropic di�usion problems �rst [71, 82], then convection-di�usion

[18, 70, 191], Stokes and Navier-Stokes [72]. The HMM community is also credited for

its e�orts to show the many similarities between HMM and MVE [18, 73], noticing that

a) di�usion operators from each method are often di�erent derivations of algebraically

similar or coincident schemes, and b) it is possible to de�ne a uni�ed framework to

include inherently di�erent ways of handling convective terms. A recent doctoral thesis

by J. Bonelle [35] also made a signi�cant contribution towards comparison, classi�cation

and uni�cation of both frameworks and others under the umbrella term of Compatible

Discrete Operator (CDO) schemes.

3.2 Basic MVE concepts

In order to illustrate the basic MVE concepts it is convenient and customary [42] to start

by discretising the pure anisotropic di�usion equation:

∇ · (−K∇φ) = f in Ω (3.1)

where φ is the unknown scalar, f the source term and K a symmetric tensor describing the

anisotropic di�usivity of the material. For ease of exposition the homogeneous Dirichlet

boundary value problem is considered over a d-dimensional domain Ω. Equation (3.1) is

�rst rewritten in mixed formulation:{
~V = −K∇φ
∇ · ~V = f

in Ω (3.2)

where the vector variable ~V is introduced as the negative gradient of φ scaled by K.

It will be shown how, unlike classical FV, one of the key ideas common to all MFD/MVE

philosophies is to replicate the mixed formulation (3.2) in the discrete setting, speci�cally

by introducing a true independent discrete unknown to represent the vector variable ~V .

Chapter 3. Mixed Hybrid Finite Volumes 36

3.2.1 Discrete spaces and scalar products

The four steps required for the construction of a MVE-like scheme are described in this

section and the next as outlined by all main references on the subject (see e.g. [41, 42,

49, 143]).

(a) Qh (b) Xh

Figure 3.1: Location of degrees of freedom for MVE spaces on a generic 2D
polygonal mesh.

Step one: let Ω be a polyhedron, and Ωh a non-overlapping partition of Ω into nC
polyhedral elements (or cells) with nF planar faces, such as a typical FV mesh. Two

discrete spaces are de�ned: Qh, holding degrees of freedom at cells C, and Xh, holding

degrees of freedom at faces F , as shown (in 2D) in Figure 3.1. Qh shall be used to

discretise scalar quantities via the following de Rham map [36]:

φC =
1

|C|

∫
C
φdV ∀C ∈ Ωh (3.3)

where |C| is the cell volume (or area if d = 2). Hence scalar quantities are represented

in Qh via their cell-averaged values, which might be thought of as d-forms, or d-cochains

[42]. The notation φ (boldfaced) is also introduced to identify the vector (in Qh) of

unknowns across the grid, meaning that φC denotes the C-th degree of freedom of φ:

(φ)C = φC . (3.4)

Similarly, for Xh the following de Rham map is de�ned:

VFC =

∫
F

~V · ~nFC dS ∀C ∈ Ωh, ∀F ∈ ∂C (3.5)

where ~nFC is the unit vector normal to face F outward with respect to cell C. Expression

(3.5) entails that vector quantities are represented in Xh via their �uxes across faces

Chapter 3. Mixed Hybrid Finite Volumes 37

(which might be thought of as discrete (d − 1)-forms). This would in principle imply

that the number of degrees of freedom for any vector belonging to Xh is twice the number

of internal faces in the mesh (plus the number of boundary faces if boundary conditions

other than Dirichlet are applied, see Section 3.3.5). However, it is imposed that �uxes in

Xh must be conservative across each face:

VFC+ + VFC− = 0 , i.e. sFC+VF + sFC−VF = 0 (3.6)

where F is the common face between cells C+ and C−, sFC is the conventional sign

(assumed �xed once and for all) de�ning the cell-face ordering between C and F , and VF
is an �unsigned� �ux. This reduces the number of degrees of freedom in Xh to the number

of faces. In order to de�ne a convention: in the remainder of this work, the orientation

of face F between cells C+ and C− is set such that sFC+ = 1 and sFC− = −1. As a

consequence, the value of �ux VF in Xh shall be positive if outward with respect to C+.

To conclude, notation V is introduced to represent a vector belonging to Xh, such that

VF corresponds to the F -th component of V:

(V)F = VF = VFC+ . (3.7)

Step two: spaces Qh and Xh are equipped with scalar products, hereby de�ned as

the summation over all cells of a scalar product de�ned locally on each cell, i.e.

〈φ,ψ〉Qh =
∑
C∈Ωh

〈φ,ψ〉C,Qh for Qh

〈V,W〉Xh =
∑
C∈Ωh

〈V,W〉C,Xh for Xh .
(3.8)

The de�nition of the local scalar product for Qh is fairly straightforward:

〈φ,ψ〉C,Qh = φCψC |C| . (3.9)

It is less trivial for Xh. Denoting by mC the number of faces delimiting cell C, Brezzi

et al. [42] observe that the local scalar product de�nition on C implies the existence of a

mC ×mC symmetric positive-de�nite (SPD) matrix MC which represents it:

〈V,W〉C,Xh = (MC (V)∂C , (W)∂C) (3.10)

where (·, ·) denotes the Euclidean inner product in RmC , and (·)∂C denotes the restriction

Chapter 3. Mixed Hybrid Finite Volumes 38

of a vector in Xh to the faces delimiting cell C and oriented accordingly, i.e.

(V)∂C =

sF1CVF1

sF2CVF2

· · ·
sFmCCVFmC

 =

VF1C

VF2C

· · ·
VFmCC

 (3.11)

with F1, F2, · · · , FmC being themC faces delimiting cell C. The construction of a suitable

MC is arguably the most di�cult task, the core of any MFD/MVE-like scheme and

what di�erentiates each speci�c strategy from all others [38]. This will be discussed in

Section 3.3, but it is speci�ed from now that the scalar product (3.10) is constructed

for convenience to be material dependent : once de�ned it will incorporate the material

di�usivity, meaning that

〈V,W〉C,Xh ≈
∫
C
K−1~V · ~W dV (3.12)

(where, with an abuse of notation, �≈� stands for �is a discrete approximation of�).

3.2.2 Divergence and �ux operators

Step three: a discrete divergence operator D is de�ned. Since the continuous divergence

operator maps vector �elds onto scalar �elds, D is expected to do the same in the discrete

spaces de�ned above, i.e. it should act on degrees of freedom in Xh and return values in

Qh. D is de�ned as

(DV)C =
1

|C|
∑
F∈∂C

VFC , (3.13)

a direct application of the Gauss divergence theorem:∫
C
∇ · ~V dV =

∫
∂C

~V · ~nFC dS . (3.14)

A remark: D is an exact discrete di�erential operator, i.e. it does not involve any form

of approximation. In di�erential geometry an operator like D is known as an exterior

derivative, in this case mapping from (d − 1)-forms to d-forms (for an exhaustive guide

to exterior derivatives and their properties, see e.g. [35]). In practice, D is realised as a

nC × nF matrix representing the signed face-to-cell incidence:

(D)CF =

{
sFC if F ∈ ∂C
0 otherwise

. (3.15)

Chapter 3. Mixed Hybrid Finite Volumes 39

Hence D is a topological operator [35], i.e. it only requires knowledge of mesh connectivity

between (in this case) faces and cells and face orientations. It does not make use of any

mesh metrics or inertial quantities.

Step four: a di�usive �ux operator K is derived by imposing that K and D be adjoint

to each other with respect to the scalar products de�ned in Section 3.2.1:

〈Kφ,W〉Xh = 〈φ,DW〉Qh ∀φ ∈ Qh ∀W ∈ Xh . (3.16)

Constructing K such that it satis�es (3.16) is the essence of the mimetic nature of the

method, as stated by e.g. Lipnikov et al. [153]: bearing in mind that the scalar product in

Xh is material-dependent as in (3.12), equation (3.16) is in fact a discrete representation

of the Gauss-Green theorem∫
Ω
K−1 (−K∇φ) · ~W dV =

∫
Ω
φ∇ · ~W dV (3.17)

(minus boundary values, which were set to zero for convenience), meaning that these

discrete operators are constructed in order to mimic the behaviour of their continuous

counterparts with respect to Gauss-Green. As explained by Bonelle [35], mimetic methods

work by �rst constructing an exact primary discrete operator (D in this case) and use it

to build a derived operator (K) such that some key property of the continuous operator

(Gauss-Green in this case) is satis�ed at a discrete level with respect to the discrete scalar

products (3.8). The derived operator is therefore a discrete co-di�erential to the primary

operator, in this case mapping from d-forms to (d− 1)-forms.

Assuming that a suitable formulation for the local scalar product matrix MC is pro-

vided (see Section 3.3.1), then the global scalar product is assembled as

〈V,W〉Xh =
∑
C∈Ωh

(MC (V)∂C , (W)∂C) = (HV,W) (3.18)

where H is a nF × nF SPD matrix. Therefore (3.16) can be rewritten equivalently as

(HKφ,W) =
(
DTφ,W

)
, (3.19)

which yields the de�nition for the �ux operator as K = H−1DT . The speci�c form of H
will depend directly on the de�nition of the local scalar product matrix MC . It will be

shown in Section 3.3 how the construction of MC relies on cell metrics such as lengths,

areas, volumes and other inertial quantities of the mesh, meaning that H, and therefore

the �ux operator K, is a metric operator, as opposed to D.

Chapter 3. Mixed Hybrid Finite Volumes 40

It is possible at this point to write a discrete mixed variational formulation of the

homogeneous Dirichlet boundary value problem (3.2):

Find φ ∈ Qh, V ∈ Xh such that:

〈V,W〉Xh − 〈φ,DW〉Qh = 0 ∀W ∈ Xh

〈DV,ψ〉Qh = 〈f ,ψ〉Qh ∀ψ ∈ Qh
(3.20)

where V is the �ux ~V = −K∇φ discretised over Xh, φ is the scalar solution �eld

discretised over Qh, and f is the de Rham map of the source term f onto Qh. This

ultimately leads to the saddle-point linear system[
H −DT

D 0

](
V

φ

)
=

(
0

f

)
. (3.21)

3.3 Mixed Hybrid Finite Volumes for pure anisotropic dif-

fusion

This section shall outline the construction of the speci�c MVE-like scheme that was

implemented speci�cally in the context of this thesis. The scheme is hereby named

Mixed Hybrid Finite Volumes (MHFV):

� Mixed : di�erent discrete forms exist in di�erent spaces and all constitute problem

unknowns, with operators mapping from one space to the other in a MFE spirit

[40];

� Hybrid : a particular solution strategy will be chosen which is analogous to hybridi-

sation in MFE (see Section 3.3.2);

� Finite Volumes: the ultimate goal of the method is to guarantee continuity at the

discrete level over each control volume (cell), similar to classical FV.

3.3.1 MHFV local scalar product

At the core of MVE schemes lies the construction of a suitable, material-dependent local

scalar product matrix MC for the space Xh of discrete �uxes. The MHFV anisotropic

di�usion operator is derived in this section based on the second-order accurate MFD

scheme presented by Brezzi et al. [42]. It aims at satisfying the following two conditions:

� Local consistency : the Gauss-Green formula must hold at the discrete level on each

Chapter 3. Mixed Hybrid Finite Volumes 41

cell, and must be satis�ed exactly for every linear function ψ1 and for all W ∈ Xh:〈(
KC∇ψ1

)Xh

,W
〉
C,Xh

+ (DW)C

∫
C
ψ1 dV =

∑
F∈∂C

WFC
1

|F |

∫
F
ψ1 dS (3.22)

where KC is the cell-averaged di�usivity tensor, |F | the face area, and (·)X
h

stands

for �de Rham map onto Xh� via (3.5).

� Stability : there exist two positive constants s∗ and S∗ such that, for all W ∈ Xh

and for every C:

s∗
∑
F∈∂C

|C|W 2
F ≤ 〈W,W〉C,Xh ≤ S∗

∑
F∈∂C

|C|W 2
F . (3.23)

Brezzi et al. [42] provide the following interpretation of these conditions: local consistency

(3.22) imposes that operators are built such that the Gauss-Green formula is satis�ed

exactly at a discrete level for a polynomial scalar function of a given order (linear, in this

case) - which is, again, a core concept of mimetic methods - hence establishing the order

of accuracy of the scheme; stability (3.23) imposes that MC be spectrally equivalent to

the scalar matrix |C| I (where I is the mC ×mC identity matrix), i.e. a mass matrix for

cell C.

��

�� ����

��

|�| � = ��

Figure 3.2: MHFV notation for main geometric/inertial quantities.

The scalar product MC for MHFV is derived as follows. First a cell-average operator

for Xh is introduced:
~V avg
C =

∑
F∈∂C

VFC (~xF − ~xC)

|C|
(3.24)

where ~xF and ~xC are respectively the centre of gravity of face F and cell C (Figure

3.2). Justi�cation of expression (3.24) comes from the Stokes formula: denoting by a

Chapter 3. Mixed Hybrid Finite Volumes 42

superscript i the i-th coordinate of vectors and coordinates, it can be stated that∫
C
V i dV =

∫
C

~V · ∇xi dV . (3.25)

Integration by parts of the right-and side of (3.25) yields∫
C

~V · ∇xi dV = −
∫
C

(
∇ · ~V

)
xi dV +

∑
F∈∂C

∫
F

(
~V · ~nFC

)
xi dS

≈ −xiC
∑
F∈∂C

VFC +
∑
F∈∂C

xiFVFC
(3.26)

where the second, approximate equation is exact up to order two, i.e. provided that ∇· ~V
is uniform on a cell and ~V ·~nFC is constant on each face. De�nition (3.24) follows directly.

A K-dependent scalar product is then de�ned based on this average operator:

〈V,W〉avg
C,Xh = |C|

(
K−1
C
~V avg
C · ~W avg

C

)
. (3.27)

Proof that (3.27) satis�es local consistency (3.22) is provided below.

Proof. Let ~V be the gradient of a linear function ψ1, i.e. ~V = ∇ψ1. It follows that ~V is

constant and ~V avg
C = ∇ψ1. Replacing this result and, for ~W , the cell-average operator

(3.24) in the scalar product (3.27), yields

〈(
KC∇ψ1

)Xh

,W
〉avg
C,Xh

=

(
∇ψ1 ·

∑
F∈∂C

WFC (~xF − ~xC)

)
. (3.28)

Furthermore, linearity of ψ1 implies

∇ψ1 · (~xF − ~xC) = ψ1 (~xF)− ψ1 (~xC)

=
1

|F |

∫
F
ψ1 dS − 1

|C|

∫
C
ψ1 dV

(3.29)

which, re-injected in (3.28), gives〈(
KC∇ψ1

)Xh

,W
〉avg
C,Xh

=
∑
F∈∂C

WFC
1

|F |

∫
F
ψ1 dS − 1

|C|

∫
C
ψ1 dV

∑
F∈∂C

WFC (3.30)

Considering the de�nition of the divergence operator (3.13), expression (3.30) corresponds

to the local consistency condition (3.22).

Formulation (3.27) alone is not su�cient to guarantee a stable scalar product. A

gradient reconstruction based on (3.24) may vanish and give rise to checker-board modes

Chapter 3. Mixed Hybrid Finite Volumes 43

[191]. For a trivial example, consider a cubic cell: if WFC happens to be identical on all

six faces, then ~W avg
C = 0 and the inner product (3.27) goes to zero regardless of ~V avg

C .

Hence the need for a stabilisation term of the form

〈V,W〉stabC,Xh =
∑
F∈∂C

λFC

(
VFC − ~V avg

C · ~FC
)(

WFC − ~W avg
C · ~FC

)
(3.31)

with λFC being a weighting/scaling factor whose precise expression will be discussed in

Section 3.3.4. In (3.31) a shorthand notation for the area vector was also introduced:
~FC =

∫
F ~nFC dS. The speci�c form (3.31) for the stabilisation term comes from a con-

formity defect argument: the cell-averaged vector �eld ~V avg
C is by de�nition a piecewise-

constant reconstruction of ~V based on the discrete degrees of freedom available, i.e. the

face �uxes VFC ; the de Rham map of such a reconstruction does not correspond to

the original degrees of freedom, hence a penalisation term proportional to the defect(
VFC − ~V avg

C · ~FC
)
is introduced.

The full K-scalar product thus takes the form

〈V,W〉C,Xh = 〈V,W〉avg
C,Xh + 〈V,W〉stabC,Xh . (3.32)

One can verify that the addition of the stabilisation term maintains consistency: if ~V =

∇ψ1 with ψ1 linear, then ~V avg
C = ∇ψ1 and therefore VFC =

∫
F ∇ψ

1 ·~nFC dS = ~V avg
C · ~FC ;

hence the stabilisation term in (3.32) vanishes, and the remaining term is consistent as

proved above. Concerning stability, several authors (see e.g. Beirão da Veiga et al. [15])

prove that a stabilisation term of the form (3.31) satis�es the stability condition (3.23).

The choice of weight λFC in (3.31), and therefore the choice of stabilisation term, is

not unique: the stabilization is de�ned up to a multiplicative constant. As a consequence,

as Brezzi et al. [42] observe, there is not a unique admissible MC . Brezzi et al. [41] (and

Beirão da Veiga et al. [15, 17] in a more generalised framework) show that, under certain

assumptions on the magnitude of the scaling factor in the stabilisation term, and provided

that MC satis�es consistency and stability, the value obtained via an expression of type

(3.32) is equivalent to that coming from a scalar product based on a MFE-like lifting

of V and W de�ned on C. In other words, MFD/MVE methods can be interpreted as

de�ning a scalar product (or better, a family of admissible scalar products [42]) between

two functions lifted from a discrete space without having to explicitly compute any shape

functions. For this very reason these methods are referred to as virtual : it can be shown

[15, 39] that, if the stabilisation term is large enough, then shape functions virtually exist,

but one does not need to de�ne them. As a consequence there are fewer constraints on

element shape.

Chapter 3. Mixed Hybrid Finite Volumes 44

3.3.2 Hybrid pure anisotropic di�usion operator

��

��

��

��

��4

��5

��1�

��2�

��3�

��4�

��5�

Figure 3.3: Location of MHFV variables in a cell.

An explicit recipe for building the MHFV local scalar product MC (minus the choice

of weights λFC , which shall be discussed in Section 3.3.4) was provided in Section 3.3.1,

allowing to assemble the discrete pure anisotropic di�usion equation (3.21). In order to

circumvent the saddle-point form of (3.21) and recover a SPD system which can be solved

more e�ciently, it is chosen to follow the MFE hybridisation approach as suggested by

many [42, 71, 82, 143]. The process begins by noticing that the �ux �eld V satisfying the

weak formulation of the constitutive equation (�rst equation in (3.20)) is the solution to

the optimisation problem

V = argmin
V∈Xh

(
1

2
〈V,V〉Xh − 〈φ,DV〉Qh

)
= argmin

V∈Xh

∑
C∈Ωh

1

2
〈V,V〉C,Xh −

∑
C∈Ωh

〈φ,DV〉C,Qh

 .
(3.33)

A broken space X̂h is then introduced, de�ned such that a �eld V̂ belonging to X̂h does

not necessarily satisfy �ux conservation (3.6) and thus holds two degrees of freedom per

face, namely VFC+ and VFC−. A formulation equivalent to (3.33) in X̂h can be written

as

V̂ = argmin
V̂∈X̂h

∑
C∈Ωh

1

2

〈
V̂, V̂

〉
C,X̂h

−
∑
C∈Ωh

〈
φ,DV̂

〉
C,Qh

s.t. VFC+ + VFC− = 0 ∀F ∈ Ωh

(3.34)

and adding the �ux conservation constraint via a Lagrange multiplier σF at each face

Chapter 3. Mixed Hybrid Finite Volumes 45

leads to the Lagrangian

L =
∑
C∈Ωh

1

2

〈
V̂, V̂

〉
C,X̂h

−
∑
C∈Ωh

〈
φ,DV̂

〉
C,Qh

+
∑
F∈Ωh

σF (VFC+ + VFC−)

=
∑
C∈Ωh

1

2

〈
V̂, V̂

〉
C,X̂h

−
∑
C∈Ωh

〈
φ,DV̂

〉
C,Qh

+
∑
C∈Ωh

∑
F∈∂C

σFVFC .
(3.35)

Optimality conditions on (3.35) lead to the normal equation〈
V̂,Ŵ

〉
C,X̂h

−
〈
φ,DŴ

〉
C,Qh

+
∑
F∈∂C

σFWFC = 0 ∀Ŵ ∈ X̂h, ∀C ∈ Ωh , (3.36)

i.e.

(MC (V)∂C , (W)∂C)− φC
∑
F∈∂C

WFC = −
∑
F∈∂C

σFWFC . (3.37)

There is an evident analogy between (3.37) and a discrete Gauss-Green formula (or

equivalently, a discrete integration by parts), suggesting an interpretation of the Lagrange

multiplier σF in (3.37) as the face-averaged scalar quantity φF , or hybrid variable:

φF =
1

|F |

∫
F
φdS ∀F ∈ Ωh . (3.38)

In particular, if ϕ is linear, then replacing σF with φF in (3.37) yields the exact Gauss-

Green formula (3.22). The notation φ̃ is hereby introduced to identify the vector holding

all face-based hybrid degrees of freedom, such that φF is the F -th element of φ̃:(
φ̃
)
F

= φF , (3.39)

while the mapping of a hybrid vector to the faces delimiting cell C shall be denoted as(
φ̃
)
∂C

. Expression (3.37) allows to de�ne a local discrete constitutive law (�rst equation

in (3.2)) as

(V)∂C = M−1
C (φC − φF)∂C (3.40)

where

(φC − φF)∂C =

φC − φF1

φC − φF2

· · ·
φC − φFmC

 . (3.41)

Equation (3.40) highlights how MC may be interpreted as a local �ux operator acting

on all MHFV scalar variables belonging to C (Figure 3.3), providing in particular the

value of the di�usive �ux across each face in function of φC and
(
φ̃
)
∂C

. By applying the

divergence operator (3.13) a local continuity law (second equation in (3.2)) can also be

Chapter 3. Mixed Hybrid Finite Volumes 46

written as ∑
F∈∂C

VFC = |C| fC . (3.42)

Replacing the expression for �uxes VFC from (3.40) in (3.42) allows to express the cell-

averaged φC in function of the local hybrid variables
(
φ̃
)
∂C

:

φC =

(
M−TC 1,

(
φ̃
)
∂C

)
+ |C| fC(

M−1
C 1,1

) (3.43)

where 1 is the identity vector of cardinality mC . Re-injecting this in (3.40) yields an

expression for all local �uxes (V)∂C dependent on the hybrid variables only:

(V)∂C =

(
M−TC 1,

(
φ̃
)
∂C

)
+ |C| fC(

M−1
C 1,1

) M−1
C 1−M−1

C

(
φ̃
)
∂C

. (3.44)

Finally, the �ux variable is eliminated by imposing �ux conservation (3.6) over each face.

The process - also known as static condensation [40] - leads to the linear system

FKφ̃ = f̃ (3.45)

where: φ̃ is the aforementioned hybrid variable (3.38); FK is a matrix - shown to be SPD

[35] - representing the MHFV hybrid anisotropic di�usion operator :

(FK)FF ′ =
∑

C3F,F ′

(M−1
C 1

)
F

(
M−TC 1

)
F ′(

M−1
C 1,1

) −
(
M−1
C

)
FF ′

 ; (3.46)

f̃ is the right-hand side arising from the hybridisation process:

(
f̃
)
F

= −fC− |C−|
(
M−1
C−1

)
F(

M−1
C−1,1

) − fC+ |C+|
(
M−1
C+1

)
F(

M−1
C+1,1

) . (3.47)

Operator FK acts on stencils based on a non-standard face-to-face connectivity (Figure

3.4), which is in general more complex than a (�rst-order) FV cell-to-cell one, and it

scales with the number of faces in the mesh nF , which is larger than the number of

cells nC . A larger linear system is arguably the main drawback of MHFV compared to

classical FV for pure di�usion.

Once (3.45) is solved for the hybrid �eld φ̃, the solution is used to reconstruct φ

and V via (3.43) and (3.44) respectively. Notice that the reconstruction of face �uxes

through (3.44) will in principle return two values, VFC+ and VFC−, since reconstruction

Chapter 3. Mixed Hybrid Finite Volumes 47

�

Figure 3.4: Face-to-face stencil for a generic 2D poligonal mesh.

is possible from either side of F . Given that �ux conservation is imposed in (3.45), the

two should theoretically be equal and opposite, and thus the unsigned �ux VF should

be inferable from either one of them. In practice, too large a tolerance on the linear

solver might result in slightly di�erent values; in this case VF is computed as an average

between the two.

3.3.3 Inversion of the local scalar product matrix

Some solution strategies for MVE/MFV pure di�usion problems require explicit knowl-

edge of the inverse of MC for each cell. In fact, some require knowledge of M−1
C only,

which is notably the case for the MHFV hybrid strategy presented above. Some authors

from the MFD community [42, 82] have devised ways of computing M−1
C directly, while

others [71] invert MC via direct methods. In the MHFV framework the former approach

is feasible. More speci�cally, in this section it is proven that:

VFC =
(
M−1
C (φC − φF)∂C

)
F

= −KC∇GCφ · ~FC −
1

λFC

(
φF − φC −∇L,λC φ · (~xF − ~xC)

)
,

(3.48)

i.e. the reconstructed �ux VFC is a combination of two linearly consistent approximate

gradients, ∇GC and ∇L,λC , respectively based on the Gauss formula and the λFC-weighted

least-squares (LSQ) approach:

∇GCφ =
1

|C|
∑
F∈∂C

φF ~FC ; (3.49)

∇L,λC φ = argmin
~A∈Rd

∑
F∈∂C

1

λFC

(
φF − φC − ~A · (~xF − ~xC)

)2
. (3.50)

As a remarkable practical consequence, the only direct inversion involved in the assembly

of M−1
C is that of a d × d matrix required to compute the LSQ gradient (3.50), which

makes the computational cost of the inversion fully independent of element complexity.

Chapter 3. Mixed Hybrid Finite Volumes 48

Proof. Let W denote a �eld such that

(
W
)
∂C

= (W)∂C −
(
~W avg
C · ~FC

)
∂C

. (3.51)

Then it can be stated that

〈V,W〉C,Xh = |C|
(
K−1
C
~V avg
C · ~W avg

C

)
+
((
V
)
∂C
,
(
W
)
∂C

)λ
(3.52)

where (·, ·)λ denotes the λ-weighted canonical inner product in RmC . From (3.40) it

follows that

〈V,W〉C,Xh =

((
φC − φF
λFC

)
∂C

, (W)∂C

)λ
. (3.53)

Based on de�nition (3.51), two subspaces of Xh can be de�ned. The �rst, SL, is a low

frequency space:

SL =
{

(W)∂C | ∃ ~W
avg
C ∈ Rd , (W)∂C =

(
~W avg
C · ~FC

)
∂C

}
, (3.54)

i.e. if (W)∂C belongs to SL then its high frequency component is null:
(
W
)
∂C

= 0, and

it holds

(W)∂C =
(
~W avg
C · ~FC

)
∂C

∀W ∈ SL . (3.55)

The second subspace, SH , is a high frequency space:

SH =

{
(W)∂C |

(
(W)∂C ,

(
xiF − xiC
λFC

)
∂C

)λ
= 0 ∀i = 1 · · · d

}

=

(
span

{(
xiF − xiC
λFC

)
∂C

, i = 1 · · · d
})⊥,λ

;

(3.56)

therefore, considering the cell-average de�nition (3.24), if (W)∂C belongs to SH then its

low frequency component is null:
(
~W avg
C · ~FC

)
∂C

= 0, and it holds:

(W)∂C =
(
W
)
∂C

∀W ∈ SH . (3.57)

First a vector (W)∂C ∈ SL, i.e. one that satis�es (3.55), is considered. From (3.52)

and (3.53) it comes immediately that

|C|
(
K−1
C
~V avg
C · ~W avg

C

)
=

((
φC − φF
λFC

)
∂C

, (W)∂C

)λ
. (3.58)

Chapter 3. Mixed Hybrid Finite Volumes 49

Then, using the fact that the average (3.24) is constant, it can be deduced that

|C|
(
K−1
C
~V avg
C · ~W avg

C

)
=

∑
F∈∂C

(φC − φF) ~W avg
C · ~FC

= −

(∑
F∈∂C

φF ~FC

)
· ~W avg

C

(3.59)

and thus, by de�nition of Gauss gradient:

~V avg
C = −KC∇GCφ . (3.60)

Secondly, a vector (W)∂C ∈ SH , i.e. one that satis�es (3.57), is considered. From

(3.52) and (3.53) it comes

((
V
)
∂C
,
(
W
)
∂C

)λ
=

((
φC − φF
λFC

)
∂C

, (W)∂C

)λ
=

((
φC − φF
λFC

)
∂C

,
(
W
)
∂C

)λ (3.61)

and therefore it must hold

(
V
)
∂C

= P⊥,λSH

(
φC − φF
λFC

)
∂C

(3.62)

where P⊥,λSH
denotes the orthogonal projection on SH according to the λ-weighted inner

product of RmC . Hence it can be stated that

(
V
)
∂C

=

(
φC − φF
λFC

)
∂C

− P⊥,λ
S⊥,λH

(
φC − φF
λFC

)
∂C

. (3.63)

Noticing that

S⊥,λH = span
{(

xiF − xiC
λFC

)
∂C

, i = 1 · · · d
}

(3.64)

which is a consequence of (3.56), the last term in (3.63) may be written in the form

P⊥,λ
S⊥,λH

(
φC − φF
λFC

)
∂C

=

(
~B · ~xF − ~xC

λFC

)
∂C

. (3.65)

Considering the de�nition of orthogonal projection and that of LSQ gradient (3.50), it

Chapter 3. Mixed Hybrid Finite Volumes 50

holds
~B = argmin

~A∈Rd

∑
F∈∂C

λFC

(
φC − φF
λFC

− ~A ·
(
~xF − ~xC
λFC

))2

= argmin
~A∈Rd

∑
F∈∂C

1

λFC

(
φC − φF − ~A · (~xF − ~xC)

)2

= −∇L,λC φ ,

(3.66)

and combining (3.66), (3.65) and (3.63) yields the full expression for the high frequency

component:

V FC = − 1

λFC

(
φF − φC −∇L,λC φ · (~xF − ~xC)

)
. (3.67)

Finally, combining (3.67), (3.60) and (3.51) leads to the complete one-sided �ux expres-

sion (3.48). The λFC-weighted LSQ gradient is computed as

∇L,λC =
(
XλC
)−1

~bφ,λ (3.68)

where XλC is the d× d LSQ matrix

(
XλC
)
ij

=
∑
F∈∂C

(
xiF − xiC

) (
xjF − x

j
C

)
λFC

(3.69)

and ~bφ,λ is the LSQ right-hand side

~bφ,λ =
∑
F∈∂C

(~xF − ~xC) (φF − φC)

λFC
. (3.70)

This implies that, as anticipated, the only matrix inversion required to construct M−1
C is

that of XλC .

The MHFV one-sided �ux de�nition as expressed in (3.48) highlights a striking simi-

larity with that presented by Eymard et al. [82], who directly de�ne the reconstruction of

a stabilised MFV �ux - with the option of hybridising - and subsequently show the sim-

ilarities between their method and the MFD family. In their case, however, they do not

make use of a LSQ gradient, using instead the same Gauss gradient for the stabilisation

term.

3.3.4 Link with classical Finite Volumes

Result (3.48) also allows to draw a parallelism between MHFV and traditional FV; this

is exploited in this section to derive the MHFV-speci�c de�nition for the weights λFC in

Chapter 3. Mixed Hybrid Finite Volumes 51

��−
��

�

�

�� ��− − ��

��

Figure 3.5: Non-orthogonal cells and NOC decomposition of ~F .

(3.31). To do so, the starting point is to write the MHFV �ux reconstruction (3.48) in a

form comparable with a classical FV face �ux. In the general case of a non-orthogonal

mesh, FV build face �uxes by means of the Non-Orthogonal Corrector (NOC) approach

[171] as follows. First the face vector ~F is split (Figure 3.5) as

~F = αF (~xC− − ~xC+) + ~τF (3.71)

where αF is a positive coe�cient. Then, considering for ease of exposition the isotropic

di�usion case (i.e. KC = kCI where kC is the cell-averaged di�usivity), the di�usive �ux

across F is computed as

V FV
F = kF

αF (φC+ − φC−)︸ ︷︷ ︸
orthogonal term

− �∇Fφ · ~τF �︸ ︷︷ ︸
NOC

 (3.72)

with kF being some form of face-averaged di�usivity, typically as simple as a weighted

two-point arithmetic average between kC+ and kC−. The gradient for the NOC in (3.72)

may be computed via interpolated nodal values, as in diamond schemes [60], or via

interpolated cell gradients [135].

It is now assumed that the LSQ weights in (3.50) can be written in the form

λFC =
µF
kC

(3.73)

where µF is a weighting factor for face F . Then, under the same assumption of isotropic

di�usivity, the MHFV one-sided �ux reconstruction (3.48) simpli�es to

VFC = kC

(
−∇GCφ · ~FC −

1

µF

(
φF − φC −∇L,λC φ · (~xF − ~xC)

))
. (3.74)

Chapter 3. Mixed Hybrid Finite Volumes 52

Applying �ux conservation (3.6) to (3.74) leads to

φF =
kC+φC+ + kC−φC−

kC+ + kC−

− µF

(
∇GC+φ · ~FC+ +∇GC−φ · ~FC−

)
kC+ + kC−

+
kC+∇L,λC+φ · (~xF − ~xC+) + kC−∇L,λC−φ · (~xF − ~xC−)

kC+ + kC−
.

(3.75)

A remark: the leading term in (3.75) is an average value between φC+ and φC− weighted

by the respective cell-averaged k; there is a remarkable resemblance with Roe's average

interface state used in linearised Riemann solvers [205] for compressible �ows, where the

weighting is based instead on a cell-averaged
√
ρ (ρ being the density) and is devised

speci�cally to capture correctly the propagation of discontinuities and/or shock waves in

the solution �eld. This parallelism further highlights how MVE-like methods are suitable

for cases where material properties are discontinuous across faces.

Re-injecting now (3.75) in (3.74), yields

VF = VFC+ =
2kC+kC−
kC+ + kC−

(
1

2µF
(φC+ − φC−)−NOCF

)
(3.76)

with

NOCF =
∇GC+φ+∇GC−φ

2
· ~F

− 1

2µF

(
∇L,λC+φ · (~xF − ~xC+) +∇L,λC−φ · (~xC− − ~xF)

) (3.77)

(expression (3.77) makes use of the trivial identity: ~FC− = −~FC+ = −~F). There are

evident similarities between the MHFV �ux (3.76) and the FV �ux (3.72). In particular,

one can identify kF =
2kC+kC−
kC++kC−

(harmonic average of the di�usion coe�cient) and αF =
1

2µF
. This suggests a FV-inspired expression for the LSQ weights, namely by de�ning µF

- and thus λFC through (3.73) - such that it reproduces an existing FV formulation of

the NOC factor αF . For example, the NOC approach known as over-relaxed [135] gives:

αF =
|F |2

(~xC− − ~xC+) · ~F
→ λFC =

(~xC− − ~xC+) · ~F
2kC |F |2

. (3.78)

One may easily verify that λFC as de�ned in (3.78) is dimensionally consistent when

replaced in (3.48). Notice also that, when λFC is de�ned this way, the MHFV stabilisation

term scales with the inverse of the di�usivity: this mirrors the argument typically brought

forward by MFD/MVE scholars (see e.g. [42, 49]) of scaling the stabilisation term by a

characteristic value of K−1
C - typically trace

(
K−1
C

)
- in order to obtain the desired spectral

properties of MC . In fact, one could have alternatively pre-multiplied the stabilisation

Chapter 3. Mixed Hybrid Finite Volumes 53

term (3.31) by some K−1
C -scaling factor and then derived a purely geometric λFC . The

de�nition of a weight that allows to retrieve under speci�c conditions a classical FV

scheme is a strategy already known by the MFV community - see e.g. Piar et al. [191]

and Eymard et al. [82], who retrieve the classical two-point �ux scheme for 2D triangular

and rectangular grids. However, the idea of de�ning NOC-inspired weights is an original

aspect of the MHFV di�usion scheme presented in this thesis.

The following symmetric weight types - where by symmetry is intended λFC+ = λFC−

for a constant di�usivity �eld - are implemented in MHFV. They are derived from and

named after the NOC formulations proposed by Jasak [135]:

� Orthogonal Symmetric (ORTS):

λFC = γF ζC
‖~xC− − ~xC+‖

|F |
(3.79)

� Over-Relaxed Symmetric (OVRS):

λFC = γF ζC

∣∣∣(~xC− − ~xC+) · ~F
∣∣∣

|F |2
(3.80)

� Minimal Symmetric (MINS):

λFC = γF ζC
‖~xC− − ~xC+‖2∣∣∣(~xC− − ~xC+) · ~F

∣∣∣ (3.81)

The γF coe�cient is set to 1
2 for internal faces and 1 for boundary faces, since at bound-

aries ~xC− is replaced by ~xF . The scaling coe�cient ζC is de�ned as

ζC =
trace

(
K−1
C

)
d

(3.82)

so that one retrieves ζC = 1
kC

in case of isotropic di�usivity. Where dot products are

present, their absolute value is taken in order to avoid negative weights in case of non-

convex cells. Special care must be taken when using the OVRS formulation (3.80), as it

vanishes when (~xC− − ~xC+) and ~FC are orthogonal (which could be the case in a non-

convex cell) thus introducing a singularity in (3.48). A similar observation holds for the

MINS formulation (3.81): in this case the singularity is in the weight expression itself.

These weights should not be used in combination with non-convex grids.

The following additional non-symmetric versions are also implemented. They use

Chapter 3. Mixed Hybrid Finite Volumes 54

face-to-cell centre distances (rather than cell-to-cell) to attain a better weighting scheme

on grids featuring large jumps in cell width:

� Orthogonal Non-Symmetric (ORTN):

λFC = ζC
‖ ~xF − ~xC‖
|F |

(3.83)

� Over-Relaxed Non-Symmetric (OVRN):

λFC = ζC

∣∣∣(~xF − ~xC) · ~FC
∣∣∣

|F |2
(3.84)

Finally, a second version of the non-symmetric over-relaxed weight (3.84) is derived which

takes into account the anisotropy ofK, namely by giving more weight to faces across which

di�usion is more important:

� Over-Relaxed Non-Symmetric with Anisotropy (OVRNA):

λFC =

∣∣∣(~xF − ~xC) · ~FC
∣∣∣∣∣∣KC

~F · ~F
∣∣∣ (3.85)

In case of Cartesian isotropic mesh and isotropic di�usivity all weight formulations

are identical and reduce to ORTS (3.79), and additional symmetry properties entail that

∇GC = ∇LC ; as a consequence, a classical two-point �ux is retrieved through (3.76).

A link between MHFV and FV has been highlighted and exploited for deriving the

weighting schemes above. However this does not imply that the drawbacks of FV NOCs

(Section 2.4) will a�ect the MHFV scheme: a) the deferred correction approach [86]

and subsequent limiting [171] do not apply in this context, since in MHFV both the

consistency and stabilisation components of �uxes are treated implicitly; b) the SPD

property of the global hybrid operator (3.45) is not a�ected since the local scalar products

are tailored to that end in the mimetic spirit, regardless of how the λFC weights are

computed. This is not always the case in classical FV: if the local �ux reconstructions used

for the NOC are not symmetric on general grids (such as Multipoint Flux Approximations

(MPFA) [1]), then the resulting system is not symmetric - thus violating a fundamental

property of the continuous problem - and convergence properties are impaired [140].

Chapter 3. Mixed Hybrid Finite Volumes 55

3.3.5 Boundary conditions

In the hybridised MHFV framework, non-homogeneous Dirichlet boundaries are imple-

mented by face-averaging the forced boundary value fD and imposing it to the corre-

sponding hybrid variable. Hence the hybrid solution �eld φ̃ may be reduced to internal

faces only, with boundary faces extracted from the system and boundary values included

in the right-hand side where present. In practice, the degrees of freedom corresponding

to Dirichlet boundary faces are kept in the system - for the practical purpose of avoiding

resizing/renumbering matrices and arrays - and their corresponding equation is set to

φF = fF,D, where

fF,D =
1

|F |

∫
F
fD dS , (3.86)

although the equation is typically scaled in order to maintain the corresponding matrix

entries within their original order of magnitude. Boundary values are moved to the right-

hand side of any other equation where they appear, and their corresponding entries in

FK zeroed, which ensures that the symmetry of the operator is maintained. To formalise:

introducing ΩI
h as the subspace of all internal + non-Dirichlet boundary faces and ∂ΩD

h

as that of Dirichlet faces, the hybrid matrix and right-hand side are modi�ed such that

the following equations are solved:

(FK)FF φF = (FK)FF fF,D ∀F ∈ ∂ΩD
h (3.87)

and ∑
F ′∈ΩIh

(FK)FF ′ φF ′ =
(
f̃
)
F
−

∑
F ′∈∂ΩDh

(FK)FF ′ fF ′,D ∀F ∈ ΩI
h . (3.88)

Notice that this is a case of hard Dirichlet boundary condition; therefore, all considera-

tions from Section 2.2.4 on the matter do apply to the MHFV scheme.

Neumann boundary conditions impose that −K∇φ · ~n = fN across the Neumann

boundary ∂ΩN
h . By computing the imposed �ux through a Neumann face as

fF,N =

∫
F
fN dS (3.89)

and making use of the one-sided �ux expression (3.44), this amounts to imposing:
(
M−1
C

T
1,
(
φ̃
)
∂C

)
+ fC |C|(

M−1
C 1,1

) M−1
C 1−M−1

C

(
φ̃
)
∂C

F

= fF,N ∀F ∈ ∂ΩN
h . (3.90)

Finally, Robin-type boundary conditions impose that aφ − K∇φ · ~n = fR, where a is a

Chapter 3. Mixed Hybrid Finite Volumes 56

scalar coe�cient, over the Robin boundary ∂ΩR
h . By de�ning

fF,R =

∫
F
fR dS and aF =

∫
F
a dS , (3.91)

the resulting equation is analogous to the Neumann case with the additional quantity aF
on the central coe�cient:

aFφF +

(
M−1
C

T
1,
(
φ̃
)
∂C

)
+ fC |C|(

M−1
C 1,1

) M−1
C 1−M−1

C

(
φ̃
)
∂C

F

= fF,R ∀F ∈ ∂ΩR
h .

