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Abstract 

The traditional view of vision is that neurons in early cortical areas process information 

about simple features (e.g. orientation and spatial frequency) in small, spatially 

localised regions of visual space (the neuron’s receptive field). This piecemeal 

information is then fed-forward into later stages of the visual system where it gets 

combined to form coherent and meaningful global (higher-level) representations. The 

overall aim of this thesis is to examine and quantify this higher level processing; how 

we encode global features in natural images and to understand the extent to which our 

perception of these global representations is determined by the local features within 

images. Using the tilt after-effect as a tool, the first chapter examined the processing of 

a low level, local feature and found that the orientation of a sinusoidal grating could be 

encoded in both a retinally and spatially non-specific manner. Chapter 2 then examined 

these tilt aftereffects to the global orientation of the image (i.e., uprightness). We found 

that image uprightness was also encoded in a retinally / spatially non-specific manner, 

but that this global property could be processed largely independently of its local 

orientation content. Chapter 3 investigated if our increased sensitivity to cardinal 

(vertical and horizontal) structures compared to inter-cardinal (45° and 135° clockwise 

of vertical) structures, influenced classification of unambiguous natural images. 

Participants required relatively less contrast to classify images when they retained near-

cardinal as compared to near-inter-cardinal structures. Finally, in chapter 4, we 

examined category classification when images were ambiguous. Observers were biased 

to classify ambiguous images, created by combining structures from two distinct image 

categories, as carpentered (e.g., a house). This could not be explained by differences in 

sensitivity to local structures and is most likely the result of our long-term exposure to 

city views. Overall, these results show that higher-level representations are not fully 

dependent on the lower level features within an image. Furthermore, our knowledge 
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about the environment influences the extent to which we use local features to rapidly 

identify an image. 
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1. Chapter 1 - Background 

1.1. Selectivity of the visual system to image features: Physiology 

1.1.1. Basic architecture of the human visual system 

 

Visual perception - the process of interpreting the visual world around us - seems 

effortless despite the abundance of visual information. Traditionally, perception is 

believed to result from information processing across several hierarchically organized 

stages. The process begins when light hits the retina at the back of the eye where 

photoreceptors (rods and cones) convert electromagnetic information into a neural 

signal that is transmitted to the lateral geniculate nucleus (LGN) in the thalamus and 

then on to the primary visual cortex (V1 / striate cortex) (Ferster & Miller, 2000), and 

beyond to other “higher-level” cortical regions (Felleman & Van Essen, 1991; 

Hochstein & Ahissar, 2002). In this account, the visual system is arranged 

hierarchically, where early (“low-level”) areas such as V1, the first stage of visual 

information processing in the cortex send information in a feedforward manner to later 

(“higher-level”) regions that encode increasingly complex information (Felleman & 

Van Essen, 1991; Hochstein & Ahissar, 2002; Melcher, 2005). However, information 

processing through the hierarchy is not simply feed-forward. Indeed, higher-level 

regions can modulate information processing in low-level regions through feedback 

connections (Hochstein & Ahissar, 2002; Xu, Dayan, Lipkin, & Qian, 2008).  

 

1.1.2. Information units: Receptive fields 

 

Single-cell physiology in cats has revealed that, in the early stages of the visual system, 

neurons only respond when light falls on their receptive field - a small region in space 

(with a concomitant section on the retina) where a stimulus will elicit a response from 
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the neuron. While the receptive fields of retinal ganglion cells and LGN cells have a 

circular organisation (Hubel & Wiesel, 1961; Kuffler, 1953), those in V1 have an 

elongated centre-surround organisation (Hubel & Wiesel, 1959) and encode information 

about edges. Following the discovery of receptive fields in retinal ganglion cells of cats 

(Kuffler, 1953), receptive fields have been reported for neurons in many visuo-cortical 

regions in other mammals too, mostly in non-human primates (Daniel & Whitteridge, 

1961; Engel, Glover, & Wandell, 1997; Hubel & Wiesel, 1959, 1962, 1968).       

 

 

Figure 1.1. Firing patterns of an off-centre cell in the primary visual cortex of a cat. 

Left-hand panel: circular light spots shone on different parts of the cell’s receptive field 

(a-e) and covering the whole receptive field (f). Middle panel: Firing patterns (vertical 

lines on thick horizontal bars) produced during epochs of light shone (thin horizontal 

line) as shown in the corresponding rows of the left-hand panel. The cell is optimally 

inhibited (no firing) when there is light along the vertical midline of its receptive field 
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and is excited (i.e., increased firing compared to the period before the epoch, the resting 

state) by light along the horizontal midline. No firing is observed when light covers the 

whole receptive field. Right-hand panel: Regions of excitation (×) and inhibition 

(triangles) of the cell’s receptive field. As shown by the dotted ellipse, the inhibitory 

region takes an elongated shape along the vertical midline. Reproduced with permission 

from Hubel and Wiesel (1959).    

 

Early single-cell studies on non-human primates have revealed that, from V1 and 

beyond, the size of a neuron’s receptive field varies with two factors. Firstly, the 

receptive fields of neurons encoding foveal stimuli (i.e., central visual field) are the 

smallest, but receptive fields increase in size with eccentricity (Hubel & Wiesel, 1974). 

The second factor is the location of the given cortical area within the hierarchical level. 

Neurons located in later cortical areas have larger receptive fields (Zeki, 1978). For 

example, MT (middle temporal) and V4 neurons have larger receptive fields than V1 

neurons at any given eccentricity (Felleman & Kaas, 1984; Gattass, Sousa, & Gross, 

1988). An increase in receptive field size with eccentricity and hierarchical level has 

also been reported in humans, using fMRI techniques that estimate the average 

receptive field size of neurons (Smith, Singh, Williams, & Greenlee, 2001).   

 

1.1.3. Retinotopic organization in the visual system 

 

In humans, the retinal image is organised in a close one-to-one mapping of the 

monocular visual field - neighbouring information in the visual field is represented in 

neighbouring parts of the retina, apart from the ‘blind spot’ (Le Grand, 1967 as cited in 

Tripathy & Levi, 1994). This type of organization of the visual field is known as  

‘retinotopic’ and fMRI studies have shown that it is preserved in the LGN (Schneider, 
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Richter, & Kastner, 2004) and across many cortical regions including striate and 

extrastriate areas (e.g., V2/V4) (Engel et al., 1997; Sereno et al., 1995). Neurons in V1 

represent neighbouring parts of the ipsilateral and contralateral visual fields through 

their receptive fields (Weigelt, Limbach, Singer, & Kohler, 2012). However, the 

presence of a blind spot in the retina produces a discontinuity in the remapping of the 

visual space in V1. Psychophysical results suggest that this gap is filled-in by intra-

cortical mechanisms, using visual information coming from regions surrounding the 

blind spot, either from the same eye or from the opposite eye (Ramachandran & 

Gregory, 1991; Tripathy & Levi, 1994). In regions beyond V1, such as V2 or V4 of 

primates, this retinotopic organization is not as precise - it becomes coarser and more 

irregular (Felleman & Van Essen, 1991), but this type of organisation suggests that 

there are several copies of the same visual information (with different levels of 

precision) across the visuocortical stream.  

 

Retinotopy, however, does not mean that visual acuity is uniform. Indeed it is sharpest 

for stimuli presented in the central visual field, and gradually decreases with increasing 

eccentricity (Weymouth, 1958). This occurs because the primate fovea contains a 

relatively higher density of cones and ganglion cells that results in finer sampling of the 

visual field (Rolls & Cowey, 1970; Weymouth, 1958). Secondly, because of 

“magnification”, cortical regions (in humans) devoted to encoding visual information 

are larger for foveal regions than peripheral regions. This magnification is pervasive 

throughout the LGN, V1, V2 and V3 (Dougherty et al., 2003; Schneider et al., 2004; 

Sereno et al., 1995) and is quantified using the magnification factor (M), which denotes 

the size of the cortex that represents each degree of visual angle in space. In V1, M is 

largest (~40 mm/deg) in the fovea, decreases with slight increases in eccentricity within 

the foveal region and then further decreases in the periphery (Sereno et al., 1995).  
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1.1.4. Tuning of early cortical neurons to low-level features 

 

In V1 and beyond, neurons encode features
1
 such as edges that have a well-defined 

orientation. For example, a vertically tuned striate neuron of a cat would be optimally 

stimulated, when a stimulus that occupies the centre of its receptive field is a vertical 

bar, exhibiting reduced firing rates when the orientation deviates from vertical (Fig. 

1.2a). Similarly, fMRI studies (in humans) and single-cell physiology (in non-human 

primates) have revealed that V1 neurons are also tuned to stimulus width (their spatial 

frequency) (De Valois, Albrecht, & Thorell, 1982; Sachs, Nachmias, & Robson, 1971; 

Singh, Smith, & Greenlee, 2000) and direction of stimulus motion along the receptive 

field (Hubel & Wiesel, 1959; Singh, Smith, & Greenlee, 2000).  