(3.92)

3.4 Validation of MHFV for pure anisotropic di�usion prob-

lems

3.4.1 h-convergence for pure anisotropic di�usion

(a) h ≈ 0.1 (b) h ≈ 0.05 (c) h ≈ 0.03

Figure 3.6: Re�nement sequence for a 2D polygonal distorted mesh.

A �rst validation of the MHFV scheme is carried out by verifying h-convergence on a

2D pure anisotropic di�usion test case. The benchmark case proposed by Kuznetsov et

al. [143] is considered: the domain is the unit square Ω =]0, 1[×]0, 1[; the di�usion tensor

is taken as

K (x, y) =

(
(x+ 1)2 + y2 −xy
−xy (x+ 1)2

)
; (3.93)

the source term is calculated such that the exact solution is:

φex (x, y) = x3y2 + x sin (2πxy) sin (2πy) . (3.94)

Chapter 3. Mixed Hybrid Finite Volumes 57

Dirichlet boundary conditions are applied throughout. The OVRNA formulation (3.85) is

selected for the stabilisation weights λFC . The literature suggests testing on a sequence of

progressively re�ned polygonal unstructured meshes based on the dual to a Voronoi tes-

sellation, generated via the algorithm described by Beirão da Veiga et al. [18] and shown

in Figure 3.6 for three di�erent values of re�nement h. Such meshes feature strongly

skewed/non-orthogonal cells, making them suitable to test the capabilities of mimetic

methods. Testing over distorted meshes is deemed relevant for two reasons. Firstly,

while it is true that modern commercial software is capable of generating high quality

meshes under most circumstances, Eymard et al. [82] observe that in some industrial

applications (e.g. hydrogeology, oil engineering) the inherently complex geometry of the

domain implies that mesh quality in a FV-sense is not trivial to achieve. Secondly - and

in correlation with the context of this thesis - a mesh-independent scheme means that,

when performing shape optimisation cycles, the quality requirements imposed on mesh

morphers (see Section 6.3) can be relaxed. For the sake of completeness, the same test

is also run on a sequence of fully Cartesian meshes. All linear systems are solved with a

direct solver so as to eliminate any e�ect due to incomplete linear solves.

The error ε on each MHFV variable is estimated via the following L2 norms scaled

by the exact solution φex:

ε (φC) =

√√√√√√√√
∑
C∈Ωh

|C| (φ− φex)2
C∑

C∈Ωh

|C| (φex)2
C

where (φex)C = φex (~xC) ; (3.95)

ε (φF) =

√√√√√√√√√
∑
F∈Ωh

|F |
(
φ̃− φ̃ex

)2

F∑
F∈Ωh

|F |
(
φ̃ex

)2

F

where
(
φ̃ex

)
F

= φex (~xF) ; (3.96)

ε (VF) =

√√√√√√√
∑
C∈Ωh

(MC (V −Vex)∂C , (V −Vex)∂C)∑
C∈Ωh

(MC (Vex)∂C , (Vex)∂C)

where (Vex)∂C =
(
− (K (~xF)∇φex (~xF)) · ~FC

)
∂C

.

(3.97)

Results are plotted in Figure 3.7 against a value h indicative of mesh coarseness,

hereby taken as the maximum cell-to-cell centre distance found in each mesh. Solution

�eld contours for selected h values are shown in Figure 3.8. Error values and correspond-

Chapter 3. Mixed Hybrid Finite Volumes 58

1.50E-05

1.50E-04

1.50E-03

1.50E-02

1.50E-01

5 . 00E -03 5 . 00E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(a) polygonal distorted mesh

1.50E-05

1.50E-04

1.50E-03

1.50E-02

1.50E-01

2 . 70E -03 2 . 70E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(b) Cartesian mesh

Figure 3.7: Pure anisotropic di�usion: h-convergence.

ing convergence rates are reported in Table 3-A and 3-B for polygonal and Cartesian

meshes, respectively. Here, and in the remainder of this work, the convergence rate at

the n-th re�nement level is computed via the formula

Raten =
log εn

εn−1

log hn

hn−1

. (3.98)

As expected, both mesh types display second-order convergence for scalar values (both

cell-averaged and hybrid). Super-convergence is also observed on the �ux variable, despite

it being formally �rst-order accurate. This is especially evident on the Cartesian mesh

sequence, which is attributable to the cancellation of truncation error induced by the

additional symmetries on such regular grids. Results are in perfect agreement with the

theoretical �ndings reported by Brezzi et al. [41].

Table 3-A: Pure anisotropic di�usion - polygonal distorted mesh: errors and
convergence rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.751 E−1 5.797 E−2 � 4.777 E−2 � 1.188 E−1 �
8.967 E−2 1.337 E−2 2.192 1.210 E−2 2.052 3.301 E−2 1.914
4.449 E−2 3.313 E−3 1.991 3.089 E−3 1.948 8.725 E−3 1.899
2.206 E−2 8.202 E−4 1.990 7.773 E−4 1.967 2.466 E−3 1.801
1.097 E−2 2.035 E−4 1.995 1.945 E−4 1.983 7.472 E−4 1.709
5.471 E−3 5.064 E−5 1.999 4.864 E−5 1.992 2.398 E−4 1.634

Chapter 3. Mixed Hybrid Finite Volumes 59

Table 3-B: Pure anisotropic di�usion - Cartesian mesh: errors and convergence
rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.111 E−1 5.039 E−3 � 4.778 E−3 � 1.112 E−1 �
5.263 E−3 1.071 E−3 2.073 1.127 E−3 1.933 2.932 E−3 1.784
2.564 E−3 2.518 E−3 2.013 2.762 E−3 1.955 7.818 E−3 1.838
1.266 E−3 6.129 E−4 2.002 6.830 E−4 1.980 2.086 E−3 1.872
6.289 E−3 1.513 E−4 1.999 1.697 E−4 1.990 5.546 E−4 1.893
3.135 E−3 3.759 E−5 2.000 4.227 E−5 1.997 1.468 E−4 1.909

(a) h ≈ 0.175 (b) h ≈ 0.089

(c) h ≈ 0.005 (d) exact solution

- 0. 2 0 0. 2 0. 4 0. 6 0. 8 1 1. 2 1. 4

Figure 3.8: Pure anisotropic di�usion: solution �eld φ for di�erent re�nement

values - polygonal distorted mesh.

Chapter 3. Mixed Hybrid Finite Volumes 60

3.4.2 Comparison of weight types

(a) min (cos θ) = 1 (b) min (cos θ) ≈ 0.16 (c) min (cos θ) ≈ 0.02

Figure 3.9: Distortion sequence for a 2D quadrilateral mesh.

In this section the various formulations for the the λFC weights, speci�c to MHFV

and derived in Section 3.3.4, are tested. Since they are inspired by NOC formulations

from classical FV, it is interesting to compare how they perform on progressively non-

orthogonal meshes. The test case is the same as in the previous section, solved over an

initially Cartesian 100× 100 mesh to which a progressive distortion is applied as shown

in Figure 3.9. All linear systems are solved with a direct solver.

The minimum value of cos θ found in the mesh, with θ being the angle between the

face normal ~F and the distance between the centres of the two cells adjacent to F (see

Figure 3.5), is taken as non-orthogonality indicator: smaller values indicate higher non-

orthogonality, with min (cos θ) = 1 being a perfectly orthogonal mesh.

Results are reported in Figure 3.10(a), where the normalised L2 norm of the error

on the cell-averaged scalar φC is plotted against min (cos θ). It can be observed that all

weights perform comparably: the over-relaxed formulations (OVRS, OVRN, OVRNA)

show a slight superiority (in agreement with the �ndings of Jasak [135] in FV), while

the minimal symmetric (MINS) exhibits a more visible deteriorating e�ect over more

distorted meshes. For each formulation there is no signi�cant di�erence between the

symmetric and non-symmetric version.

At a �rst glance the plot appears to reveal a rather strong correlation between error

and mesh orthogonality, which would negate the bene�ts of mimetic formulations, but

the e�ect is not due to mesh distortion alone. It can be seen in Figure 3.9 how the

algorithm used to distort the mesh doesn't only a�ect mesh orthogonality, but also local

mesh width: the most distorted meshes in the sequence feature a signi�cant expansion

ratio (largest-to-smallest cell volume) which is likely to have an impact on the error. For a

Chapter 3. Mixed Hybrid Finite Volumes 61

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

1 . 80E -02 1 . 80E -01

(
_
C
)

min(cos)

ORTN

OVRN

OVRNA

ORTS

OVRS

MINS

(a) error vs. orthogonality

1.00E-04

1.00E-03

1.00E-02

1.00E-01

9 . 00E -03 9 . 00E -02

(
_
C
)

h

ORTN

OVRN

OVRNA

ORTS

OVRS

MINS

2nd ord.

(b) error vs. h

Figure 3.10: Pure anisotropic di�usion: errors for di�erent weight types on a
sequence of progressively distorted meshes.

more fair comparison the h-convergence over the same mesh sequence is analysed in Figure

3.10(b): it can be observed how all weight formulations maintain the nominal second-

order accuracy of MHFV up until the last mesh in the sequence, where min (cos θ) ≈
1.95 E−2 corresponds to max (θ) ≈ 88.88◦, indicating the presence of near-degenerate

cells in the grid. This suggests that the trends observed in Figure 3.10(a) are solely due

to mesh size and independent of grid distortion.

Chapter 4

MHFV

Convection-Di�usion-Reaction

4.1 Addition of convective �uxes

The next step towards Navier-Stokes is the discretisation of the convection-di�usion-

reaction equation for a scalar φ:

∇ ·
(
−K∇φ+ ~Uφ

)
+ ηφ = f in Ω (4.1)

where ~U is the convecting velocity �eld and η the scalar reaction coe�cient. As mentioned

in Section 3.1, while the investigation of mimetic schemes has focused extensively on

the pure di�usion problem, solutions for general elliptic problems including convection

and reaction are more recent. From the the MFD/MVE community a second-order

accurate convection-reaction scheme for low-Peclet (di�usion-dominated) problems was

�rst proposed by Cangiani et al. [50] and later extended to high-Peclet (convection-

dominated) regimes by Beirão da Veiga et al. [18] and Droniou [70]. Very recently, SUPG-

like (see Section 4.2.1) stabilisation techniques for high-Peclet conditions have surfaced

[24, 159]. From the MFV/HMM community, an interesting implementation based on the

FV MUSCL scheme (Monotonic Upwind Scheme for Conservation Laws [227]) has been

proposed by Piar et al. [191], while adaptations of other classical FV strategies - such as

�rst-order upwinding and the Scharfetter-Gummel scheme [208] - have been investigated

by Droniou and Eymard [72] and Droniou [70]. A synergy between the two communities

has led to a uni�ed approach [18, 73] for the handling of convection terms, an option that

shall �t the MHFV framework as well (Section 4.1.4).

62

Chapter 4. MHFV Convection-Di�usion-Reaction 63

The starting point is common to all methods and, as for the pure di�usion case, it

consists in rewriting (4.1) in mixed formulation:{
~V = −K∇φ+ ~Uφ

∇ · ~V + ηφ = f
in Ω . (4.2)

Intuitively, the discrete counterpart of ~V in Xh shall be a �ux which accounts for both

di�usive and convective components. Di�erent approaches to how the convective term

is included in the discrete problem give rise to di�erent convection schemes. The main

approaches are discussed in the following sections and adapted to MHFV.

4.1.1 Centred schemes

The scheme that most naturally �ts in a MVE context is based on the discrete variational

formulation of the mixed convection-di�usion-reaction equation (4.2) as presented by

e.g. [17, 50, 70]:

Find φ ∈ Qh, V ∈ Xh such that:

〈V,W〉Xh − 〈φ,DW〉Qh − acnv (U,W,φ) = 0 ∀W ∈ Xh

〈DV,ψ〉Qh + 〈ηφ,ψ〉Qh = 〈f ,ψ〉Qh ∀ψ ∈ Qh
(4.3)

where ηφ identi�es a vector in Qh de�ned such that (ηφ)C = ηCφC , with ηC being the

de Rham map of η onto Qh:

ηC =
1

|C|

∫
C
η dV ∀C ∈ Ωh , (4.4)

and U denotes the de Rham map of ~U onto Xh:

(U)F = UFC =

∫
F

~U · ~nFC dS ∀F ∈ Ωh . (4.5)

In (4.3), acnv (U,W,φ) is a trilinear form representing the contribution of the convective

term to the global scalar product. It must be de�ned as a consistent discrete represen-

tation of
∫

Ω φ
(
K−1~U · ~W

)
dV . As Droniou [70] observes, the MVE scheme proposed by

Chapter 4. MHFV Convection-Di�usion-Reaction 64

Cangiani et al. [50] can be interpreted as being based on the approximation:∫
Ω
φ
(
K−1~U · ~W

)
dV =

∑
C∈Ωh

∫
C
φ
(
K−1~U · ~W

)
dV

≈
∑
C∈Ωh

φC

∫
C

(
K−1~U · ~W

)
dV

≈
∑
C∈Ωh

φC 〈U,W〉C,Xh

≈
∑
C∈Ωh

〈
V̂cnv,Ŵ

〉
C,X̂h

(4.6)

where V̂cnv denotes a �eld representing the convective �ux in the broken space X̂h such

that

V cnv
FC = φCUFC . (4.7)

Imposing �ux conservation to the total �ux V (convective + di�usive) through the same

Lagrange multiplier approach from Section 3.3.2, optimality conditions on the constitu-

tive equation in (4.3) yield the normal equation〈
V̂,Ŵ

〉
C,X̂h

−
〈
V̂cnv,Ŵ

〉
C,X̂h

−
〈
φ,DŴ

〉
C,Qh

+
∑
F∈∂C

φFWFC = 0 ∀Ŵ ∈ X̂h (4.8)

with the hybrid variable φF acting as Lagrange multiplier as in the pure di�usion case.

A local �ux reconstruction can be deduced from (4.8):

(V)∂C = M−1
C (φC − φF)∂C + ϕC (U)∂C (4.9)

i.e.

VFC = V diff
FC + V cnv

FC (4.10)

where V diff
FC is the di�usive �ux (3.40) derived in Section 3.3.2, and V cnv

FC is the convective

�ux de�ned as in (4.7). Notice that V cnv
FC is not conservative across faces; conservation

(3.6) will be imposed instead on the total �ux (4.10). Similar to the pure di�usion

case, an analogy between (4.8) and a discrete integration by parts allows to maintain

the interpretation of the hybrid variable φF as the face-averaged scalar; however, in this

case its exactness property for linear �elds is lost. Formulation (4.9) is hereby named

the Mixed Centred (MIXC) scheme: mixed, because it maintains the separation between

d-forms for scalars and (d − 1)-forms for vectors (hybridisation via static condensation

is still possible as will be shown in Section 4.1.4, but the hybrid variable is not involved

in the discrete convective �ux de�nition); centred because, unlike upwinding techniques

(Section 4.1.2), the convective �ux de�nition does not depend on the direction of the

convecting �ow.

Chapter 4. MHFV Convection-Di�usion-Reaction 65

Alternatively, as suggested by e.g. [18, 70, 191], one may bypass the variational for-

mulation argument and, in a spirit closer to classical FV, de�ne directly a local �ux

reconstruction which includes both the convective and di�usive term, of the form

(V)∂C = M−1
C (φC − φF)∂C︸ ︷︷ ︸

di�usion

+ (UFCφ
cnv
FC)∂C︸ ︷︷ ︸

convection

. (4.11)

The goal is to de�ne φcnvFC , the convected scalar at the face, such that UFCφcnvFC results in a

suitable approximation of
∫
F φ

~U ·~nFC dS. In classical FV the simplest choice would lead

to a centred scheme where φcnvFC comes from some form of face-averaging procedure based

on cell-centred values. The MHFV framework has the advantage of already featuring a

face-based degree of freedom naturally in the form of the hybrid variable, hence it can

be set φcnvFC = φF which yields

(V)∂C = M−1
C (φC − φF)∂C + (UFCφF)∂C . (4.12)

Formulation (4.12) is named the Hybrid Centred (HYBC) scheme. Contrary to MIXC,

in HYBC the convective �ux is conservative by de�nition, meaning that imposing �ux

conservation on the total �ux (4.12) reverts to imposing conservation on its di�usive

component.

Both centred strategies MIXC and HYBC lead to a second-order accurate scheme

that is stable for low-Peclet problems (see results in Section 4.3.1). However, centred

schemes in a MVE-like context su�er from the same stability issues as in FV and FE,

namely they give rise to non-physical oscillations in the solution �eld which may become

unbounded in strongly convection-dominated problems [18]. To support that statement,

MIXC and HYBC are proven below to be convectively unstable via stability estimates.

Stability estimate for MIXC and HYBC. The following assumptions are made: a) the

reaction term is not considered, i.e. η = 0, b) for simplicity, the homogeneous Dirichlet

boundary value problem is considered, and c) ∇· ~U ≥ 0 (in particular this thesis considers

incompressible applications where the convecting velocity �eld ~U is solenoidal, i.e. ∇· ~U =

0). In the identity:∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) =
∑
C∈Ωh

∑
F∈∂C

VFCφC −
∑
C∈Ωh

∑
F∈∂C

VFCφF︸ ︷︷ ︸
=0

(4.13)

the last term vanishes by virtue of �ux conservation and the homogeneous Dirichlet

boundary assumption. The continuity equation in (4.2) is discretised locally via the

Chapter 4. MHFV Convection-Di�usion-Reaction 66

divergence operator (3.13), i.e.
∑

F∈∂C VFC = |C| fC . Injecting this into (4.13) yields∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) =
∑
C∈Ωh

|C| fCφC . (4.14)

In the speci�c case of the MIXC scheme (4.9) it also holds∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) =
∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
+

∑
C∈Ωh

∑
F∈∂C

UFCφC (φC − φF) .
(4.15)

The last term in (4.15) can be further decomposed as∑
C∈Ωh

∑
F∈∂C

UFCφC (φC − φF) =
∑
C∈Ωh

∑
F∈∂C

UFCφ
2
C

−
∑
C∈Ωh

∑
F∈∂C

UFCφCφF

=
∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C

−
∑
C∈Ωh

∑
F∈∂C

UFCφCφF

(4.16)

and the last term in (4.16) rewritten as

∑
C∈Ωh

∑
F∈∂C

UFCφCφF =
1

2

∑
C∈Ωh

∑
F∈∂C

UFCφ
2
C

+
1

2

∑
C∈Ωh

∑
F∈∂C

UFCφ
2
F︸ ︷︷ ︸

=0

− 1

2

∑
C∈Ωh

∑
F∈∂C

UFC (φC − φF)2

=
1

2

∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C

− 1

2

∑
C∈Ωh

∑
F∈∂C

UFC (φC − φF)2

(4.17)

where conservation of the convecting �ux U was taken into account. The stability esti-

Chapter 4. MHFV Convection-Di�usion-Reaction 67

mate for MIXC is obtained by combining (4.17), (4.16), (4.15) and (4.14):∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
=

− 1

2

∑
C∈Ωh

∑
F∈∂C

UFC (φC − φF)2

︸ ︷︷ ︸
?

− 1

2

∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C︸ ︷︷ ︸

≥0

+
∑
C∈Ωh

|C| fCφC . (4.18)

The �rst term on the right-hand side of (4.18) is troublesome: since UFC has no de�nite

sign, this term can be either positive or negative. Therefore this estimate cannot provide

a conclusive proof of the boundedness of the term on the left-hand side of (4.18), which

is representative of the (squared) magnitude of the discrete gradient. For low-Peclet

problems this is not an issue, since M−1
C = O (h) and UFC = O

(
h2
)
and thus the

di�usive term ultimately dominates. Conversely, in convection-dominated problems the

only way of maintaining the convective term small enough is by re�ning the mesh, and

for particularly high Peclet numbers the tipping point is delayed to re�nement levels that

cannot be a�orded in practice.

For the HYBC scheme (4.12) the estimate is very similar. Starting from∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) =
∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
+

∑
C∈Ωh

∑
F∈∂C

UFCφF (φC − φF) ,
(4.19)

the last term in (4.19) is decomposed as∑
C∈Ωh

∑
F∈∂C

UFCφF (φC − φF) =
∑
C∈Ωh

∑
F∈∂C

UFCφCφF

−
∑
C∈Ωh

∑
F∈∂C

UFCφ
2
F︸ ︷︷ ︸

=0

(4.20)

and the remaining term on the right-hand side of (4.20) is rewritten as already shown in

(4.17). Combining (4.17), (4.20), (4.19) and (4.14) yields∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
=

1

2

∑
C∈Ωh

∑
F∈∂C

UFC (φC − φF)2

︸ ︷︷ ︸
?

− 1

2

∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C︸ ︷︷ ︸

≥0

+
∑
C∈Ωh

|C| fCφC , (4.21)

i.e. an estimate nearly identical to that for the MIXC case (4.18), the sole di�erence

Chapter 4. MHFV Convection-Di�usion-Reaction 68

being that the problematic term on the right-hand side - whose sign is unde�ned - is

added rather than subtracted. The conclusion is analogous, namely the boundedness of

the discrete gradient is only guaranteed if the di�usive term dominates.

4.1.2 First-order upwinding

In order to tackle the stability issues of centred schemes described above, one well-known

solution in both classical FV [229] and FE [147] is upwinding : in (4.11), φcnvFC is set to

be the cell-centred variable of whichever of the two cells C+ and C− is upwind of the

other with respect to the convecting �ow across F . The same can be done in the MHFV

context, but in this case the choice is not limited to cell-averaged degrees of freedom only:

one can take advantage of the existence of the hybrid variable and set

φcnvFC =

{
φC if UFC ≥ 0

φF if UFC < 0
. (4.22)

Formulation (4.22), represented in Figure 4.1, is hereby named Hybrid First-Order Upwind

(HUPW1), highlighting the fact that it reverts accuracy back to �rst-order via the phe-

nomenon known as numerical di�usion. It has been observed however [18, 70] that using

the hybrid variable as in (4.22) is likely to be less di�usive than traditional upwinding

while maintaining stability (see estimate below). More importantly, the strategy allows to

fully hybridise the scheme via static condensation as in the pure di�usion case, whereas

a traditional cell-based upwind scheme would imply the presence of neighbouring cell

values φC′ in the local continuity equation (3.42), thus making it impossible to express

φC in function of φF only. This property will be of primary importance when devising a

uni�ed framework for convective schemes (Section 4.1.4) and assembling the full hybrid

convection-di�usion-reaction operator (Section 4.1.5).

������� ���������	

	
����

(a) upwind cell (left)

������� ���������	

	
���

(b) downwind cell (right)

Figure 4.1: Hybrid �rst-order upwinding: convective �ux across F as seen from
an upwind and downwind cell.

A stability estimate for the HUPW1 scheme is provided below.

Chapter 4. MHFV Convection-Di�usion-Reaction 69

Stability estimate for HUPW1. Under the same assumptions as in Section 4.1.1, for the

HUPW1 scheme (4.22) it holds∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) =
∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
+

∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFCφC (φC − φF)

+
∑
C∈Ωh

∑
F∈∂C/UFC<0

UFCφF (φC − φF) .

(4.23)

Breaking down each term similarly to what described in Section 4.1.1, and observing that

conservation of U implies∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFCφ
2
F +

∑
C∈Ωh

∑
F∈∂C/UFC<0

UFCφ
2
F =

∑
C∈Ωh

∑
F∈∂C

UFCφ
2
F

= 0

(4.24)

and∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFCφ
2
C +

∑
C∈Ωh

∑
F∈∂C/UFC<0

UFCφ
2
C =

∑
C∈Ωh

∑
F∈∂C

UFCφ
2
C

=
∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C ,

(4.25)

the following estimate is obtained: ∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
=

1

2

∑
C∈Ωh

∑
F∈∂C/UFC<0

UFC (φC − φF)2

︸ ︷︷ ︸
≤0

− 1

2

∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFC (φC − φF)2

︸ ︷︷ ︸
≥0

− 1

2

∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C︸ ︷︷ ︸

≥0

+
∑
C∈Ωh

|C| fCφC .

(4.26)

The estimate is evidently more favourable compared to the centred schemes: (4.26) shows

HUPW1 to be stable since it holds∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
≤
∑
C∈Ωh

|C| fCφC , (4.27)

as is the case in the pure di�usion scenario.

Chapter 4. MHFV Convection-Di�usion-Reaction 70

4.1.3 θ-Scheme

The stability estimate for HUPW1 shows that the strategy leaves some room to reduce

numerical dissipation. In classical FV one of the options is to take φcnvFC as an intermediate

value, weighted by a factor θ, between the face-averaged φF and its corresponding cell-

averaged degree of freedom φC . Such a strategy is easily adapted to MHFV and improved

upon by making use of the hybrid variable. The resulting scheme, hereby named Hybrid

θ-Scheme (HTHE), sets:

φcnvFC =

{
θφF + (1− θ)φC if UFC ≥ 0

φF if UFC < 0
with 0 ≤ θ ≤ 1 . (4.28)

The θ-Scheme is an attempt at curbing the loss of accuracy caused by numerical di�usion

while still bene�ting from its stabilising e�ect. It is easy to verify how it is in fact a linear

combination between HYBC and HUPW1, as it reverts to either scheme for θ = 1 and

θ = 0, respectively. It is possible to derive a stability condition on the value of θ via the

following estimate.

Stability estimate for HTHE. Under the same assumptions as in Section 4.1.1, the HTHE

scheme (4.28) yields the identity∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) =
∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
+

∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFC (1− θ)φC (φC − φF)

+
∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFCθφF (φC − φF)

+
∑
C∈Ωh

∑
F∈∂C/UFC<0

UFCφF (φC − φF) .

(4.29)

Breaking down each term as usual, and considering again remarks (4.24) and (4.25), leads

to the following expression: ∑
C∈Ωh

(
M−1
C (φC − φF)∂C , (φC − φF)∂C

)
=

1

2

∑
C∈Ωh

∑
F∈∂C/UFC<0

UFC (φC − φF)2

︸ ︷︷ ︸
≤0

−1− 2θ

2

∑
C∈Ωh

∑
F∈∂C/UFC≥0

UFC (φC − φF)2

︸ ︷︷ ︸
≥0

− 1

2

∑
C∈Ωh

(∫
C
∇ · ~U dV

)
φ2
C︸ ︷︷ ︸

≥0

+
∑
C∈Ωh

|C| fCφC .

(4.30)

Chapter 4. MHFV Convection-Di�usion-Reaction 71

Hence, in order to the satisfy the stability condition (4.27), it is su�cient to impose

1− 2θ

2
≥ 0 → θ ≤ 1

2
, (4.31)

meaning that HTHE is guaranteed to be stable for any value of θ below 0.5. A similar

result in a MFV context is reported by Brezzi et al. [43].

4.1.4 Uni�ed framework for convective schemes

Following the ideas put forward by Beirão da Veiga, Droniou and Manzini [18], it is

useful to de�ne a uni�ed framework in MHFV in order to include all of the convection

strategies from Sections 4.1.1, 4.1.2 and 4.1.3 by using a single, common notation system.

Irrespective of the speci�c convection scheme, the local convective-di�usive �ux operator

can be written in the generic form

(V)∂C = NC (φC − φF)∂C + (U)∂C φC (4.32)

with

NC = M−1
C − UC , UC = diag

(
UdwFC

)
∂C

. (4.33)

The speci�c de�nition of the �downwind �ux� UdwFC di�erentiates each scheme:

UdwFC =

0 MIXC (Mixed Centred)

UFC HYBC (Hybrid Centred)

min (0, UFC) HUPW1 (Hybrid First-Order Upwind)

min (θUFC , UFC) HTHE (Hybrid θ-Scheme)

. (4.34)

The uni�ed framework is a way of emphasising similarities amongst di�erent strategies

and bridging gaps between approaches coming from di�erent philosophies such as FE and

FV. It also has the considerable practical advantage of facilitating the implementation

of MHFV operators, since each strategy does not need to be treated separately at a high

level. More importantly, it shows as anticipated that any of the schemes presented above

can be hybridised thanks to the fact that, regardless of the chosen strategy, the local �ux

reconstruction (4.32) only hinges on face values φF and the cell-averaged φC over the

cell being considered, hence φC can still be algebraically eliminated by expressing it as a

function of
(
φ̃
)
∂C

; the process shall be detailed in Section 4.1.5.

Chapter 4. MHFV Convection-Di�usion-Reaction 72

4.1.5 Hybrid convection-di�usion-reaction operator

The the generic uni�ed formulation (4.32) for the convective-di�usive �ux facilitates the

assembly of the global convection-di�usion-reaction operator. Local continuity in (4.2)

is discretised by applying the divergence operator (3.13) to the total �ux V:∑
F∈∂C

VFC + |C| ηCφC = |C| fC . (4.35)

Then the static condensation procedure [40] is applied as in the pure di�usion case (Sec-

tion 3.3.2), namely by replacing (4.32) in (4.35) which allows to express φC as a function

of the hybrid variable:

φC =

(
NCT1,

(
φ̃
)
∂C

)
+ |C| fC

(NC1,1) + ((U)∂C ,1) + |C| ηC
(4.36)

and thus, re-injecting in (4.32), the local �uxes in function of φ̃ are obtained:

(V)∂C =

(
NCT1,

(
φ̃
)
∂C

)
+ |C| fC

(NC1,1) + ((U)∂C ,1) + |C| ηC
(NC1+ (U)∂C)− NC

(
φ̃
)
∂C

. (4.37)

Notice that, when an upwinding convective strategy is deployed (HUPW1 or HTHE), the

di�erence between traditional and hybrid upwinding becomes crucial: with a classical FV

cell-based strategy, cell-averaged values φC′ from some of the neighbouring cells C ′ would

have appeared on the right-hand side of (4.36) (more speci�cally, those coming from cells

upwind with respect to C), and it would have been impossible to eliminate them and

express all �uxes in function of φ̃ only, as in (4.37).

Imposing �ux conservation (3.6) over each face yields the linear system

FK,~U,ηφ̃ = f̃ (4.38)

where FK,~U,η denotes the MHFV hybrid convection-di�usion-reaction operator. A remark:

the hybrid right-hand side f̃ di�ers from the one for pure di�usion in (3.45), although

the same notation is used for the sake of readability. For a convection-di�usion-reaction

problem it is computed as

(
f̃
)
F

= −fC− |C−|
(
NC−1 + (U)∂C−

)
F

(NC−1,1) +
(
(U)∂C− ,1

)
+ |C−| ηC−

−fC+ |C+|
(
NC+1 + (U)∂C+

)
F

(NC+1,1) +
(
(U)∂C+ ,1

)
+ |C+| ηC+

.
(4.39)

Chapter 4. MHFV Convection-Di�usion-Reaction 73

4.1.6 Boundary conditions

A typical scalar transport equation requires three basic types of boundary conditions:

inlet, wall and outlet. The Dirichlet-type may be used to enforce the �rst two. Strong

Dirichlet boundary conditions can be implemented for the convection-di�usion-reaction

operator in the same, straightforward way as in the pure di�usion case (Section 3.3.5).

The same applies to Neumann boundary conditions, where the imposed boundary value

corresponds to the total di�usive + convective �ux at each face.

For the outlet, however, a simple Neumann-type is not su�cient since the total �ux

value is usually not known. One of the most common solutions [229] is to de�ne the

domain geometry such that outlet planes are a) �distant enough� from any expected

relevant physical phenomenon and b) oriented such that it is reasonable to not expect

any changes in their normal direction ~n, i.e. ∂φ
∂~n = 0. This is often referred to as �fully

developed �ow� condition, a typical basic example being the outlet of a �ow through a

pipe (Poiseuille �ow).

In MHFV this translates to imposing zero normal gradient or, equivalently, zero di�u-

sive �ux across outlets. Denoting by ∂ΩO
h the outlet boundary, this amounts to imposing:

(
M−1
C (φC − φF)∂C

)
F

= 0 ∀F ∈ ∂ΩO
h . (4.40)

Hybridisation is then possible as usual by injecting (4.36) in (4.40), leading to the fol-

lowing equation for outlet faces:M−1
C 1

(
NTC1,

(
φ̃
)
∂C

)
(NC1,1) + ((U)∂C ,1) + |C| ηC

−M−1
C

(
φ̃
)
∂C

F

=

−
(
M−1
C 1

|C| fC
(NC1,1) + ((U)∂C ,1) + |C| ηC

)
F

∀F ∈ ∂ΩO
h .

(4.41)

4.2 Stabilised second-order convection schemes

It was shown how hybrid upwinding (HUPW1) from Section 4.1.2 guarantees stability for

any Peclet number at the cost of reverting accuracy to �rst-order for the scalar variable

φ, and how the θ-Scheme (HTHE) from Section 4.1.3 maintains such stability for θ ≤ 0.5

while limiting to an extent the degrading e�ects of numerical di�usion.

One of the strengths of MVE-like methods in the pure di�usion case is the abil-

ity to construct operators up to an arbitrary order of accuracy (by adding degrees of

Chapter 4. MHFV Convection-Di�usion-Reaction 74

freedom within each element, see e.g. [19, 23, 150]). In particular, the MHFV di�u-

sion scheme presented in Chapter 3 is conceived to be second-order accurate. It is

desirable to preserve accuracy when convective terms are added, namely by deriving

operators that are both stable in convection-dominated regimes and formally second-

order accurate. So-called Petrov-Galerkin approaches [88], which aim at introducing

arti�cial di�usion where necessary while minimising the loss of accuracy, are common

stabilisation techniques in FE; examples of such methods include Streamline-Upwind

Petrov-Galerkin (SUPG) [45, 126], Pressure-Stabilizing/Petrov-Galerkin (PSPG) [127]

and Galerkin/Least-Squares (GLS) [128]. Concerning FV, a number of strategies have

been devised: examples include traditional �ux limiting [165, 166, 230, 231, 246] to

enforce monotonicity of high-order �ux reconstructions (e.g. MUSCL [227]), (Weighted)

Essentially Non-Oscillatory (ENO/WENO) schemes [116, 154, 213], and the Weighted

Least-Squares (WLSQR) approach [89, 90]. The development of order-preserving stabil-

isation techniques has received little attention from MFV and HMM scholars (a notable

exception being the work of Piar et al. [191] on a MUSCL-like scheme) until very recently

[3, 24, 129, 159]. In the following sections some solutions inspired by both the FE and

FV frameworks are adapted to MHFV.

4.2.1 Streamline-Upwind Petrov-Galerkin

The Streamline-Upwind Petrov-Galerkin (SUPG) method comes from the FE community

and it was �rst introduced by Brooks and Hughes [45, 126]. Fries and Matthies [88]

interpret SUPG as the introduction of arti�cial di�usion in a �smart� way in order to

bene�t of its stabilising e�ects (the smoothing of unbounded non-physical oscillations)

without sacri�cing accuracy where this is not necessary: SUPG operates by adding to

a centred scheme a certain amount of arti�cial di�usion in the streamline direction only

(hence the name), thus ensuring that no di�usion perpendicular to the direction of the

convecting �ow (crosswind) is introduced, which is the reason for excessive numerical

di�usion in �rst-order upwind schemes.

Based on this interpretation, SUPG implies increasing di�usivity anisotropically and

thus can be implemented within any scheme capable of dealing with anisotropic di�usion.

MHFV lends itself well to a SUPG implementation. More speci�cally, this corresponds to

a HYBC formulation (4.12) where the cell-averaged di�usivity tensor KC is augmented

as follows:

KSUPG
C = KC + τC

(
~UavgC ⊗ ~UavgC

)
(4.42)

where ~UavgC is a cell-averaged convecting �ow (this can be evaluated via e.g. the cell-

average operator (3.24)) and τC the SUPG stabilisation parameter. The value of τC is

Chapter 4. MHFV Convection-Di�usion-Reaction 75

to be �ne-tuned in order to obtain a suitable amount of numerical di�usivity, i.e. one

that smoothens oscillations su�ciently but maintains the order of magnitude of KSUPG
C

within a reasonable range of the physical quantities characterising the overall problem.

This is important especially for MHFV, since the value of KSUPG
C a�ects that of the λFC

weights in the stabilisation term (3.31) which, as pointed out in Section 3.3.4, should fall

within reasonably well scaled values so that the desired spectral properties of the scalar

product matrix MC are not a�ected.

The speci�c formulation of τC , at least for generic meshes, is rather heuristic in nature

[221]. Since the original work presented in this thesis, Manzini et al. [159] have proposed

an adaptation of SUPG to MVE schemes which has been extended to an order-preserving

version by Benedetto et al. [24]; both formulations rely on a traditional FE de�nition of

τC . In the present work, the following MHFV-speci�c de�nition is proposed:

τC =

∑
F∈∂C

(
UuwFC ‖~xF − ~xC‖

2
)

|C|
∥∥∥~UavgC

∥∥∥2 (4.43)

where

UuwFC = max (0, UFC) (4.44)

is the �upwind �ux� (as opposed to the �downwind �ux� in (4.34)). It is shown below how

formulation (4.43) is intended to introduce an amount of streamline dissipation roughly

equivalent to that caused by �rst-order upwinding.

Proof. Let E de�ne the energy associated with the total �ux, i.e.

E =
∑
C∈Ωh

∑
F∈∂C

VFCφC . (4.45)

Considering for ease of exposition the homogeneous Dirichlet boundary value problem,

and taking into account �ux conservation, (4.45) may be rewritten as

E =
∑
C∈Ωh

∑
F∈∂C

VFC (φC − φF) (4.46)

and the di�usive and convective contributions (Ediff and Ecnv) split as

E = Ediff + Ecnv

=
∑
C∈Ωh

∑
F∈∂C

V diff
FC (φC − φF) +

∑
C∈Ωh

∑
F∈∂C

V cnv
FC (φC − φF) . (4.47)

Chapter 4. MHFV Convection-Di�usion-Reaction 76

If V cnv
FC is expressed according to the HUPW1 strategy (4.22), then it holds

Ecnv =
∑
C∈Ωh

∑
F∈∂C

(
UuwFCφC + UdwFCφF

)
(φC − φF)

=
∑
C∈Ωh

∑
F∈∂C

(
UuwFC (φF + φC − φF) + UdwFCφF

)
(φC − φF)

=
∑
C∈Ωh

∑
F∈∂C

(
UFCφF (φC − φF) + UuwFC (φC − φF)2

) (4.48)

where the trivial relationship UuwFC + UdwFC = UFC was used. As previously shown in

(4.19), the term
∑

F∈∂C UFCφF (φC − φF) in (4.48) corresponds to the HYBC scheme

(4.12) and is therefore non-dissipative. The remaining term represents the dissipation

Ediss caused by upwinding:

Ediss =
∑
C∈Ωh

∑
F∈∂C

UuwFC (φC − φF)2 . (4.49)

Noticing that (φC − φF) is �rst-order equivalent to ∇Cφ · (~xF − ~xC) with ∇Cφ some

�rst-order approximation of the cell-averaged gradient of φ, (4.49) may be manipulated

into the form

Ediss ≈
∑
C∈Ωh

QC∇Cφ · ∇Cφ (4.50)

where QC is the d× d matrix:

(QC)ij =
∑
F∈∂C

UuwFC
(
xiF − xiC

) (
xjF − x

j
C

)
. (4.51)

Expression (4.50) allows to see the added dissipation as a di�usion-like term, and it can

therefore be taken as the term that the SUPG parameter τC should scale with in order

to emulate upwind-like numerical di�usion. It makes sense to take the quantity

trace (QC) =
∑
F∈∂C

UuwFC ‖~xF − ~xC‖
2 (4.52)

as an appropriate indicator of the magnitude of the added di�usivity. Lastly, since

SUPG augments di�usivity by a term of the form τC

(
~UavgC ⊗ ~UavgC

)
, (4.52) is scaled by

|C|
∥∥∥~UavgC

∥∥∥2
in order to be dimensionally consistent with the di�usivity tensor KC itself,

thus yielding expression (4.43).

Chapter 4. MHFV Convection-Di�usion-Reaction 77

4.2.2 Second-order upwinding

Classical FV also put forward a class of solutions to obtain a formally second-order

accurate convection scheme that is stable even for convection-dominated problems: the

well-known second-order upwind schemes. These are all based on the idea of reconstruct-

ing the value of φ at a face F via a piecewise-linear reconstruction in C, where C is

the cell upwind of F . The same can be done in MHFV, once again with the further

advantage of being able to use the hybrid variable for downwind values. This gives rise

to the (unlimited) Hybrid Second-Order Upwind (HUPW2) scheme:

φcnvFC =

{
φC +∇L,λC φ · (~xF − ~xC) if UFC ≥ 0

φF if UFC < 0
. (4.53)

Notice that, in order to attain a second-order accurate scheme, it is su�cient to recon-

struct the face value of φ via any linearly consistent gradient approximation. In (4.53) the

λFC-weighted LSQ gradient ∇L,λC φ is deliberately chosen for practical reasons: computa-

tion of the coe�cients related to this speci�c gradient approximation is already required

by the assembly of the local di�usive �ux operator, as was shown in (3.48) and subse-

quent proof, while the possibility of modifying the LSQ weights allows to implement the

stabilisation techniques discussed later in Sections 4.2.4 and 4.2.5. This choice allows

to write a one-sided total �ux expression where contributions from both di�usion and

second-order upwinding are lumped together:

VFC = −KC∇GCφ · ~FC −
φF − φC
λFC

+ UdwFCφF + UuwFCφC

+

(
UuwFC +

1

λFC

)
∇L,λC φ · (~xF − ~xC)

(4.54)

where UdwFC is de�ned as in the HUPW1 case in (4.34). Based on (4.54), the full local

�ux operator takes the form

(V)∂C = NC (φC − φF)∂C + (U)∂C φC +
(
UuwFC∇

L,λ
C φ · (~xF − ~xC)

)
∂C

=
(
M−1
C − UC

)
(φC − φF)∂C + (U)∂C φC +

(
UuwFC∇

L,λ
C φ · (~xF − ~xC)

)
∂C
(4.55)

where UC is assembled according to the same rules as for HUPW1 in (4.33)-(4.34); hence,

remembering that construction of M−1
C requires inverting the d × d LSQ matrix, using

the same LSQ gradient for the second-order upwind scheme implies that the �rst and

last term in (4.55) can be assembled at the same time, and no further matrix inversions

are required.