 

                                                           
1
 A clear distinction exists between a ‘feature’ and a ‘feature value’. Features are dimensions in which a 

stimulus can vary (e.g., orientation and spatial frequency). On the other hand, feature values represent 
the variable quantities within a dimension (e.g., vertical or horizontal for orientation).  
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Figure 1.2. Orientation tuning of striate neurons. a) Action potentials (spikes) from a 

neuron in the cat’s striate cortex (right-hand side panel) to a bar stimulus that is rotated 

clockwise from horizontal to vertical (left-hand side panel). As can be seen, spike rate is 

maximal for the vertical bar and it decreases as the bar is rotated. Adapted with 

permission from Hubel and Wiesel (1959). b) Orientation tuning of a neuron in the cat’s 

striate cortex in response to sinusoidal gratings of different orientations. The different 

symbols denote stimuli presented at different percentages of maximum contrast near 

and supra-threshold (open circles - 10%, asterisks - 20%, crosses - 40% and filled 

circles - 80%). This neuron fires optimally to a stimulus oriented ~220° with reduced 

firing rates as the orientation of the stimulus deviates from optimal. Note that despite 

changes in absolute firing rates, tuning remains the same across different stimulus 

contrasts. This demonstrates (supra-threshold) contrast invariance of orientation 

selectivity in striate neurons. Adapted with permission from Sclar and Freeman (1982).       
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In animals like cats, the selectivity of a neuron to a given feature (e.g., orientation) can 

be determined by measuring its firing rate (number of action potentials) as a function of 

varying the feature values (e.g., vertical / horizontal) (Gizzi, Katz, Schumer, & 

Movshon, 1990; Sclar & Freeman, 1982). An example is illustrated in Fig. 1.2b. The 

peak of such a plot denotes the neuron’s preferred orientation whereas the bandwidth 

represents how narrowly tuned it is - e.g., a lower bandwidth represents sharp tuning or 

greater selectivity. A neuron with narrow tuning would only respond to a small range of 

orientations around its preferred value.  

 

It is also possible to measure the selectivity of a cortical region by either calculating the 

number of neurons devoted to processing different feature values (single-cell 

physiology in cats; Li, Peterson, & Freeman, 2003), or measuring the size of neural 

population responses to different feature values (fMRI in humans; Furmanski & Engel, 

2000; Ringach, Shapley, & Hawken, 2002). For example, there are more striate neurons 

that respond to vertical and horizontal orientations than to other orientations and these 

neurons are also more narrowly tuned (Furmanski & Engel, 2000; Li et al., 2003). 

These types of global measures can also be used to compare selectivity across different 

cortical regions (Ringach et al., 2002). In general, selectivity to low-level features (like 

orientation and spatial frequency) is known to gradually disappear (weaken) further up 

the visual system (i.e., beyond V1). 
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Figure 1.3. Orientation and spatial frequency filtering in primary visual cortex: a) an 

image of the actor Gerard Butler and b) the same image as would be encoded by sub-

populations of neurons that encode edges of (or near) specific orientations (x axis; 

filtered to allow a half-width at half height of 5.89° around the peak orientation) and 

spatial frequencies (y axis; filtered to allow a half-width at half height of 0.5 octaves 

around the peak spatial frequency). As is evident, information within a narrow band of 

feature values is insufficient for a meaningful percept. 
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Figure 1.4. Integrating information across different parts of the visual field and across 

different features and feature values: an image of a building as it would appear to a 

system that samples in discrete patches of information from sparse to dense sampling 

(y-axis of top and bottom panels; images going from top to bottom). The x-axes of the 

top and bottom panels illustrate how the image becomes more informative when 

neurons encoding edges from a broader frequency range contribute to the percept. The 

top panel shows this for orientation, going from a narrow band of orientations near 

vertical (left-most image) to a wider band (right-most image). The bottom panel 

illustrates it for spatial frequency, going from a narrow band of high spatial frequencies 

near 37.5 cycles / image (left-most image; the apparent spatial frequency differs because 

of image resizing) to a wider spatial frequency band (right-most image). As evident 

from the images, to obtain a meaningful percept, the image samples must be integrated 

over a large region of space and across a broader range of spatial frequencies / 

orientations.    

 

1.1.5. Sample complex feature encoding in V1 

 

Neurons in the primary visual cortex are likened to orientation and spatial frequency 

filters (Fig. 1.3) that respond to edges within a localised patch (the receptive field) of 

the image. However, edges within individual patches and/or within a narrow band of 

frequencies only contain limited information that usually cannot support identification 

of a meaningful percept (Fig. 1.4). For this to occur, information must be integrated 

across different parts of the image that vary in features and feature values. The process 

of integrating information across different parts of an image begins very early in V1 

where contour perception occurs (Loffler, 2008). Intra-cortical connections in V1 

support integration of local edge information that follow Gestalt rules such as 
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proximity, continuity and closure (Field, Hayes, & Hess, 1993; Hess, Hayes, & Field, 

2003; Kovacs & Julesz, 1993; Loffler, 2008). For example, a contour is not simply 

formed by linking information from immediately adjacent cells but rather following 

geometric relationships between local edge elements, which Field et al. (1993) defined 

as an “association field”. This includes highly deterministic properties such as the 

orientation and distance between local edges and the path angle determined by the 

arrangement of the local edges (Hess et al., 2003). The linking process is fairly tolerant 

to the spatial frequency difference (although the degree of tolerance reduces with 

increasing orientation difference between edges) and contrast difference between local 

edges (Dakin & Hess, 1998; Hess, Dakin, & Field, 1998). These principles by which 

local edges are bound into contours are well predicted by our knowledge of the statistics 

of how edges co-occur in natural images (Geisler, Perry, Super, & Gallogly, 2001; 

Hunt, Bosking, & Goodhill, 2011; Taylor, Hipp, Moser, Dickerson, & Gerhardstein, 

2014). However, there are also findings that violate the predictions of the association 

field model. For example, although the model predicts that our ability to detect contours 

should monotonically deteriorate with increasing orientation difference between the 

orientation of the local edges and the path angle (Field et al., 1993), it has been found 

that this is not the case. Detection decreases up to an orientation difference of 45° but 

then increases beyond 45° and reaches maximum (although less than a 0° difference) 

with a 90° difference (orthogonal) (Ledgeway, Hess, & Geisler, 2005).     

 

1.1.6. Selectivity to natural image features 

 

Most of the studies discussed thus far used synthetic stimuli (e.g., Gabors, dot patterns, 

polygons) to infer simple or complex feature selectivity. However, the types of stimuli 

we experience in daily life (“natural images”) are much more complex than synthetic 
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stimuli carefully designed to vary in just one or more feature dimensions. For example, 

an image of a face or a building (Figs. 1.3 and 1.4) is composed of a large number of 

edges or contours that vary in contrast, orientation, spatial frequency and curvature, and 

contain multiple elements of different shapes (e.g., eyes and nose of a face). 

Furthermore, many of these features also include a semantic descriptor (i.e., gender of 

the face or whether a built structure is a house or a building). 

 

Brain imaging (fMRI) studies in humans have reported multiple cortical regions that are 

predominantly involved in processing natural or naturalistic (carefully modified natural) 

images (DiCarlo, Zoccolan, & Rust, 2012; Walther, Caddigan, Fei-Fei, & Beck, 2009). 

The term ‘predominantly’ stresses the fact that no perception is the product of neural 

activity in one single region. First, we will discuss some of the physiological studies 

that have identified unique brain regions that selectively respond to different types and 

features of natural images. Following that, we will discuss psychophysical studies 

reporting evidence for the selective encoding of complex and/or meaningful features of 

natural images. 

 

1.1.7. A Cortical locus for natural images? 

1.1.7.1. Localised representation 

 

Physiological studies (fMRI in humans) have strongly implicated the lateral occipital 

cortex (LOC) in the processing of objects. The LOC is relatively more sensitive to 

objects (e g., tools, animals, faces) than to textures (e.g., phase-scrambled object images 

or patterns of randomly repeated basic geometric shapes) irrespective of the size of the 

object, spatial frequency content or where they are presented on the retina (Grill-Spector 

et al., 1998; Malach et al., 1995). On the other hand, early cortical regions (V1 to V3) 
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respond equally to objects and their phase-scrambled counterparts while also displaying 

retinotopic specificity (Grill-Spector et al., 1998). However, object encoding in the LOC 

appears to be largely structural, forming a bottom-up representation from low-level 

features constructing it, and lack a semantic description of the object. This is because 

the LOC is found to respond similarly to meaningful (familiar) objects and meaningless 

sculptures or novel stimuli that resemble familiar objects (Kanwisher, Woods, Iacoboni, 

& Mazziotta, 1997; Malach et al., 1995). 

 

It is still unclear which area in the brain encodes the semantic categories of objects we 

classify. Some studies have revealed specific cortical regions (modules) in the brain 

selectively encoding specific object categories. For example, Kanwisher, McDermott, 

and Chun (1997) discovered an area in the fusiform gyrus (of the tempero-occipital 

region) that responds selectively to faces as opposed to other objects like houses and 

other body parts. They named it the ‘fusiform face area’ (FFA) and many other studies 

have related activity in this region to behavioural performances of specifically detecting 

and identifying faces (Gauthier et al., 2000; Grill-Spector, Knouf, & Kanwisher, 2004). 