Classical FV literature [229] reports that second-order upwinding su�ers from the

Chapter 4. MHFV Convection-Di�usion-Reaction 78

same instability issues a�ecting centred schemes: it can give rise to instabilities (spu-

rious oscillations in the solution �eld) if no special care is taken to bound the gradi-

ent, especially for high-Peclet problems and/or in the presence of steep gradients/near-

discontinuities in the scalar solution �eld. In MHFV, the HUPW2 scheme is not exempt

from the very same issues. A series of gradient control/moderation techniques is investi-

gated in the following sections.

4.2.3 Flux limiters

Arguably the most popular strategy in FV is the use of so-called �ux limiters, where -

for a second-order scheme - the reconstructed face value is expressed as

φcnvFC = φC + γC︸︷︷︸
limiter

∇L,λC φ · (~xF − ~xC) (4.56)

with γC being a limiting coe�cient computed in order to adjust the predicted face value

such that the reconstruction does not give rise to, or at least bounds, new local extrema.

More speci�cally, those limiting procedures that aim at suppressing oscillations alto-

gether, thus producing a solution �eld that strictly preserves monotonicity, are known

as Total Variation Diminishing (TVD) [229]. Flux limiting on unstructured meshes was

�rst introduced by Barth and Jespersen [11], whose strategy (described below) is found to

su�er from two drawbacks: a) excessive numerical di�usion and subsequent degradation

of accuracy in regions around smoothened extrema [213], and b) di�culties - due to the

non-di�erentiability of the formulation - in converging the iterative solution algorithm

to steady-state [230]. Since then, several authors have developed variants of limiters to

both reduce di�usivity (e.g. [13, 187]) and improve convergence behaviour (e.g. [230, 231]

and, more recently, [31, 165, 166]).

Considering the motivating factors for the present work (Section 2.4), these drawbacks

strongly discourage the usage of limiters in MHFV. However, given that adaptation

to MHFV is fairly trivial, some well-known limiters are implemented for the sake of

comparison. The �rst formulation considered is the Barth-Jespersen [11] strategy, which

belongs to the TVD family [166]. In classical FV the scheme limits the gradient slope

such that, for each cell, the reconstructed face value at each face does not exceed the cell-

averaged one in the respective adjacent cell (Figure 4.2). The MHFV framework allows

to implement two versions of this: Cell-Based Barth-Jespersen (BJC), which limits by

the value of φC (as in the original version); Face-Based Barth-Jespersen (BJF), which

uses the hybrid variable φF instead. The limiter is computed for each cell as follows:

Chapter 4. MHFV Convection-Di�usion-Reaction 79

1. using current solution values, �nd δφminC and δφmaxC , respectively the largest nega-

tive and positive values of either: (φC′ − φC)∂C with C ′ being neighbour cells of C

(BJC), or (φF − φC)∂C (BJF);

2. using the λFC-weighted LSQ gradient, compute the unlimited reconstructed value

at each face of C:

φunlmF = φC +∇L,λC φ · (~xF − ~xC) ∀F ∈ ∂C (4.57)

3. compute the maximum allowable γF for each face:

γF =

min

(
1,

δφmaxC

φunlmF − φC

)
ifφunlmF − φC > 0

min

(
1,

δφminC

φunlmF − φC

)
ifφunlmF − φC < 0

1 ifφunlmF − φC ≈ 0

∀F ∈ ∂C ; (4.58)

4. set γC = min (γF)∂C .

��� ��

���

���

���

���

�� ���

���

��� �� � ⋅ ��� − ��)

��0

��0�

new extremum

(a) unlimited

��� ��

���

���

���

���

�� ���

���

��� �� �� � ⋅ ��� − ��)

��0

��0��0�

(b) limited

Figure 4.2: Barth-Jespersen limiter (cell-based) illustrated on a 1D domain:
reconstructed value φFe at face Fe from cell C0, without and with
limiting.

Chapter 4. MHFV Convection-Di�usion-Reaction 80

As mentioned above, it has been observed [166] that the non-di�erentiability of the

Barth-Jespersen limiter can hamper convergence to the steady-state solution. One of

the earliest improvements in that sense was presented by Venkatakrishnan [230], who

proposed replacing in step 3 the non-di�erentiable function min (1, y) with

f (y) =
y2 + 2y

y2 + y + 2
. (4.59)

This is the second formulation implemented in this work. Again, in MHFV two versions of

the limiter are implemented: Cell-Based Venkatakrishnan (VNKC) corresponding to the

original FV formulation, and Face-Based Venkatakrishnan (VNKF) relying on the hybrid

variable. The Venkatakrishnan limiter does resolve the issue of non-di�erentiability, thus

facilitating convergence at the cost of limiting the gradient even in regions where no new

extrema are formed.

All limiters presented above (BJC,BJF,VNKC,VNKF) highlight a further disadvan-

tage of the limiting approach: they cause the MHFV scheme to lose its fully implicit

nature. The value of γC , required to assemble coe�cients of the local convective �ux

operator, depends on the solution �eld itself (φ as well as φ̃ for the face-based versions);

the overall scheme thus becomes solution-dependent. This is bothersome not only from

a philosophical standpoint - the continuous convection operator is linear and thus, in

the mimetic spirit, its discrete counterpart should be too - but also in practice, since

it requires an iterative solution process unlike all other schemes presented so far, where

operator linearity was preserved. The last remark however becomes less of an issue when

deriving the Navier-Stokes operator (Chapter 5), since the non-linearity of the problem

necessarily calls for an iterative process.

4.2.4 Weighted Least-Squares

An alternative to limiters is the family of so-called Essentially Non-Oscillatory (ENO)

schemes, �rst published by Harten, Engquist, Osher and Chakravarthy [116] in a Finite

Di�erencing framework. When extended to classical FV, ENO methods consist in select-

ing for each cell an �ad hoc� stencil for gradient approximation such that the resulting

gradient is biased towards preserving local smoothness, i.e. a stencil that does not cross

shocks or near-discontinuities in the solution �eld. It has been observed [213] how ENO

schemes do not totally suppress oscillations, but they succeed in having them decay as

O
(
h2
)
(for second-order schemes), hence the name: essentially non-oscillatory. Variants

of ENO schemes have been developed for unstructured grids [2, 176].

One of the disadvantages of ENO schemes is that implementation is not trivial, since

Chapter 4. MHFV Convection-Di�usion-Reaction 81

they operate by selecting for each cell a range of candidate stencils, and then evaluating

some local smoothness parameter for each stencil in order to select the most suitable

one. The Weighted Essentially Non-Oscillatory schemes (WENO), �rst presented by

Liu, Osher and Chan [154], constitute an improvement in that sense: WENO schemes

reconstruct gradients over all candidate stencils, and then perform a weighted convex

combination of these, with weights favouring those stencils lying on smoother areas.

Several WENO variants are found in the literature [87, 125].

A similar concept gives rise to the Weighted Least-Squares (WLSQR) approach pro-

posed by Fürst [89, 90] and implemented in the present work for MHFV. The scheme

is applicable when the reconstruction of the scalar face value is done via a LSQ gradi-

ent, which is the case for the HUPW2 strategy (4.53). WLSQR suggests constructing

each local LSQ gradient with weights ωFC designed to strongly favour those components

that would constitute the corresponding ENO sub-stencil. The method is thus similar

to WENO in its essence, but easier to implement for generic unstructured meshes since

local stencils need not be modi�ed.

Adapting the formulation by Fürst [89] to the MHFV face-based LSQ gradient yields

weights of the form

ωFC =

√√√√ h−r∣∣∣φF−φCh

∣∣∣p + hq
where h = ‖~xF − ~xC‖ , (4.60)

with p, q and r being constants to be determined empirically; Fürst [90] suggests p = 4,

q = −2 and r = 3 for 2D problems, although these might not necessarily be the best

choices here since the MHFV LSQ gradient uses face-to-cell centre distances, as opposed

to the traditional FV cell-to-cell.

A weight de�ned as in (4.60) is intended to be biased towards areas where the solution

is smooth, i.e. where |φF − φC | is small. A way of including this bias in the MHFV

gradient ∇L,λC is to augment the already existing LSQ weights λFC (de�ned in Section

3.3.4) by ωFC , thus obtaining a modi�ed set of weights λWLSQR
FC to be used throughout

the assembly of the operator. Two precautions must be taken: a) the LSQ gradient

(3.50) is in fact weighted by the inverse of λFC , hence λ−1
FC is the quantity that should

be augmented; b) as already highlighted for the SUPG approach (Section 4.2.1), care

must be taken not to alter the dimensionality of λFC , lest incur the risk of altering the

dimensions of the stabilisation term (3.31) and jeopardise stability of the MHFV di�usion

Chapter 4. MHFV Convection-Di�usion-Reaction 82

scheme. An unscaled augmentation would be of the form

1

λWLSQR
FC

=
1

λFC
+ ωFC

=
1 + λFCωFC

λFC

.

Rescaling this by a factor (1 + λFCωFC)max = 1+max (λFCωFC)∂C leads to the following

expression for the augmented weights:

λWLSQR
FC =

λFC (1 + λFCωFC)max

1 + λFCωFC
. (4.61)

It can be veri�ed how de�nition (4.61) produces augmented weights that are close to the

original λFC in areas where the local solution �eld is smooth, and biased towards the

smoother side of cells lying across steep gradients/near-discontinuities. For example, over

an isotropic Cartesian grid the parameter h in (4.60) and the λFC weights are identical for

all faces of C, hence max (λFCωFC)∂C is given by the face with the smallest |φF − φC |.
The augmented weight λWLSQR

FC (4.61) for this face will be identical to the unmodi�ed

λFC . For all other faces, λ
WLSQR
FC will be larger - and thus

(
λWLSQR
FC

)−1
penalised - for

those faces with larger jumps |φF − φC | in the solution �eld. If the cell lies in a smooth

area, then the solution jumps for all of its faces are roughly equivalent which implies

λWLSQR
FC ≈ λFC ∀F ∈ ∂C, i.e. the weighting scheme reverts to the unmodi�ed version

from Section 3.3.4.

There are two evident disadvantages connected with the WLSQR approach. The

�rst is its semi-empirical nature: parameters p, q and r in (4.60) are to be determined

based on experimental data, and their �ne-tuning is found to be case-dependent [89];

furthermore, there are at present no clear guidelines on how to extend them to 3D cases

[90]. The second is that, as in the case of �ux limiters (Section 4.2.3), WLSQR is also a

solution-dependent approach subject to the same drawbacks, namely a) the violation at

the discrete level of the linearity of the continuous convection operator, and b) the need

for iterative solution techniques.

4.2.5 Upwind Least-Squares

A stabilisation technique native to the MHFV scheme developed in this thesis is now

introduced: the Upwind Least-Squares (ULSQR) method. ULSQR combines the basic

principles of both SUPG and WLSQR: similarly to SUPG it aims at a streamline sta-

bilisation depending on the local convecting �ow but, instead of altering the di�usivity

tensor KC , it deploys second-order upwinding through the HUPW2 scheme (4.53) where,

Chapter 4. MHFV Convection-Di�usion-Reaction 83

in the WLSQR spirit, the LSQ weights are modi�ed in a way that takes into account the

direction of the convecting �ux.

More speci�cally, the λFC weights in (4.54) - and therefore in the LSQ gradient (3.50)

- are replaced with a set of modi�ed weights de�ned as

λULSQRFC =
λFC

1 + λFC
∣∣UdwFC∣∣ (4.62)

which is obtained via the augmentation:
(
λULSQRFC

)−1
= λ−1

FC +
∣∣UdwFC∣∣. The ULSQR

modi�cation only a�ects weights related to faces which are upwind with respect to C,

since in the opposite case it holds UdwFC = 0. Similarly, faces that are perpendicular (or

almost) to the crosswind direction are not a�ected, since in that case UFC ≈ 0. Hence

ULSQR yields a LSQ gradient that is both streamline-biased and upwind-biased. In that

sense, ULSQR shares some of its premises with the QUICK scheme (Quadratic Upstream

Interpolation for Convective Kinematics, [145]), which is upwind-biased in the choice of

values for interpolation.

It is interesting to observe that, where active (i.e. for upwind faces), weight augmen-

tation (4.62) introduces a bias proportional to the dimensionless quantity

PeFC = λFC |UFC | (4.63)

which can be naturally interpreted as a local Peclet number. De�nition (4.63) is justi�ed

by considering the weight de�nitions from Section 3.3.4. Taking for example the ORTN

formulation (3.83) with isotropic di�usivity kC , it leads to

PeFC =
‖~xF − ~xC‖ |UFC |

kC |F |
(4.64)

which is indeed non-dimensional and grows larger as the problem becomes locally convection-

dominated, leading to a stronger upwind bias. It is argued that, compared to WLSQR

(Section 4.2.4), ULSQR may be just as heuristic but it �ts more elegantly within the

MHFV scheme, namely because a) since PeFC is dimensionless, expression (4.62) does

not a�ect the dimension of the weights, meaning that no further weight normalisation is

required, b) ULSQR is less empirical as it is solely based on quantities directly related to

the physics of the problem (conversely, as mentioned, WLSQR relies on empirical �ne-

tuning of parameters based on case-dependent numerical results), and c) ULSQR, unlike

WLSQR and �ux limiters, is not solution-dependent, thus allowing to maintain a linear

and fully implicit MHFV scheme.

Chapter 4. MHFV Convection-Di�usion-Reaction 84

4.3 Validation of MHFV for convection-di�usion-reaction

problems

4.3.1 Low-Pe h-convergence for basic convective schemes

A manufactured solution test case analogous to the one used for pure di�usion (Section

3.4.1) is proposed here in order to validate the centred convective schemes (MIXC and

HYBC) form Section 4.1.1 and �rst-order upwinding (HUPW1) from Section 4.1.2. The

domain is the unit square Ω =]0, 1[×]0, 1[and the anisotropic di�usion tensor is de�ned

as in (3.93). The divergence-free convecting �eld ~U is de�ned as

~U (x, y) =

(
βx (2y − 1) (x− 1)

−βy (2x− 1) (y − 1)

)
, (4.65)

where setting parameter β = 103 leads to a rather low macroscopic Peclet number Pe ≈
57 (based on averaged velocity and di�usivity �elds and the side of the square domain),

hence maintaining the problem within a range where centred convection schemes can be

expected to be stable even on coarser meshes. The reaction coe�cient is set to

η (x, y) = 10 (x+ y) (4.66)

and the source term computed such that the exact solution remains the same as in the

pure di�usion test case (3.94). Dirichlet boundary conditions are applied throughout.

Tests are run on two mesh sequences: one polygonal distorted (Figure 3.6), one fully

Cartesian. Errors in L2 norm for each MHFV variable for the MIXC, HYBC and HUPW1

strategies are plotted in Figure 4.3, 4.4 and 4.5 respectively. Corresponding values and

convergence rates are reported in Table 4-A through 4-F.

Table 4-A: Mixed Centred (MIXC) - polygonal distorted mesh: errors and
convergence rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.751 E−1 9.882 E−1 � 3.324 E+0 � 1.38 E+0 �
8.967 E−2 5.572 E−2 4.297 1.330 E−1 4.809 7.94 E−2 4.261
4.449 E−2 1.342 E−2 2.031 3.193 E−2 2.036 2.04 E−2 1.938
2.206 E−2 3.323 E−3 1.990 7.926 E−3 1.986 5.38 E−3 1.900
1.097 E−2 8.285 E−4 1.988 1.979 E−3 1.986 1.49 E−3 1.839
5.471 E−3 2.070 E−4 1.994 4.946 E−4 1.993 4.39 E−4 1.758

Chapter 4. MHFV Convection-Di�usion-Reaction 85

Table 4-B: Hybrid Centred (HYBC) - polygonal distorted mesh: errors and

convergence rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.751 E−1 1.546 E−1 � 8.678 E−2 � 1.450 E−1 �

8.967 E−2 2.917 E−2 2.492 2.315 E−2 1.975 3.344 E−2 2.192

4.449 E−2 7.072 E−3 2.022 6.230 E−3 1.873 8.164 E−3 2.012

2.206 E−2 1.765 E−3 1.979 1.609 E−3 1.930 2.021 E−3 1.990

1.097 E−2 4.416 E−4 1.983 4.079 E−4 1.964 5.083 E−4 1.976

5.471 E−3 1.105 E−4 1.991 1.027 E−4 1.982 1.302 E−4 1.958

Table 4-C: Hybrid First-Order Upwind (HUPW1) - polygonal distorted mesh:

errors and convergence rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.751 E−1 2.481 E−1 � 1.629 E−1 � 2.70 E−1 �

8.967 E−2 1.189 E−1 1.099 9.096 E−2 0.871 1.30 E−1 1.096

4.449 E−2 5.808 E−2 1.022 4.833 E−2 0.902 6.19 E−2 1.054

2.206 E−2 2.871 E−2 1.004 2.515 E−2 0.931 3.03 E−2 1.020

1.097 E−2 1.429 E−2 0.999 1.289 E−2 0.957 1.50 E−2 1.003

5.471 E−3 7.122 E−3 1.001 6.528 E−3 0.978 7.48 E−3 1.002

Table 4-D: Mixed Centred (MIXC) - Cartesian mesh: errors and convergence

rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.111 E−1 1.238 E−1 � 5.113 E−1 � 8.134 E−2 �

5.263 E−2 2.312 E−2 2.246 1.080 E−1 2.081 1.909 E−2 1.940

2.564 E−2 5.253 E−3 2.061 2.577 E−2 1.993 4.642 E−3 1.966

1.266 E−2 1.268 E−3 2.014 6.324 E−3 1.991 1.144 E−3 1.985

6.289 E−3 3.122 E−4 2.003 1.568 E−3 1.993 2.846 E−4 1.988

3.135 E−3 7.751 E−5 2.001 3.903 E−4 1.998 7.111 E−5 1.992

Chapter 4. MHFV Convection-Di�usion-Reaction 86

Table 4-E: Hybrid Centred (HYBC) - Cartesian mesh: errors and convergence

rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.111 E−1 1.274 E−1 � 5.752 E−1 � 7.884 E−2 �

5.263 E−2 2.383 E−2 2.244 1.271 E−1 1.994 1.883 E−2 1.917

2.564 E−2 5.432 E−3 2.056 3.012 E−2 1.973 4.533 E−3 1.980

1.266 E−2 1.312 E−3 2.013 7.348 E−3 1.986 1.114 E−3 1.989

6.289 E−3 3.232 E−4 2.002 1.817 E−3 1.992 2.770 E−4 1.989

3.135 E−3 8.027 E−5 2.001 4.514 E−4 1.997 6.922 E−5 1.992

Table 4-F: Hybrid First-Order Upwind (HUPW1) - Cartesian mesh: errors and

convergence rates.

h ε (φC) Rate ε (φF) Rate ε (VF) Rate

1.111 E−1 2.639 E−1 � 2.149 E−1 � 1.735 E−1 �

5.263 E−2 1.290 E−1 0.958 1.171 E−1 0.813 8.816 E−2 0.906

2.564 E−2 6.176 E−2 1.024 5.849 E−2 0.965 4.277 E−2 1.006

1.266 E−2 2.964 E−2 1.040 2.873 E−2 1.007 2.046 E−2 1.045

6.289 E−3 1.440 E−2 1.032 1.416 E−2 1.011 9.907 E−3 1.037

3.135 E−3 7.081 E−3 1.020 7.016 E−3 1.009 4.859 E−3 1.023

Results are overall in line with what expected: second-order accuracy is observed

on the scalar variable for both centred schemes MIXC and HYBC on both mesh types,

whereas HUPW1 reverts to �rst-order accuracy. Similar observations apply to the �ux

variable, which also exhibits second-order (or near) accuracy with centred schemes.

It is also observed that MIXC (Figure 4.3) produces a slightly higher error on the

hybrid variable. This can be explained by the fact that, as mentioned before, while

hybrid schemes impose strong consistency on convective �uxes, in the MIXC case these

�uxes are weakly consistent and they do not involve φF in their de�nition; the hybrid

variable therefore loses its exactness property as face-averaged scalar for linear solution

�elds. This however does not degrade the scheme itself, since in the MHFV philosophy

the hybrid variable may be thought of as a �working� variable, used to solve the system

and then reconstruct the solution �elds: cell-averaged scalars φ and total face �uxes V.

Chapter 4. MHFV Convection-Di�usion-Reaction 87

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

3.00E+00

5 . 00E -03 5 . 00E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(a) polygonal distorted mesh

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

2 . 50E -03 2 . 50E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(b) Cartesian mesh

Figure 4.3: Mixed Centred (MIXC): h-convergence.

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

3.00E+00

5 . 00E -03 5 . 00E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(a) polygonal distorted mesh

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

2 . 50E -03 2 . 50E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(b) Cartesian mesh

Figure 4.4: Hybrid Centred (HYBC): h-convergence.

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

3.00E+00

5 . 00E -03 5 . 00E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(a) polygonal distorted mesh

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

2 . 50E -03 2 . 50E -02

h

(_C)

(_F)

(V_F)

1st ord.

2nd ord.

(b) Cartesian mesh

Figure 4.5: Hybrid First-Order Upwind (HUPW1): h-convergence.

Chapter 4. MHFV Convection-Di�usion-Reaction 88

4.3.2 Low-Pe validation of the Hybrid θ-Scheme

It is also interesting to analyse numerical results for the Hybrid θ-Scheme (HTHE) from

Section 4.1.3. This is done on the same test case as in the previous section, which is run

on a polygonal distorted mesh for di�erent values of θ. Convergence is plotted in Figure

4.6 - on the L2 norm of the error for φC only, for the sake of readability. Error values

and convergence rates are also reported in Table 4-G.

5.00E-05

5.00E-04

5.00E-03

5.00E-02

5 . 00E -03 5 . 00E -02

(
_
C
)

h

= 0.2

= 0.4

= 0.6

= 0.8

= 0.95

1st ord.

2nd ord.

Figure 4.6: Hybrid θ-Scheme (HTHE): h-convergence on a polygonal distorted
mesh for di�erent values of θ.

Table 4-G: Hybrid θ-Scheme (HTHE) - polygonal distorted mesh: errors and
convergence rates for at di�erent values of θ.

θ = 0.2 θ = 0.6 θ = 0.95
h ε (φC) Rate ε (φC) Rate ε (φC) Rate

1.751 E−1 1.841 E−1 � 1.517 E−1 � 1.098 E−1 �
8.967 E−2 8.745 E−2 1.112 5.737 E−2 1.453 2.393 E−2 2.277
4.449 E−2 4.262 E−2 1.025 2.477 E−2 1.198 6.973 E−3 1.759
2.206 E−2 2.103 E−2 1.007 1.144 E−2 1.101 2.274 E−3 1.597
1.097 E−2 1.043 E−2 1.004 5.458 E−3 1.059 8.551 E−4 1.400
5.471 E−3 5.187 E−3 1.004 2.655 E−3 1.036 3.672 E−4 1.215

As expected, increasing the value of θ leads to an increase in the order of accuracy

from �rst to second-order: this is because, as explained in Section 4.1.3, HTHE is a

linear combination between hybrid HUPW1 (θ = 0) and HYBC (θ = 1), with the goal of

curbing arti�cial di�usion introduced by the former without incurring in stability issues

caused by the latter.

Chapter 4. MHFV Convection-Di�usion-Reaction 89

Numerical results show that the bene�ts are especially evident on coarser meshes,

whereas on �ner ones the gain on accuracy remains rather modest even for high val-

ues of θ (θ = 0.95). A possible improvement could be done by implementing the FV

Scharfetter-Gummel scheme (FVSG): originally developed for classical FV [208], FVSG

can be interpreted as a θ-Scheme where the value of θ is locally adjusted according to a

local Peclet number, thus avoiding numerical di�usion where it is not necessary - such as

e.g. in areas where the mesh is su�ciently re�ned. An adaptation of FVSG to a HMM

scheme has been investigated by Beirão da Veiga et al. [18].

4.3.3 High-Pe h-convergence for Hybrid First and Second-Order Upwind-

ing

Table 4-H: Behaviour of MHFV centred and upwind convective schemes on a
coarse mesh for an increasingly convection-dominated problem.

ε (φC)
k Pe MIXC HYBC HUPW1 HUPW2

1 E−1 8.53 E+1 3.924 E−1 8.877 E−2 1.699 E−1 5.819 E−2

1 E−2 8.53 E+2 4.109 E+0 3.772 E−1 2.064 E−1 5.920 E−2

1 E−3 8.53 E+3 3.377 E+1 5.033 E+0 2.114 E−1 5.724 E−2

1 E−4 8.53 E+2 3.068 E+4 6.002 E+1 2.120 E−1 5.685 E−2

1 E−5 8.53 E+5 3.046 E+3 6.114 E+2 2.120 E−1 5.681 E−2

A test case is set up to validate the Hybrid First and Second-Order Upwinding schemes

(HUPW1 and HUPW2) in a convection-dominated regime. The problem considered is

a pure convection-di�usion one (hence without reaction: η = 0) over the unit square

domain Ω =]0, 1[×]0, 1[. Di�usivity k is chosen to be constant and isotropic, which is

achieved in MHFV by using a diagonal matrix for the di�usivity tensor, i.e. K = kI. The
solenoidal convecting �eld is de�ned as

~U (x, y) =

(
10x+ 2

3x− 10y

)
. (4.67)

The source term is computed such that the exact solution is

φex (x, y) = 2x2 + cos
(
2πxy2

)
. (4.68)

Firstly, the need for upwinding schemes is illustrated by solving over a rather coarse mesh

(h ≈ 0.26) for an increasing macroscopic Peclet number, which is achieved by gradually

decreasing the di�usivity k. The e�ects are shown in Table 4-H, where the L2 norm of

Chapter 4. MHFV Convection-Di�usion-Reaction 90

(a) h ≈ 0.1 (b) h ≈ 0.05 (c) h ≈ 0.03

Figure 4.7: Re�nement sequence for a 2D quadrilateral distorted mesh.

the error on φC is reported for centred and upwind schemes. The error steadily increases

with Pe for both centred schemes and becomes unbounded. Conversely, when upwinding

is employed, the error remains bounded below a certain value even at high Pe numbers.

The decreased order of accuracy due to �rst-order upwinding leads to a larger error bound

for HUPW1 than for HUPW2. For this speci�c case, results show that HUPW2 is stable

even on coarser meshes and does not require any further limiting/stabilising procedures.

3.00E-05

3.00E-04

3.00E-03

3.00E-02

3.00E-01

8 . 00E -03 8 . 00E - 02

(
_
C
)

h

HUPW1

HUPW2

1st ord.

2nd ord.

Figure 4.8: Hybrid First and (unlimited) Second-Order Upwinding (HUPW1
and HUPW2): h-convergence on a quadrilateral distorted mesh for
a convection-dominated problem.

Secondly, a h-convergence study is conducted for the HUPW1 and HUPW2 schemes.

The lowest value k = 10−5 from Table 4-H is selected, corresponding to the rather high

Pe ≈ 8.53 E5. The mesh is of type quadrilateral distorted (Figure 4.7). Results are

reported in Figure 4.8 and Table 4-I (on φC only for better readability).

Chapter 4. MHFV Convection-Di�usion-Reaction 91

Table 4-I: Hybrid First and Second-Order Upwind (HUPW1 and HUPW2) -
quadrilateral distorted mesh: errors and convergence rates.

HUPW1 HUPW2
h ε (φC) Rate ε (φC) Rate

2.593 E−1 2.120 E−1 � 5.681 E−2 �
1.521 E−1 1.607 E−1 0.519 1.688 E−2 2.275
7.856 E−2 1.146 E−1 0.512 5.292 E−3 1.756
3.935 E−2 7.404 E−2 0.632 1.358 E−3 1.967
1.962 E−2 4.394 E−2 0.750 3.366 E−4 2.004
9.789 E−3 2.444 E−2 0.844 8.358 E−5 2.004

Both schemes behave as expected and, especially for �ner meshes in the sequence, they

converge according to their nominal order of accuracy (HUPW1 shows a pre-asymptotic

behaviour on coarser girds). Results are deemed su�cient to validate the accuracy of

MHFV hybrid upwinding techniques in high-Pe conditions.

4.3.4 Comparison of stabilisation techniques

inlet

outlet

y

x(0,0)(-1,0)

(1,1)

(a) domain, convecting �eld, boundary conditions

-0.1

0.4

0.9

1.4

1.9

-1 -0.8 -0.6 -0.4 -0.2 0

_
in

x

(b) inlet pro�le φin

(c) mesh type

Figure 4.9: Smith-Hutton test case setup.

Chapter 4. MHFV Convection-Di�usion-Reaction 92

In this section the Smith-Hutton test case [215] is used to test the various stabilisation

strategies from Section 4.2 and analyse how they compare against each other. The test

case is a 2D convection-di�usion problem speci�cally designed for this kind of analysis.

The setup is shown in Figure 4.9. The domain is the rectangle Ω =] − 1, 1[×]0, 1[, and

the divergence-free convecting �eld is

~U (x, y) =

(
2y
(
1− x2

)
−2x

(
1− y2

)) (4.69)

which corresponds to the stream function

ψ = −
(
1− x2

) (
1− y2

)
; (4.70)

the pattern of this �ow �eld is shown in Figure 4.9(a). On the bottom side of Ω an inlet

distribution is imposed over the interval −1 ≤ x ≤ 0:

φin (x) = 1 + tanh (β (1 + 2x)) (4.71)

which, as shown in Figure 4.9(b), corresponds to a transition from φin (−1) = 0 to

φin (0) = 2, with parameter β determining how sharp the transition is. A high value is

selected (β = 100) in order to test MHFV stabilisation strategies in the presence of a

shock in the distribution of φ. In the case of purely convective �ow, φ is constant along

streamlines, hence the exact solution is given by

φex (ψ) = 1 + tanh
(
β
(

1− 2
√

1 + ψ
))

= φex (x, y) . (4.72)

Expression (4.72) is used to enforce Dirichlet values on the left, right and top sides of Ω,

where it is close to zero. Finally, an outlet boundary condition is imposed on the bottom

side over the interval 0 ≤ x ≤ 1.

A convection-dominated regime is achieved by setting a low (constant and isotropic)

di�usivity k = 10−6, which gives a macroscopic Peclet number Pe ≈ 106. As mentioned

above, in the purely convective case φ is constant along streamlines and its outlet pro�le

is an exact mirror image of the inlet distribution. Since the test case is run at a high

Pe a similar result can be expected, hence the outlet pro�le given by (4.72) is used as a

reference solution.

The discrete problem is solved over a rather coarse (h ≈ 1.96 E−2) polygonal dis-

torted mesh (Figure 4.9(c)). For solution-dependent schemes, �xed-point iterations are

performed down to a normalised residual of 10−3.

Chapter 4. MHFV Convection-Di�usion-Reaction 93

-0.3

0.2

0.7

1.2

1.7

2.2

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

x

BJC

BJF

VNKC

VNKF

Reference

(a) �ux limiters

-0.3

0.2

0.7

1.2

1.7

2.2

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

x

HUPW1

SUPG

WLSQR

ULSQR

Reference

(b) other stabilisers

Figure 4.10: Smith-Hutton outlet pro�les of φF for di�erent stabilisation
schemes.

The outlet pro�le of the hybrid variable φF obtained via each scheme is plotted in

Figure 4.10. As expected, HUPW1 (Figure 4.10(b)) produces a non-oscillatory monotone

pro�le, but causes an excessive increase in di�usivity noticeable in the heavily smoothed

near-discontinuity. All limiting techniques on the second-order scheme (Figure 4.10(a))

also exhibit a TVD behaviour while being closer to the reference solution, although a

considerable amount of numerical di�usion is still visible. More speci�cally, the Barth-

Jespersen limiters (BJC and BJF) produce less di�usive results compared to Venkatakr-

ishnan (VNKC and VNKF) which is expected since, as Michalak and Ollivier-Gooch

observe [166], such strategies introduce a further level of smoothening. It can also be

observed that, at least for this test case, both limiter types perform considerably better

in their traditional cell-based version compared to the hybrid face-based.

WLSQR and ULSQR produce similar pro�les: slight overshoots are present on either

side of the sharp transition, but they can reasonably be expected to be bounded regard-

less of Pe or mesh parameters. In particular, for WLSQR stability is theoretically proven

by Fürst [89] for certain types of discontinuous �elds; a similarly rigorous mathematical

analysis of ULSQR is yet to be conducted. Based on the amplitude of oscillations, in

particular on the lower side, WLSQR appears to be slightly more favourable; this result

however cannot be considered as general enough, especially considering that the expo-

nents in weight formulation (4.60) may need a case-dependent tuning. Furthermore, as

mentioned in Section 4.2.5, ULSQR possesses the attractive feature of not being solution-

dependent, meaning that it only requires one linear solve and no iterative processes.

Concerning SUPG, oscillations appear to be completely dumped on the lower side

of the step but there is a signi�cant overshoot at the top. Further tests have revealed

that, on more regular meshes such as Cartesian ones, the overshoot is not as pronounced.

Chapter 4. MHFV Convection-Di�usion-Reaction 94

This might indicate that the MHFV choice of SUPG stabilization parameter (4.43), while

limiting oscillations, is not entirely mesh-independent.

The full Smith-Hutton solution �elds for all strategies are also reported in Figure 4.11

(a) BJC (b) BJF

(c) VNKC (d) VNKF

(e) HUPW1 (f) SUPG

(g) WLSQR (h) ULSQR

0 0. 5 1 1. 5 2

Figure 4.11: Smith-Hutton solution �eld φ for di�erent stabilisation schemes.

Chapter 4. MHFV Convection-Di�usion-Reaction 95

for a further analysis. The contours con�rm what already observed on outlet pro�les.

Numerical di�usion is evident for HUPW1 and face-based �ux limiters BJF and VNKF,

and less so for the cell-based versions BJC and VNKC. For SUPG, WLSQR and ULSQR,

oscillations can be seen propagating in both directions from the sharp transition, but in

all cases they remain con�ned within a relatively restricted area surrounding the shock,

while the solution remains uniform and smooth elsewhere in zero-gradient areas. There

is no de�nite qualitative superiority of one scheme over the others.

7.00E-03

7.00E-02

7 . 00E -03 7 . 00E -02

(
_
C
)

h

BJC

BJF

VNKC

VNKF

1st ord.

2nd ord.

(a) �ux limiters

7.00E-03

7.00E-02

7 . 00E -03 7 . 00E -02

(
_
C
)

h

HUPW1

SUPG

WLSQR

ULSQR

1st ord.

2nd ord.

(b) other stabilisers

Figure 4.12: Limited/stabilised schemes: h-convergence on the Smith-Hutton
test case.

Lastly a h-convergence analysis is performed for all second-order stabilised strategies

- along with �rst-order upwinding for comparison. Accuracy is assessed in terms of L2

norm of the error on the cell-averaged φ measured against the pure convective exact

solution (4.72). Results are reported in Figure 4.12 and Tables 4-J and 4-K.

It is noticeable how HUPW1 severely underperforms in this case, exhibiting a con-

vergence rate even lower than its nominal �rst-order value. All �ux limiting procedures

also degrade the order of accuracy of the method, pushing it back to �rst-order or below,

although the error is consistently smaller than with HUPW1. Barth-Jespersen displays

a slightly better h-convergence behaviour compared to Venkatakrishnan and, for both

limiters, cell-based versions appear to be superior to face-based - as already observed

through the outlet pro�les analysis.

On the other hand SUPG, WLSQR and ULSQR all perform comparably: one can see

a pre-asymptotic behaviour in the sequence, which steepens as the mesh is re�ned until

it matches (or almost) a second-order slope in the last entries. Again, on this test case a

slight superiority is displayed by WLSQR in terms of convergence slope.

Chapter 4. MHFV Convection-Di�usion-Reaction 96

Table 4-J: Smith-Hutton test case: errors and convergence rates for �ux lim-
iters.

BJC BJF VNKC VNKF
h ε (φC) Rate ε (φC) Rate ε (φC) Rate ε (φC) Rate

5.98 E−2 1.37 E−1 � 1.80 E−1 � 1.83 E−1 � 2.26 E−1 �
2.95 E−2 8.11 E−2 0.74 1.34 E−1 0.42 1.31 E−1 0.48 1.81 E−1 0.32
1.96 E−2 5.86 E−2 0.79 1.16 E−1 0.35 1.07 E−1 0.49 1.59 E−1 0.31
1.47 E−2 4.51 E−2 0.90 1.03 E−1 0.40 9.11 E−2 0.55 1.45 E−1 0.33
1.17 E−2 3.80 E−2 0.76 9.45 E−2 0.38 8.10 E−2 0.52 1.34 E−1 0.33
9.75 E−3 3.43 E−2 0.56 8.84 E−2 0.37 7.30 E−2 0.57 1.27 E−1 0.32
8.35 E−3 3.11 E−2 0.65 8.37 E−2 0.35 6.75 E−2 0.50 1.21 E−1 0.31

Table 4-K: Smith-Hutton test case: errors and convergence rates for stabilisa-
tion strategies.

HUPW1 SUPG WLSQR ULSQR
h ε (φC) Rate ε (φC) Rate ε (φC) Rate ε (φC) Rate

5.98 E−2 3.16 E−1 � 1.21 E−1 � 1.23 E−1 � 1.36 E−1 �
2.95 E−2 2.58 E−1 0.29 6.39 E−2 0.91 6.52 E−2 0.90 6.91 E−2 0.96
1.96 E−2 2.29 E−1 0.29 4.37 E−2 0.93 4.19 E−2 1.08 4.33 E−2 1.14
1.47 E−2 2.10 E−1 0.30 3.17 E−2 1.10 2.71 E−2 1.51 2.86 E−2 1.42
1.17 E−2 1.96 E−1 0.30 2.44 E−2 1.17 1.84 E−2 1.73 2.06 E−2 1.46
9.75 E−3 1.85 E−1 0.31 1.90 E−2 1.37 1.23 E−2 2.20 1.53 E−2 1.62
8.35 E−3 1.77 E−1 0.31 1.50 E−2 1.49 8.30 E−3 2.52 1.19 E−2 1.66

Chapter 5

MHFV Incompressible

Navier-Stokes

5.1 The Navier-Stokes scheme

The MHFV hybrid convection-di�usion-reaction (4.38) and divergence (3.13) operators

provide all tools necessary for deriving a MHFV scheme for the incompressible steady-

state Navier-Stokes problem:{ (
~U · ∇

)
~U − ν∇2~U +∇p = ~g

∇ · ~U = 0
in Ω (5.1)

where ∇2 is the vector Laplacian, ν is the kinematic viscosity (considered isotropic in this

chapter), ~g is the momentum source term (e.g. gravity) and ~U and p are the unknown

velocity and pressure �elds respectively (or, more correctly, p is the pressure divided by

a constant density ρ).

The literature on the numerical approximation of (5.1) is vast: as Droniou and

Eymard [72] observe, mathematicians tend to focus on FE approaches [102, 111] while

CFD engineers and physicists prefer FV schemes - traditionally presented �rst in a simpli-

�ed form over staggered, structured grids [188, 229] and then adapted to general meshes

[83, 206]. Such a preference is attributed to the more straightforward physical inter-

pretation of FV discrete operators, as well as to their ease of implementation. Another

considerable advantage of FV for incompressible applications is that the divergence-free

condition is imposed to the discrete velocity �eld such that mass conservation within each

control volume is ensured. Conversely, in FE methods mass conservation is in general

97

Chapter 5. MHFV Incompressible Navier-Stokes 98

satis�ed only in a weak sense [161]. A common solution is to penalise the momentum

equation by a quantity proportional to the mass imbalance (grad-div stabilisation [178]),

which is however parameter-dependent. Alternatively, MFE schemes have been proposed

based on speci�c mixed element pairs with the approximation of the velocity being one

order higher than the approximation of the pressure, such that the divergence operator

maps into the discrete pressure space and the resulting velocity �eld is divergence-free

point-wise (e.g. [46, 149, 247]). It has also been observed [149] how some of these element

pairs satisfy the inf-sup or Ladyshenskaya-Brezzi-Babu²ka (LBB) stability condition [40].

Discontinuous Galerkin methods (see e.g. [57, 103, 170]) are also mentioned as a sepa-

rate class of schemes which enforce local mass conservation and are applicable to general

meshes.

Addressing the MVE methodology to the Navier-Stokes problem (5.1) could lead to

the derivation of operators similar to FV, with a familiar physical interpretation (i.e. the

requirement that conservation laws be satis�ed at a discrete level over each control vol-

ume) but at the same time capable of supporting general polyhedral meshes with fewer

restrictions on admissibility compared to classical FV. From the MVE community, the

�rst divergence-free scheme for incompressible Navier-Stokes has been presented very

recently by Beirão da Veiga et al. [22], who demonstrate the superiority of MVE over

some standard MFE schemes in terms of h-convergence when solving over distorted grids

and for a wide range of Reynolds numbers. The method proposed in this chapter attempts

to achieve similar results while remaining closer to classical FV, namely by building upon

the �rst-order accurate MFV scheme presented by Droniou and Eymard [72].

5.1.1 Discrete variables and preliminary notation

The degrees of freedom required by MHFV Navier-Stokes are de�ned in this section.

These are the d cell-averaged velocity components ui in Qh:

(
ui
)
C

= uiC =
1

|C|

∫
C
U i dV ∀C ∈ Ωh , i = 1 · · · d ; (5.2)

the d face-based velocity components ũi (hybrid variables):

(
ũi
)
F

= uiF =
1

|F |

∫
F
U i dS ∀F ∈ Ωh , i = 1 · · · d ; (5.3)

the cell-averaged pressure p in Qh:

(p)C = pC =
1

|C|

∫
C
p dV ∀C ∈ Ωh ; (5.4)

Chapter 5. MHFV Incompressible Navier-Stokes 99

the convecting �ux U in Xh:

(U)F = UF = UFC+ =

∫
F

~U · ~nFC+ dS ∀F ∈ Ωh . (5.5)

In terms of represented physical quantity, there is no di�erence between the convecting

�ux and the velocity components since both are a discrete representation of the unknown

velocity �eld ~U , although in di�erent spaces. In MHFV, however, U is intentionally

presented as a separate variable. The reason behind this is mainly philosophical: in the

MVE/MFV spirit, it is desirable to discretise ~U in Xh when it is considered as a vector

�eld, and in Qh when each velocity component is treated separately as a scalar value.

There is also a practical advantage in separating velocity-related degrees of freedom this

way, which will become particularly relevant when assembling the discrete adjoint Navier-

Stokes system (Chapter 6). The concept is not completely foreign to classical FV either.

An example is the well-known Rhie-Chow interpolation [203]: introduced in order to pre-

vent velocity-pressure decoupling - and subsequent checker-board modes - for collocated

FV schemes, Rhie-Chow is de facto a face-based de�nition of discrete convecting �uxes.

It is however seldom presented in this light, and it tends to be associated with the solu-

tion algorithm rather than the discretisation scheme itself, hence the concept is often

overlooked by traditional CFD literature.

The MHFV framework, and in particular the interpretation of hybrid variables as

face-based quantities, naturally leads to making the following choice when it comes to

establishing the relationship between U and the ũi components: the convecting �ux

across each face is set to be the scalar product between the hybrid velocity vector and

the face vector, i.e.

UFC =
d∑
i=1

uiFF
i
C . (5.6)

Since U belongs to Xh, all properties of MVE �uxes listed in Section 3.2.1 hold, in

particular �ux conservation

UFC+ + UFC− = 0 (5.7)

and subsequently the existence of an �unsigned� convecting �ux UF such that

(U)F = UF = UFC+ , (5.8)

which is compatible with de�nition (5.6). Finally, (5.6) is also de�ned globally as a

convecting �ux operator C:
U = Cũ (5.9)

where the notation ũ - without the i superscript - is intended as a vector holding, in

Chapter 5. MHFV Incompressible Navier-Stokes 100

sequence, all d components of the corresponding hybrid velocity �eld, i.e.

ũ =

ũ1

ũ2

· · ·
ũd

 =

u1
F1

· · ·
u1
FnF

u2
F1

· · ·
u2
FnF

udF1

· · ·
udFnF

. (5.10)

Likewise, the superscript-free notation u shall denote a vector holding in sequence all d

cell-averaged velocity components.

5.1.2 Hybrid momentum operator

There is a well-known similarity between the momentum equation (�rst equation in (5.1))

and the convection-di�usion-reaction equation (4.1). By isolating i-th component of the

momentum equation and re-arranging its terms:

∇ ·
(
−ν∇ui + ~Uui

)
+ (∇p)i = gi in Ω , (5.11)

the similarity becomes evident. The di�usivity is ν (isotropic), the reaction coe�cient is

null, the convecting �ux is ~U itself, the scalar source term is gi (the i-th component of

~g) and the unknown scalar is the velocity component ui. The di�erence is the additional

pressure gradient term. Expression (5.11) can be rewritten in mixed form as{
~V i = −ν∇ui + ~Uui + ~δip

∇ · ~V i = gi
in Ω (5.12)

where ~δi is a vector of size d such that
(
~δi
)
j

= 1 if j = i, zero otherwise. Formulation

(5.12) follows the classical FV argument: integrating (5.11) over a control volume C

yields ∫
C

(
∇ ·
(
−ν∇ui + ~Uui

)
+ (∇p)i

)
dV =

∫
C
gi dV (5.13)

which, by applying the Gauss-Green formula to the left-hand side, is rewritten as∫
∂C

(
−ν∇ui + ~Uui

)
· ~nFC dS +

∫
∂C
p niFC dS =

∫
C
gi dV . (5.14)

Chapter 5. MHFV Incompressible Navier-Stokes 101

The �rst term in (5.14) corresponds to the sum of convective-di�usive �uxes across each

face of C. Hence, at the discrete level, this suggests de�ning locally a total �ux V i
FC

by adding to the MHFV convective-di�usive �ux some discrete representation of the

quantity
∫
F p n

i
FC dS - which is indeed the de Rham map of ~δip onto Xh. Droniou and

Eymard [72] propose a scheme that, translated to MHFV notation, leads to the MHFV

�rst-order pressure scheme (PRS1):

(
Vi
)
∂C

= NC
(
uiC − uiF

)
∂C

+ (U)∂C u
i
C︸ ︷︷ ︸

convection-di�usion

+
(
Fi
)
∂C
pC︸ ︷︷ ︸

pressure term

(5.15)

where the viscous term in NC is built by using the scalar di�usivity tensor KC = νCI,
and the notation Fi was introduced to denote a vector of cardinality nF holding the i-th

component of each face vector ~F . The term
∫
F p n

i
FC dS is thus discretised as pCF iC .

Finally, local continuity of the total �ux ~V i is discretised as∑
F∈∂C

V i
FC = |C| giC (5.16)

where giC is the de Rham map of gi onto Qh, i.e.

giC =
1

|C|

∫
C
gi dV . (5.17)

Combining (5.16) and (5.15) leads to a MFV discrete formulation of (5.12) which is �rst-

order accurate for the pressure variable [72]. The present work explores the possibility of

extending (5.15) to second-order accuracy via the alternative scheme (PRS2):

(
Vi
)
∂C

= NC
(
uiC − uiF

)
∂C

+ (U)∂C u
i
C︸ ︷︷ ︸

convection-di�usion

+
(
Fi
(
pC +∇L,µC p · (~xF − ~xC)

))
∂C︸ ︷︷ ︸

second-order pressure term

. (5.18)

Formulation (5.18) replaces pC in (5.15) with a one-sided reconstruction of the value

of p at each face obtained via a piecewise-constant LSQ approximation of the pressure

gradient on C:

∇L,µC p = argmin
~A∈Rd

∑
C′

1

µC′C

(
pC′ − pC − ~A · (~xC′ − ~xC)

)2

=
(
XµC
)−1~bp,µ

(5.19)

Chapter 5. MHFV Incompressible Navier-Stokes 102

with C ′ denoting cells neighbouring with C and µCC′ a weighting factor between C and

C ′. The d× d µCC′-weighted LSQ matrix is de�ned as

(
XµC
)
ij

=
∑
C′

(
xiC′ − xiC

) (
xjC′ − x

j
C

)
µCC′

(5.20)

and the LSQ right-hand side is

~bp,µ =
∑
C′

(~xC′ − ~xC) (pC′ − pC)

µCC′
. (5.21)

It should be highlighted that the LSQ gradient (5.19) is a distinct operator from ∇L,λC ,

i.e. the λFC-weighted LSQ gradient appearing in the di�usion term for ui (as well as

in the convective term when second-order upwinding is employed) as de�ned in (3.68).

The former operates on the pressure space (Qh), hence involving exclusively cell-averaged

degrees of freedom, while the latter hinges on both cell-averaged and hybrid values as

shown in (3.50). Therefore the µC′C weights in (5.19) may be de�ned independently of

λFC . Traditional geometric weighting schemes such as those suggested by Mavriplis [163]

may be selected. In the present work, a distance-based weighting is chosen:

µC′C = ‖~xC′ − ~xC‖2 . (5.22)

Notice that the reconstructed face value of p must not be interpreted as a MHFV

hybrid variable, as it is discontinuous across faces: for a face F common to C+ and C−,
the value reconstructed from C+ will in general di�er from that from C−. Hence the

face value of p must not be considered as a true degree of freedom, but rather as part of

the approximation made to derive the second-order accurate gradient operator for p. In

order to de�ne a uni�ed framework the generic notation pFC is introduced to denote the

scheme-dependent face value of p, namely

pFC =

{
pC PRS1 (First-Order Pressure)

pC +∇L,µC p · (~xF − ~xC) PRS2 (Second-Order Pressure)
. (5.23)

The total �ux can thus be written in the generic form

(
Vi
)
∂C

= NC
(
uiC − uiF

)
∂C

+ (U)∂C u
i
C +

(
pFCF

i
)
∂C

. (5.24)

At this point, regardless of the speci�c pressure scheme, full hybridisation is feasible on

velocity components via the usual static condensation mechanism [40]. An expression of

Chapter 5. MHFV Incompressible Navier-Stokes 103

uiC as a function of ũi and p is obtained by replacing (5.24) in (5.16):

uiC =

(
NCT1,

(
ũi
)
∂C

)
+ |C| giC −

((
pFCF

i
)
∂C
,1
)

(NC1,1) + ((U)∂C ,1)
. (5.25)

Then, conservation (3.6) is imposed on the total �ux, yielding the (i-th) MHFV hybrid

momentum operator, written as

F i
ν,~U

ũi + Gip = g̃i (5.26)

where F i
ν,~U

is a hybrid convection-di�usion operator as shown in Section 4.1.5, Gi the i-th
gradient component operator for the pressure space, and g̃i the i-th hybrid momentum

right-hand side:

(
g̃i
)
F

= −giC− |C−|
(
NC−1 + (U)∂C−

)
F

(NC−1,1) +
(
(U)∂C− ,1

)
−giC+ |C+|

(
NC+1 + (U)∂C+

)
F

(NC+1,1) +
(
(U)∂C+ ,1

) .
(5.27)

It is also useful at this point to introduce the following shorthand notation for the full

momentum operator acting on all velocity components:

Fν,~U ũ + Gp = g̃ . (5.28)

A Picard linearisation of F i
ν,~U

(i.e. the freezing of the convecting �ow U) allows to repre-

sent Fν,~U and G algebraically by block-diagonal matrices with the i-th block correspond-

ing to F i
ν,~U

and Gi respectively. In 3D they are de�ned as

Fν,~U =

F1
ν,~U

0 0

0 F2
ν,~U

0

0 0 F3
ν,~U

 ; G =

 G
1 0 0

0 G2 0

0 0 G3

 . (5.29)

5.1.3 Full MHFV Navier-Stokes operator

The last step consists in discretising the Navier-Stokes continuity equation (second equa-

tion in (5.1)), which is done via the usual Gauss-based divergence operator D de�ned

in (3.15). The operator maps from Xh to Qh, and thus is naturally applied to the

discrete convecting �ux U. As anticipated, U is considered as a separate variable; how-

ever, combining D with the convecting �ux operator C de�ned in (5.9) allows to build

a (block-diagonal) divergence operator D = DC acting directly on the hybrid velocity

Chapter 5. MHFV Incompressible Navier-Stokes 104

components:

DU = D (Cũ) = (DC) ũ = Dũ . (5.30)

The way D operates locally on each cell is explicitly shown to be

(Dũ)C =
∑
F∈∂C

d∑
i=1

uiFF
i
C . (5.31)

Notice that, by using (5.31) to discretise the continuity equation, local mass conservation

is enforced in a strong (FV-like) sense. At this point the (Picard-linearised) MHFV

steady-state, incompressible Navier-Stokes operator and system can be assembled:[
Fν,~U G
D 0

](
ũ

p

)
=

(
g̃

0

)
. (5.32)

As expected, (5.32) is an Oseen-type saddle-point system. The main non-linearity present

in Fν,~U is due to the convective term which depends on U, which in turn depends on ũ.

However further non-linearities Fν,~U may exist, e.g. in case any of the solution-dependent

stabilisation techniques described in Section 4.2 are employed.

It can be veri�ed that, if the �rst-order pressure scheme PRS1 (5.15) is used, then

the gradient operator G is the adjoint of the divergence D, i.e. G = DT : PRS1 causes

the term
((
pFCF

i
)
∂C
,1
)
in (5.25) to vanish, since

((
pFCF

i
)
∂C
,1
)

=
((
pCF

i
)
∂C
,1
)

= pC
((
Fi
)
∂C
,1
)︸ ︷︷ ︸

=0

. (5.33)

Therefore, when �ux conservation is imposed, the only pressure-related term is the one

that explicitly appears in the total �ux (5.15), yielding a pressure gradient of the form

(Gp)F = pC+
~FC+ − pC− ~FC− (5.34)

which is indeed the transpose of the divergence operator (5.31). As discussed in Chapter

3, such a property �ts within a MVE framework where the mimetic nature of the method

requires the two discrete operators to be adjoint of each other as their continuous coun-

terparts are in the Gauss-Green formula. Conversely, the PRS2 strategy (5.18) breaks

this symmetry thus violating one of the basic MVE principles. The advantage is that, if

stable, PRS2 is expected to achieve a superior h-convergence on the pressure variable.

Another interesting remark is related to the presence of the so-called zero block for

pressure in the discrete continuity equation. This may seem obvious since pressure does

not appear in the continuity equation; however, this is not the case for many schemes.

Chapter 5. MHFV Incompressible Navier-Stokes 105

For instance, the block is not zero for stabilised FE schemes that do not satisfy the LBB

condition [40]. Classical collocated FV schemes also require an additional pressure-based

stabilisation term: for example, the aforementioned Rhie-Chow interpolation scheme

[203] is in fact a way of de�ning a convecting �ux U at the faces which includes a

pressure-related quantity and thus, when divergence is applied to such a �ux, a pressure

term appears in the continuity equation. In MHFV, it can be argued that a Rhie-Chow-

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

(a) without stabilisation

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

(b) with stabilisation

Figure 5.1: Examples of Oseen sparsity patterns for a 2D Navier-Stokes prob-
lem [25].

like interpolation is not necessary: U exists as a degree of freedom, and it is directly

related to the face-based velocity ũ via (5.9), which in turn hinges directly on the cell-

based pressure p via the momentum operator (5.28). Hence all degrees of freedom are

naturally staggered, and it may be assumed that no further interpolation is required to

stabilise the scheme. This will be further con�rmed in Section 5.2.1, where it will be

shown how the hybrid momentum equation can be rearranged in a way that highlights

its resemblance to a FV-like Rhie-Chow interpolation. When looking at the sparsity

pattern of the full Oseen problem (Figure 5.1), the absence of a pressure stabilisation

term implies the presence of zeroes on the main diagonal, which will play a role in the

devising of solution algorithms (Section 5.2).

5.1.4 Boundary conditions

A suitable de�nition of boundary conditions for the incompressible Navier-Stokes prob-

lem is an ongoing �eld of research for both the FV and FE communities, with several

formulations being proposed over the years due to the vast diversity of problem de�ni-

tions and the fact that, depending on the speci�c problem, it is not always immediate and

obvious to provide a physically interpretable boundary condition [200]. Within the scope

Chapter 5. MHFV Incompressible Navier-Stokes 106

of this thesis it is su�cient to focus on the three types most commonly found: inlet, wall

and outlet, which were already discussed in Section 4.1.6 for convection-di�usion-reaction

problems.

An inlet is implemented according to the FV velocity inlet de�nition, consisting in

specifying inlet velocity components, which in MHFV translates to imposing a strong

Dirichlet value to the hybrid velocity ũ at the corresponding inlet faces. The convecting

�uxU is thus also imposed automatically via (5.9), meaning that inlet degrees of freedom

for ũ and U are e�ectively eliminated from the problem. A (no-slip) wall boundary

condition is analogous: zero velocity - or the wall's velocity in case of moving wall - is

imposed to faces corresponding to the wall. In this sense, wall and inlet conditions are

mathematically identical.

Concerning the outlet, the MHFV framework lends itself to a straightforward imple-

mentation of the so-called do-nothing boundary condition, arguably the most established

condition for FE methods [104, 105]. The strategy owes its name to the fact that the

condition appears automatically in the FE weak formulation due to partial integration of

the viscous term and the pressure gradient over outlet faces. More speci�cally, the basic

formulation proposed by Heywood, Rannacher and Turek [121], which imposes

− ν ∂
~U

∂~n
+ p~n = ~0 (5.35)

at the outlet, is hereby adopted. In MHFV this is achieved in the momentum equation

by imposing at the outlet boundary ∂ΩO
h , for each velocity component, that the sum of

the viscous term (the di�usive �ux) and the pressure �ux be equal to zero:

(
M−1
C

(
uiC − uiF

)
∂C

)
F

+ pFCF
i
C = 0 ∀F ∈ ∂ΩO

h , i = 1 · · · d . (5.36)

The cell-averaged uiC in (5.36) is then eliminated as previously shown for the convection-

di�usion-reaction outlet condition (Section 4.1.6).

If the outlet plane is placed away from signi�cant �ow phenomena and oriented suit-

ably, then it can reasonably be expected ∇~U · ~n = ~0, meaning that (5.36) implies zero

pressure at the outlet: pFC = 0. Conversely, for a problem where no outlet is present -

such as the lid-driven test case, see Section 5.3.2 - the pressure �eld is only de�ned up

to an additive constant. In that case one may choose to either �x the value pC at an

arbitrary cell, or renormalise the whole solution �eld p in order to have e.g. zero-average

pressure across the domain. Throughout this work, the second solution is preferred.

Chapter 5. MHFV Incompressible Navier-Stokes 107

5.2 Solution algorithms for incompressible Navier-Stokes

The Picard-linearised form of (5.28) facilitates solving the non-linear problem via Picard

iterations, i.e. by using at iteration n a convecting �ux computed via velocity values known

from iteration n − 1. The Picard linearisation is preferred mainly because of its ease of

implementation. A suitable alternative would be to perform Newton iterations: Newton

linearisation is known to be more robust and exhibits a higher rate of convergence, but

each Newton iteration is computationally more expensive and its convergence depends

on the initial solution estimate [183].

At each Picard iteration one must solve a saddle-point linear system. If an iterative

algorithm is employed to solve the latter as well, since there is no interest in obtaining

the exact Oseen solution at each Picard iteration, the two are typically performed at

the same time in a �one-shot� fashion: this gives rise to many well-known CFD solution

algorithms, which are in fact the combination of preconditioners for linearised Oseen-type

systems with outer non-linear iterations.

Arguably the most popular solution strategy - and one of the earliest devised - to

solve the FV-discretised Navier-Stokes is the SIMPLE algorithm (Semi-Implicit Method

for Pressure Linked Equations) and all its variants, �rst developed by Spalding and

Patankar [188]. In the past few decades, however, constant increases in computing power

have driven the advances in algorithm development, speci�cally towards block precon-

ditioners for Oseen-type systems more e�cient than traditional SIMPLE-like strategies.

Research has successfully produced a number of alternative algorithms, although mostly

restricted so far to the FE community. Besides a few variants of classical ILU pre-

conditioners [199, 240], many strategies have been put forward based on the so-called

approximate commutators - in particular the Least-Squares Commutator (LSC) [80] and

the Pressure Convection-Di�usion (PCD) commutator [69, 139, 214], based on the ear-

lier BFBt algorithm [78]. Examples of other recently developed preconditioners include

the Augmented Lagrangian (AL) approach [28�30], the Arti�cial Compressibility (AC)

preconditioner [67], the Grad-Div (GD) preconditioner [67, 119], and those based on

dimensional splitting along velocity components [26, 27]. Several interesting publica-

tions have also surfaced reviewing and comparing various Navier-Stokes preconditioners

[25, 79, 179, 198, 211].

Many of these generic algorithms - both traditional and novel - can be adapted to

MHFV. In the following sections a few existing strategies are outlined �rst for a generic

Chapter 5. MHFV Incompressible Navier-Stokes 108

Oseen system written in the following notation:[
F G
D C

](
uh

ph

)
=

(
gh

sh

)
(5.37)

and the following short-hand notation for (5.37):

Awh = rh (5.38)

where the subscript h indicates that vectors belong to some discretisation space (not

necessarily the same for velocity and pressure). The adaptation of each algorithm to the

MHFV framework is then described.

5.2.1 SIMPLEC

As anticipated, classical FV often make use of SIMPLE and SIMPLE-like solution algo-

rithms [188, 229]. Their initial popularity can be primarily attributed to their segregated

nature, implying that they require solving linear systems relatively small and better con-

ditioned in comparison to the full linearised Oseen problem. The e�ciency of SIMPLE-

like strategies is however debatable [199]: they are shown to be stable in many cases,

but they exhibit a rather poor convergence rate, they are prone to stagnation and their

performance is known to be a�ected by mesh re�nement.

Despite traditionally being presented from the �segregated algorithm� viewpoint, high-

lighting the fact that they solve separately for velocity and pressure, SIMPLE-like schemes

can be seen as a way of preconditioning the discrete Oseen problem [211]. The generic

Oseen matrix in (5.37) can be factorised as

A =

[
F G
D C

]
=

[
F 0

D −S

][
I F−1G
0 I

]
, (5.39)

where I is the identity matrix and S is known as Schur complement [155, 179]:

S = DF−1G− C. (5.40)

This suggests a way of preconditioning the Oseen system. In fact, an exact Schur com-

plement would provide an exact preconditioner, i.e. it would allow to solve the linearised

(5.37), separately for uh and ph, in one iteration only. However this would require

inverting operator F, which is unfeasible in practice. Therefore an approximate Schur

Chapter 5. MHFV Incompressible Navier-Stokes 109

complement is computed instead:

Ŝ = DF̂−1G− C (5.41)

where F̂−1 is some approximation of F−1, and a preconditioner is de�ned as

P =

[
F 0

D −Ŝ

][
I F̂−1G
0 I

]
. (5.42)

A Richardson iteration for the preconditioned system P−1Awh = P−1bh is then devised

based on the splitting A = P− (P− A), such that at the n-th iteration one solves:

Pwn+1
h = (P− A)wn

h + rh , (5.43)

i.e. :(
un+1
h

pn+1
h

)
=

(
unh
pnh

)
+

([
F 0

D −Ŝ

][
I F̂−1G
0 I

])−1(
gh −Gpnh − Funh

sh − Dunh

)

=

(
unh
pnh

)
+

[
I F̂−1G
0 I

]−1(
F−1 (gh −Gpnh)− unh

Ŝ−1
(
DF−1 (gh −Gpnh)− sh

))

=

(
unh
pnh

)

+

(
F−1 (gh −Gpnh)− unh − F̂−1G

(
Ŝ−1

(
DF−1 (gh −Gpnh)− sh

))
Ŝ−1

(
DF−1 (gh −Gpnh)− sh

))

=

(
F−1 (gh −Gpnh)− F̂−1G

(
Ŝ−1

(
DF−1 (gh −Gpnh)− sh

))
pnh + Ŝ−1

(
DF−1 (gh −Gpnh)− sh

))

=

(
u
n+1/2
h − F̂−1Gδph

pnh + δph

)
(5.44)

where un+1/2
h = F−1 (gh −Gpnh) is the velocity prediction, and δph = Ŝ−1

(
Dun+1/2

h − sh

)
the pressure correction. The algorithm is stated as follows:

1. solve Fun+1/2
h = gh −Gpnh (predictor step for velocity);

2. solve Ŝδph = Dun+1/2
h − sh (pseudo-Laplacian for pressure correction);

3. update pressure: pn+1
h = pnh + δph;

4. update velocity: un+1
h = u

n+1/2
h − F̂−1Gδph (corrector step);

5. compute new convecting �ux; update operator F (Picard step).

Chapter 5. MHFV Incompressible Navier-Stokes 110

The block-diagonal form of F in the linearised Navier-Stokes system allows to split step

1 into d separate linear solves, each corresponding to the momentum equation in its

respective spatial direction; this is a further advantage of SIMPLE-like methods.

In its most basic implementation, SIMPLE approximates the inverse of F with the

inverse of its main diagonal:

F−1 ≈ F̂−1 = (DIAG (F))−1 . (5.45)

It has been observed [229] that, for steady-state Navier-Stokes, SIMPLE often requires

heavily relaxing both momentum equation and pressure correction, which makes it a

rather ine�cient algorithm. For this reason, in this work the variant of SIMPLE known

as SIMPLEC [226] (where the �C� stands for Consistent) is considered instead. In the

steady-state case it operates by adding to the momentum equations in (5.37) some form

of implicit relaxation by factor α:

Fα = F + αDIAG (F) (5.46)

and subsequently approximating the inverse of F as:

F−1 ≈ F̂−1 =
1

α
(DIAG (F))−1 . (5.47)

Classical FV literature [229] provides the following interpretation: SIMPLEC, in the

steady-state case, yields a pseudo-Laplacian pressure equation aimed at correcting the

velocity increment
(
u
n+1/2
h − unh

)
rather than the velocity itself, and since it acts on

relaxed velocity increments, it does not require relaxing the pressure correction step.

Despite the overall ine�ciency of SIMPLE-type preconditioners, the practical advan-

tages due to variable segregation make it worth implementing a version of SIMPLEC

adapted to the MHFV framework. As mentioned in Section 5.1.1, in the case of a col-

located FV scheme the Rhie-Chow momentum interpolation [203] is required in order to

avoid decoupling of pressure and velocity and subsequent checker-board modes. In this

work, the version of Rhie-Chow with relaxation proposed by Majumdar [157] is consid-

ered. Contrary to the original Rhie-Chow interpolation for SIMPLEC, the Majumdar

formulation converges to a steady-state solution �eld which does not depend on the relax-

ation factor. It operates by deriving an expression for the velocity components at each

face: uh,F involving both velocity and pressure variables, of the generic form

βFuh,F +∇F ph = 〈βuh〉F + 〈∇Cph〉F (5.48)

where 〈·〉F represents a face-averaging procedure, and βF is the resulting face-based

Chapter 5. MHFV Incompressible Navier-Stokes 111

central coe�cient subsequently used for implicit relaxation. The goal is thus to derive

a MHFV expression analogous to (5.48) and identify the corresponding βF . To do so,

the full �ux conservation expression at a face F is considered, with convective scheme

HUPW2 (4.53) and pressure scheme PRS2 (5.18):

UdwFC+u
i
F + UuwFC+

(
uiC+ +∇L,λC+u

i · (~xF − ~xC+)
)

︸ ︷︷ ︸
C+ convection

+ pFC+F
i
C+︸ ︷︷ ︸

C+ pressure

− νC+∇GC+u
i · ~FC+ −

1

λFC+

(
uiF − uiC+ −∇

L,λ
C+u

i · (~xF − ~xC+)
)

︸ ︷︷ ︸
C+ di�usion

+ UdwFC−u
i
F + UuwFC−

(
uiC− +∇L,λC−u

i · (~xF − ~xC−)
)

︸ ︷︷ ︸
C− convection

+ pFC−F
i
C−︸ ︷︷ ︸

C− pressure

− νC−∇GC−u
i · ~FC− −

1

λFC−

(
uiF − uiC− −∇

L,λ
C−u

i · (~xF − ~xC−)
)

︸ ︷︷ ︸
C− di�usion

= 0 .

(5.49)

Denoting by λF the harmonic average of the λFC weights:

λF =
2λFC+λFC−
λFC+ + λFC−

, (5.50)

and introducing the de�nition of local Reynolds number

ReF =
λF |UF |

2
, (5.51)

equation (5.49) may be rearranged and rescaled to give

2 (1 +ReF)

λF
uiF − (pC+ − pC−)F iC+ =(

UuwFC+ +
1

λFC+

)(
uiC+ +∇L,λC+u

i · (~xF − ~xC+)
)

+(
UuwFC− +

1

λFC−

)(
uiC− +∇L,λC−ui · (~xF − ~xC−)

)
−(

νC+∇GC+u
i − νC−∇GC−ui

)
· ~FC+ +(

∇L,µC+p · (~xF − ~xC+)−∇L,µC−p · (~xF − ~xC−)
)
F iC+

(5.52)

obtainable by taking into account the PRS2 scheme de�nition (5.18) and the trivial iden-

tities: −
(
UdwFC+ + UdwFC−

)
= |UFC+| = |UFC−| = |UF | and ~FC− = −~FC+. A parallelism

can be drawn between (5.52) and the generic FV momentum interpolation (5.48): (5.52)

is analogous to a FV (Majumdar) Rhie-Chow interpolation as it provides an explicit

expression for the velocity component at the face uiF which combines an averaged value

based on cell-centred quantities uiC with an additional pressure-dependent term. Hence

Chapter 5. MHFV Incompressible Navier-Stokes 112

a suitable candidate to act as coe�cient for a Majumdar-like relaxation is identi�ed as

βF =
2 (1 +ReF)

λF
. (5.53)

The momentum equation is thus relaxed by using a modi�ed convection-di�usion operator

of the form:

Fα
ν,~U

= Fν,~U + α (diag (βF)) . (5.54)

Notice that (5.54) is a form of inertial relaxation: βF is proportional to the local Reynolds

number ReF , meaning that stronger relaxation is applied in areas where convective phe-

nomena dominate. Finally, the MHFV approximated Schur complement is de�ned as

Ŝα = D
(
diag

(
1

αβF

))
DT . (5.55)

Comparison with the generic Schur complement expression (5.41) raises two observations.

First, matrix C does not have a MHFV equivalent since it corresponds to the pressure

block in the continuity equation which, as shown before, is zero in MHFV. Second,

the gradient operator G is replaced with the transpose of the divergence operator DT ; as

mentioned in Section 5.1.3, the two are identical when the pressure gradient is discretised

via the PRS1 scheme (5.15). For PRS2 (5.18) that is no longer the case, meaning that

formulation (5.55) introduces a further level of approximation in the Schur complement;

however, since this approximation only a�ects the pressure correction step, the overall

algorithm still converges. The choice is made in order not to degrade the sparsity pattern

of the pseudo-Laplacian and ease the linear solve at the pressure correction step.

Algorithm 1 MHFV SIMPLEC
n = 0
Initialise ũ0, p0

while not converged do
Solve relaxed hybrid momentum equation (velocity prediction):
Fα
ν,~U

ũn+1/2 = g̃ − Gpn + α (diag (βF)) ũn ;

Solve Schur complement pseudo-Laplacian (pressure correction):
Ŝαδp = Dũn+1/2 ;
Update pressure:
pn+1 = pn + δp ;
Update hybrid velocity:
ũn+1 = ũn+1/2 −

(
diag

(
1

αβF

))
DTδp ;

Update convecting �ux U, cell-averaged velocity u and operator Fα
ν,~U

;
n=n+1

end while

return u, ũ, p

Chapter 5. MHFV Incompressible Navier-Stokes 113

The overall iterative algorithm (Algorithm 1) is analogous to the generic one, with

one last di�erence being that, since incompressible �ow is being considered, the source

term of the continuity equation is zero except for cells adjacent to Dirichlet boundaries.

5.2.2 Block-Coupled

The Block-Coupled (BCPL) solution strategy requires solving the linearised discrete

Oseen problem (5.37) as it is - i.e. for velocity and pressure simultaneously - then

update the value of the convecting �ux via the newly computed velocity, re-assemble

the convection-di�usion operator F, and iterate. Hence a BCPL solver proceeds from one

Picard iteration to the next, without any inner Oseen iterations.

BCPL typically exhibits superior convergence properties compared to any segregated

algorithm, and it was shown [66] to be less dependent on grid quality and size, but solution

of the fully coupled system is not trivial. Firstly, while segregated algorithms solve at each

iteration multiple relatively small linear systems, the BCPL approach requires solving the

larger linearised Oseen system (5.37). Storage of the full matrix - and potentially of its

factorisation, depending on the chosen linear solver - can be prohibitive for large industrial

cases, although recent advancements in memory capabilities and parallel computing help

alleviate the problem. Secondly, it has been observed [234] that the saddle-point nature

of system (5.37) poses a challenge for standard linear solvers especially in the presence of

zero elements on the main diagonal in the discrete continuity equation (C = 0), which is

the case in MHFV. This causes the coupled system to be ill-conditioned, sti� and di�cult

to solve.

The implementation of a BCPL solver suitable for MHFV may require the devel-

opment of a linear solver adapted to saddle-point systems of this nature. In order to

solve the pressure zero-block problem, node renumbering techniques have been proposed

[234, 239, 240] which avoid zero pivots when factorising the matrix; these can be applied

to direct solvers as well as to ILU preconditioners [198, 199] for Krylov subspace linear

solvers. In order to ease and accelerate linear solver convergence, algebraic multigrid

methods are found to be e�ective [65, 66].

Linear solver theory is deemed beyond the scope if the present work, which is therefore

limited to outlining the BCPL algorithm (Algorithm 2) under the assumption that the

linearised Oseen problem can indeed be solved. All BCPL results shown in this work

(Section 5.3.3) were obtained by direct solvers, which is however not a viable option for

large industrial cases.

Chapter 5. MHFV Incompressible Navier-Stokes 114

Algorithm 2 MHFV Block-Coupled
n = 0
Initialise ũ0, p0

while not converged do
Solve Picard-linearised Oseen problem (momentum may be relaxed if necessary):[
Fν,~U G
D 0

](
ũn+1

pn+1

)
=

(
g̃
0

)
;

Update convecting �ux U, cell-averaged velocity u and operator Fν,~U ;
n=n+1

end while

return u, ũ, p

5.2.3 Augmented Lagrangian

The Augmented Lagrangian (AL) preconditioning scheme for Oseen-type problems was

�rst presented by Benzi and Olshanskii [28], and further developed with several variants

[29, 30, 119, 177]. AL-based preconditioners have been so far investigated mostly within

FE frameworks, and have been proven to be theoretically almost optimal [30] in terms

of grid and Re-dependency. It is thus worth adapting the AL methodology to MHFV.

AL literature always presents the method applied to LBB-stable FE schemes, implying

that C = 0 in the generic Oseen system (5.37); since this property is also veri�ed in

MHFV, the same assumption is made in the following exposition. The AL method starts

by rewriting the discrete Oseen system (5.37) as[
Fγ G
D 0

](
uh

ph

)
=

(
gγh
sh

)
(5.56)

where

Fγ = F + γGW−1D (5.57)

and

gγh = gh + γGW−1sh, (5.58)

with γ a positive augmentation factor and W an arbitrary SPD matrix. Systems (5.56)

and (5.37) are equivalent, since (5.57) and (5.58) add to the velocity blocks a term propor-

tional to the residual of the continuity equation. Hence the AL method can be interpreted

as the addition to the momentum equations of a penalisation term proportional to the

mass imbalance, which is driven to zero for a converged solution.

As observed by Benzi et al. [29], an advantage of using an AL formulation (besides it

being largely insensitive to grid size and regularity, as well as Reynolds number) is that the

Chapter 5. MHFV Incompressible Navier-Stokes 115

issue of �nding a good approximation for the Schur complement (5.40) is circumvented.

If the augmentation factor is large enough, then the penalisation term will prevail on the

operator F itself, thus justifying the approximation

(Fγ)−1 ≈ (̂Fγ)−1 =
(
γGW−1D

)−1
(5.59)

which yields an approximate Schur complement of the form:

Ŝ = D
(
γGW−1D

)−1 G =
1

γ
W. (5.60)

The generic AL iterative procedure is outlined as follows:

1. solve Fγun+1
h = gγh −Gpnh (penalised momentum equation);

2. solve 1
γWδph = Dun+1

h − sh (pressure correction);

3. update pressure: pn+1
h = pnh + δph;

4. compute new convecting �ux; update augmented operator Fγ (Picard step).

In FE the matrix W is often chosen to be the pressure mass matrix or, for practical

reasons, a diagonal approximation of it (usually the main diagonal, or a lumped mass

matrix [30]). In that case, the pressure correction (step 2) involving the approximate

Schur complement (5.60) only requires inverting a diagonal matrix, i.e. it doesn't call for

a linear solve.

Despite their great potential, AL-based preconditioners su�er from a few considerable

drawbacks. Chief amongst them is the fact that, as shown by Benzi and Olshanskii [28],

too large values of γ cause the penalised block Fγ to become increasingly ill-conditioned

sinceGW−1D is a singular matrix, and therefore increasingly challenging for linear solvers.

On the other hand, the approximated Schur complement (5.60) is only close to the

exact one if γ is large enough, hence if γ is chosen too small, the overall algorithm may

underperform or not converge at all. A trade-o� between these two extremes is required,

possibly combined with inexact solves of the augmented momentum equations. A further

disadvantage of AL is that the augmented momentum operator Fγ is no longer block-

diagonal, because each of the velocity components contributes to the penalisation term

of the momentum equations in all spatial dimensions. Therefore, step 1 in the procedure

above entails a single coupled linear solve for all d velocity components simultaneously

and, unlike SIMPLEC, it cannot be decoupled into segregated smaller systems, at least

for the basic AL formulation. Attempts have been made to circumvent the problem,

see e.g. Benzi et al. [29] who suggest a modi�ed AL formulation where the o�-diagonal

Chapter 5. MHFV Incompressible Navier-Stokes 116

penalisation blocks are treated explicitly in order to allow for dimensional splitting.

The AL preconditioner for the MHFV Navier-Stokes scheme is implemented as follows,

and the corresponding iterative scheme outlined in Algorithm 3. The AL penalisation

procedure (5.57) applied to the hybrid convection-di�usion operator is expressed as

Fγ

ν,~U
= Fν,~U − γµD

T

(
diag

(
1

|C|

))
D , (5.61)

(with µ a scaling factor discussed below) whereas the hybrid right-hand side g̃ remains

unmodi�ed since there is no source term for the continuity equation. The matrix diag (|C|)
- a diagonal matrix holding values of cell volumes - is intended to play in (5.61) the role

of W in the generic formulation (5.57). In a FV-like framework such as MHFV this is

interpretable as the equivalent of the FE pressure mass matrix, and since it is diagonal

it can be inverted with no further approximation, making the pressure correction step

trivial and computationally cheap.

Notice that, as already done for the SIMPLEC Schur complement (Section 5.2.1),

the MHFV AL augmentation term makes use of DT rather than G. It was already

highlighted how the two are identical for the PRS1 scheme (5.15). It was chosen to do

so regardless of the speci�c pressure scheme in place, since a second-order accurate G as

de�ned in PRS2 (5.18) would further increase the complexity - in terms of connectivity

and subsequent sparsity pattern - of the already challenging augmented operator (5.61).

This choice does not in any way a�ect the order of accuracy of the solution itself: the AL

algorithm ultimately drives Dũ, and therefore the penalisation term, to zero, so that the

converged �ow �eld satis�es the original non-augmented Navier-Stokes problem (5.32).

A further feature speci�c to the MHFV AL formulation is the additional scaling factor

Algorithm 3 MHFV Augmented Lagrangian
n = 0
Initialise ũ0, p0

while not converged do
Solve augmented hybrid momentum equation:
Fγ

ν,~U
ũn+1 = g̃ − Gpn ;

Compute pressure correction:
δp = −γµ

(
diag

(
1
|C|

))
Dũn+1 ;

Update pressure:
pn+1 = pn + δp ;
Update convecting �ux U, cell-averaged velocity u and operator Fγ

ν,~U
;

n=n+1
end while

return u, ũ, p

Chapter 5. MHFV Incompressible Navier-Stokes 117

µ by which the penalisation term is multiplied in (5.61). This is done in order to obtain

a range of values for γ that work reasonably well regardless of the speci�c mesh size and

problem physics. Following the guidelines of Benzi and Olshanskii [28] for the magnitude

of the penalisation coe�cient, µ is set to scale with the velocity:

µ = max (‖~uC‖ , C ∈ Ωh) (5.62)

where ‖~uC‖ is the magnitude of the cell-averaged velocity: ‖~uC‖ =
√∑d

i=1

(
uiC
)2.

5.3 Validation of MHFV for incompressible Navier-Stokes

5.3.1 h-convergence for Navier-Stokes

As shown in Section 5.1.2, the Picard-linearised MHFV momentum equation combines

a convection-di�usion operator and the pressure gradient scheme; since the former was

already analysed in all its variants in Chapter 4, validation of the MHFV incompress-

ible, steady-state Navier-Stokes scheme in terms of h-convergence will be focused on the

pressure scheme. The test case proposed here is de�ned over the 2D square domain

Ω =]0, 1[×]0, 1[; an arti�cial source term is added to the momentum equation in order to

enforce the following manufactured solution:

~Uex (x, y) =

(
uex (x, y)

vex (x, y)

)
=

(
3x2 − 2y

−6xy − x2

)
, (5.63)

pex (x, y) = x+ y2 , (5.64)

where the exact velocity �eld (5.63) is evidently divergence-free, hence satisfying the

continuity equation. Kinematic viscosity is set to ν = 10−3 in order to obtain a fairly

convection-dominated problem. Centred convective schemes do fail (at least on the

coarser meshes in the sequence), therefore the chosen convective scheme is second-order

upwind with ULSQR stabilisation (Section 4.2.5). The λFC weights for the viscous term

are of type OVRN (3.84). Dirichlet boundary conditions are applied to the velocity

throughout, meaning that the pressure �eld p is only de�ned up to a constant and, as

discussed in Section 5.1.4, the solver will renormalise it to a zero-average �eld; in order

to compute the error correctly, the same procedure is applied to the exact solution pex.

The Navier-Stokes equations are solved over the two usual mesh sequences: polygonal

distorted (Figure 3.6) and Cartesian. Errors in L2 norm for cell-averaged components of

u (u and v) and cell-averaged pressure p are plotted in Figure 5.2 and 5.3, for the PRS1

Chapter 5. MHFV Incompressible Navier-Stokes 118

and PRS2 scheme respectively. Corresponding values and convergence rates are reported

in Tables 5-A through 5-D.