Further evidence comes from a study showing that lesions to the FFA in prosopagnosic 

patients impairs the ability to discriminate faces that differ in their configuration (e.g., 

distance between eyes) while damage to other parts of the fusiform gyrus leaves this 

ability intact (Barton, Press, Keenan, & O'Connor, 2002). Another object category that 

is selectively encoded in the brain is buildings. Aguirre, Zarahn, and D'Esposito (1998) 

found a region anterior to the lingual gyrus in the ventral cortex that responds 

preferentially to images of buildings (like houses) compared to other objects like faces 

or cars. 
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1.1.7.2. Distributed representation 

 

While the studies above attempt to confine selectivity of specific object categories to 

specific modules, others have modelled perception of any categorical object (including 

faces) as computations occurring across an inter-connected network of cortical regions 

that predominantly involves regions of the temporal lobe (Chao, Haxby, & Martin, 

1999; Haxby et al., 2001; Huth, Nishimoto, Vu, & Gallant, 2012; Martin, Wiggs, 

Ungerleider, & Haxby, 1996). For example, it has been found that, rather than being a 

region selective to faces per se, the FFA is a region that selectively responds in the 

process of identifying different members of a semantic category and this occurs for both 

face as well as non-face objects with expertise (Gauthier, Tarr, Anderson, Skudlarski, & 

Gore, 1999; Tarr & Gauthier, 2000). Therefore, the usually observed FFA selectivity to 

faces could be a product of participants’ tendency to classify faces at an individual level 

but to classify other objects at a broader (semantic category) level (Grill-Spector, 2003; 

although see McKone, Kanwisher, & Duchaine, 2007). Further, even in studies 

attributing a specific area or module, there is also inter-participant variability in the 

precise locus of selectivity (Aguirre et al., 1998; Kanwisher, McDermott, et al., 1997) 

and different aspects of face processing (e.g., physical versus identity properties) may 

be handled by slightly different cortical regions (Rotshtein, Henson, Treves, Driver, & 

Dolan, 2005). 

 

1.1.7.3. Hierarchical representation? 

 

A distinction in the literature when it comes to how the brain encodes natural images is 

the difference between an object and a scene. A scene is a representation of the 

surroundings (most of which we can navigate in) and usually consists of a number of 
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objects. Whereas an image of a bedroom is considered a scene, the bed itself is treated 

as an object. Epstein and Kanwisher (1998) discovered the ‘Parahippocampal Place 

Area’ (PPA) that responded selectively to scenes as opposed to single objects. However, 

the highly deterministic property of an image that activates the PPA was the presence of 

a geometrical layout in the scene; an empty room or a landscape produced stronger 

activation than an object or even a set of objects. Moreover, we can classify both 

isolated objects and scenes (with multiple objects) within the first 100 to 200 

milliseconds of seeing an image (Greene & Oliva, 2009; Potter, 1975; Thorpe, Fize, & 

Marlot, 1996). These findings raise the question of whether the most rapid 

representation of a scene is purely hierarchical in nature (low-level features create 

objects and objects in turn create a scene).  

 

 

Figure 1.5. The gist of a scene: a) A grayscale image of a street and b) an image 

showing a very coarse layout of the same street with only low spatial frequency blobs 

present in it (individual objects are mostly unclassifiable here). In fact, if you look back 

at image ‘a’ you will see that a part of the leftmost building’s facade is made of objects 

usually found in a kitchen (oven and cupboards) and one of the vehicles in the middle of 

the street is actually a bed. 
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1.1.7.4. Gist representation? 

 

If scene representation is not purely hierarchical, then how are scenes encoded? An 

alternative account has been proposed suggesting that rapid scene representation is 

holistic and can be encoded without necessarily identifying the objects present within it 

(Fig. 1.5). This is believed to be achieved by encoding a scene’s spatial layout in one or 

a combination of different ways such as: 1) by using the coarse arrangement of contrast 

blobs of different sizes, 2) by an analysis of the global distribution of orientations and 

spatial frequencies within a scene or ensemble texture and/or 3) by an analysis of the 

basic geometric forms (‘geons’) present in it (Biederman, 1987; Brady, Shafer-Skelton, 

& Alvarez, 2017; Oliva & Torralba, 2001; Sanocki & Epstein, 1997; Schyns & Oliva, 

1994). Therefore, it appears that the first stage of scene processing skips object 

processing. However, at later stages we use information like the presence of key objects 

(e.g., a bed in a bedroom) and the knowledge of objects typically co-occurring in scene 

categories (e.g., a table, chair, cabinet and computers typically co-occur in an office 

setting) to facilitate scene classification (Friedman, 1979; Stansbury, Naselaris, & 

Gallant, 2013). 

 

In support of the view that it is the spatial layout of a scene that is most influential in 

determining its category, Walther, Chai, Caddigan, Beck, and Fei-Fei (2011) showed 

that binary (black and white) line drawings simply outlining a scene layout can be used 

to decode image category from brain activations in scene selective regions like PPA and 

retrosplenial cortex, just as well as with normal photographs. Their participants could 

also classify scenes significantly above chance even after the removal of 75% of 

contours, and removing long as opposed to short contours produced significantly worse 

performance, suggesting the role of global structure. Taken together, these findings 
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highlight the importance of global spatial layout in perceiving the “gist”, a rapid 

semantic classification, of a scene (such as “man-made” or “natural”, “indoor” or 

“outdoor”, etc.). 

 

1.2. Selectivity of the visual system to image features: Psychophysics 

1.2.1. Adaptation after-effects 

 

The studies discussed in section 1 involved physiological techniques such as single-cell 

recordings and non-invasive brain imaging (e.g., functional magnetic resonance 

imaging; fMRI) to examine the selectivity of neurons in different brain regions to 

features of differing complexity. Psychophysicists also use a number of methods to 

infer selectivity of neural populations to visual features by examining behavioural 

responses to visual stimuli, the most pervasive being “adaptation”. This refers to the fact 

that the response of a neuron or group of neurons to a stimulus depends on previous 

stimulation (Kohn, 2007). Adaptation effects can occur at different timescales, from 

evolutionary (spanning hundreds of years) and developmental (years) to very short 

timescale lasting a few minutes or seconds (Simoncelli & Olshausen, 2001). While the 

first two may result in long-lasting changes in neural sensitivity, the last one leads to 

short-term (transient) changes that can be measured physiologically and/or 

behaviourally. This type of short-term adaptation occurs throughout the visuocortical 

stream (discussed in sections 2.4 - 2.6) as well in other sensory areas (e.g., primary 

auditory cortex neurons) (Nelken, 2004; Ulanovsky, Las, Farkas, & Nelken, 2004).  

 

Adaptation can alter the perceived appearance of a stimulus. Neural populations are 

adapted by extended exposure to a specific feature value and tested with similar or 

slightly different feature values (e.g., adapt to an off-vertical line and test with a vertical 
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line). This results in a subsequently viewed test appearing different from its physical 

attribute, a phenomenon known as an after-effect. After-effects can take many forms 

affecting either the detectability of a test or its appearance (Blakemore & Campbell, 

1969; Gibson & Radner, 1937) and have been reported extensively using simple stimuli 

such as bars, sinewave gratings or Gabor patches (a grating windowed with a Gaussian 

envelope). An example of an after-effect is demonstrated in Fig 1.6. Here, when a 

participant is adapted for a sufficiently long duration (~ 30 seconds) to a high contrast 

Gabor patch (the adaptor), a subsequently viewed low contrast Gabor test patch of 

similar size and orientation becomes difficult to detect. This is because changes in the 

responsiveness of contrast sensitive neurons following adaptation, skews the response 

of the neural population to the low-contrast stimulus making it briefly appear zero-

contrast. After a short period, the after-effect disappears and the test becomes visible 

again. 

 

 

Figure 1.6. Example of a contrast adaptation after-effect. After fixating the centre of the 

vertically oriented Gabor patch in the left-hand side for 30 seconds, a test Gabor viewed 

centrally on the right-hand side should briefly appear as a uniform grey patch.  
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Inference of feature selectivity from a measured after-effect is based on two 

assumptions. Firstly, single-cell physiology in cat’s striate neurons shows that the 

perception of any feature value is determined by the collective response of a population 

of neurons tuned to different feature values (Movshon & Lennie, 1979). Secondly, 

adaptation results from the response adjustments happening in adapted sub-populations 

of neurons. Based on early cortical responses to simple features like orientation, this is 

believed to occur in the form of one or a combination of several processes such as a) a 

desensitisation (reduced response) of a subpopulation of neurons tuned to the adapting 

(or near adapting) feature value, b) a shift in the preferred (optimally responding) 

feature value of adapted neurons or c) an increase in response in neurons tuned to 

feature values further away from the adapting value (Albrecht, Farrar, & Hamilton, 

1984; Dragoi, Sharma, & Sur, 2000; Huettel & McCarthy, 2000; Kohn, 2007). Some of 

these adjustment mechanisms can be generalized to features of different complexities 

(Barlow & Hill, 1963; Engel & Furmanski, 2001; Kovács et al., 2006; Mollon, 1977). 

However, it is worth noting that, in some rare cases adaptation does not necessarily 

imply the existence of feature selective neurons. For example, Hosoya, Baccus, and 

Meister (2005) reported adaptation to orientation in retinal ganglion cells that were in 

fact not selectively encoding orientation.   

 

In addition to revealing selectivity, adaptation studies have also revealed the 

mechanisms by which these features are encoded. For different features encoded by the 

brain, the neural populations that encode them may employ different mechanisms to 

represent stimuli of different feature values. For example, spatial frequency and 

orientation are believed to be encoded by a mechanism of central-tendency - distinct 

channels that are tuned to different feature values and the final response is similar to the 

mean of a population response of various channels (Blakemore & Campbell, 1969; 
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Blakemore, Nachmias, & Sutton, 1970; Clifford, Wenderoth, & Spehar, 2000; Movshon 

& Lennie, 1979). Whereas colour is believed to be encoded by opponent-mechanisms 

that encode feature values as the distance from a norm (e.g., white) (Webster & 

Leonard, 2008).  

 

1.2.2. Using after-effects to infer locus of feature selectivity 

 

After-effects can also be used to infer the cortical locus where feature selectivity occurs. 