Table 5-A: First-order pressure scheme (PRS1) - polygonal distorted mesh:

errors and convergence rates.

h ε (uC) Rate ε (vC) Rate ε (pC) Rate

4.449 E−2 3.713 E−2 � 8.321 E−3 � 8.564 E−2 �

2.206 E−2 1.549 E−2 1.246 4.155 E−3 0.990 4.009 E−2 1.082

1.466 E−2 8.787 E−3 1.387 2.646 E−3 1.104 2.323 E−2 1.335

1.097 E−2 5.796 E−3 1.435 1.885 E−3 1.170 1.538 E−2 1.422

8.769 E−3 4.220 E−3 1.417 1.472 E−3 1.104 1.134 E−2 1.361

Table 5-B: Second-order pressure scheme (PRS2) - polygonal distorted mesh:

errors and convergence rates.

h ε (uC) Rate ε (vC) Rate ε (pC) Rate

4.449 E−2 3.817 E−4 � 1.831 E−4 � 2.639 E−3 �

2.206 E−2 9.400 E−5 1.998 3.505 E−5 2.357 6.278 E−4 2.047

1.466 E−2 4.213 E−5 1.964 1.553 E−5 1.992 2.748 E−4 2.022

1.097 E−2 2.398 E−5 1.944 9.123 E−6 1.835 1.577 E−4 1.915

8.769 E−3 1.554 E−5 1.937 6.111 E−6 1.789 1.031 E−4 1.898

Table 5-C: First-order pressure scheme (PRS1) - Cartesian mesh: errors and

convergence rates.

h ε (uC) Rate ε (vC) Rate ε (pC) Rate

2.564 E−2 2.99 E−2 � 7.553 E−3 � 8.383 E−2 �

1.266 E−2 1.17 E−2 1.327 3.315 E−3 1.167 3.721 E−2 1.151

8.403 E−3 6.43 E−3 1.464 1.910 E−3 1.345 2.078 E−2 1.421

6.289 E−3 4.13 E−3 1.525 1.255 E−3 1.449 1.323 E−2 1.558

5.025 E−3 2.91 E−3 1.560 8.955 E−4 1.504 9.180 E−3 1.629

Chapter 5. MHFV Incompressible Navier-Stokes 119

Table 5-D: Second-order pressure scheme (PRS2) - Cartesian mesh: errors and

convergence rates.

h ε (uC) Rate ε (vC) Rate ε (pC) Rate

2.564 E−2 3.662 E−4 � 1.547 E−4 � 2.690 E−3 �

1.266 E−2 7.158 E−5 2.313 2.444 E−5 2.615 6.499 E−4 2.013

8.403 E−3 2.610 E−5 2.462 9.289 E−6 2.360 2.838 E−4 2.022

6.289 E−3 1.240 E−5 2.568 4.783 E−6 2.291 1.578 E−4 2.025

5.025 E−3 6.907 E−6 2.608 2.877 E−6 2.265 1.001 E−4 2.029

Numerical results show that the PRS2 scheme introduced in this thesis behaves

according to its nominal second-order accuracy and, at least for this basic test case,

it appears to be rid of any instabilities. There are no signi�cant di�erences in the conver-

gence behaviour of p between di�erent mesh types, indicating that the pressure scheme

does not hamper the overall grid-independent nature of MHFV operators. As expected,

components of u also exhibit second-order convergence thanks to the ULSQR scheme -

in fact, for this simple test case they exhibit accuracy above second-order on Cartesian

meshes.

Concerning the PRS1 scheme p, it appears to perform above its nominal �rst-order

accuracy - and improve with grid re�nement - on both mesh types. However, results also

highlight a coupling between velocity and pressure errors: PRS1 has an adverse e�ect

on the accuracy of u, namely by degrading its order of convergence especially on coarser

meshes. The PRS1 scheme noticeably leads to consistently higher errors on all variables

on both grid sequences.

5.00E-06

5.00E-05

5.00E-04

5.00E-03

5.00E-02

8 . 00E -03

h

(u_C)

(v_C)

(p_C)

1st ord.

2nd ord.

(a) polygonal distorted mesh

2.00E-06

2.00E-05

2.00E-04

2.00E-03

2.00E-02

4 . 50E -03

h

(u_C)

(v_C)

(p_C)

1st ord.

2nd ord.

(b) Cartesian mesh

Figure 5.2: First-order pressure scheme (PRS1): h-convergence.

Chapter 5. MHFV Incompressible Navier-Stokes 120

5.00E-06

5.00E-05

5.00E-04

5.00E-03

5.00E-02

8 . 00E -03

h

(u_C)

(v_C)

(p_C)

1st ord.

2nd ord.

(a) polygonal distorted mesh

2.00E-06

2.00E-05

2.00E-04

2.00E-03

2.00E-02

4 . 50E -03

h

(u_C)

(v_C)

(p_C)

1st ord.

2nd ord.

(b) Cartesian mesh

Figure 5.3: Second-order pressure scheme (PRS2): h-convergence.

5.3.2 Lid-driven cavity test case

wall

wall

wall

���� = {1,0}

y

x

(a) boundary conditions (b) mesh type

Figure 5.4: Lid-driven test case setup.

A further validation of the MHFV Navier-Stokes solver is performed against the well-

known 2D lid-driven cavity benchmark case, which is set up as in Figure 5.4(a) over

the square domain Ω =]0, 1[×]0, 1[. The forced x-velocity on the �lid� (the top side of

the domain) is set to ulid = 1, while viscosity ν is varied in order to match Re = 102,

103 and 104 which will allow comparison with reference results from previous literature

[94]. MHFV schemes are set to: OVRN weights for the viscous term; ULSQR for the

convective term; PRS2 for pressure. Each equation is solved down to a scaled residual of

Chapter 5. MHFV Incompressible Navier-Stokes 121

10−4. The scaled residual Riu for the i-th momentum equation is de�ned as follows:

Riu =

∑
F∈Ωh

∣∣∣(r̃i)
F

∣∣∣
∑
F∈Ωh

((
Fν,~U

)
FF

∥∥∥~̃uF∥∥∥) (5.65)

where r̃i is the i-th hybrid momentum residual and
(
Fν,~U

)
FF

the central hybrid velocity

coe�cient for face F ; this de�nition is based on what is commonly done in most com-

mercial FV-based CFD solvers. Concerning the continuity residual Rc, it is less trivial

to de�ne a suitable scaling procedure. CFD solvers often scale by the largest divergence

value computed at an early iteration, but this scaling procedure depends on the initial

solution estimate. For the results presented here, the continuity residual is left unscaled,

i.e.

Rc =
∑
C∈Ωh

|(Dũ)C | . (5.66)

Results are compared to those reported by Ghia et al. [94], which are computed over

a uniform Cartesian grid of size 129×129. MHFV simulations are run on a quadrilateral

distorted mesh (Figure 5.4(b)) in order to introduce non-orthogonal cells and therefore

verify grid independence. This type of grid features two sets of faces whose centres of

gravity are aligned with the x and y axes of symmetry of the domain, locations where

Ghia et al. [94] report velocity components v and u, respectively; this allows direct

comparison with MHFV hybrid velocity components computed along those axes. Since

the distortion pattern causes local mesh coarsening and re�nement in certain (arbitrarily

located) areas, MHFV simulations are run on a slightly coarser grid (119 × 119), which

gives an averaged cell-to-cell centre distance havg ≈ 8.87 E−3 roughly equivalent to that

used for the reference results.

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1

u

y

MHFV

Ghia et al.

(a) u along y-axis

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

v

x

MHFV

Ghia et al.

(b) v along x-axis

Figure 5.5: Lid-driven cavity, Re = 102: results comparison.

Chapter 5. MHFV Incompressible Navier-Stokes 122

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1

u

y

MHFV

Ghia et al.

(a) u along y-axis

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

v

x

MHFV

Ghia et al.

(b) v along x-axis

Figure 5.6: Lid-driven cavity, Re = 103: results comparison.

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1

u

y

MHFV

Ghia et al.

(a) u along y-axis

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

v

x

MHFV

Ghia et al.

(b) v along x-axis

Figure 5.7: Lid-driven cavity, Re = 104: results comparison.

The two sets of values mentioned above (uF along a vertical line and vF along a

horizontal line passing through the geometric centre of the cavity) are extracted from the

MHFV solution �eld and plotted together with those found in literature in Figures 5.5

through 5.7. Excellent agreement is observed for all three values of Re; MHFV results

appear to be completely una�ected by the underlying distorted grid pattern, as also

qualitatively con�rmed by solution contours (Figure 5.8). Further results on this test

case over an under-resolved grid are reported in Appendix B.

Chapter 5. MHFV Incompressible Navier-Stokes 123

(a) Re = 102 (b) Re = 103

(c) Re = 104

0 0. 2 0. 4 0. 6 0. 8 1

Figure 5.8: Lid-driven cavity solution �eld (velocity magnitude
∥∥∥~U∥∥∥) for dif-

ferent values of Re.

5.3.3 Algorithm performance

The 2D lid-driven cavity case is also used to test and compare performance of the vari-

ous solution algorithms derived in Section 5.2. It is interesting in particular to analyse

how each algorithm responds to changes in the grid (in terms both of coarseness and

orthogonality) as well as in the problem's physics (in terms of global Reynolds number).

The MHFV discretisation scheme is identical to that described in Section 5.3.2. Each

algorithm is tested as usual on two sets of progressively re�ned grids (one polygonal dis-

torted, one Cartesian), each for two di�erent Reynolds values Re = 102 and Re = 103.

All linear systems are solved via linear solvers. The stopping criterion is satis�ed when all

scaled residuals fall below 10−4. For SIMPLEC, each test case is run for three di�erent

values of the relaxation factor α: 3 E−2, 6 E−2 and 1 E−1, in order to verify whether the

Chapter 5. MHFV Incompressible Navier-Stokes 124

50

150

250

350

450

550

650

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 0.03

= 0.06

= 0.1

(a) polygonal distorted mesh

50

150

250

350

450

550

650

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 0.03

= 0.06

= 0.1

(b) Cartesian mesh

Figure 5.9: SIMPLEC, Re = 102: performance.

50

150

250

350

450

550

650

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 0.03

= 0.06

= 0.1

(a) polygonal distorted mesh

50

150

250

350

450

550

650

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 0.03

= 0.06

= 0.1

(b) Cartesian mesh

Figure 5.10: SIMPLEC, Re = 103: performance.

optimal value of α depends on the other parameters. Results are shown in Figure 5.9 and

5.10. There is a noticeable trend observable on both grid types and for both Re values:

on coarser meshes, increasing the relaxation factor α improves performance. This trend

is inverted as meshes are re�ned, with smaller values of α resulting in lower iteration

counts on �ner grids. In all runs each value of α presents a tipping point with respect to

grid re�nement, suggesting that for a �xed value of α there exists an optimal mesh size h

minimising the iteration count and, vice-versa, for a �xed h there exists an optimum α.

This optimum seems to be only marginally a�ected by mesh type; it is however heavily

dependent on the problem's physics, and while a parametric study might lead to a generic

procedure to determine the optimal α in function of h and Re, results based on this test

case alone would be insu�cient to ensure the generality of such a procedure.

As expected, the iteration count itself appears to be a�ected by the physics of the

problem, being higher for a higher Re. The di�erence is however relatively marginal,

at least for the values tested here, and selecting an appropriate α generally allows to

Chapter 5. MHFV Incompressible Navier-Stokes 125

converge in a number of iterations in the same order of magnitude regardless of Re,

especially on �ner grids. Dependency of SIMPLEC on mesh type is also relatively small

but noticeable, with the algorithm generally performing better on Cartesian meshes for

an equal h and optimal α. Again, this is especially true for �ner grids.

In general, the trend suggests that using small values of α on �ner meshes will yield

faster convergence. There is however a limit on how small the relaxation factor can be,

lest the overall algorithm diverge: the approximated Schur complement (5.55) scales with

α−1; therefore, in a realistic engineering application - where h must typically be small

enough to yield reliable results - SIMPLEC is ultimately limited in performance, in the

sense that once the smallest possible α is determined that doesn't lead to divergence,

SIMPLEC performance will then deteriorate if further mesh re�nement is desired.

Compared to SIMPLEC, performance of the BCPL algorithm (Figure 5.11 and 5.12)

is very favourable. Regardless of mesh type and size, and independently of Re, the

5

15

25

35

45

55

65

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

(a) polygonal distorted mesh

5

15

25

35

45

55

65

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

(b) Cartesian mesh

Figure 5.11: Block-Coupled (BCPL), Re = 102: performance.

5

15

25

35

45

55

65

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

(a) polygonal distorted mesh

5

15

25

35

45

55

65

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

(b) Cartesian mesh

Figure 5.12: Block-Coupled (BCPL), Re = 103: performance.

Chapter 5. MHFV Incompressible Navier-Stokes 126

iteration count is always considerably lower. More speci�cally, at Re = 102 the iteration

count is consistently small (below 10) and does not appear to be a�ected by mesh size

or quality. At Re = 103 an asymptotic behaviour with respect to mesh size is observed,

namely the iteration count is higher on coarser meshes and tends to settle around a value

in the order of 10 as the mesh is re�ned; this behaviour is identical over both mesh

types. Evidence thus suggests that BCPL is independent of mesh quality and mesh size

(barring the coarsest mesh cases, where it underperforms slightly compared to SIMPLEC

with optimal α), and only marginally a�ected by an increase of Re.

Concerning the AL algorithm, it is tested for three di�erent values of penalisation

factor γ: 1, 10 and 100; results are reported in Figure 5.13 and 5.14. The curves show

that there is no de�nite correlation between iteration count and grid size nor grid type,

suggesting that the MHFV AL implementation is completely mesh independent - bar-

ring an underperformance on coarse meshes for Re = 103, similarly to what observed

for BCPL. As already observed on the other preconditioners, there is however a slight

10

20

30

40

50

60

70

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 1

= 10

= 100

(a) polygonal distorted mesh

10

20

30

40

50

60

70

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 1

= 10

= 100

(b) Cartesian mesh

Figure 5.13: Augmented Lagrangian (AL), Re = 102: performance.

10

20

30

40

50

60

70

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 1

= 10

= 100

(a) polygonal distorted mesh

10

20

30

40

50

60

70

0 . 01 0 . 02 0 . 03 0 . 04 0 . 05 0 . 06 0 . 07 0 . 08 0 . 09

it
e
r
a
ti
o
n
s

h

= 1

= 10

= 100

(b) Cartesian mesh

Figure 5.14: Augmented Lagrangian (AL), Re = 103: performance.

Chapter 5. MHFV Incompressible Navier-Stokes 127

performance degradation for higher Re values. The iteration count itself remains in the

order of 10, hence much lower than that of SIMPLEC and fairly close to BCPL results,

thus con�rming the near-optimality of the AL algorithm.

Results also highlight how higher values of γ consistently reduce the total number of

iterations. This is expected because, as discussed in Section 5.2.3, when γ is high the

convection-di�usion operator Fν,~U in (5.61) becomes negligible compared to the penali-

sation term, and therefore the diagonal approximate Schur complement used in the AL

pressure correction step is close to the exact one. However, too high values of γ will cause

the augmented operator Fγ

ν,~U
to be nearly singular, thus hindering the linear solve for

velocity prediction. This is also highlighted by the present results: setting γ = 100 leads

to divergence over certain Cartesian meshes at high Re, which explains the missing data

in Figure 5.14(b); this is due to the direct linear solver failing to factorise the augmented

operator. Keeping γ in the order of 1 appears to be a reasonable choice.

5.3.4 Benchmark against classical Finite Volumes

It was discussed in Section 2.4 how certain classical FV numerical artefacts (e.g. limiters)

may prevent the full convergence of solution algorithms to steady-state. Alleviating

this problem by improving the spatial discretisation was a key motivating factor for the

present work. In order to verify whether the MHFV Navier-Stokes scheme succeeds in

that sense, a comparison is carried out against the commercial FV solver ACE+1.

Figure 5.15: S-bend test case: geometry, mesh and boundary conditions.

The 3D S-bend test case is considered (Figure 5.15): an internal �ow case simulating

the incompressible, steady-state �ow of air (ν = 1.589 E−5 m2/s) through a 3D S-shaped

1https://www.esi-group.com/software-solutions/virtual-environment/cfd-multiphysics/ace-suite/cfd-
ace

Chapter 5. MHFV Incompressible Navier-Stokes 128

duct used in the HVAC system of a passenger car. The duct has a rectangular cross-

section with variable height in the order of 0.1 m. Imposing a velocity of 0.12 m/s at the

inlet gives a Reynolds number Re ≈ 480 (based on the height of the duct at the inlet):

low enough to ensure that the �ow regime remains laminar and that no recirculation

occurs at the outlet, but slightly higher than that usually considered in the literature

(Re ≈ 300, see e.g. [241]) in order to test both solvers under more challenging conditions.

The mesh contains 465976 hexahedral cells. MHFV discretisation strategies are set to:

OVRN weight type for viscous terms; ULSQR for convective terms; PRS2 for pressure.

Linear systems are solved via a ILU-preconditioned GMRES solver. In ACE+, a second-

order upwinding strategy with a Barth-Jespersen limiter [11] is selected, which is known

to cause stalling of the solution algorithm (see Section 4.2.3). A SIMPLE-type solution

algorithm is used in both solvers.

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

0 100 200 300 400 500 600

re
si
d
u
a
l

iteration

MHFV x-mom.

MHFV y-mom.

MHFV z-mom.

ACE+ x-mom.

ACE+ y-mom.

ACE+ z-mom.

Figure 5.16: Convergence history of momentum residuals: MHFV (second-
order, ULSQR-stabilised) vs. classical FV (second-order, Barth-
Jespersen limiter).

The convergence history for the scaled x, y and z momentum residuals is plotted in

Figure 5.16. A direct comparison of values is not signi�cant considering that the scaling

factor for the two schemes is not equivalent. However, there is a visible di�erence in the

trend: while ACE+ stalls and enters limit cycle oscillations shortly after the 100-th iter-

ation, MHFV converges steadily. At the 560-th iteration, the maximum absolute values

of the unscaled hybrid momentum residual vectors (r̃u
x, r̃u

y, r̃u
z) and corresponding L2

norms are

max |r̃ux| = 2.773 E−16 ; max |r̃uy| = 3.184 E−16 ; max |r̃uz| = 1.838 E−16√
‖r̃ux‖2 = 1.103 E−14 ;

√
‖r̃uy‖2 = 9.455 E−15 ;

√
‖r̃uz‖2 = 9.324 E−15

indicating that the MHFV solution is approaching machine precision accuracy. The test

case itself is not strictly representative of a real industrial necessity (for example one may

Chapter 5. MHFV Incompressible Navier-Stokes 129

switch to a �rst-order scheme in ACE+ and obtain better convergence with acceptable

results). Nevertheless the comparison demonstrates how, at equal order of accuracy, an

improved spatial discretisation scheme such as MHFV can have a positive e�ect in terms

of convergence to steady-state. Contour plots of the MHFV solution �elds are reported in

Figure 5.17 and 5.18. To the author's knowledge, the present work is the �rst to present

results for a MFV-type Navier-Stokes scheme on a 3D model other than a manufactured

solution.

Figure 5.17: S-bend: velocity magnitude (m/s), cross-section.

Figure 5.18: S-bend: pressure (N/m2), cross-section.

Chapter 6

MHFV Discrete Adjoint

Navier-Stokes

6.1 Assembly of the adjoint system

Having derived and validated in Chapter 5 the MHFV incompressible, steady-state

Navier-Stokes scheme, it is now possible to consider its discrete adjoint counterpart. This

chapter discusses the tools and procedures employed for adjoint assembly and solution.

As anticipated in Section 2.3.3, the present work follows the guidelines of the Equational

Di�erentiation (ED) philosophy which demands a clear distinction between the equations

being solved (Section 6.1) and the solution algorithms (Section 6.2). This often calls for

an explicit assembly of the full adjoint system, which in turn requires evaluating, for a

converged solution, the tangent matrix (Jacobian) of the primal and the vector of partial

derivatives of the objective function J with respect to each �ow variable, which will serve

as right-hand side of the adjoint system.

6.1.1 Full MHFV discrete adjoint Navier-Stokes

Before delving into the details of how an adjoint system can be assembled in practice, it

is bene�cial to perform a preliminary analysis of the form taken by the MHFV discrete

adjoint Navier-Stokes. The residual vector of the Navier-Stokes problem (5.32) is denoted

as

rNS =

(
r̃u

rp

)
=

[
Fν,~U G
D 0

](
ũ

p

)
−

(
g̃

0

)
(6.1)

130

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 131

where r̃u and rp identify residuals of the hybrid momentum and the continuity equation,

respectively. The Jacobian matrix A is thus de�ned as

A =

∂r̃u
∂ũ

∂r̃u
∂p

∂rp
∂ũ

∂rp
∂p

 . (6.2)

A more speci�c form of A can be deduced via a few preliminary considerations. The

residual of the hybrid momentum equation in the i-th spatial dimension is isolated and

written as

r̃u
i = F i

ν,~U
ũi + Gip− g̃i . (6.3)

Expression (6.3) shows that the contribution of the pressure variable p to the i-th momen-

tum residual r̃u
i is solely due to the gradient operator Gi which, as shown in Section 5.1.2,

is linear regardless of the speci�c pressure scheme. It follows that

∂r̃u
i

∂p
= Gi , (6.4)

implying that all matrix entries of the Jacobian block ∂r̃u
∂p are identical to those of the

primal block-diagonal operator G itself.

The same cannot be said for the velocity block, due to the non-linearity of the

convection-di�usion operator F i
ν,~U

. As discussed in Section 5.1.3 the main source of

non-linearity is the convective term, which depends on the convecting �ux U which in

turn depends on ũ by virtue of the convecting �ux de�nition (5.9). Further non-linearities

may be present if the chosen convective scheme is also solution-dependent, such as �ux

limiting or WLSQR (Section 4.2.3 and 4.2.4 respectively). These dependencies are for-

mally expressed as

F i
ν,~U

= F i
ν,~U

(
U (ũ) , ũi

)
. (6.5)

Moreover, since each face-based degree of freedom of U depends on all d velocity com-

ponents at the corresponding face, it follows that each Jacobian block ∂r̃u
i

∂ũj
is in general

non-zero. Hence the complete Jacobian velocity block, hereby denoted by F , is not

block-diagonal, unlike the Picard-linearised operator Fν,~U from which it stems. For a

generic 3D case, F takes the form

F =

∂r̃u

1

∂ũ1

∂r̃u
1

∂ũ2

∂r̃u
1

∂ũ3

∂r̃u
2

∂ũ1

∂r̃u
2

∂ũ2

∂r̃u
2

∂ũ3

∂r̃u
3

∂ũ1

∂r̃u
3

∂ũ2

∂r̃u
3

∂ũ3

 =

 F
11 F12 F13

F21 F22 F23

F31 F32 F33

 (6.6)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 132

where all derivative values are evaluated at convergence of the primal �ow �eld. The

extra-diagonal blocks are the most evident di�erence between the adjoint velocity block

and the corresponding linearised primal. They can be interpreted by analogy with contin-

uous adjoint theory as a discrete equivalent of the Adjoint Transpose Convection (ATC)

[95, 138, 181]: convection because, in continuous adjoint theory, its form closely resembles

that of a convection operator; transpose because the adjoint system matrix is in fact the

transpose of the Jacobian.

Concerning the adjoint continuity residual, it was mentioned in Section 5.1.3 that the

MHFV scheme is presumed LBB-stable and thus features a zero-block for the pressure

variable; as a consequence, ∂rp∂p = 0, i.e. the zero-block is maintained in the Jacobian. The

remaining term ∂rp
∂ũ stems from the divergence operator D which is linear with respect

to the hybrid velocity components, hence it corresponds to D itself, similarly to what

observed above for G in the momentum equation. Finally, the right-hand side of the

discrete adjoint system g∗ holds partial derivatives of the cost function J with respect to

all degrees of freedom of the primal:

g∗ =

(
g̃u
∗

g∗p

)
=

(
∂J

∂ũ

)T
(
∂J

∂p

)T
 . (6.7)

The full MHFV adjoint Navier-Stokes system is then written as:[
F G
D 0

]T (
ũ∗

p∗

)
=

(
g̃u
∗

g∗p

)
(6.8)

where ũ∗ and p∗ are the adjoint hybrid velocity and the adjoint pressure, respectively,

to which the notation conventions described in Section 5.1.1 shall apply.

6.1.2 Reverse assembly of the adjoint system

The Jacobian and right-hand side appearing in the adjoint system (6.8) are in theory

rather straightforward to assemble: the expressions of both the residual r for each equa-

tion and the objective function J are a combination of elementary mathematical oper-

ations whose partial derivatives can be derived analytically and then coded; this is the

hand-derived approach (ED1 in Section 2.3.3). As already mentioned, hand-derivation is

a�ected by several drawbacks. Besides being tedious and error-prone (especially for the

Jacobian, where the complexity of the derivation quickly grows as the underlying oper-

ators extend to higher-order stencils [173]), the process cannot be automated, meaning

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 133

that each time a new feature (a discretisation scheme, a model, a stabilisation strategy,

etc.) is added or modi�ed in the primal, its discrete adjoint counterpart must also be

coded or modi�ed accordingly, lest lose consistency between adjoint and primal solver.

Furthermore, hand-derivation requires by de�nition full knowledge of the primal oper-

ators to be di�erentiated; while this does not pose a problem in the context of this

work, it does in general when one has no access to the primal source code or detailed

documentation.

When the source code is accessible, the reverse accumulation strategy (ED3 in Section

2.3.3) is a powerful alternative to hand-derivation which allows to obtain a consistent dis-

crete adjoint solution in an automated way, namely by applying reverse-mode Automatic

Di�erentiation (AD) to the procedures responsible for residual computation and exploit

the results as shown in Section 2.3.3 - speci�cally by using the AD routine to compute

the adjoint residual, and use this in a FPI solution scheme. ED3 never explicitly assem-

bles/stores the full Jacobian: this entails a considerable advantage in terms of memory

consumption - provided that the AD process is optimised in that sense - but it precludes

the implementation of adjoint solution algorithms which require knowledge of the full

Jacobian (such as those that will be discussed in Sections 6.2.2 and 6.2.3) as well as the

�black-box� approach of feeding the entire adjoint system - Jacobian and right-hand side

- to a third-party linear solver.

Since the investigation of such solution strategies is among the objectives of the present

work, the reverse assembly technique (ED2) is hereby chosen as the preferred approach.

The goal of ED2 is to assemble the full Jacobian and adjoint right-hand side in an

automated way; the automation may be done either via Finite Di�erences (FD) or AD.

Considering the generic primal r (w (α) ,α) = 0, the FD strategy for assembling the

Jacobian consists in introducing in the converged primal �eld a perturbation, separately

for each degree of freedom, and computing the corresponding residual, i.e.

rk = r ((w0 + δwk) ,α) (6.9)

where w0 is the converged solution and δwk is the perturbation for the k-th degree if

freedom, i.e. a zero vector everywhere except for (δwk)k = δwk (with δwk a suitable FD

step-length, further discussed in Section 6.1.5). Then, if e.g. a �rst-order forward FD

formula is used, the Jacobian is assembled by computing

∂r

∂wk
=

rk − r0

δwk
, k = 1 · · ·nw (6.10)

where r0 is the residual evaluated at w0 (therefore close to zero up to the speci�ed

tolerance for the primal solution), and ∂r
∂wk

gives the k-th Jacobian column. An AD-

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 134

based assembly is similar: given the routine RESIDUAL(→w,→α,←r), its forward-mode

AD counterpart DRESIDUAL(→w,→dw,→α,→dα,←r,←dr) can be used to compute ∂r
∂wk

(returned in dr) by setting all seeds to zero except for (dw)k = 1. An analogous process

(FD or AD-based) applied to the cost function computation allows to assemble the adjoint

right-hand side. It will be shown in Section 6.1.3 how the sparsity pattern of the Jacobian

can be exploited to make the cost of reverse assembly independent of the number of

degrees of freedom.

−20 −10 0
−12.

−8.

−4.

0.0

log delta

log
error

Figure 6.1: Finite Di�erences error dependence on delta (step-length) [63].

The AD approach has the considerable advantage of being able to produce the exact

derivative values regardless of the nature of the primal problem. Conversely, a FD-

computed derivative will always contain some form of error unless the primal is linear -

which is not the case for the Navier-Stokes problem. The magnitude of the error depends

on the choice of the FD step-length: too large a step-length will result in excessive

truncation error, while too small a step-length will incur round-o� error (Figure 6.1).

On the other hand, a FD-based assembly makes for a far less intrusive procedure.

It will be shown in Section 6.1.4 how the approach does not necessarily require access

to the primal source code: it is su�cient for the user to be able to provide the solver

with a perturbed solution �eld and read back the corresponding residual vector, which

is typically feasible via so-called �user subroutines� in many commercial CFD solvers.

This is the basic principle - and the main selling point - of ESI's i-Adjoint library [193],

which is the tool used in this thesis to reverse-assemble the MHFV adjoint. The �i� in

i-Adjoint stands for independent, highlighting the fact that the tool may be considered

as an external plug-in compatible with virtually any CFD solver capable of performing

a user-requested residual computation.

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 135

6.1.3 Graph colouring

The reverse assembly strategy, both in its FD and AD version, su�ers from one obvious

drawback: if nw is the number of primal degrees of freedom, then a naïve implementation

would incur a CPU cost roughly equivalent to nw matrix-vector products (one per residual

computation), where the matrices are nw×nw. This cost quickly becomes unsustainable

for a realistic industrial application. However, in the context of CFD, the primal is

always a system produced by some form of discretisation scheme (FV, FE, MHFV, etc.),

implying that its matrix is always sparse: this sparsity pattern makes reverse assembly

feasible in practice, thanks to graph colouring [146].

Graph colouring (more speci�cally, vertex colouring) is the assignment of labels to

each vertex of an incidence graph such that no edge connects two identically labelled

vertices. These labels are traditionally referred to as colours, as the underlying theory

stems from the following observation known as the Four-Colour Theorem [9]: given any

separation of a plane into contiguous regions (interpretable as the graphic representation

of a planar graph: a graph that can be embedded in a plane, i.e. that can be drawn in a

plane without any edges crossing [114]), no more than four colours are required to colour

each region so that no two adjacent regions (i.e. sharing an edge) are of the same colour.

Graph colouring has practical applications where several tasks are to be performed, and

one may bene�t from knowing which ones are in con�ict or depend on each other. In case

of no con�ict or dependency, then two tasks are of the same colour and can be executed

at the same time, which suggests e.g. a useful application in scheduling problems related

to parallel computation [160].

The exploitation of the sparsity pattern for an e�cient FD-based Jacobian evaluation

was �rst proposed by Curtis, Powell and Reid [62], and modelled as a colouring problem

by Coleman and Moré [58]. Since then, several authors have extended the concept to the

AD framework [10, 33, 92, 93, 108]. When the objective is to assemble the Jacobian, the

incidence graph to be coloured is determined by the location of non-zeroes in the primal

system: vertices are the problem's degrees of freedom, and an edge between two degrees

of freedom exists if the residual related to the �rst depends on the value of the second.

The concept is clari�ed via a simple example. Considering as primal the following system

of four variables:
α11 α12 0 0

0 α22 α23 0

0 0 α33 α34

0 0 α43 α44

w1

w2

w3

w4

 =

β1

β2

β3

β4

 (6.11)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 136

where for simplicity the αij coe�cients are assumed constant, the sparsity pattern of the

system allows to group all degrees of freedom in two colours: colour A, containing w1

and w3, and colour B, containing w2 and w4. These are graphically represented in Figure

6.2 in red and blue, respectively. One can verify how variables of the same colour indeed

target (in�uence) disjoint subsets of the residual components: for colour A, w1 targets

r1 while w3 targets r2, r3 and r4; for colour B, w2 targets r1 and r2 while w4 targets r3

and r4.

��

��

��

��

��

��

��

��

Figure 6.2: Coloured graph for Jacobian assembly of (6.11).

Once the colours are identi�ed, reverse assembly of the Jacobian can be done by

evaluating one residual vector per colour. For instance, assuming a FD-based strategy is

employed, a perturbed residual rA for colour A is obtained by adding a perturbation δw

to all A-coloured variables simultaneously. The FD derivative evaluation then yields

drA =
rA − r0

δw
, (6.12)

and restricting drA to the subset of residual components targeted by w1 and w3 gives

the �rst and third Jacobian column, respectively. In practice, this restriction is done

by �ltering drA through a mask δi for each A-coloured variable i, where (δi)j = 1 if

variable i targets residual j, and zero otherwise. The same procedure applied to B-

coloured degrees of freedom allows to compute the remaining columns, hence the full

Jacobian can be assembled with two residual evaluations only. For an AD-based assembly

the process is analogous: the (forward-mode) di�erentiated code is seeded for all same-

coloured variables at the same time (e.g., for colour A: dw = {1,0,1,0}), then a residual

computation per colour is launched and the resulting di�erentiated residual dr is masked

as described above.

The sparsity pattern of the graph of a discrete problem depends on the stencil of each

equation in the system, which de�nes for each residual component the set of degrees of

freedom it depends on. The stencils for the MHFV Navier-Stokes are shown in Figure

6.3, where each face holds d degrees of freedom - the d hybrid velocity components (5.3) -

and each cell holds one - the cell-averaged pressure (5.4). If two primal degrees of freedom

do not share a target, i.e. if they never appear together in the same stencil, then they can

be of the same colour, meaning that they in�uence two completely disjoint subsets of the

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 137

�

(a) momentum equation (�rst-order p)

�

(b) momentum equation (second-order p)

�

(c) continuity equation

Figure 6.3: MHFV stencils for the full Oseen system, determining the Navier-
Stokes incidence graph.

residual vector r. As a consequence, all Jacobian entries related to same-coloured degrees

of freedom can be computed at the same time, namely by computing the residual after

introducing a FD perturbation - or AD seeding - for all degrees of freedom of a certain

colour at the same time. This reduces the number of required residual computations to

the number of colours, which only depends on the sparsity pattern of the primal - and

thus on the discretisation scheme - and is independent of the problem size.

Graph colouring can also be used to reverse-assemble the adjoint right-hand side(
∂J
∂w

)T
, i.e. the vector of partial derivatives of the objective function J with respect to

each primal variable. This might seem unfeasible at �rst: J is a scalar-valued function

which depends simultaneously on all degrees of freedom involved in its computation, and

therefore a FD or AD reconstruction would seem to require as many evaluations of J

as the number of variables involved. However, in real CFD applications, J is typically

a discrete integral quantity, meaning that it can be expressed as the summation of ncst
�local cost functions� evaluated at ncst locations, or probes:

J =

ncst∑
i=1

ji . (6.13)

For example, if the cost function is the total pressure drop, then it is computed as the

sum of the total pressure evaluated locally on each boundary face. Then the partial

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 138

derivative of J with respect to a given variable wk is also a summation over probes:

∂J

∂wk
=

ncst∑
i=1

∂ji
∂wk

. (6.14)

If a CFD-like sparsity pattern is assumed, then ∂ji
∂wk

will be zero in most cases except for

those wk which directly in�uence (target) the value of ji at probe i (for example, total

pressure loss evaluated at a certain boundary face will only be targeted by velocity and

pressure values on the local stencil of that face). Therefore a sparse graph relating primal

degrees of freedom to a cost function vector j (with (j)i = ji) can be created, coloured

and used to compute several ∂ji
∂wk

entries simultaneously; ultimately, the cost associated

with the full assembly of the adjoint right-hand side will depend on the number of colours

in this graph.

A simple example is provided in order to clarify. A generic primal is considered

featuring four degrees of freedom: w1, w2, w3, w4. The cost function J is de�ned as a

discrete integral form

J = γ1w1w3 + γ2w1w4 + γ3w2w4 (6.15)

with γi coe�cients assumed constant. J may be written as a summation over three

probes
∑3

i=1 (j)i, where

j =

 j1

j2

j3

 =

 γ1w1w3

γ2w1w4

γ3w2w4

 ; (6.16)

therefore a w-to-j graph can be created and coloured according to which state variables

w target which components of j. Two colours su�ce: colour A for w1 and w2, colour

B for w3 and w4 (red and blue, respectively, in Figure 6.4). For a FD-based assembly,

��

��

��

��

��

��

��

Figure 6.4: Coloured graph for adjoint right-hand side assembly for (6.16).

a perturbation δw is introduced for all variables of the same colour simultaneously. For

colour A, this produces the new probe-wise cost function jA from which the FD derivative

value is computed:

djA =
jA − j0
δw

(6.17)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 139

where j0 is the original probe-wise cost function. Then, �ltering through masks corre-

sponding to each A-coloured variable gives

∂j

∂w1
= (djA) (δ1) and

∂j

∂w2
= (djA) (δ2) . (6.18)

Finally, summation over probes yields the adjoint right-hand side entries corresponding

to each A-coloured degree of freedom:

∂J

∂w1
=

3∑
i=1

(
∂j

∂w1

)
i

and
∂J

∂w2
=

3∑
i=1

(
∂j

∂w2

)
i

. (6.19)

Performing the same operations for colour B allows to assemble the remaining entries

of the adjoint right-hand side, hence evaluating the full vector requires as many cost

function evaluations as the number of colours (notice that here the expression �cost

function evaluation� does not imply a primal solve, but rather the sequence of operations

that, starting from a given primal solution, leads to a probe-wise objective function value).

An analogous procedure can be implemented by using AD rather than FD; in this case,

however, reverse-mode AD is advantageous: a single call to the reverse-di�erentiated

procedure computing the cost function produces the full adjoint right-hand side, hence

the subdivision of J into probe-wise values and subsequent colouring is super�uous.

For any given graph there exists an optimal colouring scheme, i.e. one that uses the

lowest possible number of colours (known as chromatic number of the graph [146]), but

�nding the optimal colouring scheme is known to be a NP-hard problem [92]: there

are currently no known polynomial-time solutions, hence optimal colouring is practically

unfeasible for all but smaller graphs. Therefore a number of heuristic colouring algorithms

have been proposed with the purpose of performing a CPU-e�cient graph colouring lead-

ing to an acceptable - although sub-optimal - colouring scheme. The colouring algorithms

available in i-Adjoint are:

� Welsh-Powell [237]: graph vertices are ordered according to their valence, i.e. the

number of edges associated to the vertex, from highest to lowest. The �rst vertex

is assigned a colour, then the list is descended and all vertices not connected to the

already coloured ones are assigned the same colour. The process is then repeated

with a new colour, always starting with the uncoloured vertex with the highest

valence, until all vertices have been coloured. The idea is that, by treating the

highest valence vertices �rst, vertices with the largest number of con�icts are taken

care of as early as possible.

� DSATUR [44]: the algorithm takes into account the degree of saturation of a vertex,

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 140

i.e. the number of di�erent colours already assigned to its neighbours. At each

iteration, the uncoloured vertex with the highest degree of saturation is identi�ed

and coloured with the smallest possible colour.

� MDSATUR [6]: a non-trivial modi�ed version of DSATUR, it considers not only

the degree of saturation but also the vicinity of each candidate vertex to the vertex

which was coloured last.

� Planar-6 (also known as 6-COLOR) [162]: similarly to Welsh-Powell it is based on

vertex valence, but its vertex ranking algorithm is designed so that the valence of

neighbouring vertices is also taken into account. As the name suggests, it is capable

of colouring a planar graph with at most six colours.

� Modi�ed Planar-6 : analogous to Planar-6, with the same additional heuristics

implemented in MDSATUR.

6.1.4 Reverse assembly with i-Adjoint

The i-Adjoint tool is coded within the FORTRAN Template Library (FTL) framework

[193], a non-standard extension of the FORTRAN language which allows for object-

oriented coding with the additional possibility of de�ning classes with template argu-

ments. Among the classes provided by FTL, the main ones used by the top-level i-Adjoint

routines are: MeasureSpace, a descriptor of a discrete space (i.e. the number of probes

and the number of degrees of freedom attached to each probe); MeasureField, an array

holding values of a �eld belonging to a certain space; Topology, a descriptor of mesh con-

nectivity; Graph, a sparse incidence graph in Compressed Column Storage (CCS) form;

Matrix, a block-sparse matrix object also stored in CCS.

As an example, the scheme below outlines how an i-Adjoint driver code (right) inter-

acts with a generic primal solver (left) in order to reverse-assemble the Jacobian matrix.

Primal i-Adjoint

solve r (w) = 0
w0, r0−−−−−−→ read w0, r0 (�eld and residual) as MeasureFields

connectivity−−−−−−→ read mesh connectivity

assemble T (Topology) from connectivity

assemble G (Graph) from T & user-de�ned stencil size

colour G

reverse-assemble Jacobian A (Matrix):

do a = 1, NumColours(G)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 141

set wa = w0 + δwa (perturbation for colour a)
wa←−−−−−− write wa to primal

compute ra = r (wa)
ra−−−−−−→ read ra

evaluate FD: dra = (ra − r0) /δwa

store columns of A for colour a

end do

A few observations are in order:

� As anticipated in Section 6.1.2, no direct access is required to the primal source

code as long as the primal solver provides interfaces for reading/writing operations

and user-requested residual computations.

� Once the mesh connectivity is read from the primal, the assembly and colouring

of the Graph object are carried out entirely on the i-Adjoint side. The assembly

however does require some user input: the extent of local stencils on which primal

operators act cannot usually be read directly from the primal without accessing the

code, and thus must be speci�ed. In practice, an educated guess is su�cient to build

the graph correctly. For example, if the primal is known to use a collocated, second-

order accurate FV scheme, then the graph is built based on a second-neighbourhood

cell-to-cell relationship deducible from the topology. In case of doubt the user may

choose to provide an �over-graph�, i.e. a graph that is known with certainty to

contain all primal connectivities and possibly some additional ones, at the cost of

working with more colours than necessary.

� An analogous procedure can be implemented to compute the adjoint right-hand

side ∂J
∂w . However, as explained in Section 6.1.3, the cost function needs to be read

in a probe-wise form j in order to be able to apply a colouring scheme. This is

typically not an option in a standard CFD solver, where J is usually returned as

a single scalar value. In this case a routine computing the vector j (w) must be

implemented within the i-Adjoint driver code itself.

6.1.5 Considerations on FD-based assembly

The non-intrusive nature of a FD-based reverse assembly has so far been mentioned as its

main advantage over AD. This is however irrelevant in the context of this thesis, where full

access to the MHFV code is granted. The FD approach was chosen for a di�erent practical

reason: the MHFV solver, being written in the non-standard FTL language, contains

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 142

several code statements (e.g. declaration and usage of template arguments in FORTRAN

modules) which are not recognised by AD tools, unless substantial modi�cations to the

FTL make�le are made. A preliminary attempt with the operator-overloading tool DCO1

proved this to be a non-trivial, time-consuming task. Conversely, interfacing with i-

Adjoint was facilitated by the fact that the tool also uses FTL-native objects.