For example, it is known that the minimum amount of contrast required to detect the 

presence of a low-contrast test grating (its detection threshold) is increased following 

adaptation to a high-contrast grating. The effect is maximal when the test and adapting 

gratings share the same spatial frequency and / or orientation (Blakemore & Campbell, 

1969; Pantle & Sekuler, 1968). However, a reliable (yet weaker) after-effect is obtained 

even when the adapting and test gratings are presented dichoptically (Blakemore & 

Campbell, 1969). While the dependence of this after-effect on orientation and spatial 

frequency suggests the involvement of orientation and spatial frequency selective 

neurons, the inter-ocular transfer of the after-effect reveals the involvement of binocular 

neurons. Therefore, striate cortex is the most likely locus since this is the first region 

where binocular interaction occurs. This inference was supported by a later 

physiological study showing that contrast adaptation in LGN is not spatial frequency 

specific (Duong & Freeman, 2007). 

 

1.2.3. Selectivity to complex features and perceptual after-effects 

 

Although after-effects have predominantly been examined using simple stimuli (e.g., 

oriented bars) they can also occur for more complex features such as the orientation of 
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an illusory contour (a contour that is perceived in the absence of physical information; 

Paradiso, Shimojo, & Nakayama, 1989; Smith & Over, 1975) or the global direction of 

motion across the visual field (Bex & Makous, 2002; Smith, Scott-Samuel, & Singh, 

2000; Snowden & Milne, 1996). Researchers have also found evidence for selectivity to 

global properties of explicitly defined 2-dimensional (2D) shapes such as polygons and 

circles, using judgements of concavity (or convexity) of hourglass-like figures (Suzuki, 

2001), phase of radial frequency patterns (Anderson, Habak, Wilkinson, & Wilson, 

2007), and symmetry (or aspect ratio) of squares and circles (Regan & Hamstra, 1992). 

Melcher (2005) also reported an after-effect for implicitly defined 2D shapes like radial 

or concentric patterns formed by randomly arranged dots.  

 

A challenge to interpreting after-effects to more complex stimuli is to determine 

whether the after-effect results from adaptation of simple features within the stimulus or 

to the complex feature itself. One way to determine if an after-effect results from 

processing of local simple information, or is a genuine-after effect to a global, complex 

property, is to alter low-level properties and evaluate if that modifies the after-effect. 

Specifically, if an after-effect is immune to manipulations of stimulus features that are 

known to be encoded by early (low-level) neurons, we can infer that selectivity occurs 

in extrastriate regions or beyond.  For example, V1 neurons are selectively tuned to 

spatial frequency and orientation and only respond to stimuli presented at a specific 

retinal location (retinotopic specificity). Accordingly, showing that after-effects persist 

despite changes in spatial frequency and retinal position between adaptor and test 

supports the idea of neural processing beyond V1 (Anderson et al., 2007; Bex & 

Makous, 2002; Melcher, 2005), possibly involving areas that encode complex 

properties of shapes (Brincat & Connor, 2004; Merigan & Pham, 1998; Pasupathy & 

Connor, 2001, 2002), and whose neurons are responsive to shapes irrespective of size 
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and retinal position (Ito, Tamura, Fujita, & Tanaka, 1995; Kobatake & Tanaka, 1994; 

Logothetis, Pauls, & Poggio, 1995). 

 

There are also other ways low-level explanations can be ruled out for after-effects to 

complex features. For example, it is known that contrast sensitivity is largely attributed 

to low-level (V1) neurons, whose response profile is normalized based on stimulus 

contrast (Carandini & Heeger, 1994; Heeger, 1992). Some have examined the influence 

of changing the adaptor’s contrast (relative to the test) on the after-effect to complex 

features. For example, Anderson et al. (2007) and Suzuki (2001) found that changing 

the adaptor’s contrast still resulted in significant shape after-effects in a test stimulus. 

They interpreted this as evidence for the selectivity of ventral route (possibly 

inferotemporal) regions beyond V1 to 2D shapes, as these regions’ responses are known 

to saturate at low stimulus contrasts (Rolls & Cowey, 1970).  

 

 

Figure 1.7. Stimuli similar to those used by Van Der Zwan and Wenderoth (1995) to 

examine tilt after-effects to illusory contours. The tilted adapting stimulus was either a) 

spatially abutting or b) spatially separated (with a gap) from c) the vertical test stimulus 

that is presented after one of the two adaptors. 
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In some cases, if after-effects do survive low-level changes between the adaptor and the 

test, it does not necessarily rule out the involvement of low-level regions in encoding a 

complex feature. For example, adapting to an illusory contour tilted slightly off vertical 

results in a vertical illusory contour appearing tilted slightly anticlockwise (Smith & 

Over, 1975). Van Der Zwan and Wenderoth (1995) extended these findings to infer the 

locus of selectivity to illusory contours. As shown in Fig. 1.7, they measured tilt after-

effects (TAE) to illusory contours in two different conditions. It was found that, when 

there was an empty gap between the adaptor and the outer edge of the test pattern, 

although it produced a significant TAE, the magnitude of this TAE was significantly 

smaller than a condition where the adaptor was abutting the test. The presence of a TAE 

even after introducing a spatial separation suggests the involvement of neurons beyond 

low-level regions (V1/V2). However, it is unclear to what extent we can rule out low-

level neurons in selectivity to illusory contours. This is because studies have found 

fMRI activations selective to illusory contours in a range of areas starting from V1/V2 

to higher-levels like V7 or lateral occipital areas (e.g., LO2) (Montaser-Kouhsari, 

Landy, Heeger, & Larsson, 2007). This suggests that a component of the after-effect 

could be due to adaptation in orientation tuned low-level neurons. 

 

1.2.4. Using adaptation to measure selectivity to natural image features 

1.2.4.1. Adaptation after-effects to features of faces 

 

Adaptation after-effects have also been used to reveal neural mechanisms selectively 

encoding complex, especially semantic attributes of meaningful stimuli like natural 

images. Among those who study natural images for feature selectivity, faces have been 

extensively used as stimuli because 1) they are a type of meaningful natural images we 

commonly encounter, 2) they possess attributes that can be manipulated along a single 
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dimension like gender (male to female), akin to the manipulations of attributes like 

spatial frequency in sinusoidal grating stimuli and 3) some physiological studies have 

revealed the existence of brain regions selectively responding to faces (1.1.7.1), 

suggesting the possibility that these regions may contain neural mechanisms encoding 

specific attributes of faces too. Initially, selectivity to facial features was demonstrated 

with adaptation to artificially distorted faces (O'Leary & McMahon, 1991; Webster & 

MacLin, 1999). For example, adapting to a face that is constricted results in a 

subsequently shown undistorted face to appear distended. Instead of creating distorted 

(grotesque) caricatures, later studies manipulated faces (usually by means of morphing) 

to produce adapting and test stimuli that resemble natural variations observed in the 

environment (e.g., to make a face look more male or female). Accordingly, it has been 

shown that adapting to a female face can alter the appearance of an ambiguous gender-

neutral face to look masculine (Webster, Kaping, Mizokami, & Duhamel, 2004). These 

face specific aftereffects have been shown for many other feature dimensions such as 

age, gaze direction, identity, ethnicity and facial expression (Hsu & Young, 2004; 

Jenkins, Beaver, & Calder, 2006; Leopold, O'Toole, Vetter, & Blanz, 2001; O'Neil & 

Webster, 2011; Webster et al., 2004). 

 

1.2.4.2. What is being adapted? 

 

In order to demonstrate adaptation in mechanisms dedicated to processing faces, it is 

important to ensure that feature selectivity reported above doesn’t reflect generic 

mechanisms encoding object shapes or simply a propagation of adaptation in low-level 

regions. The latter concern is addressed by presenting adaptors and tests of different 

sizes, in different viewpoints or in different retinal locations, so that local elements do 

not overlap in space. Adaptation to faces transfers robustly across such manipulations 
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(despite a reduction in the magnitude) and most findings largely suggest that the 

adaptation isn’t the result of low level propagative effects (Jenkins et al., 2006; Jiang, 

Blanz, & O'Toole, 2006; Leopold et al., 2001; Rhodes et al., 2004); although Afraz and 

Cavanagh (2009) found evidence for the retinotopic dependence of the face after-effect. 

Watson and Clifford (2003) provided a clear demonstration to rule out low-level 

explanations of face after-effects. They found the axis of the face distortion after-effect 

to change with the orientation of the adapting face. For example, if the adapting face 

was distorted on a horizontal axis and tilted 45° anticlockwise of vertical, a test face 

tilted 45° clockwise appeared distorted along its horizontal axis (perpendicular to the 

distortion axis of the tilted adaptor) rather along its vertical axis (parallel to the 

adaptor’s distortion axis) as would be predicted by adaptation at low-level mechanisms.    

 

Next, it is important to understand if after-effects to faces are mediated by brain regions 

specialised in encoding faces (e.g., FFA) or by those generically encoding objects of 

any category. Findings on this distinction are mixed. It has been proposed that face 

encoding is holistic, and that only upright as opposed to inverted faces are encoded by 

face-specific mechanisms (McKone, Martini, & Nakayama, 2001; Yin, 1969). Activity 

in FFA is also significantly reduced for inverted compared to upright faces and distinct 

regions are found to be recruited to encode the two (Aguirre, Singh, & D'Esposito, 

1999; Rossion & Gauthier, 2002). On the basis of these findings, one would expect 

adaptation to faces to only occur when they are upright. However, some of the findings 

show that the magnitudes of face distortion after-effects are similar when adaptor and 

test are upright or when both are inverted, suggesting that adaptation is possibly 

mediated by mechanisms encoding any object (Watson & Clifford, 2003). Jiang et al. 

(2006) added further evidence for a generic mechanism by showing that adapting to a 
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grotesque face that preserves features diagnostic of identity produced an identity after-

effect on a normal test face.  