The downside of incurring a source of error due to the FD approach cannot in general

be avoided completely. However, i-Adjoint is equipped with a mechanism designed to

alleviate the problem by estimating the location of the �sweet spot� minimising both

truncation and round-o� error (Figure 6.1): starting with an initial step-length δw(1)
k , FD

evaluations are carried out iteratively with a progressively smaller step-length computed

at the n-th iteration as

δw
(n)
k =

δw
(n−1)
k

t
(6.20)

where t > 1 is a user-de�ned step divider (t = 2 is empirically found to be a suitable

choice). Convergence is then monitored component-wise based on a relative Cauchy

criterion:

ε(n) =

∣∣∣∣∣FD(n) − FD(n−1)

FD(1)

∣∣∣∣∣ (6.21)

where FD(n) is the computed derivative value at the n-th iteration. The algorithm is

stopped when ε(n) falls below a speci�ed tolerance, as this indicates that the linear (or

polynomial for higher-order FD) approximation induced by the FD expression represents

with su�cient accuracy the function being di�erentiated within the range delimited by

the current step-length δw(n)
k .

This approach would require the user to specify a suitable initial step-length as an

absolute value, which is not a trivial task since it is typically problem-speci�c. A better

choice is to have the user specify a relative coe�cient λ instead, and use this to generate

a scaled initial step-length of the form

δw
(1)
k = λwk,s (6.22)

where wk,s is a factor introduced to normalise the step-length on the variable w. It will

be shown throughout this chapter how, in the context of MHFV incompressible Navier-

Stokes, all required FD operations can be grouped in two categories depending on the

nature of the variable with respect to which one wishes to di�erentiate: discrete �ow

variables and nodal coordinates. For the former, the FD step-length can be scaled by the

magnitude of the �ow variable itself. More speci�cally, the initial step-length for hybrid
1https://www.stce.rwth-aachen.de/research/software/dco-fortran

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 143

velocity components is de�ned as

δuiF = λ ‖~uF ‖ (6.23)

where ‖~uF ‖ =
√∑d

i=1

(
uiF
)2 is the magnitude of the hybrid velocity at face F . In

case of zero or near-zero magnitude, ‖~uF ‖ is replaced with a fraction of the velocity

magnitude averaged over the entire �eld. Concerning the cell-based pressure �eld p,

since for incompressible Navier-Stokes it is de�ned up to a reference value pref , a more

suitable choice for the initial step-length is

δpC = λ (max (p)−min (p)) , (6.24)

i.e. a uniform step-length scaled by the di�erence between the maximum and minimum

pressure values in the �ow �eld. Scaling is however less relevant for pressure than for

velocity, at least for the MHFV Navier-Stokes scheme: the pressure gradient operator is

linear, therefore any FD step-length will yield the exact derivative value as long as it is

large enough to avoid round-o� error.

In the case of nodal coordinates, on the other hand, it would not make sense to scale

by a quantity representative of the coordinate value itself: given that they are involved in

the di�erentiation of local distances and inertial quantities, it is much more appropriate

to de�ne the scaling factor such that the resulting FD step-length for node N corresponds

to a fraction of a value hN representing a local discretisation length scale:

δxiN = λhN (6.25)

where xiN denotes the i-th coordinate of node N . A suitable choice for hN is the shortest

edge length formed with a neighbouring node:

hN = min
(
‖~xN ′ − ~xN‖ ∀N ′ sharing an edge with N

)
, (6.26)

which avoids the generation of too large an initial step-length over shorter edges in the

case of a highly anisotropic mesh.

6.1.6 Reduced reverse assembly

The cost of a colour-based reverse assembly of the Jacobian depends not only on the

matrix sparsity graph but also on the number of degrees of freedom attached to each

vertex of the graph. In particular, the MHFV Navier-Stokes scheme (5.32) presents a

heterogeneous form: vertices can either be faces, carrying d degrees of freedom each

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 144

(hybrid velocity components (5.3)), or cells, carrying one degree of freedom each (cell-

averaged pressure (5.4)). Therefore, if colours are assigned based on stencils shown in

Figure 6.3, reverse assembly will ultimately require as many residual evaluations per

colour as the maximum number of degrees of freedom attached to any vertex of that

colour - which will typically be d, unless the colouring algorithm happens to produce

some colours containing cell-averaged pressure values only (which is rather unlikely, but

in this case the reverse assembly for those colours will require one residual evaluation

only).

The present section presents a possible way of reducing this cost - a reduced reverse

assembly option - which takes full advantage of primal code access and knowledge of the

MHFV Navier-Stokes operator. As mentioned in Section 5.1.1, the convecting �ux U is

de facto considered as a separate variable, meaning that it can be explicitly added to the

Picard-linearised Navier-Stokes: Fν,~U G 0

D 0 0

−C 0 I

 ũ

p

U

 =

 g̃

0

0

 (6.27)

where C is the convecting �ux operator de�ned in (5.9) and I is the identity matrix. Under

the assumption that, aside from the dependency of the convection-di�usion operator Fν,~U

on U, no other non-linearities are present (which holds as long as no solution-dependent

stabilisation schemes are used), all variables in (6.27) are linear with respect to each

other, and the Navier-Stokes Jacobian can be expressed as

A =

 Fν,~U G T
D 0 0

−C 0 I

 (6.28)

where T = ∂r̃u
∂U de�nes the partial derivative of the momentum residual with respect to

the convecting �ux. The corresponding adjoint system then becomes

 Fν,~U G T
D 0 0

−C 0 I

T ũ∗

p∗

U∗

 =

 g̃′u
∗

g∗p

g∗U

 (6.29)

where U∗ is an adjoint convecting �ux and g∗U =
(
∂J
∂U

)T
. Notice that g̃′u

∗
in (6.29) does

not correspond to g̃u
∗ in (6.7), as the former takes into account only direct dependencies

of the cost function J on ũ and not those coming from U, which are now expressed in

g∗U instead. The third equation in (6.29) provides an explicit de�nition of the adjoint

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 145

convecting �ux as a function of the adjoint hybrid velocity:

U∗ = −T T ũ∗ + g∗U . (6.30)

It can therefore be eliminated in the �rst equation and, noticing that

CTg∗U + g̃′u
∗

=

(
∂U

∂ũ

)T (∂J
∂U

)T
+

(
∂J

∂ũ

)T
= g̃u

∗ , (6.31)

the adjoint system is retrieved in the form[
Fν,~U + T C G

D 0

]T (
ũ∗

p∗

)
=

(
g̃u
∗

g∗p

)
(6.32)

where Fν,~U + T C corresponds to F in (6.8) and thus, more speci�cally, (T C)T is the

discrete ATC operator mentioned in Section 6.1.1.

Formulation (6.32) suggests a fast way of reverse-assembling the Jacobian matrix:

operators Fν,~U , C, G and D are readily available in the primal code; to obtain the full

Jacobian one needs only evaluate T . Reverse assembly of T requires only one residual

evaluation per colour - because U carries only one degree of freedom per face, as opposed

to ũ which carries d (one for each velocity component). As a consequence, the cost of

the Jacobian assembly is reduced roughly by factor d - as con�rmed by test results in

Section 6.4.2.

The reduced assembly option presented here can be seen as a suitable compromise

between a hand-derived and an automated Jacobian computation: anything linear is

�hand-derived� in the sense that matrix blocks are recycled verbatim from the primal

operator, while non-linearities, which are more error-prone in hand-derivation, are dealt

with separately by an automated procedure only involving those degrees of freedom which

directly cause such non-linearities. As mentioned above, for MHFV Navier-Stokes such a

separation is only feasible provided that the convection-di�usion operator Fν,~U does not

depend on the hybrid velocity components ũ other than through the convecting �ux U.

Therefore, a reduced assembly cannot be done in combination with solution-dependent

convective schemes such as �ux limiters (Section 4.2.3) or WLSQR (Section 4.2.4).

A further advantage of this approach is that, in certain cases, the issue of having to

choose an appropriate step-length for a FD-based assembly is circumvented: under the

assumption that the hybrid momentum residual r̃u is linear with respect to U, then T
is constant for a converged primal �eld (i.e. it does not depend on U) and a FD-based

evaluation will return the exact T regardless of the chosen step-length. This condition

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 146

is veri�ed by any MHFV convective scheme which is linear with respect to U: centred

schemes (both MIXC and HYBC, Section 4.1.1) and HUPW1 (Section 4.1.2).

6.2 Solution algorithms for adjoint Navier-Stokes

The adjoint MHFV Navier-Stokes problem (6.8) is a linear system that closely resembles

its non-linear primal counterpart, being an Oseen-type saddle-point discrete problem.

The main di�erence is the additional cross-coupling in the adjoint momentum equations

due to the ATC term - the extra-diagonal blocks in FT
. To solve the adjoint Navier-

Stokes system, a Block-Coupled (BCPL) approach can be expected to be the optimal

choice in terms of performance by analogy with the results shown for the primal in Sec-

tion 5.3.3. The fully coupled system however is known to pose signi�cant computational

challenges for standard linear solvers: the presence of the ATC negatively a�ects the

diagonal dominance of the Jacobian, causes numerical sti�ness and can lead to an ill-

conditioned matrix [138]. The development of robust solution strategies using the full

Jacobian in such conditions is in its early stages: for discrete adjoints, Osusky et al. [180]

and Xu and Timme [244] successfully investigated a family of ILU-preconditioned Krilov

solvers for fully coupled adjoint RANS in complex �ow conditions (including di�erenti-

ated turbulence models); similarly, for continuous adjoints, Vezyris et al. [233] present

promising results for steady and unsteady cases with a pseudo-compressibility BCPL

approach using a preconditioned GMRES solver.

The topic of linear solvers is beyond the scope of this thesis. However, the fact that

primal and adjoint problems are similar in form implies that the segregated algorithms

devised for the primal MHFV Navier-Stokes (Section 5.2) can be recycled and adjusted to

facilitate the solution of the adjoint system as well, as discussed in the following sections.

6.2.1 Adjoint SIMPLEC

Adjoint SIMPLE-like iterative strategies have been implemented for FV schemes either

by �brute-force� di�erentiating the primal algorithm [137, 175, 222] or by recycling and

adapting the original preconditioning scheme [4, 218]. Following the latter approach,

the SIMPLEC algorithm from Section 5.2.1 can be easily adapted to the adjoint system

(Algorithm 4). As mentioned, the adjoint momentum operator FT
is not block-diagonal;

since the ability to solve separately for each velocity component is one of the most attrac-

tive features of SIMPLE-like algorithms, it is desirable to maintain this de-coupled nature

in the adjoint version. A suitable block-diagonal approximation to FT
is required to be

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 147

used as system matrix for the velocity prediction step, whilst treating all cross-coupled

terms explicitly. An intuitively good choice is the transpose of the convection-di�usion

operator Fν,~U itself, assembled using the converged convecting �ux values U.

Algorithm 4 MHFV Adjoint SIMPLEC
n = 0
Initialise ũ∗,0, p∗,0

while not converged do
Solve relaxed adjoint hybrid momentum equation (adjoint velocity prediction):

Fα
ν,~U

T ũ∗,n+1/2 = g̃u
∗ −DTp∗,n −

(
FT −Fα

ν,~U
T
)
ũ∗,n ;

Solve Schur complement pseudo-Laplacian (adjoint pressure correction):
Ŝαδp∗ = GT ũ∗,n+1/2 − g∗p ;
Update adjoint pressure:
p∗,n+1 = p∗,n + δp∗ ;
Update adjoint hybrid velocity:
ũ∗,n+1 = ũ∗,n+1/2 −

(
diag

(
1

αβF

))
DTδp∗ ;

n=n+1
end while

return ũ∗, p∗

As done for the primal, inertial relaxation is applied in the form (5.54) to the adjoint

momentum equation, which is necessary for steady-state SIMPLEC. The scaling factor

βF is recycled from the primal (5.53), while the relaxation factor α is set independently.

Thus the adjoint velocity prediction step at iteration n requires solving:

Fα
ν,~U

T ũ∗,n+1/2 = g̃u
∗ −DTp∗,n −

(
FT −Fα

ν,~U
T
)
ũ∗,n

= g̃u
∗ −DTp∗,n + α (diag (βF)) ũ∗,n −

(
FT −FT

ν,~U

)
ũ∗,n

(6.33)

where the quantity
(
FT −FT

ν,~U

)
ũ∗,n on the right-hand side is the contribution due to

the cross-coupling of adjoint velocity components (ATC) that is treated explicitly in order

to allow to solve separately for each component.

For the adjoint pressure correction step, as for the primal, GT is replaced with D
regardless of the speci�c pressure scheme in order not to deteriorate the sparsity of the

Schur complement. As a consequence, the approximated Schur complement Ŝα is the

transpose of the one used for the primal (5.55). Since the latter is self-adjoint, the two

are identical.

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 148

6.2.2 Adjoint Velocity-Coupled

The adjoint version of SIMPLEC solves for each component of ũ∗ in a segregated fash-

ion, moving the ATC to the right-hand side. The ATC is known to be a troublesome

term especially when treated explicitly, causing severe instabilities. High Re problems

are particularly a�ected, since large values on the right-hand side of (6.33) might lead

to divergence unless heavy relaxation is applied; damping or eliminating the ATC in

sensitive areas has been proposed as a solution [138, 181]. For continuous adjoints an

implicit treatment of the ATC is found to improve stability [233]. An analogous discrete

approach is proposed here for MHFV, namely by introducing a Velocity-Coupled (VCPL)

preconditioning scheme. VCPL is a version of the MHFV adjoint SIMPLEC in which,

in the predictor step, all velocity components are coupled, i.e. kept on the left-hand side

and treated implicitly:(
FT

+ α (diag (βF))
)
ũ∗,n+1/2 = g̃u

∗ −DTp∗,n + α (diag (βF)) ũ∗,n ; (6.34)

the pressure correction step, on the other hand, remains unchanged.

Besides tackling the stability issues mentioned above, implicit treatment of the ATC

can also be expected to reduce the iteration count. The main drawback of the VCPL

approach (6.34) is that it requires solution of larger and more sti� linear systems compared

to SIMPLEC.

6.2.3 Adjoint Augmented Lagrangian

Lastly, an adaptation of the AL preconditioner (Section 5.2.3) to the adjoint Navier-

Stokes system is presented. Applying the AL penalisation mechanism (5.57) yields an

augmented adjoint velocity block:

FγT = FT − γµDT

(
diag

(
1

|C|

))
GT

≈ FT − γµDT

(
diag

(
1

|C|

))
D ,

(6.35)

while the adjoint momentum right-hand side becomes:

g̃γu
∗

= g̃u
∗ − γµDT

(
diag

(
1

|C|

))
g∗p . (6.36)

The scaling factor µ is taken from the primal, while the penalisation coe�cient γ is

de�ned independently.

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 149

Similarly to the primal AL, GT has been replaced with D in the adjoint augmentation

term (6.35) in order to avoid excessively complex connectivities and sti�ness. For the

adjoint AL, however, this introduces an inconsistency: the adjoint continuity equation

dictates that penalisation be done by a quantity proportional to
(
GT ũ∗ − g∗p

)
exactly.

Therefore, if GT 6= D, i.e. for the PRS2 pressure scheme (5.18), penalising by
(
Dũ∗ − g∗p

)
instead as done in (6.35) leads to an adjoint solution corresponding to a PRS1 (�rst-order

pressure scheme) primal, where the adjoint velocity does not satisfy the adjoint continuity

equation

GT ũ∗ = g∗p . (6.37)

A way around the issue is to treat all the second-order contributions in GT explicitly, as

shown in Algorithm 5.

Algorithm 5 MHFV Adjoint Augmented Lagrangian
n = 0
Initialise ũ∗,0, p∗,0

while not converged do
Solve augmented adjoint hybrid momentum equation:
FγT ũ∗,n+1 = g̃γu

∗
−DTp∗,n + γµDT

(
diag

(
1
|C|

)) (
GT −D

)
ũ∗,n ;

Compute adjoint pressure correction:
δp∗ = −γµ

(
diag

(
1
|C|

)) (
GT ũn+1 − g∗p

)
;

Update adjoint pressure:
p∗,n+1 = p∗,n + δp∗ ;
n=n+1

end while

return ũ∗, p∗

6.3 Adjoint shape optimisation and mesh morphing

It was shown in the previous sections how the MHFV adjoint Navier-Stokes problem is

assembled and solved, resulting in the discrete adjoint states ũ∗ and p∗. The adjoint

�eld on its own is of limited interest to an engineer looking to perform gradient-based

optimisation: they will rather be interested in obtaining the gradient of J with respect

to a set of design parameters α which they can control directly. For shape optimisation

problems based on discrete adjoint formulations, the choice of α typically falls on either

CAD parameters which determine the shape of the item being optimised (see e.g. [115,

204, 241, 245]), or directly on the coordinates of a subset of mesh nodes de�ning the

surface of said item (see e.g. [91, 124, 209]).

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 150

6.3.1 Preliminary notation

Relative merits and drawbacks of CAD-based and node-based methods have been dis-

cussed in the literature [109, 110, 207]. Regardless of the speci�c approach, a common

generic notation can be de�ned as follows:

� α and δα to identify the shape parameters and a displacement applied to them,

respectively. In a gradient-based optimisation algorithm, δα will typically be ori-

ented in the direction opposite to the gradient dJ
dα computed at the previous itera-

tion, in order to achieve cost function reduction.

� xb to denote the coordinates of boundary mesh nodes de�ning the surfaces whose

shape is controlled by α, and δxb to identify their displacements. These nodes

shall henceforth be referred to as free nodes. The free nodes displacement will be a

function of a variation in shape parameters, i.e. δxb = δxb (δα). In particular, for a

most basic node-based approach it holds δxb = δα and thus xb = α, i.e. the shape

parameters are the free nodes' coordinates themselves, while in a CAD-based case

the relationship between δα and δxb will be determined by whichever geometric

law is applied by the CAD tool to de�ne the surface shape (hence the distribution

of xb) based on α.

� x to denote the entire �eld of coordinates of all mesh nodes, and δx their displace-

ment caused by δxb. The relationship between δxb and δx will be dictated by a

mesh morpher : a tool designed to adapt an existing mesh to the movement of a

subset of its nodes (xb in this case) in order to maintain its overall quality.

An alternative to mesh morphing would be re-meshing the domain at the end of each

optimisation iteration, once the deformation δxb is applied. Re-meshing is however di�-

cult to automate, and it would also cause a loss of consistency in the computed gradient:

since the gradient is computed based on the discrete adjoint state (it will be shown how in

Section 6.3.3), a re-meshing procedure would e�ectively �destroy� the very discrete space

that the adjoint �eld belongs to and create a new one. The overall optimisation proce-

dure would most likely still converge - since the shape change induced by δα supposedly

works towards a reduction of the cost function in a physical sense as well - but the notion

of discrete adjoint gradient as the exact gradient of the cost function, which is one of the

main strengths of the discrete adjoint approach, would be lost. Mesh morphing allows to

maintain the same discrete spaces unchanged throughout the whole process: cells, faces,

nodes, their topological connectivities - and thus the primal degrees of freedom attached

to each - are conserved by the morphing process, which operates in general by moving

nodes in an attempt to preserve grid quality -in terms of relative cell sizes, orthogonal-

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 151

ity, absence of negative volumes (element inversion) etc. - while propagating the free

boundary deformation δxb to the interior mesh.

6.3.2 Rigid Motion Mesh Morpher

Over the years several morphing methodologies have been proposed to adapt an interior

mesh to a boundary deformation. Typical examples include Laplacian Smoothing [113],

Linear Elasticity Morphing [156, 219], Spring Analogy [34, 84], Radial Basis Function

Morphing [130].

(a) node-centred (b) cell-centred

Figure 6.5: Examples of stencil de�nitions (in red) for RMMM.

For the work presented here it was chosen to couple the MHFV Navier-Stokes solver

with the Rigid Motion Mesh Morphing tool (RMMM), developed by Eleftheriou [77] in

the same FTL framework as the primal and adjoint solvers. A coarse outline of RMMM

is sketched here. The scheme requires de�ning, within the grid, nS stencils of nodes. The

de�nition of stencil is not unique (Figure 6.5): it may be e.g. a central node plus those

sharing an edge with it, or all nodes belonging to a FV cell. Then a total deformation

energy is de�ned as

E =
∑
S∈Ωh

wS
∑
i∈S

µS,i

∥∥∥δ~xi − (~aS +~bS × (~xi − ~xS,C)
)∥∥∥2

(6.38)

where S denotes a stencil, wS a weight associated with stencil S, µS,i a weight associ-

ated with node i of stencil S, and ~aS and ~bS represent an ideal rigid movement of the

stencil (translation and rotation, respectively) about its centre of gravity, ~xS,C . RMMM

subsequently operates by �nding the stencil-wise ~aS , ~bS and nodal displacements such

that the total deformation energy (6.38) is minimised in the least-squares sense. In other

words, RMMM reacts to a boundary deformation δxb by maintaining the displacement

of internal nodes as rigid as possible. Variables ~aS and ~bS are typically eliminated from

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 152

the unknowns by static condensation, ultimately yielding a linear system of the form

Mδx = m (6.39)

where M is a sparse SPD matrix and m a right-hand side, arising from the static con-

densation process, which is zero everywhere except for free boundary nodes where the

imposed displacement δxb is non-zero.

In its most basic implementation RMMM enforces the boundary deformation δxb in

the form of strong Dirichlet boundary conditions. A more sophisticated version, devel-

oped by Liatsikouras [148], is the Soft Handle CAD-Free Parametrisation (SHCFP) which

allows instead to impose a target displacement to the boundary nodes, or a subset thereof

(handles), and then attempts to match these target values while enforcing a certain

smoothness constraint. This is of particular interest in the context of shape optimisation

with a CAD-free parametrisation: using boundary nodes coordinates as shape param-

eters can lead to computation of noisy gradients and, subsequently, to optimal surface

con�gurations that are too jagged to be of any practical use; the inclusion of a smooth-

ness requirement in the morphing phase helps alleviate the problem. With SHCFP the

design parameters α are de�ned as the target coordinates for those surface nodes selected

as handles. The parametrisation modi�es the morphing system (6.39) to

M̂δx = mδα (6.40)

where M̂ is the modi�ed morpher matrix (more speci�cally: M̂ = M + U with U a

diagonal matrix independent of α) and mδα is the modi�ed right-hand side linearly

dependent on the target displacement δα, i.e.

mδα = m + Vδα (6.41)

with V a constant matrix.

6.3.3 Final gradient computation

It is now possible to show how one computes the �nal gradient dJ
dα by taking into account

the action of the morphing tool from Section 6.3.2. Firstly, it is observed that the

parametrised RMMM system (6.40) can be equivalently written as

M̂x = mδα + M̂x0 , (6.42)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 153

obtained by replacing δx = x − x0 where x0 are the starting nodal coordinates. In an

optimisation algorithm, each iteration starts by computing the new nodal coordinates x

by solving (6.42); these are used to compute inertial quantities reuqired to assemble the

primal Navier-Stokes system, which is then solved iteratively with any of the algorithms

discussed in Section 5.2. In this perspective, mesh morphing can be seen as part of the

primal itself, which can thus be rewritten to include the morpher: M̂ 0 0

0 Fν,~U G
0 D 0

 x

ũ

p

 =

 mδα + M̂x0

g̃

0

 . (6.43)

The morpher is independent from the Navier-Stokes problem and must be solved �rst,

because operators Fν,~U , G and D all depend on x - as they all require computing inertial

quantities (volumes, areas, centres of gravity, etc.) directly dependent on grid coordi-

nates. Furthermore, since the morpher is linear with respect to x, it follows that

∂rx
∂x

= M̂ (6.44)

where rx is the residual of the SHCFP-parametrised RMMM system. Hence the discrete

adjoint counterpart of (6.43) results in

 M̂ 0 0

Pu F G
Pp D 0

T x∗

ũ∗

p∗

 =

 g∗x

g̃u
∗

g∗p

 (6.45)

where Pu and Pp correspond respectively to the partial derivative blocks ∂r̃u
∂x and ∂rp

∂x

(which are non-zero because of the aforementioned dependence of r̃u and rp on inertial

quantities), and g∗x is the adjoint right-hand side for nodal coordinates:
(
∂J
∂x

)T
, which

will be non-zero for those nodes whose coordinates directly a�ect the cost function J .

The variable x∗ is thus interpreted as the �eld of adjoint nodal coordinates. The adjoint

system (6.45) can be solved in a sequence mirroring, in reverse, that of the primal, i.e. by

solving �rst the adjoint Navier-Stokes problem for ũ∗ and p∗ (with any of the algorithms

discussed in Section 6.2), and subsequently the �adjoint morpher� problem:

M̂Tx∗ = g∗x − PTu ũ∗ − PTp p∗ . (6.46)

Notice that the right-hand side of (6.46) is equivalent to(
∂J

∂x
− (ũ∗)T

∂r̃u
∂x
− (p∗)T

∂rp
∂x

)T
=

(
dJ

dx

)T
, (6.47)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 154

i.e. the (transpose) adjoint-based gradient of J with respect to all nodes coordinates; this

is referred to as nodal sensitivity �eld. In practice, terms ∂r̃u∂x ,
∂rp
∂x and ∂J

∂x are evaluated by

reverse assembly combined with graph colouring the same way as for the Navier-Stokes

Jacobian and adjoint right-hand side (see Section 6.1). In fact, reverse-evaluation of a

matrix-vector product of the form (ũ∗)T ∂r̃u
∂x can be done in a matrix-free fashion, thus

economising on the overall memory footprint. The mechanism - named �reverse apply

transpose� in the i-Adjoint tool - is fairly straightforward: each step of the reverse matrix

assembly produces a vector which, once masked accordingly, gives all columns of ∂r̃u
∂x

corresponding to the degrees of freedom of the colour being treated; rather than storing

these in a matrix object, the product of each with ũ∗ is computed on the �y, which yields

directly all entries of the resulting vector for those degrees of freedom.

Finally, the gradient of J with respect to the design variables of interest is computed

as

sA =
dJ

dα
=
∂J

∂α
− (ũ∗)T

∂r̃u
∂α
− (p∗)T

∂rp
∂α
− (x∗)T

∂rx
∂α

(6.48)

which corresponds to the generic formula for adjoint sensitivity (2.15) applied to an

adjoint problem of the form (6.45). As mentioned in Section 6.3.2, in this work a SHCFP-

parametrised RMMM is adopted where the shape parameters α correspond to the target

coordinates of handle nodes. Neither the objective function nor the Navier-Stokes oper-

ator depend directly on α, hence ∂J
∂α = 0, ∂r̃u∂α = 0 and ∂rp

∂α = 0. Thus (6.48) simpli�es

to

sA =
dJ

dα
= − (x∗)T

∂rx
∂α

. (6.49)

For convenience, a functionality was added to the parametrised RMMM tool provid-

ing directly the hand-derived term ∂rx
∂α . Hand-derivation is trivial since the SHCFP

parametrisation of the morpher is linear with respect to the target handle displacements

δα. As mentioned, (6.40) can be written in the form

M̂δx = m + Vδα . (6.50)

Denoting - with a slight abuse of notation - by α0 the exact position of handle nodes

prior to morphing such that α = α0 + δα, the residual of (6.50) is

rx = M̂δx−m− V (α−α0) (6.51)

which leads to
∂rx
∂α

= −V. (6.52)

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 155

6.4 Validation of MHFV adjoint Navier-Stokes

6.4.1 Sensitivity and gradient validation

Validation of the MHFV adjoint solver shall be performed on the S-bend test case already

described in Section 5.3.4, but with a slightly lower Reynolds number and on a coarser

mesh. The model - speci�cally selected for the AboutFlow project - is found in adjoint

literature frequently enough that it can be considered a benchmark case [120, 138, 181,

182]. The �uid is air (ν = 1.589 E−5 m2/s) and the inlet velocity is set to 0.1 m/s,

leading to a Re ≈ 300, which is the setting most often considered in the literature as it

guarantees steady laminar �ow with fully developed �ow conditions at the outlet. The

geometry and mesh are shown in Figure 6.6; the mesh is composed of 41044 hexahedral

cells. The cost function is de�ned as the the total power loss:

J = −
∫
∂Ω
ρ

(
p+

1

2

∥∥∥~U∥∥∥2
)
~U · ~n dS . (6.53)

(a) right side (b) left side

Figure 6.6: S-bend: geometry and mesh.

The soft handle parametrised morpher described in Section 6.3.2 is used. More specif-

ically, all surface nodes lying on the middle section of the S-bend - highlighted in blue in

Figure 6.6 - are selected as handle nodes to which a target displacement δα is imposed,

while all other boundary nodes are kept �xed. The design variables α are thus the target

coordinates for the handle nodes, giving a design space with a total of 5544 degrees of

freedom (1848 handle nodes × 3 coordinates each).

MHFV discretisation strategies are set as follows: OVRN weight type for viscous

terms; ULSQR-stabilised second-order upwinding for convective terms; PRS2 scheme for

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 156

pressure. In order to minimise discrepancies due to partially converged �elds, the primal

is converged down to a rather strict tolerance on scaled residuals (10−8) while the adjoint

systems (Navier-Stokes and RMMM) are solved to machine precision with a direct linear

solver.

A �rst way of validating a discrete adjoint solver consists in comparing against a

FD gradient projected onto the direction of the adjoint gradient itself. This is done by

applying to all design variables a displacement in the direction of the gradient sA:

δα = λ
(sA)T

‖sA‖

where λ is a step-length factor. The primal is then re-run and a new cost function

J (α+ δα) is computed; a FD gradient sFD projected in direction of sA is subsequently

computed as

‖sFD‖ =
J (α+ δα)− J (α)

λ

and its value compared with that of sA itself projected onto its own direction: sA · sA
‖sA‖ =

‖sA‖. Finally, a relative error - or better a relative discrepancy between adjoint and FD

gradient - is evaluated by scaling by an average gradient value:

ε (s) =

∣∣∣∣∣‖sA‖ − ‖sFD‖‖sA‖+‖sFD‖
2

∣∣∣∣∣ .
Running this test on the S-bend case with factor λ = 10−4 gives a relative error ε (s) =

1.18 E−3, a small enough value which constitutes a �rst validation of the code.

A more detailed check is then performed on the values of single gradient components:

�ve handle nodes are selected at random and, for each, a FD-based sensitivity of J (step-

length factor λ = 10−4) is calculated with respect to each coordinate. Results are reported

in Table 6-B, where relative errors are again scaled by an averaged gradient component

magnitude. Results are very positive: for all �ve nodes, and for each component, the FD

and adjoint gradients consistently agree not only in terms of direction (sign), but also in

terms of magnitude within a relative di�erence in the order of 10−2.

Lastly, a qualitative validation of the adjoint sensitivity comes from observing the

full nodal sensitivity �eld (Figure 6.7). As shown in Section 6.3.3, this corresponds to

the gradient of J with respect to the position of all mesh nodes, surface and volume

alike; therefore, the vectors shown in �gure identify the direction in which each node

should be moved to obtain a (�rst-order) maximal increase in J . A few observations are

in order. Firstly, there is a noticeable high-sensitivity ring at the inlet, represented by

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 157

Table 6-B: S-bend test case: comparison of FD and adjoint gradient compo-
nents for �ve randomly selected handle nodes.

FD grad. adjoint grad. relative error

handle node A
x 3.975 E−7 4.075 E−7 2.490 E−2

y −1.016 E−7 −1.065 E−7 4.705 E−2

z 2.222 E−7 2.221 E−7 4.154 E−4

handle node B
x 1.949 E−7 1.930 E−7 9.744 E−3

y −1.015 E−7 −1.004 E−7 1.089 E−2

z 1.269 E−7 1.241 E−7 2.242 E−2

handle node C
x 4.159 E−7 4.102 E−7 1.399 E−2

y −1.642 E−6 −1.683 E−6 2.456 E−2

z −8.783 E−7 −8.923 E−7 1.572 E−2

handle node D
x 6.177 E−7 6.067 E−7 1.798 E−2

y −2.705 E−6 −2.768 E−6 2.286 E−2

z −1.085 E−6 −1.097 E−6 1.076 E−2

handle node E
x 8.743 E−7 8.672 E−7 8.185 E−3

y −3.000 E−6 −3.083 E−6 2.715 E−2

z −1.535 E−6 −1.557 E−6 1.461 E−2

outward vectors several orders of magnitude larger than sensitivity values elsewhere in the

domain. This may be interpreted as a mathematical side-e�ect of the adjoint approach:

the cost function J , i.e. the discrete power loss (6.53), is proportional to the di�erence

in total pressure between the inlet and the outlet; increasing the inlet area inde�nitely

would indeed lead to a larger integrated total pressure at the inlet, and subsequently a

larger drop J . This e�ect is however irrelevant from an engineering viewpoint: the mesh

morpher will ultimately enforce zero displacement for all boundary nodes except for those

in the mid-section of the duct, hence inlet nodal sensitivities will not play a role in the

�nal gradient computation.

Another interesting remark is that sensitivity values are nearly zero for all internal

nodes. This is perfectly logical and can be interpreted as a good sign of the correctness

of the sensitivity �eld: displacing an internal node does not modify the shape of the

duct, and therefore it should not impact the objective function at all. In practice, in a

discrete setting, the movement of an internal node does have an impact on local inertial

quantities, which propagates to the operators and thus to the �ow variables, ultimately

a�ecting the discrete cost function as well. This in�uence however remains very limited,

provided that local grid quality is su�cient in terms of re�nement and expansion rate

(i.e. change of cell volume with respect to neighbouring cells). For similar reasons the

boundary nodal sensitivity appears to be orthogonal (or almost) to the surface itself,

as visible in Figure 6.7(b) where the nodal sensitivity is shown in detail in the area of

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 158

interest. This is in agreement with continuous adjoint theory: when considering the

displacement of a boundary node, any component other than that in the direction of

the surface normal has no �rst-order impact on the shape of the duct. In a discrete

framework, sensitivity will most likely not be exactly orthogonal everywhere, but any

non-orthogonal component will be very limited in magnitude provided that the surface

mesh is su�ciently re�ned.

(a) full duct (b) zoom on mid-section

Figure 6.7: S-bend: nodal sensitivity �eld.

6.4.2 Performance of colouring algorithms and reduced assembly

The S-bend case from the previous section is also used to test how the colouring algorithms

implemented in i-Adjoint compare against each other and how they respond to a change in

graph connectivity. Two con�gurations are tested: �rst-order and second-order pressure

scheme (PRS1 and PRS2). In both cases the convective scheme is set to ULSQR-stabilised

second-order upwinding; this choice however is irrelevant here, since any other convective

strategy from Chapter 4, regardless of its order of accuracy, would act on the same local

stencils, and thus graph colouring would not be a�ected.

The comparison is done by checking the number of colours required by each algorithm

to colour graphs related to each adjoint term: the Navier-Stokes Jacobian ∂rNS
∂(ũ,p) ; the

adjoint right-hand side ∂J
∂(ũ,p) ; the tangent matrix with respect to nodal coordinates

∂rNS
∂x ; the direct dependency of J on nodal coordinates ∂J

∂x . In this instance the reduced

assembly option from Section 6.1.6 is not used, meaning that the Navier-Stokes Jacobian

is reverse-assembled in full and therefore the colouring of its graph involves all velocity

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 159

and pressure degrees of freedom as graph vertices.

Table 6-C: S-bend, �rst-order scheme (PRS1): performance of colouring algo-
rithms.

Number of colours
∂rNS
∂(ũ,p)

∂J
∂(ũ,p)

∂rNS
∂x

∂J
∂x

Welsh-Powell 29 9 39 44
DSATUR 25 7 30 35

MDSATUR 25 7 30 36
Planar-6 26 8 30 36

Modi�ed Planar-6 26 8 31 35

Table 6-D: S-bend, second-order scheme (PRS2): performance of colouring
algorithms.

Number of colours
∂rNS
∂(ũ,p)

∂J
∂(ũ,p)

∂rNS
∂x

∂J
∂x

Welsh-Powell 48 9 122 44
DSATUR 39 7 89 35

MDSATUR 38 7 87 36
Planar-6 40 8 90 36

Modi�ed Planar-6 40 8 90 35

Results are reported in Tables 6-C and 6-D. The most noticeable outcome is that, as

expected, switching to a second-order stencil for the pressure variable (Figure 6.3) has

a signi�cant impact on colouring, with the required number of colours almost doubled

for the Navier-Stokes Jacobian and tripled for the nodal tangent matrix ∂rNS
∂x , a direct

consequence of the decreased graph sparsity. On the other hand, the results for vectors
∂J

∂(ũ,p) and
∂J
∂x are identical in both cases: this is due to the fact that the total power loss

J is always computed the same way regardless of the discretisation scheme, and thus the

degrees of freedom involved are the same. More speci�cally, the probe-wise power loss is

computed at a boundary face F (adjacent to cell C) through the expression

jF = −ρ
(

1

2
‖~uF ‖+ pC +∇L,µC p · (~xF − ~xC)

)
UFC , (6.54)

which uses boundary hybrid velocity components uiF and the pressure value extrapolated

to the boundary via the LSQ gradient ∇L,µC p, hence acting on a second-order stencil

around F (Figure 6.3(b)).

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 160

TheWelsh-Powell algorithm underperforms compared to all others: it produces roughly

15% to 30% more colours in the �rst-order scenario and 20% to 40% more in the second-

order case, indicating that, at least for this test case, not only is the algorithm less

e�cient, but such defect worsens when graph sparsity is reduced. Concerning DSATUR

and Planar-6 there are no signi�cant di�erences between the two other than a slight

advantage of the former; the same can be said for the modi�ed versions of both, which

behave almost identically to their respective unmodi�ed counterparts.

Table 6-E: Performance of full and reduced reverse assembly

full reduced
no. colours 25 23

DoFs per colour 3 1
CPU time (s) 44.53 16.36

One last test performed here concerns the reduced assembly described in Section 6.1.6,

where only the term T = ∂r̃u
∂U is reverse-assembled automatically while all other (linear)

Jacobian blocks are assembled by hand. The same S-bend test case is used with PRS1

pressure scheme and ULSQR convecting scheme, which is solution-independent and thus

satis�es the conditions required by the reduced assembly. DSATUR is used for colouring.

As shown in Table 6-E, the reduced assembly runs 2.72 times faster (close to the expected

d = 3) than the full assembly approach, due to the fact that each vertex in the graph for

T carries only one degree of freedom (the convecting �ux UF).

6.4.3 Algorithm performance

wall

��� = {0,1}

y

x(0,0) (0.4,0) (0.6,0)inlet

wall

outlet

(1,0.4)

(1,0.6)

(a) boundary conditions (b) mesh type

Figure 6.8: �Inlet-outlet� test case setup.

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 161

A basic 2D �inlet-outlet� test case is devised to test how the adjoint solution algo-

rithms presented in Section 6.2 compare against each other. The case is de�ned over

the square domain Ω =]0, 1[×]0, 1[with inlet, outlet and wall boundary conditions set

as in Figure 6.8(a); the inlet y-velocity is set to vin = 1 and three di�erent values of

kinematic viscosity, ν = 5.0 E−2, 5.0 E−3 and 4.0 E−3 are tested to verify how algorithm

performance responds to a variation in the Reynolds number. The mesh is chosen to

be a quadrilateral grid of size 30 × 30; applying the distortion pattern shown in Figure

6.8(b) produces a highly skewed and non-orthogonal grid (maximum non-orthogonality

angle max (θ) ≈ 78.19◦), which allows once again to verify the mesh-independence of the

overall scheme. For the primal, the adopted MHFV strategies are: OVRN weights for the

viscous term; ULSQR-stabilised second-order upwinding for the convective term; PRS2

scheme for pressure. Each primal equation is solved down to a scaled residual of 10−6,

while adjoint tolerance for all algorithms is set to 10−3; both primal and adjoint residual

norms are scaled as shown in Section 5.3.3. Direct linear solvers are used throughout.

In order to have a fair comparison between adjoint SIMPLEC and VCPL, each case

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(a) ν = 5.0 E−2

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(b) ν = 5.0 E−3

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(c) ν = 4.0 E−3

Figure 6.9: Adjoint SIMPLEC: convergence history at di�erent Re.

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 162

is run with its respective optimal relaxation factor α (in terms of iteration count) which

is found empirically; the obtained values are reported in Table 6-F, along with the cor-

responding iteration count for each load case and the speedup accomplished by VCPL.

Results indicate that in a low-Re scenario the two algorithms exhibit an almost identical

behaviour, while for the two lower viscosity cases VCPL reduces the iteration count by

roughly 17% and 26% compared to SIMPLEC. This may be attributed to the fact that

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(a) ν = 5.0 E−2

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(b) ν = 5.0 E−3

0

0.05

0.1

0.15

0.2

0.25

0.3

1 21 41 61 81 101

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(c) ν = 4.0 E−3

Figure 6.10: Adjoint Velocity-Coupled: convergence history at di�erent Re.

Table 6-F: Adjoint SIMPLEC and VCPL: optimal α values, iteration count
and VCPL speedup at di�erent Re.

SIMPLEC Velocity-Coupled speedup

ν = 5.0 E−2 α 3.0 E−1 2.9 E−1

4.08%
no. iter. 49 47

ν = 5.0 E−3 α 1.6 E−1 2.0 E−1

17.04%
no. iter. 88 73

ν = 4.0 E−3 α 2.3 E−1 2.1 E−1

26.17%
no. iter. 107 79

Chapter 6. MHFV Discrete Adjoint Navier-Stokes 163

the ATC term is larger for larger Re, and thus the bene�ts of treating it implicitly - as

in the VCPL algorithm - become more evident as the problem becomes more convection-

dominated. In all scenarios, however, the convergence behaviour of both schemes remains

remarkably similar, as highlighted by the convergence history plots (Figure 6.9 and 6.10).

It can thus be concluded that, in the context of discrete adjoint MHFV Navier-Stokes,

the implicit treatment of the ATC does not drastically modify the convergence slope, but

it does yield a moderate performance improvement in higher Re cases.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3 4 5 6

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(a) ν = 5.0 E−2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3 4 5 6

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(b) ν = 5.0 E−3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3 4 5 6

re
si
d
u
a
l

iteration

x-momentum

y-momentum

continuity

(c) ν = 4.0 E−3

Figure 6.11: Adjoint Augmented Lagrangian: convergence history at di�erent
Re.