 

Challenging the findings proposing a generic mechanism that encodes upright and 

inverted faces, some studies show that after-effects are contingent on the orientation 

difference between adaptors and tests. An upright adaptor and an inverted test (or vice 

versa) produces an after-effect that is significantly smaller than when both have 

identical orientations (Watson & Clifford, 2003). Rhodes et al. (2004) adapted 

participants to a sequence with a random mix of upright and inverted faces that were 

distorted differently and found the size and direction of the after-effects to be contingent 

on the orientation of the face. For example, when the sequence contained contracted 

upright faces and expanded inverted faces, normal upright test faces looked expanded 

and normal inverted test faces looked contracted. These findings suggest the 

involvement of distinct neural populations to encode upright and inverted faces. In 

addition to distortion, Rhodes et al. (2004) also reported orientation contingent gender 

after-effects, where male upright and female inverted adaptors, resulted in androgynous 

tests appearing slightly female when viewed upright and slightly male when inverted, 

respectively. Since gender is a property specific to faces and body parts alone, they 

interpreted these after-effects as evidence for face-specific adaptation. To summarise, a 

significant component of face after-effects arises from adaptation in face-specialised 

brain regions. 

 

1.2.4.3. The mechanism for encoding face features 

 

How are more complex stimulus features such as faces encoded? Some early models of 

face processing have suggested different channels tuned to different feature values 
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along a given dimension (Valentine & Endo, 1992). For example, this could be thought 

of as sets of neurons selectively tuned to different levels of masculinity along the gender 

dimension. However, later findings converge on the idea of norm-based coding, 

highlighting a multi-dimensional feature-space centred on a prototypical (average) face 

which is the norm (Bestelmeyer, Jones, DeBruine, Little, & Welling, 2010; Lee, Byatt, 

& Rhodes, 2000; Leopold et al., 2001; Robbins, McKone, & Edwards, 2007). Each face 

is therefore encoded as the distance from the norm and adaptation shifts the appearance 

of an existing (pre-adaptation) norm away from the adapting feature value. For 

example, adapting to male faces results in a pre-adaptation norm (a perfectly 

androgynous face) appearing feminine. Therefore, the new post-adaptation norm in face 

space would contain physical characteristics slightly more masculine than an 

androgynous face.  

 

According to the norm-based model of face encoding, adapting to the norm itself should 

not affect the appearance of any non-norm face, and this is exactly what happens 

(Webster & MacLin, 1999). Physiological studies examining regions like the FFA also 

support this multidimensional face space and norm-based coding of faces (Loffler, 

Yourganov, Wilkinson, & Wilson, 2005; Ng, Ciaramitaro, Anstis, Boynton, & Fine, 

2006). However, Storrs and Arnold (2015) found that adapting to a slightly male face 

made extremely male test faces look even more masculine. This finding goes against the 

commonly accepted norm-based coding, and is suggestive of alternative mechanisms in 

operation such as multi-channel coding. 
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1.2.4.4. Adaptation to features of scenes 

 

Oliva and Torralba (2001) modelled the spatial layout of a scene by using statistics from 

the scene’s power spectrum. Using these statistics, they assigned each scene a rank 

along a set of perceptual (and meaningful) feature dimensions such as degree of 

naturalness, openness and expansion. They found that, for a set of scenes, the rankings 

given by the model and by human participants were highly correlated on these 

dimensions. They suggested that these dimensions could be thought of as axes of a 

multidimensional space, akin to the face space described in section 1.2.4.3. By 

evaluating scenes along these dimensions, their models could successfully infer the 

basic level category of scenes (e.g., a street, a forest etc.), since scenes belonging to the 

same category generally have similar spatial layout. For example, a street scene is 

always low on naturalness and has a low degree of openness, whereas a coastal scene 

would rank high on naturalness and high on openness (lacking enclosed structure).     

 

Interestingly, Greene and Oliva (2010) demonstrated that humans might also have 

neural mechanisms selectively encoding these feature dimensions similar to those 

proposed by Oliva and Torralba (2001). They found that adapting to a completely 

natural image with no manmade content made a subsequently viewed semi-natural 

scene with a bit of man-made content appear more carpentered than it did without 

adaptation. This could not be attributed to low-level mechanisms as the after-effect was 

immune to presenting adaptor and test images in different parts of the visual field. 

Similar after-effects were obtained by adapting to scenes at the extremes of other 

dimensions such as openness, depth and navigability. Moreover, they also found that 

adapting to extrema of these dimensions also influence basic level scene classification. 

For example, following adaptation to a series of images high on openness (excluding 
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images of forests and fields), previously ambiguous images (having a 50% chance of 

being classified as forest or field prior to adaptation) on a forest-field continuum were 

more often classified as forests. Their findings suggest the selectivity of our visual 

system to these dimensions of spatial layout and their importance in determining the 

basic level category of a scene.             

 

Experiments conducted by Kaping, Tzvetanov, and Treue (2007) suggest that encoding 

these features of scene layout may not necessarily require the scene to be meaningful. 

They found that adapting to artificial meaningless stimuli that mimic power spectral 

characteristics of scenes can alter the perceived appearance of scenes. For example, 

adapting to stimuli resembling power spectra of highly natural scenes biased 

classification of semi-natural scenes as man-made. This finding is consistent with that 

of Greene and Oliva (2010) in the sense that adapting to images having specific spectral 

characteristics affects subsequent image classification. However, this raises the concern 

that mechanisms selectively encoding features of spatial layout based on spectral 

characteristics may be common to both meaningful and meaningless scenes. Greene and 

Oliva’s (2010) findings do not provide an answer to this because they only used 

meaningful scenes. This could have been addressed by testing participants’ 

classification after adapting to meaningless scenes like phase-scrambled versions that 

preserve the power spectra of images. 

 

1.3. Beyond sensory representations 

1.3.1. Bayesian analysis 

 

Up to this point, we have discussed visual perception as a process of encoding sensory 

representations. However, the final (decoded) percept of an image is not limited to this 
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encoding process. Helmholtz (1925) states that “the sensations of the senses are tokens 

for consciousness, it being left to our intelligence to learn how to comprehend their 

meaning”. Here, Helmholtz refers to perception as the product of interpreting visual 

inputs in the context of our implicit knowledge about the environment we are living in. 

Inspired by this view, visual perception has been modelled within a Bayesian 

framework as probabilistic inference. In this account our brain infers the most probable 

stimulus given the retinal image, by combining sensory responses with expectations that 

we hold about the environment (Kersten, Mamassian, & Yuille, 2004; Knill, Kersten, & 

Yuille, 1996). 

 

This Bayesian framework can form the basis of a solution to many inverse problems 

like inferring the 3-dimensional (3D) shape of an object using the 2D retinal image and 

our knowledge of the 3-dimensional nature of objects in the world (Kersten et al., 

2004). In the case of 3D perception, inference using our knowledge of projective 

geometry (i.e., perspective cues) is important because different 3D shapes can create 

similar retinal images while the same 3D shape can also create different retinal images 

(e.g., from different viewpoints), therefore resulting in ambiguity (Fig. 1.8). Interpreting 

perspective cues within the context of our knowledge that objects are 3D can alter the 

perceived appearance of retinal images when we reconstruct the object from the 2D 

retinal images (Pizlo & Salachgolyska, 1995; Thouless, 1931). Sometimes, the 

knowledge of the nature of the object alone can alter our perception of it, even in the 

absence of perspective cues. For example, Taylor and Mitchell (1997) showed that 

when viewers had to reproduce a 2D ellipse, their responses proved to exaggerate 

circularity when they knew that the ellipse was formed by a slanted circular disc, as 

opposed to when they believed it was really an ellipse. Furthermore, knowledge of 

environmental statistics can also affect other veridical forms of perception. For 
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example, knowledge of how edges co-occur in the environment (i.e., the geometrical 

relationship between edges) influences our ability to detect contours in complex 

backgrounds (Geisler et al., 2001).  

 

 

Figure 1.8. An illustration of how different shapes can produce the same retinal image 

and how the same shape can produce different retinal images. Imagine shape 1 is a 

circular disk cut out from a piece of paper (a 2D shape). Shape 1 and Shape 1R (formed 

by rotating shape 1 around the vertical axis) produce different retinal images, namely 

Image 1 and Image 2, respectively. Shape 1R and Shape 2 (an ellipse) produce the same 

retinal image (Image 2). Shape 1R (which lacks any cues to suggest rotation) would be 

perceived as an ellipse when the viewer has no knowledge of its rotation. However, 

when the viewer is aware of a rotation, the circularity of the ellipse is exaggerated 

(Taylor & Mitchell, 1997). Now imagine Shape 3 as the surface of a bass drum (a 3D 



 44 

shape). When it is rotated around the vertical axis (Shape 3R), although the retinal 

image of the surface (Image 3) is an ellipse, contours of the back of the drum (shown in 

black) provides us with perspective cues suggesting rotation of a cylindrical object, and 

this alone or combined with our knowledge that the object is 3D results in the percept of 

Shape 3R’s surface as more circular than Image 3 (cf. Pizlo & Salachgolyska, 1995; 

Thouless, 1931). 

 

1.3.2. Perceptual biases 

 

In addition to facilitating perception, expectations or knowledge of the environment can 

also result in altered or non-veridical forms of perception known as perceptual biases. 

Although these manifest as perceptual errors, they are believed to be the result of a 

visual system evolved to optimally interpret the retinal images created by the 

environment (Geisler & Kersten, 2002). The Bayesian account of perceptual biases 

proposes that the viewer’s percept is the most probable estimate of a projected feature 

value (e.g., the speed of a moving object) and is determined by the maximum of a 

“posterior” distribution (Freeman, 1994; Kersten et al., 2004; Knill et al., 1996; Yuille 

& Bülthoff, 1996). The posterior is proportional to the product of a “prior” and the 

“likelihood function” at each point, where the prior is a probability distribution 

representing the participant’s expectations about the occurrence of different feature 

values in the environment. For example, based on our experience, we might expect 

objects to be mostly stationary or moving at slow speeds (Stocker & Simoncelli, 2006; 

Weiss, Simoncelli, & Adelson, 2002). The likelihood function represents the likelihood 

that a particular sensory representation reflects a given feature value in the environment. 

The bandwidth of the likelihood function determines the precision of sensory 

representation; when measurements become noisier, the bandwidth increases 
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(Mareschal, Calder, & Clifford, 2013; Stocker & Simoncelli, 2006; Weiss et al., 2002). 

The likelihood function is generally assumed to be approximated by a Gaussian centred 

at a peak that is equivalent to the projected feature value (Mareschal et al., 2013; 

Stocker & Simoncelli, 2006; Weiss et al., 2002). Multiplying the prior by the likelihood 

function results in the posterior, which is a distribution plotting the probability of each 

possible environmental feature value given the retinal image and the prior.  

 

An example of how a prior and different likelihood functions can result in different 

posteriors is illustrated in Fig. 1.9. According to the Bayesian theory, when the sensory 

measurement is noisy (Fig. 1.9b), the percept (given by the peak of the posterior-black 

curve) will be more influenced by the prior than when there is less noise. This occurs 

because a broader likelihood function multiplied by a prior, will be shifted more 

towards the prior than a narrow likelihood function (Mareschal et al., 2013; Stocker & 

Simoncelli, 2006; Weiss et al., 2002). These priors may arise from the information we 

have gathered about our living environment on timescales that could be evolutionary, 

developmental or very recent (Geisler & Diehl, 2003; Geisler & Kersten, 2002; Körding 

& Wolpert, 2004; Scholl, 2005). 

 

 

Figure 1.9. Hypothetical representations of the posterior (black curve filled in grey), the 

likelihood function (magenta curve) and the prior (green curve) distributions for the 
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perception of a stimulus moving at speed s, in conditions where a) the stimulus has low 

uncertainty and b) the stimulus has high uncertainty. In both conditions, the likelihood 

function is approximated by a Gaussian centred at speed s while the prior peaks at a low 

speed. When the stimulus uncertainty is high (b) the posterior shifts further away from 

the peak of the likelihood function towards the peak of the prior. The plots were 

produced based on the Bayesian model described in Stocker and Simoncelli (2006).     

 

The influence of priors in producing perceptual biases has been demonstrated for a 

range of visual features of varying complexity. Two examples for low-level features are 

perceptual biases for orientation and motion. When people judge the average orientation 

of a set of local Gabor patches of different orientations close to vertical, their 

judgements are biased towards the cardinal (vertical and horizontal) directions, more so 

when uncertainty in the stimulus is increased (Girshick, Landy, & Simoncelli, 2011; 

Tomassini, Morgan, & Solomon, 2010). Girshick et al. (2011) showed that this results 

from a prior that mimics the orientation statistics of natural scenes that over-represent 

cardinal orientations as opposed to inter-cardinal orientations. With respect to motion, it 

has been shown that a prior that favours stationary or low-speeds results in participants 

underestimating the perceived speed of moving dot patterns (Stocker & Simoncelli, 

2006; Weiss et al., 2002). 

 

The impact of priors can also be extended to complex features. For example, we have a 

prior that the direction of lighting comes from above and slightly to the left (e.g., sun 

light) which biases the perception of differently shaded 3D shapes as either concave or 

convex (Mamassian & Goutcher, 2001; Stone, Kerrigan, & Porrill, 2009; Sun & Perona, 

1998). Furthermore, biases have been reported for the perception of the approaching 

angle of a moving square pattern, which results from a prior favouring low-speed 
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motion (Welchman, Lam, & Bulthoff, 2008). It is also worth noting that a prior for one 

stimulus feature can influence the perception of another feature that is dependent on it, 

for example priors for illumination and speed bias the perception of 3D shape and 

approaching angle, respectively.   

 

1.3.3. Biases for other natural image properties? 

 

A number of studies have also demonstrated that we have priors for higher-level 

meaningful features that we encode from naturalistic stimuli. For example, Armann & 

Bulthoff (2012) showed that when people are uncertain about the gender of a face, they 

are more likely to judge it as ‘male’. Watson, Otsuka and Clifford (2016) examined this 

within a Bayesian framework and suggested that this ‘male bias’ is most likely caused 

by a prior that assumes faces to be mainly male. A similar male bias has also been 

reported when people judge the gender of point-light walkers that depict biological 

motion (Troje, Sadr, Geyer, & Nakayama, 2006). Further, Mareschal et al. (2013) found 

evidence for a prior for direct gaze, that is to say we assume others are looking at us 

when we are uncertain about their direction of gaze. These studies have demonstrated 

biases for natural image properties based on their conformity of findings to Bayesian 

predictions. For instance, the influence of priors is strongest when stimuli display high 

uncertainty (see section 1.3.2). Accordingly, Watson et al. (2016) increased the 

uncertainty of face stimuli by phase-scrambling them and found large biases for faces 

with high levels of scrambling.  
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1.3.4. Operation and stability of priors 

 

While most studies report the possible existence of priors for different stimulus features, 

some have attempted to determine where in the brain these priors are represented and 

how they operate in the visual system. On the one hand, priors can be represented at a 

level beyond where the feature is encoded and this can bias inferences via top-down 

feedback   (Lee, 2002; Lee and Mumford, 2003). For example, Lee (2002) used single-

cell recordings in monkeys to measure V1 and V2 response latencies to the perception 

of a Kanizsa illusion that is believed to result from prior expectations about surface 

occlusion. He found that V2 had a shorter latency than V1 and suggested that a prior in 

V2 affects neural activity in V1 to make inferences from illusory contours. On the other 

hand, priors at lower-levels can bias perception at higher-levels. For example, Gerardin, 

Kourtzi, and Mamassian (2010) showed that the direction of lighting on any object 

shape was well predicted by fMRI activity in humans’ early retinotopic areas whereas 

the perceived 3D shape of an object lit from any direction was predicted by activity in 

later stages such as occipitotemporal and parietal regions. They concluded that, a prior 

that is represented at low-levels influences 3D perception at higher-levels via bottom-up 

connections.  

 

In some cases, priors are hardwired into the neural architecture. For example, to account 

for the over-representation of cardinal orientations in the environment, V1 contains 

relatively more neurons tuned to cardinal orientations and these abundant neurons are 

also more narrowly tuned than the neurons tuned to inter-cardinal orientations 

(Furmanski & Engel, 2000; Li et al., 2003). However, not all priors are permanent and 

these can be manipulated in the laboratory. For example, Körding and Wolpert (2004) 

trained participants to learn a lateral displacement in the visual feedback they received 
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about their finger position while they reached for a target in a virtual-reality setup. 

Subsequently, when no feedback was provided their reach-points were biased in the 

direction opposite to the learnt displacement and this showed that they updated their 

prior for visual feedback. Moreover, even the prior that light comes from above was 

found to change when participants were trained to expect lighting from a different 

direction (Adams, Graf, & Ernst, 2004). 

 

1.4. Conclusion 

 

We may have dedicated brain regions preferentially encoding natural stimuli like faces 

and scenes. There is also psychophysical evidence to suggest the existence of brain 

mechanisms that selectively encode features of natural images. However, it is still 

unclear to what extent these findings reflect selectivity at higher-level regions encoding 

meaningful attributes. Indeed, it is possible that after-effects to natural images are 

simply a result of adapting to some low-level physical property rather than to the 

meaningful attribute per se. Furthermore, there is also a concern that higher-level after-

effects reported in the literature may be the result of non-perceptual biases such as 

response biases (Storrs, 2015). For instance, when participants are asked to judge the 

gender of a single androgynous test face following adaptation to male faces, the 

participant could respond “female” for two reasons. On the one hand, the perceived 

appearance of the androgynous test could have been genuinely altered by sensory 

adaptation and the participant will therefore respond “female”. On the other hand the 

participant might have decided to respond “female” more often when s/he is unsure 

about a face’s gender, more so given the adapting face is always a male. Alternatively, 

the participant could also simply decide to press a key corresponding to the “female” 

judgement more often without necessarily making their judgements based on the 
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appearance of the test. The latter two are examples of response biases that would 

produce the same pattern of shifts in response but for a non-perceptual reason.              

 

Accordingly, in this thesis we aim to examine if higher-level properties of natural 

images can be uniquely encoded beyond their low-level image components. We address 

different aspects of higher-level image processing in the four empirical chapters of this 

thesis. Firstly, in chapters 1 & 2, we examine selectivity to a higher-level image 

property, specifically “uprightness”, using adaptation after-effects. Notably, in order to 

measure after-effects, we use an experimental design that is immune to non-perceptual 

sources of response shifts. Secondly in chapter 3, we examine to what extent the 

encoding of a higher-level image property is dependent on our sensitivity to low-level 

features within the images. Finally, in chapter 4, we investigate how our long-term 

exposure to certain types of images may influence our perception of natural images. 
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2. Chapter 2 - Non-specific encoding of orientation: Tilt after-effects to gratings 

2.1. Introduction 

 

Most natural images contain a large number of oriented edges in localised spatial and/or 

retinal coordinates. Some of these natural images (e.g., houses, faces and scenes) have a 

global orientation (“uprightness”) that we easily perceive which is simply the canonical 

orientation in which we are used to seeing these images (Tarr & Pinker, 1989). More 

details about uprightness and the functional significance of perceiving uprightness will 

be discussed in chapter 3. To date, it is unclear if the brain possesses a mechanism that 

selectively encodes uprightness, and if it does, whether it is distinct from the mechanism 

that encodes local edge orientations. Examining selectivity to uprightness by means of 

adaptation after-effects can help answer this question.  