On the other hand, the adjoint AL scheme - run here with a penalisation factor

γ = 3.0 E+1 - outperforms by far both SIMPLEC and VCPL: as highlighted by the con-

vergence history plots (Figure 6.11), the iteration count is reduced in all cases by roughly

an order of magnitude. Adjoint AL thus performs similarly to its primal counterpart.

The convergence plots also reveal a peculiar behaviour of the algorithm: momentum

residuals appear to be reduced to near-machine precision from the very start of the solu-

tion process and do not change, while the continuity residual is progressively driven to

zero by the AL penalisation mechanism.

Chapter 7

Applications

This chapter presents some results of full adjoint-based optimisation processes. Test

cases are selected from a list suggested by the AboutFlow project. They are intended

to represent simulations of industrial interest, although they remain rather academic in

terms of problem size and complexity.

7.1 S-bend

The S-bend test case, as described in Section 6.4.1, is hereby considered. As mentioned,

this is a 3D shape optimisation case for the laminar internal �ow of air through the S-

shaped duct part of a car's HVAC system. The inlet velocity is set to 0.1 m/s which gives

a Reynolds number Re ≈ 300 based on the height of the duct at the inlet. The mesh

is composed of 41044 hexahedral cells. The soft handle parametrised RMMM morpher

is adopted, with all surface nodes lying on the �neck� (the middle section) of the S-

bend (Figure 6.6) acting as handle nodes - and thus their target coordinates acting as

design variables, producing a design space with a total of 5544 degrees of freedom; all

other boundary nodes are kept �xed. Discretisation strategies are set as follows: OVRN

weight type for viscous terms; ULSQR-stabilised second-order upwinding for convective

terms; PRS2 scheme for pressure. The primal is converged to a tolerance of 10−6 on

scaled residuals; the adjoint systems (Navier-Stokes and RMMM) are solved to machine

precision with a direct linear solver. The cost function is the total power loss (6.53),

computed probe-wise on each boundary face as in (6.54).

A basic optimisation algorithm is selected: the steepest descent method (described

in e.g. [12]), which operates by displacing the shape parameters at each iteration in the

164

Chapter 7. Applications 165

direction opposite to that of the adjoint gradient sA, scaled by a user-de�ned factor λ,

i.e.

δαn+1 = −λ (sA
n)T . (7.1)

Hence the value of α is displaced in the direction which, according to the gradient, will

produce the strongest �rst-order reduction in J . Since the displacement is proportional to

the gradient magnitude ‖sA‖, it will be progressively smaller as the algorithm converges

towards a local minimum. Selecting an appropriately small factor λ allows to keep the

algorithm at each cycle within a scope where the linear assumption on J holds reasonably

well, thus ensuring that J is consistently reduced from one cycle to the next. λ should also

be selected in order to limit the target displacement for handle nodes below a threshold

that the RMMM morpher can accept - the morphing tool, being itself based on a lin-

earisation, can only handle relatively small deformations unless sub-cycling (subdivision

of δα into smaller consecutive steps) is applied. In the speci�c case of the S-bend, the

largest gradient components at the initial state are in the order of 10−5; setting λ = 103

produces initial target displacements in the order of 10−2 m, small enough with respect

to the average height of the duct (≈ 0.1 m) but su�ciently large to produce a reasonable

reduction of J at each cycle.

7.60E-01

8.10E-01

8.60E-01

9.10E-01

9.60E-01

1 6 11 16 21 26 31 36

n
o
rm

a
li
se
d
co
st
fu
n
ct
io
n

optimisation cycle

(a) normalised cost function: J/J0

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

1 6 11 16 21 26 31 36

n
o
rm

a
li
se
d
g
ra
d
ie
n
t
m
a
g
n
it
u
d
e

optimisation cycle

(b) normalised gradient magnitude: ‖sA‖/‖sA0‖

Figure 7.1: S-bend: optimisation convergence history.

The convergence history of the optimisation process is reported in Figure 7.1(a) in

terms of normalised cost function J/J0 (J0 being the initial value of J) over 40 optimi-

sation iterations, where a 21.2% improvement on J is achieved. The steepest descent

algorithm behaves as expected, converging towards a local minimum as con�rmed by the

steady decrease in gradient magnitude, Figure 7.1(b). In fact, the plots show that the at

cycle 40 the algorithm is not yet fully converged since both J and gradient magnitude

appear to be still decreasing, suggesting that there is still some room for improvement.

Chapter 7. Applications 166

(a) longitudinal section (b) cross-section (neck exit)

Figure 7.2: S-bend: sections of the original shape (black) and optimised (red).

A comparison between the initial and optimised duct shape is shown in Figure 7.2.

The optimised shape features two additional bulges: one on the upper side at the entrance

of the neck, and one on the lower side of the duct at the exit of the neck (the latter is

visible in the cross-section in Figure 7.2(b)). The duct appears overall in�ated with

respect to its original geometry. A rather abrupt change in surface curvature is also

visible at both ends of the neck, where patches of free nodes are jointed to �xed ones;

this is a consequence of the fact that the mesh morpher does not impose smoothness

across patches, and is thus to be interpreted as a numerical limitation of the method

rather than a physically signi�cant result. It is worth noticing however that, despite the

cumbersome geometry of these areas and the coarseness of the mesh, the MHFV primal

solver still manages to converge with ease.

(a) initial shape (b) optimised shape

Figure 7.3: S-bend: velocity magnitude (m/s) at di�erent cross-sections.

Results are overall in line with those presented in previous literature: the location

and magnitude of the in�ated areas closely match those shown by Helgason et al. [120],

despite their geometry being slightly di�erent. Xu et al. [241] also report a similar

in�ation, although in their work they also observe an inward hollowing pattern on both

sides of the duct and consider it as an attempt at suppressing secondary �ows known as

Dean vortices. Dean vortices, �rst investigated by W.R. Dean [68], appear in the cross-

Chapter 7. Applications 167

section of internal �ows where the curvature of the duct varies - such as for the S-bend

- as pairs of counter-rotating vortices superimposed to the primary �ow (Figure 7.4).

They are a consequence of the increase in pressure - and subsequent decrease in velocity

- on the convex side of the bend caused by the adverse pressure gradient generated by

the change in curvature, and vice-versa on the concave side. They are known to be a

major cause of power loss [32]. By suppressing secondary �ows, Xu et al. [241] do achieve

larger deformations and a slightly better reduction of J (25.5%), which is likely due do the

di�erence in the selection of shape parameters: theirs is a CAD-based approach where the

boundary is represented via Non-Uniform Rational B-Splines (NURBS) surface patches

[192], featuring a total of 1920 degrees of freedom; their design space is therefore smaller

with respect to the one presented here, but it enforces better smoothness of the �nal

shape and is less subject to gradient noisiness which appears to facilitate the optimisation

process. Perhaps a similar result could be achieved with the RMMMmorpher by reducing

the handle nodes to a selected subset of the ones used here.

Figure 7.4: Schematics of a secondary �ow (pair of counter-rotating Dean vor-
tices) in the cross-section of a curved duct.

On the other hand, the physical e�ects observable in the optimised geometry remain

fairly similar. This is highlighted in Figure 7.3, where velocity magnitude contours are

plotted for both geometries at di�erent cross-sections of the duct: in the optimised con�g-

uration, the separated �ow on the lower side downwind of the neck (the large low-velocity

bubbles visible in the last three cross-sections) is visibly reduced, and the �ow is made

overall more uniform.

7.2 U-bend

A second internal �ow test case considered here is the so-called U-bend, initially presented

by the Von Karman Institute for Fluid Dynamics (VKI) [59, 232] and subsequently

become a benchmark case for CFD shape optimisation (see e.g. [81, 172]), similarly

to the S-bend above. The geometry is that of the trait of a duct going trough a 180°

bend, such as those typically found in serpentine ducts of internal cooling channels of

Chapter 7. Applications 168

turbine blades. It has been observed that the U-bends that connect consecutive passages

of such ducts represent regions of strong pressure loss. Several early experimental results

(e.g. Chang et al. [51], Monson et al. [169], Cheah et al. [52]) all attribute the loss to two

main physical phenomena: a) the presence of secondary �ows caused by an imbalance

between curvature-induced centrifugal forces and pressure along the duct's cross-section

(as already observed for the S-bend in Section 7.1), and b) the formation of a separation

bubble adjacent to the internal wall on the exiting part of the bend, caused by an adverse

pressure gradient (see Figure 7.8). The U-bend geometry is therefore worth investigating

in terms of shape optimisation.

Figure 7.5: U-bend: geometry, mesh and boundary conditions.

The case may be investigated in either 2D or 3D; for reasons of computational power,

the former option is hereby chosen for the present work. Geometry and mesh are shown

in Figure 7.5: the mesh counts 26433 quadrilateral cells and 26800 nodes. The duct has

a constant diameter of 0.075 m, and the bend is semi-circular, with an inner radius of

0.0195 m and an outer radius of 0.0945 m. Both the inlet and outlet legs have a length

of 0.75 m, which was empirically found to be su�cient to guarantee a fully developed

�ow both at the start of the circular bend and at the out�ow plane. The inlet velocity

is set to 1 m/s and the �uid is air (ν = 1.589 E−5), which gives a Reynolds number

Re ≈ 4700. The �ow regime is therefore (slightly) turbulent, which is tackled through

the RANS approach combined with the Spalart-Allmaras (SA) turbulence model [216].

SA is a one-equation model which requires solving an additional transport equation for a

viscosity-like variable νsa, from which an �eddy viscosity� νt is computed which models the

macroscopic e�ects of the presence of turbulence; the �uid's physical kinematic viscosity

ν in the Navier-Stokes equations is replaced with an e�ective viscosity (ν + νt). The

boundary layer mesh is re�ned such that the non-dimensional wall distance y+ for the

centres of wall-adjacent cells is in the range of 1, as required for this type of model

(see e.g. [53, 238] for details). Further details on the MHFV implementation of SA are

provided in Appendix A.

The additional SA equation in the primal implies, in theory, that a corresponding

Chapter 7. Applications 169

8.50E-01

8.70E-01

8.90E-01

9.10E-01

9.30E-01

9.50E-01

9.70E-01

9.90E-01

1 21 41 61 81 101

n
o
rm

a
li
se
d
co
st
fu
n
ct
io
n

optimisation cycle

(a) normalised cost function: J/J0

3.50E-01

5.50E-01

7.50E-01

9.50E-01

1.15E+00

1.35E+00

1.55E+00

1.75E+00

1.95E+00

1 21 41 61 81 101

n
o
rm

a
li
se
d
g
ra
d
ie
n
t
m
a
g
n
it
u
d
e

optimisation cycle

(b) normalised gradient magnitude: ‖sA‖/‖sA0‖

Figure 7.6: U-bend: optimisation convergence history.

adjoint SA equation should be assembled and solved for an adjoint turbulent viscosity ν∗sa.

This represents however an extra computational cost as well as a further risk of instability

in the adjoint solution algorithm; it is therefore chosen to operate under the so-called

frozen turbulence assumption: the SA equation is not di�erentiated and the turbulent

variable is treated as a passive scalar, i.e. the variation in the νsa �eld induced by a

perturbation δα in shape parameters is neglected. The approach e�ectively invalidates

the consistency of the adjoint-based gradient; however, in practice, it is found that under

the assumption of su�ciently small displacements the computed gradient is close enough

to the correct one in terms of magnitude and direction, and thus can safely be used within

an optimisation algorithm. Examples of successful industrial applications of adjoint-based

optimisation under the frozen turbulence assumption can be found in [138, 173, 181].

The objective function is the total power loss (6.53). Primal discretisation strategies

are selected as: OVRN weight type for viscous terms; HUPW1 scheme for convective

terms, for both Navier-Stokes and turbulence model; PRS2 scheme for pressure. The

Navier-Stokes are converged down to a tolerance of 10−5 on scaled residuals; the SA

equation is converged to 10−4; the adjoint systems (Navier-Stokes and RMMM) are

solved to machine precision with a direct linear solver. The handle nodes are chosen to

be all boundary nodes de�ning the bend itself - both the inner and outer side - as well

as part of the straight leg on either side of it (blue in Figure 7.5), which gives a design

space with a total of 424 degrees of freedom (212 nodes × 2 coordinates each).

Concerning the optimiser, it was empirically determined that setting a step-length

factor λ = 1 on the design variables produces displacements in the order of 10−3 m,

roughly two orders of magnitude smaller than the duct's diameter. Such a small step-

length is chosen for two reasons. Firstly, it facilitates autonomous primal convergence at

Chapter 7. Applications 170

Figure 7.7: U-bend: original shape (black) and optimised (red) of the bend.

each cycle as long as the �ow �eld from the previous cycle is used as a starting solution

- high-Re cases in general have shown di�culties converging from a poor initial guess,

regardless of the solution algorithm, and do require some manual intervention such as

e.g. an initial set of iterations with no turbulence model and �rst-order-only operators.

Secondly, a small step-length guarantees that the error on the gradient due to the frozen

turbulence assumption remains negligible, thus ensuring that the whole optimisation

process moves in the right direction. The drawback is a limited improvement on the cost

function between cycles and thus a high number of cycles required to achieve a signi�cant

reduction of J .

Figure 7.6(a) shows the convergence history of the normalised cost function J/J0 over

118 cycles, at the end of which a 14.24% improvement on J is obtained. Compared to

the S-bend, results for the U-bend are not as straightforward to interpret mathemati-

cally: J does steadily decrease from one iteration to the next, but the trend is rather

irregular, featuring traits of linear decrease with varying slope as well as sudden jumps

in the value of J . It should also be mentioned that, for this test case, it was not possible

to fully automate the optimisation process: manual intervention was required at certain

iterations, namely to temporarily reduce the step-length in order to ease convergence of

the morpher, occasionally hindered by too noisy gradients (possibly caused by localised

instabilities in the primal �eld). However, such interventions do not necessarily corre-

spond to visible e�ects in the convergence shown in Figure 7.6, such as jumps, which are

instead caused by sudden peaks in gradient magnitude.

The gradient magnitude history (Figure 7.6(b)), on the other hand, con�rms the

linear-like descent of J in the sense that it does not present a de�nite decreasing trend,

but rather oscillates around a certain range of values. This points to the fact that the

optimiser is still far from approaching a local minimum of the cost function and therefore,

Chapter 7. Applications 171

in theory, there is room for a much more signi�cant reduction of J ; the limitation comes

unfortunately from the RMMM tool, which fails to morph past the 118-th iteration

without producing degenerate/negative volume cells.

(a) initial shape (b) optimised shape

Figure 7.8: U-bend: velocity magnitude (m/s).

Figure 7.7 shows the optimised shape: similar to the S-bend case, the process is

attempting to suppress or reduce secondary/recirculating �ows, which for the U-bend are

mostly found along the second half of the bend and caused by �ow separation at the inner

wall, visible in Figure 7.8(a). The optimised shape presented here is in good agreement

with previous literature, in particular Coletti et al. [59] and Verstraete et al. [232]: the

initially circular bend is widened and turned into a horseshoe shape, particularly evident

on the trait upwind of the bend (top in Figure 7.7). However, no signi�cant di�erences

are visible between the original and optimised �ow �eld, other than a slight reduction of

the separated �ow region along the internal side of the bend and a moderate reduction of

the average �ow velocity, as highlighted by the velocity magnitude contour (Figure 7.8).

A bump-like feature is visible on the inlet leg at the location where the patch of �xed

nodes is connected to that of handle nodes; this is due to the RMMM tool which is not

yet capable of enforcing any smoothness constraint in this type of situation. The same

area is also found to be responsible for the aforementioned creation of negative volume

cells, i.e. the reason why the optimiser had to be stopped. In conclusion: the results on

the U-bend are positive but, taking into account the di�culties encountered, cannot be

considered as fully satisfactory without further ameliorations to the solver, morpher and

optimiser.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

The limitations of the discrete adjoint method, and speci�cally the instability arising

from a non-converging primal, were the motivating factor of the main body of the present

work, which primarily focused on improving the primal CFD solver in terms of spatial

discretisation schemes in order to indirectly alleviate the adjoint robustness issues. A

new discretisation method was put forward and named Mixed Hybrid Finite Volumes

(MHFV). Arguably the most innovative aspect of MHFV with respect to classical Finite

Volumes and Finite Elements is the treatment of di�usion terms: the basic methodol-

ogy for discretising the (anisotropic) pure di�usion equation is borrowed from the family

of novel methods known as Mixed Virtual Elements, which leads to the formulation of

a second-order accurate, stable di�usion operator on generic polyhedral meshes. The

MHFV method is based on mimetic discrete gradient and divergence operators, i.e. oper-

ators that satisfy the Gauss-Green formula at the discrete level. The scheme is fully

implicit and it maintains its convergence properties even on grids typically considered

unsuitable for classical FV, such as those containing highly non-orthogonal, skewed or

non-convex elements; this is a considerable further advantage in the context of shape opti-

misation. A parallelism was identi�ed between MHFV and classical FV Non-Orthogonal

Correctors, and exploited to derive a novel weighting system for the MHFV stabilisation

term. The MHFV scheme for pure anisotropic di�usion was validated on manufactured

test cases over sequences of highly distorted grids.

The MHFV scheme was then extended to cater for scalar convection-di�usion-reaction

problems. Following suggestions from literature, multiple convective schemes - some

resembling FV, others FE - were coded within a uni�ed framework: Hybrid Centred,

172

Chapter 8. Conclusions and Future Work 173

Mixed Centred, Hybrid First-Order Upwind, Hybrid θ-Scheme, and Hybrid Second-Order

Upwind. It was shown through estimates that, as in classical FV, centred schemes su�er

from stability issues which, for high-Peclet cases, require a level of mesh re�nement which

in practice cannot be a�orded. First-order upwinding, on the other hand, is uncondition-

ally stable at the cost of degrading the accuracy of the scheme. A range of semi-empirical

stabilisation techniques were proposed with the aim of stabilising second-order schemes

while maintaining their nominal accuracy: three of them - SUPG, �ux limiters and

WLSQR - were adapted to MHFV from FV and/or FE; a fourth one, ULSQR, is a nov-

elty of this work. The MHFV convection-di�usion-reaction scheme, in all of its variants,

was successfully validated for a range of Peclet numbers and grids on manufactured test

cases, including one (the Smith-Hutton test) speci�cally designed to test stabilisation

techniques.

The MHFV incompressible, steady-state Navier-Stokes scheme was then derived. As

suggested by previous literature focused on similar attempts, the MHFV convection-

di�usion operator was used to discretise the Picard-linearised momentum equation in

each direction with the addition of a pressure term to the convective-di�usive �ux of

velocity components. An extension of the pressure scheme to second-order accuracy is

a further innovation brought about in the present work. The scheme was tested �rst

in terms of h-convergence on a manufactured solution with particular emphasis on grid

independence, and then successfully validated on the 2D lid-driven cavity benchmark test

case over a range of Reynolds numbers from 102 to 104 and a highly distorted mesh.

A few di�erent solution algorithms for the Navier-Stokes were proposed: besides the

popular SIMPLE, which was adapted to MHFV in its SIMPLEC variant, the Block-

Coupled (BCPL) and Augmented Lagrangian (AL) approaches were also explored on

the grounds of being able to tackle the larger, more complex linear systems arising in

these strategies thanks to improvements in modern computational power and linear solver

capabilities. Numerical experiments proved SIMPLEC to be rather ine�cient compared

to both BCPL and AL, not only in terms of iteration count but also in how algorithm

performance is a�ected by mesh type and size as well as the physics of the problem.

BCPL and AL were found to perform comparably and reduce the iteration count by a

whole order of magnitude from SIMPLEC, but di�culties in solving the near-singular

penalised systems arising with the AL approach did show in certain con�gurations. The

improved behaviour of MHFV in terms of convergence to steady-state, which positively

a�ects stability of the corresponding discrete adjoint, was demonstrated by comparison

with a standard FV solver.

As a last step, the discrete adjoint MHFV Navier-Stokes system was considered. The

reverse assembly approach - performed here via Finite Di�erencing (FD) - was identi�ed

Chapter 8. Conclusions and Future Work 174

as a suitable way of assembling the Jacobian matrix as well as all other derivative terms

required for adjoint sensitivity computation. Colouring algorithms were used to maintain

the required number of FD evaluations independent of the problem size. Adjoint-adapted

versions of the primal solution algorithms SIMPLEC and AL were proposed. A Velocity-

Coupled algorithm (VCPL) - a version of SIMPLEC with fully implicit treatment of

the Adjoint Transpose Convection (ATC) term - was also implemented. Numerical tests

showed that the performance and behaviour of adjoint SIMPLEC and AL are identical to

those of their primal counterparts, with AL outperforming the former in terms of iteration

count by an order of magnitude. The improvements brought about by the VCPL scheme

were only visible at high Reynolds numbers. Finally, a Rigid Motion Mesh Morphing tool

with node-based Soft Handle Parametrisation was included in the di�erentiation chain,

and the adjoint-produced gradient was validated by comparison with FD values on the

3D S-bend benchmark case. The S-bend and the U-bend test cases (both internal �ow

cases, the �rst laminar, the second turbulent) were then used to illustrate the results of a

full shape optimisation process, achieving a reduction in the total power loss of 21.2% and

14.24% respectively. While the process was fully automated for the S-bend and resulted

in a smooth decrease in objective function and corresponding gradient magnitude, the

U-bend was more irregular and required manual intervention in some places, notably to

temporarily adjust the steepest descent step-length factor in order to get past iterations

with seemingly rogue or noisy gradient components.

8.2 Future work

Several limitations were encountered throughout the research presented here. They serve

to suggest future axes of development for primal and adjoint MHFV towards full-scale

industrial applications.

� Code parallelisation: the prototype MHFV solver developed for this thesis was

written within the framework of ESI's in-house Fortran Template Library (FTL).

FTL is a powerful FORTRAN library which extends the key concepts of C++ - such

as object-oriented programming and templating capabilities - to the FORTRAN

language. FTL was originally developed speci�cally for ESI's i-Adjoint tool, but its

potential applications extend beyond adjoint computation. For instance, it contains

a number of basic classes allowing to instantiate objects such as topologies, matrix

graphs, block-sparse matrices etc. many of which were used for implementing the

MHFV solver. FTL, however, is yet to be parallelised (in either DMP or SMP),

and as a consequence it was not possible in the present work to tackle test cases

of industrial size without incurring in prohibitive CPU costs, which would have

Chapter 8. Conclusions and Future Work 175

jeopardised the overall research progress.

� Linear solvers: linear systems were solved with the in-house solver DFGM, which

can be used either as an iterative solver (GMRES) preconditioned via traditional

ILU or a two-level additive DDM Schwarz method, or as a direct solver. It was

found however that DFGM systematically failed to precondition systems with non-

homogeneous block-sparse matrices, i.e. matrices containing blocks of di�erent

sizes. This is notably the case for the full Oseen system arising from the MHFV

Navier-Stokes operator, where the underlying hybrid topology leads to a distinc-

tion between blocks linked to faces, carrying d degrees of freedom each (one per

velocity component), and blocks linked to cells, carrying one degree of freedom

each (pressure). As a consequence, direct solvers had to be used wherever a hybrid

Oseen-type system arose, which was notably the case for the BCPL solution algo-

rithm. The usage of a direct solver is justi�able if the goal is a mere demonstration

of the e�ciency of the outer algorithm, but it is too costly to be considered for full-

sized industrial cases. Similar issues were also encountered in the preconditioning

of the penalised momentum equations arising in the AL approach, although in this

case the problem was expected: previous literature does mention the appearance of

near-inde�nite systems, and research towards a solution or workaround is ongoing.

Hence the two alternative solution algorithms as presented in this thesis remain at

a �proof of concept� level.

� Analysis and validation: it was shown how numerical tests on the schemes and

strategies presented produce encouraging numerical results; for completeness, how-

ever, it would be interesting to conduct a more thorough mathematical analysis. For

example, one may attempt to derive stability and error estimates for the ULSQR

convective scheme, or the PRS2 second-order pressure gradient operator. A similar

observation holds for the Spalart-Allmaras implementation presented in Appendix

A, for which there is no a priori guarantee of convergence. A more exhaustive cam-

paign of numerical experiments, including a wider range of geometries and problem

physics, would also be highly bene�cial to further prove the validity of the MHFV

scheme and the several options described in this work.

� Mesh morpher : the Rigid Motion Mesh Morphing tool, combined with the Soft

Handle CAD-Free Parametrisation, was chosen for the practical reason of being

implemented within the same FTL framework, which greatly facilitated the cou-

pling with the MHFV solver. The morpher however is still in its development phase

and currently su�ers from limitations, such as the inability to cope with too large

deformations without sub-cycling or the lack of smoothness at the joints between

�xed and moving patches of nodes. Some of these issues are currently being inves-

Chapter 8. Conclusions and Future Work 176

tigated (in the context of the EC-funded IODA project) and positive results have

begun to emerge, but not timely enough to be included in the present thesis.

� Further developments: practical time constraints dictated that only a few �basic�

options could be included in the MHFV Navier-Stokes solver: three types of bound-

ary conditions (inlet, outlet and wall), and one turbulence model (Spalart-Allmaras).

As a consequence, while the potential of the scheme was demonstrated on academic

test cases, it was not possible to test it on more complex industrial cases which

often require more sophisticated models. However, the aforementioned modularity

of the prototype will simplify the future task of developing new features, extend

the (primal and adjoint) solver to unsteady and/or compressible �ows, as well as

the implementation of a higher than second-order MHFV scheme.

Appendix A

The Spalart-Allmaras Turbulence

Model

The Spalart-Allmaras (SA) turbulence model [216] is a one-equation model which requires

solving an additional convection-di�usion-reaction problem for a viscosity-like variable

νsa, subsequently used to compute a turbulent eddy viscosity νt which, when added to

the �uid's physical kinematic viscosity, produces a macroscopic simulation of the e�ects

of turbulence. The model was shown to work particularly well for applications involving

wall-bounded �ows with boundary layers subjected to adverse pressure gradients. The

original SA formulation, presented below, belongs to the so-called family of low-Reynolds

models, meaning that the dimensionless wall distance y+ of grid points closest to boundary

walls must be in the order of 1; for a more insightful explanation, see e.g. [53, 238].

In its basic, steady-state version, the SA equation is de�ned as

∇ ·
(
−(ν + νt)

σ
∇νsa + ~Uνsa

)
+

(
cw1fw +

cb1
κ2
ft2

)(νsa
d

)2
− cb1 (1− ft2)Sνsa

− cb2
σ
∇νsa · ∇νsa = 0

(A.1)

with the eddy viscosity computed as

νt = fv1νsa (A.2)

where

fv1 =
χ3

χ3 + c3
v1

and χ =
νsa
ν

. (A.3)

177

Appendix A. The Spalart-Allmaras Turbulence Model 178

Additional de�nitions are given by

S = Ω +
νsa
κ2d2

fv2 (A.4)

where Ω is the magnitude of the vorticity and d is the distance from the �eld point to

the nearest wall, and

fv2 = 1− χ

1 + χfv1
; fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

;

g = r + cw2

(
r6 − r

)
; r = min

(νsa
Sκ2d2

, 10
)

;

ft2 = c−ct4χ
2

t3 .

(A.5)

Finally, the model constants are

cb1 = 0.1355 ; σ = 2/3 ; cb2 = 0.622 ; κ = 0.41 ;

cw2 = 0.3 ; cw3 = 2 ; cv1 = 7.1 ; ct3 = 1.2 ;

ct4 = 0.5 ; cw1 =
cb1
κ2

+
1 + cb2
σ

.

(A.6)

There is a clear resemblance between the SA equation (A.1) and a generic transport

problem. More speci�cally: the �rst term is a simple convection-di�usion operator with

convecting �eld ~U and (isotropic) di�usivity (ν+νt)
σ ; the second and third terms - often

referred to as production-destruction in turbulence modeling jargon - can be rewritten as

a non-linear reaction term, i.e. one with a solution-dependent reaction coe�cient η:

η (νsa) =
(
cw1fw +

cb1
κ2
ft2

) νsa
d2
− cb1 (1− ft2)S . (A.7)

Both these terms are straightforwardly discretised with the MHFV operators described

in Chapter 4. At a given CFD iteration, a cell-averaged vorticity magnitude ΩC is com-

puted based on a Gauss gradient of the current MHFV hybrid velocity �eld ũ, while

an approximated nearest-wall distance �eld d can be obtained via any of the methods

described in [225] - which in turn require solving a di�usion or convection-di�usion prob-

lem, once and for all at the beginning of the simulation. The cell-averaged �eld νsa from

the previous iteration is then used to compute cell-based values of all model functions

in (A.4) and (A.5), allowing to compute a (linearised) cell-averaged reaction coe�cient

in the form (A.7). As for the di�usive and convective coe�cients, they are linearised by

using respectively the current eddy viscosity �eld νt and convecting �eld U.

The fourth term in (A.1): (− cb2
σ ∇νsa · ∇νsa), on the other hand, is a form not yet

encountered and thus requires further attention. To that end, it is useful to consider a

Appendix A. The Spalart-Allmaras Turbulence Model 179

convection-di�usion-reaction problem of the form:

∇ ·
(
−K∇φ+ ~Uφ

)
+ ηφ+ ~W · ∇φ︸ ︷︷ ︸

additional term

= f in Ω (A.8)

where ~W is a generic vector �eld and all other symbols carry their usual connotation

from Chapter 4. Applying the Gauss-Green formula to the additional term in (A.8) over

a cell C yields ∫
C

~W · ∇φdV = −
∫
C
φ∇ · ~W dV +

∫
∂C
φ ~W · ~n dS (A.9)

which justi�es the following mixed formulation of (A.8): ~V = −K∇φ+
(
~U + ~W

)
φ

∇ · ~V +
(
η −∇ · ~W

)
φ = f

in Ω . (A.10)

Problem (A.10) is now in a form that, in practice, can be discretised with the already

existing MHFV operators: let W be the de Rham map of ~W in Xh; it is then su�cient

to replace the MHFV convecting �eld U with a modi�ed one:

Û = U + W (A.11)

and similarly modify the reaction coe�cient in Qh:

η̂ = η −DW . (A.12)

This procedure allows to discretise the fourth term in (A.1), namely by setting ~W =

− cb2
σ ∇νsa. Hence for the SA model, the MHFV �eld W should correspond to a di�usive

�ux of νsa with constant di�usivity cb2
σ . This is obtained by using a MHFV-like �ux

operator, i.e. by de�ning W as

(W)∂C = M−1
sa,C (νsa,C − νsa,F)∂C (A.13)

where Msa,C corresponds to the local scalar product matrix from Chapter 3, computed

by replacing the di�usivity tensor K with the (isotropic) constant cb2
σ . Since this yelds

two �uxes per face, WFC+ andWFC−, which are in general di�erent, the average value is

taken. Of course (A.13) implies a solution-dependent W and thus, by virtue of (A.11),

a non-linear convective term; the equation is thus linearised at each CFD iteration by

computing (A.13) from previous values of νsa.

Appendix B

Under-Resolved Lid-Driven Cavity

Figures B.1 through B.3 report MHFV results for the under-resolved lid-driven cavity

test case for Re = 102, 103 and 104 respectively. The solver setup (second-order for all

variables) and mesh type (quadrilateral distorted) are the same as described in Section

5.3.2, but the mesh is coarser: it is generated by distorting a 30 × 30 Cartesian mesh,

leading to an averaged cell-to-cell distance havg ≈ 3.51 E−2, approximately four times

larger than that used for the reference results.

The scheme is stable for all Re values, although some oscillations can be observed

in more convection-dominated regimes; these can be attributed to the ULSQR stabilis-

ing strategy (Section 4.2.5) which bounds such oscillations but does not suppress them

entirely. At Re = 102 the results are in perfect agreement with the reference values

despite the under-resolution. For higher Re values the error remains within acceptable

bounds across most of the domain, however the scheme fails to capture with su�cient

accuracy steep gradient zones, notably close to boundaries due to the under-resolved

boundary layer.

180

Appendix B. Under-Resolved Lid-Driven Cavity 181

-0,5

-0,3

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

0 0,2 0,4 0,6 0,8 1

u

y

MHFV

Ghia et al.

(a) u along y-axis

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 0,2 0,4 0,6 0,8 1

v

x

MHFV

Ghia et al.

(b) v along x-axis

Figure B.1: Under-resolved lid-driven cavity, Re = 102: results comparison.

-0,5

-0,3

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

0 0,2 0,4 0,6 0,8 1

u

y

MHFV

Ghia et al.

(a) u along y-axis

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 0,2 0,4 0,6 0,8 1

v

x

MHFV

Ghia et al.

(b) v along x-axis

Figure B.2: Under-resolved lid-driven cavity, Re = 103: results comparison.

-0,5

-0,3

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

0 0,2 0,4 0,6 0,8 1

u

y

MHFV

Ghia et al.

(a) u along y-axis

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 0,2 0,4 0,6 0,8 1

v

x

MHFV

Ghia et al.

(b) v along x-axis

Figure B.3: Under-resolved lid-driven cavity, Re = 104: results comparison.

Appendix C

Author's Publications

Conference papers

1. M. Oriani and G. Pierrot , �Alternative solution algorithms for primal and adjoint

incompressible Navier-Stokes," ECCOMAS Congress, Crete Island, Greece, June

2016.

2. M. Oriani and G. Pierrot , �A Mixed Hybrid Finite Volume Scheme for incom-

pressible Navier-Stokes," NAFEMS World Congress, San Diego, California, USA,

June 2015.

3. M. Oriani and G. Pierrot , �Alleviating adjoint solver robustness issues via mimetic

CFD discretization schemes," OPT-i Conference, Kos Island, Greece, June 2014.

182

Bibliography

[1] I. Aavatsmark. An introduction to multipoint �ux approximations for quadrilateral

grids. Computational Geosciences, 6(3):405�432, 2002.

[2] R. Abgrall. On Essentially Non-Oscillatory schemes on unstructured meshes: Anal-

ysis and implementation. Journal of Computational Physics, 114(1):45�58, 1994.

[3] D. Adak and E. Natarajan. A uni�ed analysis of nonconforming Virtual Element

Methods for convection di�usion reaction problem. ArXiv e-print 1601.01077, 2016.

[4] S. Akbarzadeh, Y. Wang, and J-D. Müller. Fixed point discrete adjoint of SIMPLE-

like solvers. AIAA Paper 2015-2750, 2015.

[5] W.K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on

unstructured grids with a continuous adjoint formulation. Computers and Fluids,

28(4):443�480, 1999.

[6] M.I. Andreou, S.E. Nikoletseas, and P.G. Spirakis. Algorithms and experiments on

colouring squares of planar graphs. Second International Workshop on Experimental

and E�cient Algorithms, WEA 2003, Ascona, Switzerland, pages 15�32, 2003.

[7] P. Antonietti, L. Beirão da Veiga, N. Bigoni, and M. Verani. Mimetic Finite Dif-

ferences for non-linear and control problems. Mathematical Models and Methods in

Applied Sciences, 24(8):1457�1493, 2014.

[8] P. Antonietti, N. Bigoni, and M. Verani. Mimetic Finite Di�erence method for

shape optimization problems. Lecture Notes in Computational Science and Engi-

neering, 103:125�132, 2015.

[9] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. I: Discharg-

ing. Illinois Journal of Mathematics, 21:429�490, 1977.

[10] B.M. Averick, J.J. Moré, C.H. Bischof, A. Carle, and A. Griewank. Computing

large sparse Jacobian matrices using automatic di�erentiation. SIAM Journal on

Scienti�c Computing, 15(2):285�294, 1994.

183

Bibliography 184

[11] T.J. Barth and D.C. Jespersen. The design and application of upwind schemes on

unstructured meshes. AIAA Paper 89-0366, 1989.

[12] M. Bartholomew-Biggs. Nonlinear Optimization with Engineering Applications.

Springer, 2005.

[13] P. Batten, C. Lambert, and D.M. Causon. Positively conservative high-resolution

schemes for unstructured elements. International Journal for Numerical Methods

in Engineering, 39:1821�1838, 1996.

[14] O. Baysal and M.E. Eleshaky. Aerodynamic sensitivity analysis methods for the

compressible Euler equations. Journal of Fluids Engineering, 113(4):681�688, 1991.

[15] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, and A. Russo.

Basic principles of Virtual Element Methods. Mathematical Models and Methods

in Applied Sciences, 23(1):199�214, 2013.

[16] L. Beirão da Veiga, F. Brezzi, L.D. Marini, and A. Russo. The hitchhiker's guide

to the Virtual Element Method. Mathematical Models and Methods in Applied

Sciences, 24(8):1541�1573, 2014.

[17] L. Beirão da Veiga, F. Brezzi, L.D. Marini, and A. Russo. Mixed Virtual Element

Methods for general second order elliptic problems on polygonal meshes. ESAIM:

Mathematical Modelling and Numerical Analysis, 50(1):727�747, 2016.

[18] L. Beirão da Veiga, J. Droniou, and G. Manzini. A uni�ed approach to handle

convection terms in Finite Volumes and Mimetic Discretization Methods for elliptic

problems. IMA Journal of Numerical Analysis, 31(4):1357�1401, 2011.

[19] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. Arbitrary-order nodal mimetic

discretizations of elliptic problems on polygonal meshes. SIAM Journal on Numer-

ical Analysis, 49(5):1737�1760, 2011.

[20] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite Di�erence

method for Elliptic Problems. Springer, 2014.

[21] L. Beirão da Veiga, C. Lovadina, and G. Vacca. Divergence free virtual elements

for the Stokes problem on polygonal meshes. ESAIM: Mathematical Modelling and

Numerical Analysis, 51(2):509�535, 2017.

[22] L. Beirão da Veiga, C. Lovadina, and G. Vacca. Virtual Elements for the Navier-

Stokes problem on polygonal meshes. ArXiv e-print 1703.00437, 2017.

Bibliography 185

[23] L. Beirão da Veiga and G. Manzini. A higher-order formulation of the Mimetic

Finite Di�erence method. SIAM Journal on Scienti�c Computing, 31(1):732�760,

2008.

[24] M.F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialò. Order preserv-

ing SUPG stabilization for the Virtual Element formulation of advection-di�usion

problems. Computer Methods in Applied Mechanics and Engineering, 311:18�40,

2016.

[25] M. Benzi. Numerical solution of saddle point problems. Acta Numerica, 14:1�137,

2005.

[26] M. Benzi and X. Guo. A dimensional split preconditioner for Stokes and linearized

Navier�Stokes equations. Applied Numerical Mathematics, 61(1):66�76, 2011.

[27] M. Benzi, M. Ng, Q. Niu, and Z. Wang. A Relaxed Dimensional Factorization

preconditioner for the incompressible Navier�Stokes equations. Journal of Compu-

tational Physics, 230(16):6185�6202, 2011.

[28] M. Benzi and M.A. Olshanskii. An Augmented Lagrangian-based approach to the

Oseen problem. SIAM Journal on Scienti�c Computing, 28(6):2095�2113, 2006.

[29] M. Benzi, M.A. Olshanskii, and Z. Wang. Modi�ed Augmented Lagrangian pre-

conditioners for the incompressible Navier-Stokes equations. International Journal

for Numerical Methods in Fluids, 66(4):486�508, 2011.

[30] M. Benzi and Z. Wang. Analysis of Augmented Lagrangian-based preconditioners

for the steady incompressible Navier�Stokes equations. SIAM Journal on Scienti�c

Computing, 33(5):2761�2784, 2011.

[31] M. Berger and M.J. Aftosmis. Analysis of slope limiters on irregular grids. AIAA

Paper 2005-0490, 2005.

[32] S.A. Berger, L. Talbot, and L.S. Yao. Flow in curved pipes. Annual Review of

Fluid Mechanics, 15(1):461�512, 1983.

[33] C.H. Bischof, P.M. Khademi, A. Bouaricha, and A. Carle. E�cient computation

of gradients and jacobians by transparent exploitation of sparsity in automatic

di�erentiation. Optimization Methods and Software, 7:1�39, 1996.

[34] F. Blom. Considerations on the Spring Analogy. International Journal for Numer-

ical Methods in Fluids, 32(6):647�668, 2000.

[35] J. Bonelle. Compatible Discrete Operator schemes on polyhedral meshes for elliptic

and Stokes equations. PhD thesis, École doctorale MSTIC, 2014.

Bibliography 186

[36] R. Bott and L.W. Tu. Di�erential Forms in Algebraic Topology. Springer-Verlag,

Berlin, New York, 1982.

[37] J. Brezillon and R.P. Dwight. Aerodynamic shape optimization using the discrete

adjoint of the Navier-Stokes equations: Applications toward complex 3d con�guta-

tions. KATnet II Conference on Key Aerodynamic Technologies, Bremen, Germany,

2009.

[38] F. Brezzi, A. Bu�a, and G. Manzini. Mimetic scalar products of discrete di�erential

forms. Journal of Computational Physics, 257:1228�1259, 2014.

[39] F. Brezzi, R.S. Falk, and L.D. Marini. Basic principles of Mixed Virtual Element

method. Mathematical Modelling and Analysis, 48(4):1227�1240, 2014.

[40] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-

Verlag, New York, 1991.

[41] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the Mimetic Finite

Di�erence method for di�usion problems on polyhedral meshes. SIAM Journal on

Numerical Analysis, 43(5):1872�1896, 2005.

[42] F. Brezzi, K. Lipnikov, and M. Shashkov. A family of Mimetic Finite Di�erence

methods on polygonal and polyhedral meshes. Mathematical Models and Methods

in Applied Sciences, 15(10):1533�1551, 2005.

[43] F. Brezzi, L.D. Marini, S. Micheletti, P. Pietra, and R. Sacco. Stability and error

analysis of mixed �nite-volume methods for advection dominated problems. Com-

puters & Mathematics with Applications, 51(5):681�696, 2006.

[44] D. Brélaz. New methods to color the vertices of a graph. Communication of ACM,

22(4):251�256, 1979.

[45] N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations

for convection dominated �ows with particular emphasis on the incompressible

Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineer-

ing, 32(1):199�259, 1982.

[46] E. Burman and A. Linke. Stabilized �nite element schemes for incompressible �ow

using Scott�Vogelius elements. Applied Numerical Mathematics, 58(11):1704�1719,

2008.

[47] M.S. Campobasso and M.B. Giles. Stabilization of a linear �ow solver for turboma-

chinery aeroelasticity by means of the recursive projection method. AIAA Journal,

42(9):1765�1774, 2004.

Bibliography 187

[48] A. Cangiani, V. Gyra, and G. Manzini. The non conforming Virtual Ele-

ment Method for the Stokes equations. SIAM Journal on Numerical Analysis,

54(6):3411�3435, 2016.

[49] A. Cangiani and G. Manzini. Flux reconstruction and solution post-processing in

Mimetic Finite Di�erence methods. Computer Methods in Applied Mechanics and

Engineering, 197:933�945, 2008.

[50] A. Cangiani, G. Manzini, and A. Russo. Convergence analysis of the Mimetic Finite

Di�erence method for elliptic problems. SIAM Journal on Numerical Analysis,

47(4):2612�2637, 2009.

[51] S.M. Chang, J.A.C. Humphrey, and A. Modavi. Turbulent �ow in a strongly curved

U-bend and downstream tangent of square cross-sections. Physicochemical Hydro-

dynamics, 4:243�269, 1983.

[52] S.C. Cheah, H. Iacovides, D.C. Jackson, H.H. Ji, and B.E. Launder. LDA investiga-

tion of the �ow development through rotating U-ducts. Journal of Turbomachinery,

118:590�596, 1996.

[53] C.J. Chen and S. Jaw. Fundamentals of turbulence modeling. Taylor & Francis,

1998.

[54] F. Christakopoulos, D. Jones, and J-D. Müller. Pseudo-timestepping and veri-

�cation for automatic di�erentiation derived CFD codes. Computers & Fluids,

46(1):174�179, 2011.

[55] B. Christianson. Reverse accumulation and attractive �xed points. Optimization

Methods and Software, 3:311�326, 1994.

[56] B. Christianson. Reverse accumulation and implicit functions. Optimization Meth-

ods and Software, 9:307�322, 1998.

[57] B. Cockburn, G. Kanschat, and D. Schötzau. A locally conservative LDG method

for the incompressible Navier-Stokes equations. Mathematics of Computation,

74:1067�1095, 2005.

[58] T.F. Coleman and J.J. Moré. Estimation of sparse Jacobian matrices and graph

coloring problems. SIAM Journal on Numerical Analysis, 20(1):187�209, 1983.

[59] F. Coletti, T. Verstraete, J. Bulle, T. Van der Wielen, N. Van den Berge, , and

T. Arts. Optimization of a U-bend for minimal pressure loss in internal cooling

channels - part II: Experimental validation. ASME Journal of engineering for Gas

Turbines and Power, 135(5), 2013.

Bibliography 188

[60] Y. Coudière, J.P. Vila, and P. Villedieu. Convergence rate of a Finite Volume

scheme for a two dimensional convection-di�usion problem. ESAIM: Mathematical

Modelling and Numerical Analysis, 33(3):493�516, 1999.

[61] F. Courty, A. Dervieux, B. Koobus, and L. Hascoët. Reverse Automatic Di�eren-

tiation for optimum design: from adjoint state assembly to gradient computation.

Optimization Methods and Software, 18(5):615�627, 2003.

[62] A.R. Curtis, M.J. Powell, and J.K. Reid. On the estimation of sparse Jacobian

matrices. IMA Journal of Applied Mathematics, 13(1):117�119, 1974.

[63] P. Cusdin. Automatic sensitivity code for Computational Fluid Dynamics. PhD

thesis, School of Aeronautical Engineering, Queen's University Belfast, 2005.

[64] P. Cusdin and J-D. Müller. Deriving linear and adjoint codes for CFD using

automatic di�erentiation. School of Aeronautical Engineering, Queen's University

Belfast, 2003.

[65] M. Darwish and F. Moukalled. A fully coupled Navier-Stokes solver for �uid �ow

at all speeds. Numerical Heat Transfer, 65(5):410�444, 2014.

[66] M. Darwish, I. Sraj, and F. Moukalled. A coupled �nite volume solver for the

solution of incompressible �ows on unstructured grids. Journal of Computational

Physics, 228(1):180�201, 2009.

[67] A.C. De Niet and F.W. Wubs. Two preconditioners for saddle point problems in

�uid �ows. International Journal for Numerical Methods in Fluids, 54(4):355�377,

2007.

[68] W.R. Dean. The stream-line motion of �uid in a curved pipe. The London, Edin-

burgh, and Dublin Philosophical Magazine and Journal of Science, 5(7):673�695,

1928.

[69] P. Deuring. Eigenvalue bounds for the Schur complement with a pressure con-

vection�di�usion preconditioner in incompressible �ow computations. Journal of

Computational and Applied Mathematics, 228(1):444�457, 2009.

[70] J. Droniou. Remarks on discretizations of convection terms in Hybrid Mimetic

Mixed methods. Networks and Heterogeneous Media, 5(3):545�563, 2010.

[71] J. Droniou and R. Eymard. A Mixed Finite Volume scheme for anisotropic di�usion

problems on any grid. Numerische Mathematik, 105(1):35�71, 2006.

Bibliography 189

[72] J. Droniou and R. Eymard. Study of the Mixed Finite Volume method for Stokes

and Navier-Stokes equations. Numerical Methods for Partial Di�erential Equations,

25(1):137�171, 2009.

[73] J. Droniou, R. Eymard, T. Galloüet, and R. Herbin. A uni�ed approach to Mimetic

Finite Di�erence, Hybrid Finite Volume and Mixed Finite Volume methods. Math-

ematical Models and Methods in Applied Sciences, 20(2):265�295, 2010.

[74] R.P. Dwight and J. Brezillon. E�ect of various approximations of the discrete

adjoint on gradient-based optimization. AIAA Paper 2006-0690, 2006.

[75] R.P. Dwight and J. Brezillon. E�cient and robust algorithms for solution of

the adjoint compressible Navier�Stokes equations with applications. International

Journal for Numerical Methods in Fluids, 60(4):365�389, 2009.

[76] M. Gad El-Hak, A. Pollard, and J. Bonnet. Flow Control: Fundamentals and

Practices. Springer, 1998.

[77] G. Eleftheriou and G. Pierrot. Rigid Motion Mesh Morpher: a novel approach for

mesh deformation. OPT-I: International Conference on Engineering and Applied

Sciences Optimization, Kos, Greece, 2014.

[78] H.C. Elman. Preconditioning for the steady-state Navier�Stokes equations with

low viscosity. SIAM Journal of Scienti�c Computing, 20(4):1299�1316, 1999.

[79] H.C. Elman, V.E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. Block

preconditioners based on approximate commutators. SIAM Journal of Scienti�c

Computing, 27(5):1651�1668, 2006.

[80] H.C. Elman, V.E. Howle, J. Shadid, D. Silvester, and R. Tuminaro. Least Squares

preconditioners for stabilized discretizations of the Navier�Stokes equations. SIAM

Journal of Scienti�c Computing, 30(1):290�311, 2007.

[81] K. Elsayed, J.D. Carrilho Miranda, and C. Lacor. Minimization of the pressure loss

in internal cooling channels using the adjoint method. First Aviation Engineering

Innovations Conference, Luxor, Egypt, 2015.

[82] R. Eymard, T. Gallouet, and R. Herbin. Discretization of heterogeneous and

anisotropic di�usion problems on general nonconforming meshes SUSHI: a scheme

using stabilization and hybrid interfaces. IMA Journal of Numerical Analysis,

30(4):1009�1043, 2010.

[83] R. Eymard, R. Herbin, and J.C. Latché. Convergence analysis of a colocated �nite

volume scheme for the incompressible Navier�Stokes equations on general 2D or

3D meshes. SIAM Journal on Numerical Analysis, 45(1):1�36, 2007.

Bibliography 190

[84] C. Farhat, C. Degant, B. Koobus, and M. Lesoinne. Torsional springs for two-

dimensional dynamic unstructured �uid meshes. Computer Methods in Applied

Mechanics and Engineering, 163(1):231�245, 1998.

[85] P.E. Farrell, D.A. Ham, S.F. Funke, and M.E. Rognes. Automated derivation of the

adjoint of high-level transient �nite element programs. SIAM Journal on Scienti�c

Computing, 35(4):369�393, 2013.

[86] J.H. Ferziger and M. Peri¢. Computational Methods for Fluid Dynamics. Springer,

1997.

[87] O. Friedrich. Weighted Essentially Non-Oscillatory schemes for the interpolation of

mean values on unstructured grids. Journal of Computational Physics, 144(1):194�

212, 1998.

[88] T.P. Fries and H.G. Matthies. A review of Petrov-Galerkin stabilization approaches

and an extension to meshfree methods. Technical University Braunschweig, 2004.

[89] J. Fürst. A Finite Volume scheme with Weighted Least Square reconstruction.

ICCFD: 4th International Conference on Computational Fluid Dynamics, Ghent,

Belgium, 2006.

[90] J. Fürst. The Weighted Least Square scheme for multidimensional �ows. ECCO-

MAS CFD: 4th European Conference on Computational Fluid Dynamics, Delft,

Netherlands, 2006.

[91] N.R. Gauger, V. Schulz, S. Schmidt, and C. Ilic. Shape gradients and their smooth-

ness for practical aerodynamic design optimization. RWTH Aachen University,

Report no. SPP-1253-10-03, 2008.

[92] A.H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? Graph

coloring for computing derivatives. SIAM Review, 47(4):629�705, 2005.

[93] A.H. Gebremedhin, A. Pothen, and A. Walther. Exploiting sparsity in Jacobian

computation via coloring and automatic di�erentiation: A case study in a simu-

lated moving bed process. Advances in Automatic Di�erentiation; Lecture Notes

in Computational Science and Engineering, 64:327�338, 2008.

[94] U. Ghia, K.N. Ghia, and C.T. Shin. High-Re solutions for incompressible �ow using

the Navier-Stokes equations and a multigrid method. Journal of Computational

Physics, 48(3):387�411, 1982.

[95] K.C. Giannakoglou. Continuous adjoint methods in shape, topology, �ow-control

and robust optimization. ICON-CFD: Open Source CFD International Conference,

London, UK, 2012.

Bibliography 191

[96] J.C. Gilbert. Automatic Di�erentiation and iterative processes. Optimization Meth-

ods and Software, 1:13�21, 1992.

[97] M.B. Giles. Collected matrix derivative results for forward and reverse mode Algo-

rithmic Di�erentiation. Advances in Automatic Di�erentiation; Lecture Notes in

Computational Science and Engineering, 64:35�44, 2008.

[98] M.B. Giles, M.C. Duta, J-D. Müller, and N.A. Pierce. Algorithm developments for

discrete adjoint methods. AIAA Journal, 41(2):198�205, 2003.

[99] M.B. Giles, D. Ghate, and M.C. Duta. Using Automatic Di�erentiation for adjoint

CFD code development. Oxford University Computing Laboratory, Oxford, UK,

2005.

[100] M.B. Giles and N.A. Pierce. Adjoint equations in CFD: duality, boundary condi-

tions and solution behaviour. AIAA Paper 97-1850, 1997.

[101] M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to design.

Flow, Turbulence and Combustion, 65:393�415, 2000.

[102] V. Girault and P.A. Raviart. Finite element methods for the Navier-Stokes equa-

tions: theory and algorithms. Springer, 1986.

[103] V. Girault, B. Rivière, and M.F. Wheeler. A discontinuous Galerkin method with

non-overlapping domain decomposition for the Stokes and Navier-Stokes problems.

Mathematics of Computation, 74:53�84, 2005.

[104] R. Glowinski. Finite element methods for Navier-Stokes equations. Annual Review

of Fluid Mechanics, 24:167�204, 1992.

[105] P.M. Gresho. Some current CFD issues relevant to the incompressible Navier-Stokes

equations. Computer Methods in Applied Mechanics and Engineering, 87(3):201�

252, 1991.

[106] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in

reverse Automatic Di�erentiation. Optilization Methods and Software, 1(1):35�54,

1992.

[107] A. Griewank and A. Walther. Algorithm 799: Revolve: an implementation of

checkpointing for the reverse or adjoint mode of Computational Di�erentiation.

ACM Transactions on Mathematical Software, 26(1):19�45, 2000.

[108] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques

of Algorithmic Di�erentiation. SIAM, second edition, 2008.

Bibliography 192

[109] M. Gugala, O. Mykhaskiv, and J-D. Müller. A comparison of node-based and cad-

based parametrisations in shape optimisation. NOED International Conference on

Numerical Optimisation Methods for Engineering Design, Munich, Germany, 2016.

[110] M. Gugala, S. Xu, and J-D. Müller. Node-based vs. CAD-based approach in CFD

adjoint-based shape optimisation. ECCM V: 5th European Conference on Compu-

tational Mechanics, Barcelona, Spain, 2014.

[111] M.D. Gunzburger. Finite element methods for viscous incompressible �ows � a guide

to theory, practice, and algorithms. Computer Science and Scienti�c Computing

(Academic Press), 1989.

[112] M.D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, 2003.

[113] P. Hansbo. Generalized Laplacian smoothing of unstructured grids. International

Journal for Numerical Methods in Biomedical Engineering, 11(5):455�464, 1995.

[114] H. Harborth and M. Möller. Minimum integral drawings of the platonic graphs.

Mathematics Magazine, 67(5):355�358, 1994.

[115] E. Hardee, K.H. Chang, J. Tu, K.K. Choi, I. Grindeanu, and X. Yu. A CAD-

based design parametrization for shape optimization of elastic solids. Advances in

Engineering Software, 30:185�199, 1999.

[116] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accu-

rate Essentially Non-Oscillatory schemes III. Journal of Computational Physics,

71(2):231�303, 1987.

[117] L. Hascoët. Automatic Di�erentiation by program transformation. INRIA Sophia

Antipolis, France, TROPICS team, 2007.

[118] L. Hascoët, U. Naumann, and V. Pascual. TBR analysis in reverse-mode Automatic

Di�erentiation. INRIA Sophia Antipolis, France, 2003.

[119] T. Heister and G. Rapin. E�cient Augmented Lagrangian-type preconditioning

for the Oseen problem using Grad-Div stabilization. International Journal for

Numerical Methods in Fluids, 71(1):118�134, 2013.

[120] E. Helgason and S. Krajnovi¢. Aerodynamic shape optimization of a pipe using

the adjoint method. International Mechanical Engineering Congress & Exposition,

Houston, USA, 2012.

[121] J.G. Heywood, R. Rannacher, and S.Turek. Arti�cial boundaries and �ux and

pressure conditions for the incompressible Navier-Stokes equations. International

Journal for Numerical Methods in Fluids, 22(5):325�352, 1996.

Bibliography 193

[122] C. Hinterberger and M. Olesen. Industrial application of continuous adjoint �ow

solvers for the optimization of automotive exhaust systems. CFD & OPTIMIZA-

TION, ECCOMAS Thematic Conference, Antalya, Turkey, 2011.

[123] M. Hinze and J. Sternberg. A-Revolve: an adaptive memory and run-time reduced

procedure for calculating adjoints; with an application to the instationary Navier-

Stokes system. Optimization Methods and Software, 20:645�663, 2005.

[124] M. Hojjat, E. Stavropoulou, and K.U. Bletzinger. The Vertex Morphing method

for node-based shape optimization. Computer Methods in Applied Mechanics and

Engineering, 268(1):494�513, 2014.

[125] C. Hu and C-W. Shu. Weighted Essentially Non-Oscillatory schemes on triangular

meshes. Journal of Computational Physics, 150(1):97�127, 1999.

[126] T.J.R. Hughes and A. Brooks. A multidimensional upwind scheme with no cross-

wind di�usion. Finite Element Methods for Convection Dominated Flows, ASME,

pages 19�35, 1979.

[127] T.J.R. Hughes, L.P. Franca, and M. Balestra. A new �nite element formulation for

computational �uid dynamics. V. Circumventing the Brezzi-Babu²ka condition: a

stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-

order interpolations. Computer Methods in Applied Mechanics and Engineering,

59:85�99, 1986.

[128] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new �nite element formulation

for computational �uid dynamics. VIII. The Galerkin/Least-squares method for

advective-di�usive equations. Computer Methods in Applied Mechanics and Engi-

neering, 73:163�189, 1989.

[129] D. Irsarri. Virtual element method stabilization for convection-di�usion-reaction

problems using the link-cutting condition. Calcolo, 54(1):141�154, 2017.

[130] S. Jakobsson and O. Amoignon. Mesh deformation using basis functions for

gradient-based aerodynamic shape optimization. Computers & Fluids, 36(6):1119�

1136, 2007.

[131] A. Jameson. Aerodynamic design via control theory. Journal of Scienti�c Comput-

ing, 3:233�260, 1988.

[132] A. Jameson. Optimum aerodynamic design using CFD and control theory. AIAA

Paper 95-1729, 1995.

Bibliography 194

[133] A. Jameson and S. Kim. Reduction of the adjoint gradient formula in the continuous

limit. AIAA Paper 2003-0040, 2003.

[134] A. Jameson, N.A. Pierce, and L. Martinelli. Optimum aerodynamic design using the

Navier�Stokes equations. Theoretical and Computational Fluid Dynamics, 10:213�

237, 1998.

[135] H. Jasak. Error Analysis and Estimation for the Finite Volume Method with Appli-

cations to Fluid Flows. PhD thesis, Imperial College, 1996.

[136] A. Jemcov and J.P. Maruszewski. Algorithm stabilization and acceleration in com-

putational �uid dynamics: exploiting recursive properties of �xed point algorithms.

Computational Fluid Dynamics and Heat Transfer, 23:459�486, 2010.

[137] D. Jones, J-D. Müller, and S. Bayyuk. CFD development with Automatic Di�er-

entiation. AIAA Paper 2012-0573, 2012.

[138] G.K. Karpouzas, E.M. Papoutis-Kiachagias, T. Schumacher, E. De Villiers, K.C.

Giannakoglou, and C. Othmer. Adjoint optimization for vehicle external aerody-

namics. International Journal of Automotive Engineering, 7:1�7, 2016.

[139] D. Kay, D. Loghin, and A. Wathen. A preconditioner for the steady-state Navier-

Stokes equations. SIAM Journal of Scienti�c Computing, 24(1):237�256, 2002.

[140] R.A. Klausen and A.F. Stephansen. Convergence of Multi-Point Flux Approxima-

tions on general grids and media. International Journal of Numerical Analysis &

Modeling, 9(3):584�606, 2012.

[141] J.A. Krakos and D.L. Darmofal. E�ect of small-scale output unsteadiness on

adjoint-based sensitivity. AIAA Journal, 48(11):2611�2623, 2010.

[142] D. Krentel, R. Muminovic, A. Brunn, W. Nitshe, and R. King. Application of

active �ow control on generic 3D car models. Notes on Numerical Fluid Mechanics

and Multidisciplinary Design, 108:223�239, 2010.

[143] Y. Kuznetsov, K. Lipnikov, and M. Shashkov. The Mimetic Finite Di�erence

method on polygonal meshes for di�usion-type problems. Computational Geo-

sciences, 8:301�324, 2004.

[144] S. Langer, A. Schwöppe, and N. Kroll. The DLR �ow solver TAU � status and

recent algorithmic developments. AIAA Paper 14-0080, 2014.

[145] B.P. Leonard. A stable and accurate convective modelling procedure based on

quadratic upstream interpolation. Computer Methods in Applied Mechanics and

Engineering, 19(1):59�98, 1979.

Bibliography 195

[146] R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer

International Publishers, 2015.

[147] R.W. Lewis, P. Nithiarasu, and K.N. Seetharamu. Fundamentals of the Finite

Element Method for Heat and Fluid Flow. John Wiley & Sons, 2004.

[148] A. Liatsikouras, G. Eleftheriou, G. Pierrot, and M. Megahed. Soft handle CAD-free

parametrization tool for adjoint-based optimization methods. NOED International

Conference on Numerical Optimisation Methods for Engineering Design, Munich,

Germany, 2016.

[149] A. Linke. Divergence-Free Mixed Finite Elements for the Incompressible Navier-

Stokes Equation. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg,

2007.

[150] K. Lipnikov and G. Manzini. A high-order mimetic method on unstructured

polyhedral meshes for the di�usion equation. Journal of Computational Physics,

272(1):360�385, 2014.

[151] K. Lipnikov, G. Manzini, F. Brezzi, and A. Bu�a. The Mimetic Finite Di�erence

method for the 3D magnetostatic �eld problems on polyhedral meshes. Journal of

Computational Physics, 230(2):305�328, 2011.

[152] K. Lipnikov, G. Manzini, and M. Shashkov. Mimetic Finite Di�erence method.

Journal of Computational Physics, 257:1163�1227, 2014.

[153] K. Lipnikov, M. Shashkov, and D. Svyatskiy. The Mimetic Finite Di�erence dis-

cretization of di�usion problem on unstructured polyhedral meshes. Journal of

Computational Physics, 211:473�491, 2006.

[154] X. Liu, S. Osher, and T. Chan. Weighted Essentially Non-Oscillatory schemes.

Journal of Computational Physics, 115(1):200�212, 1994.

[155] D. Loghin and A.J. Wathen. Schur complement preconditioners for the

Navier�Stokes equations. International Journal for Numerical Methods in Fluids,

40(4):403�412, 2002.

[156] D. Lynch. Uni�ed approach to simulation on deforming elements with applications

to phase change problems. Journal of Computational Physics, 47(3):387�411, 1982.

[157] S. Majumdar. Role of underrelaxation in momentum interpolation for calculation

of �ow with nonstaggered grids. Numerical Heat Transfer, 13(1):125�132, 1988.

Bibliography 196

[158] L. Mangani, M. Buchmayr, and M. Darwish. Development of a novel fully coupled

solver in OpenFOAM: Steady-state incompressible turbulent �ows. Numerical Heat

Transfer, Part B: Fundamentals, 66(1):1�20, 2014.

[159] G. Manzini, A. Cangiani, and O. Sutton. The conforming Virtual Element Method

for the convection-di�usion-reaction equation with variable coe�cients. Los Alamos

National Laboratory, Report no. LA-UR-14-27710, 2014.

[160] D. Marx. Graph colouring problems and their applications in scheduling. Periodica

Polytechnica, Electrical Engineering, 48(1):11�16, 2004.

[161] G. Matthies and L. Tobiska. Mass conservation of �nite element methods for cou-

pled �ow-transport problems. International Journal of Computing Science and

Mathematics, 1(2):293�307, 2007.

[162] D.W. Matula, Y. Shiloach, and R.E. Tarjan. Two linear-time algorithms for �ve-

coloring a planar graph. Stanford University, Report no. STAN-CS-80-830, 1980.

[163] D. Mavriplis. Revisiting the least-squares procedure for gradient reconstruction

on unstructured meshes. AIAA: 16th Computational Fluid Dynamics Conference,

Orlando, USA, 2003.

[164] D. Mavriplis. Solution of the unsteady discrete adjoint for three-dimensional prob-

lems on dynamically deforming unstructured meshes. AIAA Paper 2008-0727, 2008.

[165] S. May and M. Berger. Two-dimensional slope limiters for Finite Volume

schemes on non-coordinate-aligned meshes. SIAM Journal on Scienti�c Computing,

35(5):2163�2187, 2013.

[166] K. Michalak and C. Ollivier-Gooch. Limiters for unstructured higher-order accurate

solutions of the Euler equations. AIAA Paper 2008-0776, 2008.

[167] J-D. Müller. E�cient sensitivity computation using Automatic Di�erentiation.

Introduction to Optimization and Multidisciplinary Design, Von Karman Institute,

Sint-Genesius-Rode, Belgium, 2016.

[168] J-D. Müller and P. Cusdin. On the performance of discrete adjoint CFD codes

using automatic di�erentiation. International Journal for Numerical Methods in

Fluids, 47(8-9):939�945, 2005.

[169] D.J. Monson and H.L. Seegmiller. An experimental investigation of subsonic �ow

in a two dimensional U-duct. NASA report TM-103931, 1992.

Bibliography 197

[170] A. Montlaur, S. Fernandez-Méndez, and A. Huerta. Discontinuous Galerkin meth-

ods for the Stokes equations using divergence-free approximations. International

Journal for Numerical Methods in Fluids, 75(9):1071�1092, 2008.

[171] A. Moraes, P. Lage, G. Cunha, and L.F. Lopes Rodrigues da Silva. Analysis of

the non-orthogonality correction of Finite Volume discretization on unstructured

meshes. 22nd International Congress of Mechanical Engineering (COBEM), São

Paulo, Brazil, 2013.

[172] O. Mykhaskiv, J-D. Müller, S. Auriemma, H. Legrand, M. Banovic, and A. Walther.

Shape optimisation with di�erentiated CAD-kernel for U-bend testcase. NOED

International Conference on Numerical Optimisation Methods for Engineering

Design, Munich, Germany, 2016.

[173] S.K. Nadarajah. The Discrete Adjoint Approach to Aerodynamic Shape Optimiza-

tion. PhD thesis, Stanford University, 2003.

[174] S.K. Nadarajah and A. Jameson. A comparison of the continuous and discrete

adjoint approach to automatic aerodynamic optimization. AIAA Paper 2000-0667,

2000.

[175] A. Nemili, E. Ozkaya, N. Gauger, A. Carnarius, and F. Thiele. Automatic gener-

ation of discrete adjoints for unsteady optimal �ow control. CFD & OPTIMIZA-

TION, ECCOMAS Thematic Conference, Antalya, Turkey, 2011.

[176] C.F. Ollivier-Gooch. Quasi-ENO schemes for unstructured meshes based on

unlimited data-dependent least-squares reconstruction. Journal of Computational

Physics, 133(1):6�17, 1997.

[177] M.A. Olshanskii and M. Benzi. An augmented Lagrangian approach to linearized

problems in hydrodynamic stability. SIAM Journal on Scienti�c Computing,

30(3):1459�1473, 2008.

[178] M.A. Olshanskii and A. Reusken. Grad-div stablilization for Stokes equations.

Mathematics of Computation, 73:1699�1718, 2004.

[179] M.A. Olshanskii and Y.V. Vassilevski. Pressure Schur complement preconditioners

for the discrete Oseen problem. SIAM Journal on Scienti�c Computing, 29(6):2686�

2704, 2007.

[180] L. Osusky, H. Buckley, T. Reist, and D. Zingg. Drag minimization based on the

Navier�Stokes equations using a Newton�Krylov approach. SIAM Journal on Sci-

enti�c Computing, 53(6):1555�1577, 2015.

Bibliography 198

[181] C. Othmer. Adjoint methods for car aerodynamics. Journal of Mathematics in

Industry, 4(6), 2014.

[182] C. Othmer and T. Grahs. Approaches to �uid dynamic optimization in the car

development process. ECCOMAS conference, Munich, Germany, 2005.

[183] C. Paniconi and M. Putti. A comparison of Picard and Newton iteration in the

numerical solution of multidimensional variably saturated �ow problems. Water

Resources Journal, 30(12):3357�3374, 1994.

[184] E.M. Papoutsis-Kiachagias, K.C. Giannakoglou, and C. Othmer. Adjoint wall func-

tions: validation and application to vehicle aerodynamics. ECCM V: 5th European

Conference on Computational Mechanics, Barcelona, Spain, 2014.

[185] E.M. Papoutsis-Kiachagias, N. Magoulas, J-D. Müller, C. Othmer, and K.C. Gian-

nakoglou. Noise reduction in car aerodynamics using a surrogate objective func-

tion and the continuous adjoint method with wall functions. Computers & Fluids,

122:223�232, 2015.

[186] E.M. Papoutsis-Kiachagias, A.S. Zymaris, I.S. Kavvadias, D.I. Papadimitriou, and

K.C. Giannakoglou. The continuous adjoint approach to the k˘ε turbulence model

for shape optimization and optimal active control of turbulent �ows. Engineering

Optimization, 47(3):370�389, 2015.

[187] J.S. Park, S.H. Yoon, and C. Kim. Multi-dimensional limiting process for hyper-

bolic conservation laws on unstructured grids. Journal of Computational Physics,

229(3):788�812, 2010.

[188] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Minkowycz and Sparrow

Eds. (Mc Graw Hill), 1980.

[189] J. Peter and R.P. Dwight. Numerical sensitivity analysis for aerodynamic optimiza-

tion: A survey of approaches. Computers & Fluids, 39(3):373�391, 2010.

[190] S. Petropoulou. Industrial optimisation solutions based on OpenFOAM technology.

ECCOMAS CFD: 5th European Conference on Computational Fluid Dynamics,

Lisbon, Portugal, 2010.

[191] L. Piar, F. Babik, R. Herbin, and J.C. Latché. A formally second order cell centered

scheme for convection-di�usion equations on unstructured non-conforming grids.

International Journal for Numerical Methods in Fluids, 71(7):873�890, 2013.

[192] L. Piegl and W. Tiller. The NURBS Book. Springer, 1997.

Bibliography 199

[193] G. Pierrot. A gentle introduction to ESI i-Adjoint library. ESI Group, Rungis,

France, 2012.

[194] G. Pierrot. Bridging the gap between continuous and discrete adjoint solvers for

incompressible Navier-Stokes equations. OPT-I: International Conference on Engi-

neering and Applied Sciences Optimization, Kos, Greece, 2014.

[195] G. Pierrot. Equational Di�erentiation of incompressible �ow solvers as a middle

ground between continuous and discrete adjoint methodologies. ECCM V: 5th

European Conference on Computational Mechanics, Barcelona, Spain, 2014.

[196] O. Pironneau. On optimum design in �uid mechanics. Journal of Fluid Mechanics,

64:97�110, 1974.

[197] E. Poto£ar, B. �irok, M. Ho£evar, and M. Eberlinc. Control of separation �ow over

a wind turbine blade with plasma actuators. Journal of Mechanical Engineering,

58(1):37�45, 2012.

[198] M. Rehman, C. Vuik, and G. Segal. A comparison of preconditioners for incom-

pressible Navier-Stokes solvers. International Journal for Numerical Methods in

Fluids, 57(12):1731�1751, 2008.

[199] M. Rehman, C. Vuik, and G. Segal. Preconditioners for the steady incompressible

Navier-Stokes problem. IAENG International Journal of Applied Mathematics,

38(4), 2008.

[200] D. Rempfer. On boundary conditions for incompressible Navier-Stokes problems.

Applied Mechanics Reviews, 59(3):107�125, 2006.

[201] J. Reuther and A. Jameson. Control based airfoil design using the Euler equations.

AIAA Paper 94-4272, 1994.

[202] J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. Aerodynamic

shape optimization of complex aircraft con�gurations via an adjoint formulation.

AIAA Paper 99-0094, 1996.

[203] C.M. Rhie and W.L. Chow. Numerical study of the turbulent fow past an airfoil

with trailing edge separation. AIAA Journal, 21(11):1525�1532, 1983.

[204] T.T. Robinson, C.G. Armstrong, H.S. Chua, C. Othmer, and T. Grahs. Optimiz-

ing parametrized CAD geometries using sensitivities based on adjoint functions.

Computer Aided Design & Applications, 9(3):253�268, 2012.

[205] P.L. Roe. Approximate Riemann solvers, parameter vectors, and di�erence schemes.

Journal of Computational Physics, 43(2):357�372, 1981.

Bibliography 200

[206] F. Cayré S. Boivin and J.M. Hérard. A �nite volume method to solve the Navier-

Stokes equations for incompressible �ows on unstructured meshes. International

Journal of Thermal Sciences, 39(8):806�825, 2000.

[207] J.A. Samareh. Survey of shape parametrization techniques for high-�delity multi-

disciplinary shape optimization. AIAA Journal, 39(5):877�884, 2001.

[208] D. L. Scharfetter and H. K. Gummel. Large signal analysis of a silicon read diode.

IEEE Transactions on Electron Devices, 16(1):64�77, 1969.

[209] O. Schmitt and P. Steinmann. On curvature control in node�based shape optimiza-

tion. Proceedings in Applied Mathematics and Mechanics, 15(1):579�580, 2015.

[210] J.J. Schneider and S. Kirkpatrick. Stochastic Optimization. Springer, 2006.

[211] A. Segal, M. Rehman, and C. Vuik. Preconditioners for incompressible Navier-

Stokes solvers. Numerical Mathematics: Theory, Methods and Applications,

3(3):245�275, 2010.

[212] G.M. Shro� and H.B. Keller. Stabilization of unstable procedures: The Recursive

Projection Method. SIAM Journal on Numerical Analysis, 30(4):1099�1120, 1993.

[213] C-W. Shu. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory

schemes for hyperbolic conservation laws. NASA/CR-97-206253, ICASE Report

No. 97-65, 1997.

[214] D. Silvester, H. Elman, D. Kay, and A. Wathen. E�cient preconditioning of the lin-

earized Navier-Stokes equations for incompressible �ow. Journal of Computational

and Applied Mathematics, 128(2):261�279, 2001.

[215] R. Smith and A. Hutton. The numerical treatment of advection: a performance

comparison of current methods. Numerical Heat Transfer, 5:439�461, 1982.

[216] P.R. Spalart and S.R. Allmaras. A one-equation turbulence model for aerodynamic

�ows. Recherche Aerospatiale, 1:5�21, 1994.

[217] A. Stück. Adjoint Navier�Stokes Methods for Hydrodynamic Shape Optimisation.

PhD thesis, Technischen Universität Hamburg-Harburg, 2011.

[218] A. Stück and T. Rung. Adjoint complement to viscous �nite-volume pressure-

correction methods. Journal of Computational Physics, 248(1):402�419, 2013.

[219] K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for �uid-structure

interactions with large displacements. Journal of Applied Mechanics, 70(1):58�63,

2003.

Bibliography 201

[220] Q.A. Ta. A short description of the i-Adjoint benchmark. ESI Group, Rungis,

France, 2013.

[221] T. Tezduyar and S. Sathe. Stabilization parameters in SUPG and PSPG formula-

tions. Journal of Computational and Applied Mathematics, 4(1):71�88, 2003.

[222] M. Towara, A.Sen, and U. Naumann. An e�ective discrete adjoint model for Open-

FOAM. OPT-I: International Conference on Engineering and Applied Sciences

Optimization, Kos, Greece, 2014.

[223] M. Towara and U. Naumann. A discrete adjoint model for OpenFOAM. Procedia

Computer Science, 18:429�438, 2013.

[224] M. Towara, M. Schanen, and U. Naumann. MPI-parallel discrete adjoint Open-

FOAM. Procedia Computer Science, 51:19�28, 2015.

[225] P.G. Tucker. Di�erential equation-based wall distance computation for DES and

RANS. Journal of Computational Physics, 190(1):229�248, 2003.

[226] J.P. Van Doormal and G.D. Raithby. Enhancements of the SIMPLE method for

predicting incompressible �uid �ows. Numerical Heat Transfer, 7(2):147�163, 1984.

[227] B. van Leer. Towards the ultimate conservative di�erence scheme. V. A second-

order sequel to Godunov's method. Journal of Computational Physics, 32(1):101�

136, 1979.

[228] I. Vasilopoulos, P. Flassig, and M. Meyer. CAD-based aerodynamic optimization

of a compressor stator using conventional and adjoint-driven approaches. ASME

Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte,

USA, 2017.

[229] H. Veersteg and W. Malalasekera. An introduction to Computational Fluid Dynam-

ics: the Finite Volume method. Pearson Education, 2007.

[230] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady-state

solution. AIAA Paper 93-0880, 1993.

[231] V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations

on unstructured grids with limiters. Journal of Computational Physics, 118:120�

130, 1995.

[232] T. Verstraete, F. Coletti, J. Bulle, T.V. der Wielen, and T. Arts. Optimization of

a U-bend for minimal pressure loss in internal cooling channels - part I: Numerical

method. ASME Journal of engineering for Gas Turbines and Power, 135(5), 2013.

Bibliography 202

[233] C. Vezyris, E. Papoutsis-Kiachagias, I. Kavvadias, and K. Giannakoglou. Steady &

unsteady continuous adjoint method using a pseudo-compressibility block coupled

solver in OpenFoam. ECCOMAS Congress: 7th European Congress on Computa-

tional Methods in Applied Sciences and Engineering, Crete, Greece, 2016.

[234] C. Vuik and A. Segal. Solution of the coupled Navier-Stokes equations. Notes on

Numerical Fluid Mechanics, 51:186�197, 1995.

[235] Q. Wang and J-H. Gao. The drag-adjoint �eld of a circular cylinder wake at

Reynolds numbers 20, 100 and 500. Journal of Fluid Mechanics, 730:145�161,

2013.

[236] Q. Wang and P. Moin. Minimal repetition dynamic checkpointing algorithm for

unsteady adjoint calculation. Center for Turbulence Research - Annual Research

Briefs, pages 55�73, 2008.

[237] D.J.A. Welsh and M.B. Powell. An upper bound for the chromatic number of

a graph and its application to timetabling problems. The Computer Journal,

10(1):85�86, 1967.

[238] D.C. Wilcox. Turbulence Modeling for CFD. DCW industries, Inc., second edition,

2002.

[239] S.Ø. Wille and A.F.D. Loula. A priori pivoting in solving the Navier-Stokes equa-

tions. Communications in Numerical Methods in Engineering, 18(10):691�698,

2002.

[240] S.Ø. Wille, O. Sta�, and A.F.D. Loula. E�cient a priori pivoting schemes for a

sparse direct Gaussian equation solver for the mixed �nite element formulation of

the Navier-Stokes equations. Applied Mathematical Modelling, 28(7):607�616, 2004.

[241] S. Xu, W. Jahn, and J-D. Müller. CAD-based shape optimisation with CFD using a

discrete adjoint. International Journal for Numerical Methods in Fluids, 74(3):153�

168, 2014.

[242] S. Xu, D. Radford, M. Meyer, and J-D. Müller. CAD-based adjoint shape optimi-

sation of a one-stage turbine with geometric constraints. ASME Turbo Expo 2015:

Turbine Technical Conference and Exposition, Montreal, Canada, 2015.

[243] S. Xu, D. Radford, M. Meyer, and J-D. Müller. Stabilisation of discrete steady

adjoint solvers. Journal of Computational Physics, 299:175�195, 2015.

[244] S. Xu and S. Timme. Robust and e�cient adjoint solver for complex �ow conditions.

Computers and Fluids, 148:26�38, 2017.

Bibliography 203

[245] G. Yu, J-D. Müller, D. Jones, and F. Christakopoulos. CAD-based shape optimi-

sation using adjoint sensitivities. Computers and Fluids, 46(1):512�516, 2011.

[246] X. Zeng. A general approach to enhance slope limiters in MUSCL schemes on

nonuniform rectilinear grids. SIAM Journal on Scienti�c Computing, 38(2):789�

813, 2016.

[247] S. Zhang. On the P1 Powell-Sabin divergence-free �nite element for the Stokes

equationss. Journal of Computational Mathematics, 26(3):456�470, 2008.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Context and motivation
	Starting point and objectives
	Plan of the thesis and contribution

	The Adjoint Method
	Numerical optimisation
	Adjoint-based sensitivity analysis
	State-of-the-art industrial adjoint CFD
	Formulation of the continuous adjoint equations
	Discrete adjoint via linear algebra
	Continuous vs. discrete adjoint
	Physical interpretation of adjoint fields

	Practical aspects of discrete adjoints
	Algorithmic Differentiation
	Automatic Differentiation
	Equational Differentiation

	Challenges of discrete adjoints

	Mixed Hybrid Finite Volumes
	Mixed Virtual Elements
	Basic MVE concepts
	Discrete spaces and scalar products
	Divergence and flux operators

	Mixed Hybrid Finite Volumes for pure anisotropic diffusion
	MHFV local scalar product
	Hybrid pure anisotropic diffusion operator
	Inversion of the local scalar product matrix
	Link with classical Finite Volumes
	Boundary conditions

	Validation of MHFV for pure anisotropic diffusion problems
	h-convergence for pure anisotropic diffusion
	Comparison of weight types

	MHFV Convection-Diffusion-Reaction
	Addition of convective fluxes
	Centred schemes
	First-order upwinding
	-Scheme
	Unified framework for convective schemes
	Hybrid convection-diffusion-reaction operator
	Boundary conditions

	Stabilised second-order convection schemes
	Streamline-Upwind Petrov-Galerkin
	Second-order upwinding
	Flux limiters
	Weighted Least-Squares
	Upwind Least-Squares

	Validation of MHFV for convection-diffusion-reaction problems
	Low-Pe h-convergence for basic convective schemes
	Low-Pe validation of the Hybrid -Scheme
	High-Pe h-convergence for Hybrid First and Second-Order Upwinding
	Comparison of stabilisation techniques

	MHFV Incompressible Navier-Stokes
	The Navier-Stokes scheme
	Discrete variables and preliminary notation
	Hybrid momentum operator
	Full MHFV Navier-Stokes operator
	Boundary conditions

	Solution algorithms for incompressible Navier-Stokes
	SIMPLEC
	Block-Coupled
	Augmented Lagrangian

	Validation of MHFV for incompressible Navier-Stokes
	h-convergence for Navier-Stokes
	Lid-driven cavity test case
	Algorithm performance
	Benchmark against classical Finite Volumes

	MHFV Discrete Adjoint Navier-Stokes
	Assembly of the adjoint system
	Full MHFV discrete adjoint Navier-Stokes
	Reverse assembly of the adjoint system
	Graph colouring
	Reverse assembly with i-Adjoint
	Considerations on FD-based assembly
	Reduced reverse assembly

	Solution algorithms for adjoint Navier-Stokes
	Adjoint SIMPLEC
	Adjoint Velocity-Coupled
	Adjoint Augmented Lagrangian

	Adjoint shape optimisation and mesh morphing
	Preliminary notation
	Rigid Motion Mesh Morpher
	Final gradient computation

	Validation of MHFV adjoint Navier-Stokes
	Sensitivity and gradient validation
	Performance of colouring algorithms and reduced assembly
	Algorithm performance

	Applications
	S-bend
	U-bend

	Conclusions and Future Work
	Conclusions
	Future work

	Appendix The Spalart-Allmaras Turbulence Model
	Appendix Under-Resolved Lid-Driven Cavity
	Appendix Author's Publications
	Bibliography