 

In the previous chapter (section 1.2.3) it was highlighted that an important aspect of 

interpreting after-effects to seemingly higher-level perceptual features is to distinguish 

them from after-effects to its low-level features. In the current scenario, any after-effect 

resulting from adaptation to uprightness must be compared with after-effects caused by 

adapting to local orientations, since the overall geometry of an image generally arises 

from the local orientations present within it. However, the literature on local orientation 

after-effects is inconclusive for a valid comparison. Therefore, this chapter is aimed at 

measuring aspects of after-effects to local orientations, prior to measuring after-effects 

to global scene uprightness in chapter 3.  
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2.1.1. Tilt after-effect and its angular function 

 

Selectivity to local orientation has been studied using “tilt after-effects” (TAE), where 

adaptation to tilt alters the perceived orientation of a subsequently viewed test stimulus 

(Fig. 2.1a). Gibson and Radner (1937) were the first to report TAEs to the orientation of 

a single bar stimulus. They showed that adaptors having an angular separation of 

between 2.5° and 45° from either a vertical or a horizontal test produced what they 

termed a “direct TAE”, whereby the test orientation appeared repelled away from the 

adaptor. For example, if the adaptor is slightly clockwise of vertical, a vertical test 

would appear counter-clockwise. The magnitude of the repulsive effect was maximum 

(~1-2°) when the adaptor was tilted between 5° and 20° from the test orientation. As the 

adaptor was tilted more than 45°, the test can start to appear tilted towards the adaptor, a 

phenomenon known as the “indirect TAE”. This attractive effect was largest (~0.5°) at 

an angular separation of 70° between adaptor and test. Therefore the angular separation 

is deterministic of the magnitude and the direction of the TAE. The authors concluded 

that vertical and horizontal orientations are fundamental ‘norms’ and that adaptation 

shifts these subjective norms towards the adapting orientation, resulting in the biased 

appearance of vertical and horizontal orientations.     

 

If Gibson and Radner’s (1937) theory of normalization above is correct, then adaptation 

to the norms themselves should not affect the appearance of other orientations. Later 

findings have shown that this is not the case. For example, Mitchell and Muir (1976) 

showed that adapting to a vertically oriented grating made an oblique test grating 

oriented 45° counter-clockwise appear tilted towards the vertical axis (an attractive 

effect), and the magnitude of the after-effect was similar to the after-effect induced on a 

vertical test by an adaptor tilted slightly off horizontal. They also found attractive 
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effects for oblique tests that were roughly half the magnitude of the repulsive effects. 

These findings refute the norm based theory. Nonetheless, subsequent studies on the 

TAE replicated Gibson and Radner’s (1937) original finding that the magnitude and 

direction of the TAE changes as a function of the angular separation between the 

adaptor and the test when both are presented in, or near, the fovea (Campbell & Maffei, 

1971; Mitchell & Muir, 1976; Mitchell & Ware, 1974; Muir & Over, 1970). When 

stimuli are presented in the periphery, some find no evidence of an indirect TAE (e.g., 

Muir & Over, 1970).       

 

Figure 2.1. a) An illustration of the adapting and test stimuli used in a TAE experiment. 

If you fixate in the centre of the Adaptor for 1 minute and then immediately fixate at the 

centre of the Test, the vertical Test will appear tilted slightly clockwise. b) 

Simultaneous Tilt illusion. Hypothetical profiles of population responses to a surround 

stimulus tilted 20° counter-clockwise (top) and a horizontal (0°) test stimulus (middle), 
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and the summed population response (bottom). If the surround or the target is presented 

in isolation, the peaks of the response profile are aligned with the stimuli’s orientations 

(black vertical lines in the top and middle subplots). Neurons with preferred orientations 

near the stimulus’ orientation are excited (response > 0) and neurons whose preferred 

orientations are further away from the stimulus are inhibited (response < 0). When the 

response distributions of both surround and test are summed (i.e., when both stimuli are 

viewed simultaneously), it results in a compound distribution whose peaks (red lines) 

are displaced from the orientations of the surround and test; these peaks correspond to 

the apparent tilts of the stimuli.  

 

2.1.2. Characteristics, cortical locus and the mechanism of the TAE 

 

In addition to its dependency on the angular difference between adaptor and test, TAEs 

exhibit other important characteristics too. Firstly, the TAE is dependent on the retinal 

overlap between the adaptor and the test. Gibson and Radner (1937) found no TAE 

when participants fixated a tilted adapting line and were subsequently tested using a line 

stimulus presented outside of fixation. Secondly, when adaptors and tests are retinally 

overlapping, the TAE’s magnitude is dependent on the spatial frequency difference 

between the two (Ware & Mitchell, 1974). When both have identical spatial frequencies 

(irrespective of the absolute spatial frequency) the TAE is maximal (~3 - 4°) and the 

magnitude of the TAE reduces with increasing spatial frequency difference (less than 

50% of maximum TAE when they differ by 2 octaves or more). Finally, the after-effect 

transfers between eyes; viewing the adaptor using one eye produces TAEs of similar 

magnitude regardless of whether the test is viewed by the same eye or the unadapted 

eye (Campbell and Maffei, 1971; Gibson, 1937; Mitchell & Ware, 1974). The 

characteristics of the TAE described above suggest that it occurs in binocularly driven 



 55 

neurons that are highly selective to the retinal position and spatial frequency of the 

stimulus. In light of the known physiology of the visual system, V1 appears to be the 

most likely locus for the TAE, since neurons’ response properties predict the observed 

characteristics of the TAE (Blakemore & Campbell, 1969; Coltheart, 1971; Hubel & 

Wiesel, 1968). 

 

Following Hubel and Wiesel’s (1968) discovery of orientation selective channels in the 

primate striate cortex, there have been many attempts to explain the underlying 

mechanism of the TAE based on V1 neurons. One of the earliest accounts was the 

“fatigue theory” (Coltheart, 1971; Sutherland, 1961). In this account, an adaptor 

strongly activates V1 neurons whose orientation matches that of the adaptor and 

moderately activates neurons with slightly different preferred orientations. The 

perceived orientation is the average firing of this population of neurons and is roughly 

identical to the adaptor’s physical orientation. With continuous activation, these neurons 

habituate or desensitise resulting in reduced firing rates that restore after a period of no 

adaptation, consistent with response properties of V1 neurons (Hubel & Wiesel, 1962). 

When a test stimulus of a slightly different orientation is presented, previously adapted 

neurons will contribute less to the test’s population response, thereby skewing the 

population response away from the test’s physical orientation in the direction opposite 

to that of the adaptor producing a large repulsive TAE. As the test’s physical orientation 

gets further away from the adaptor, more unadapted neurons contribute to the 

population response, and therefore the average response is closer to the physical 

orientation producing a smaller after-effect. Coltheart (1971) explained indirect 

(attractive) TAEs using the fatigue theory by attributing them to “hyper-complex cells” 

in V1. A hyper-complex cell has two preferred orientations that are orthogonal to each 

other, for example vertical and horizontal (Hubel & Wiesel, 1968). Therefore, a 
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stimulus tilted slightly clockwise of vertical would desensitize neurons encoding 

orientations both near-vertical and near-horizontal. When a vertical or a horizontal test 

is presented the population response would be shifted anticlockwise of vertical or 

horizontal, respectively. This would make the vertical and horizontal test to appear 

tilted away (i.e., repulsed) and tilted towards (i.e., attracted) the adapting stimulus, 

respectively.      

 

An alternative account of the TAE is one of “lateral inhibition”, proposed by 

Blakemore, Carpenter, and Georgeson (1970) to explain the “tilt illusion (TI)”, the 

spatial analogue of the TAE. In the TI, the perceived orientation of a target stimulus is 

biased by the presence of a surrounding stimulus of a different orientation. The TAE 

and the TI are believed to arise from the same underlying mechanism since both 

phenomena display similar characteristics, such as their angular dependence (between 

test and adaptor or centre and surround) as well as their selectivity to spatial position 

and spatial frequency (Tolhurst & Thompson, 1975; Wenderoth & Johnstone, 1988). 

Blakemore et al. (1970) suggested that, when an oriented stimulus is presented, neurons 

with orientation preferences close to the stimulus’ orientation are excited whereas 

neurons tuned to orientations further away from the stimulus are inhibited via recurrent 

lateral connections. Accordingly, the resulting pattern of activity when two differently 

oriented lines are presented adjacent to each other produces a population response with 

peaks biased away from the physical orientations of the two stimuli (Fig. 2.1b).   

 

Blakemore et al.’s (1970) findings were not the result of fatigue since introducing a 3
rd

 

stimulus next to the surround whose orientation slightly differed from that of the 

surround, reduced the biased appearance (TI) of the test (Blakemore, Carpenter & 

Georgeson, 1971; Carpenter & Blakemore, 1973). This is inconsistent with the fatigue 
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theory, which predicts a stronger TAE given that the presence of more stimuli should 

cause increased fatigue. Blakemore and Tobin (1972) provided physiological evidence 

for lateral inhibition in cat’s striate cortex, showing that an oriented stimulus increased 

firing rates of neurons with a preferred orientation similar to the stimulus and decreased 

firing rates compared to resting state of neurons tuned to orientations further away from 

the stimulus. Lateral inhibition theory has been applied to explain other effects of 

spatial context such as Poggendorff, Müller-Lyer and Zölner Illusions (Coren, 1970; 

Georgeson & Blakemore, 1973; Wallace, 1969). Importantly, lateral inhibition was also 

extended to account for the TAE (Kurtenbach & Magnussen, 1981; Magnussen & 

Johnsen, 1986; Magnussen & Kurtenbach, 1980; Tolhurst & Thompson, 1975). Earlier 

formulations of lateral inhibitions did not account for the indirect effect. To inspect the 

indirect effect, Wenderoth and Johnstone (1988) applied stimulus manipulations such as 

spatial separation and spatial frequency difference between adaptor and test that are 

known to reduce the magnitude of the direct effect. They found the indirect effect to be 

unaffected by these manipulations. They proposed that the indirect effect is a result of 

adaptation in higher-level regions, like middle temporal area having larger receptive 

fields and broadly tuned to spatial frequency, adjusting response properties of neurons 

in V1 via feedback mechanisms. However, recently, Bednar and Miikkulainen (2000) 

modelled the TAE based on lateral inhibition in V1 and showed that it can account for 

the indirect effect too. 

 

While both fatigue and lateral inhibition theories emphasise how the reduction in 

excitability of a set of neurons lead to a skewed population response to the test stimulus, 

later theories have modelled other types of changes that could possibly result in both 

direct and indirect TAEs. Clifford et al. (2000) showed that a model which takes into 

account self-calibration and decorrelation of population responses reliably fits the 
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observed psychophysical data on TAEs. Based on the then available literature on the 

physiological properties of V1, Clifford et al. (2000) proposed that these adjustments in 

the population response could be caused by desensitisation of adapted neurons and an 

increase in the bandwidth of orientation tuning in unadapted neurons. However, a 

single-cell study by Dragoi et al. (2000) showed that adaptation causes shifts in the 

preferred orientation of neurons in cat’s V1. When this property of V1 neurons was 

incorporated into a model that accounts for desensitization of neurons following 

adaptation, it reliably predicted human psychophysical data on both direct and indirect 

TAEs (Jin, Dragoi, Sur, & Seung, 2005). In summary, the characteristics of the TAE, 

physiological properties of V1 neurons and computational models of the TAE, all point 

to V1 neurons as the locus of origin of the TAE. 

 

2.1.3. How specific is the TAE to spatial position? 

 

One of the characteristics of the TAE is its dependence on the retinal separation 

between the adaptor and test - producing the largest effect when they are completely 

overlapping (“retinotopic”). This led to the conclusion that response changes in V1 

neurons encoding stimuli at specific retinal coordinates following adaptation results in 

the TAE. However, earlier studies demonstrating selectivity to retinal position did not 

discriminate between retinal and spatial (visual field) coordinates of the stimuli (e.g., 

two stimuli at different spatial coordinates can occupy the same retinal position and vice 

versa). Recently, some studies have found that the strict selectivity of the TAE to retinal 

position is not always necessary, and have shown the need to distinguish between 

spatial and retinal coordinate spaces. For example, Melcher (2005) conducted an 

experiment where a participant adapts to a grating tilted 15° off vertical at fixation, after 

which they make a saccade to a new location in the screen. Following this, a close to 
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vertical test grating is presented peripherally, either at the screen location where the 

adaptor was shown (“spatiotopic” condition) or at a completely new location (“non-

specific” condition). In both cases the tests were at an eccentricity of 5° from fixation. 

Melcher found a TAE of magnitude equal to around 60% of the retinotopic TAE in the 

spatiotopic condition and no TAE in the non-specific condition. Melcher (2007) 

provided an explanation to this spatiotopic TAE by attributing it to the remapping of 

parts of the visual field following the participant’s intention to make a saccade. Three of 

his major findings in which the adaptor was shown at fixation support this claim. 

Firstly, if the test was shown at fixation 100 ms before the onset of a saccade, the 

magnitude of the TAE dropped by nearly 80% compared to when the test was presented 

at fixation long before saccadic onset. Secondly, when the test was presented at the 

newly fixated position, the TAE increased from 0% to more than 60% of the retinotopic 

TAE as the target was shown at fixation long before to just before saccadic onset. 

Finally, more than 50% of the retinotopic TAE was observed when the test was shown 

at the adapted position, around 500ms after saccadic onset (i.e., when participant is 

fixating a new position). Therefore, adaptation appears to transfer to novel retinal 

coordinates following a remapping of spatial positions with initiating a saccade. 

 

Subsequent studies haven’t always managed to replicate Melcher’s finding of a 

spatiotopic TAE (Knapen, Rolfs, Wexler, & Cavanagh, 2010; Mathot & Theeuwes, 

2013). Knapen et al. (2010) studied it with a very similar design to Melcher (2005) and 

found a small spatiotopic TAE (~1°), but when corrected for non-specific TAEs, this 

was non-significant. A possible reconciliation has been put forward by Zimmermann, 

Morrone, Fink, and Burr (2013) who showed that the spatiotopic TAE depends on the 

duration of the interval between saccade and test stimulus onsets - a longer duration 

gives sufficient time to transform the stimulus location to the novel spatiotopic space. 
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This is consistent with Melcher (2007) who also found a larger TAE with a longer 

saccade-stimulus interval. On the other hand, when adaptors and tests do not overlap in 

both retinotopic and spatiotopic coordinates, most studies report no TAE (Gibson, 1937; 

Knapen et al., 2010; Melcher, 2005; Zimmermann et al., 2013). However, some studies 

report significant non-specific TAEs when the adaptors are separated by around 4°; 

nearly 30% of the retinotopic TAE (Melcher, 2007) or approximately 1-2° in size (Boi, 

Ogmen, & Herzog, 2011).  

 

Given the inconsistent nature of these results, this chapter examines the positional 

selectivity of the TAE to local orientation, focussing on the non-specific component of 

the TAE. Experiments reported here only examine characteristics of the non-specific 

TAE that will be relevant for interpretation of TAEs to image uprightness in Chapter 3. 

Additionally, it should be noted that all above studies (with the exception of Boi et al., 

2011) on TAEs have relied on the method of single stimuli where participants make 

judgements on a single test stimulus which is prone to response error (Jogan & Stocker, 

2014; Morgan, Melmoth, & Solomon, 2013). Therefore, we also use a two-alternative-

forced-choice (2-AFC) method developed by Morgan, Grant, Melmoth, & Solomon 

(2015) that eliminates many forms of non-perceptual bias. 

  

2.2. General Methods 

 

Participants 

Four conditions were tested: (1) adaptor and tests have the same spatial frequency (same 

SF), (2) adaptor and tests have different spatial frequencies (different SF), (3) adaptors 

and tests have the same spatial frequency but a larger cortical separation between them 

compared to the first two conditions (Same SF crossed), and (4) adaptor and tests have 
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the same spatial frequency but are, on average, orthogonally orientated (same SF 

orthogonal). Six participants participated in each condition (including authors AM and 

IM). All participants except the authors were naïve to the purpose of the experiment.  

 

Stimuli 

Sinusoidal luminance modulated gratings with a Michelson contrast of 50% were used 

in all conditions. All gratings appeared within a hard-edged circular aperture with a 

diameter of 2.95°, on a uniform grey background. In the same SF, same SF crossed and 

same SF orthogonal conditions both the adaptor and test gratings had a spatial 

frequency of 1.6 cycles / degree (cpd). In the different SF condition, the adaptor (1.25 

cpd) and test gratings (5 cpd) were separated by 2 octaves. In all conditions the spatial 

(and retinal) positions of the adaptor and tests were non-overlapping, ensuring that any 

after-effect is non-specific. 

   

Experimental Setup and apparatus 

Participants were seated in a dark room. Stimuli were presented on a 20" Iiama CRT 

monitor with a screen resolution 1600×1200 and a refresh rate of 60Hz. The viewing 

distance was 57cm such that each pixel subtended 1.5 arcminutes. A black aperture 

(diameter=24.5°) was overlaid on the monitor to eliminate the use of monitor edges as 

cues to vertical. Experimental design and analysis were run using Matlab and 

Psychtoolbox (Brainard, 1997; Pelli, 1997). 
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Procedure specific to same SF, different SF and same SF orthogonal conditions 

Baseline (no adaptation): 

Prior to adaptation, we measured participants’ perceptual bias for gravitational vertical. 

Participants fixated a centrally presented black circle (diameter = 0.2°) for 1 second, 

followed by the presentation of two test gratings (50ms) presented on either side of 

fixation along the horizontal meridian. The centre-to-centre distance between fixation 

and each test stimulus was 3.07°. One of the test stimuli was the “pedestal” with a fixed 

tilt (-3° or +3°) relative to vertical and the other was the “comparison”, with an offset 

added to the fixed tilt, randomly selected from the set {-15°,-12°,-9°,-6°,-

3°,0°,3°,6°,9°,12°,15°}. The spatial position (left or right of fixation) of the pedestal and 

comparison was randomised on every trial. Participants judged which of the two test 

gratings appeared more vertical in a 2-AFC task, using keys ‘1’ and ‘2’ to select the test 

in the left or right spatial position, respectively. Each combination of pedestal and 

comparison tilt was tested 10 times, resulting in 220 trials per condition.  
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Figure 2.2. TAE to gratings methods: a) Timeline of a sample trial from the same SF 

condition. b) Stimulus configuration for all conditions except Same SF crossed. The 

grating is the adaptor and dashed circles represent the test positions. c) Stimulus 

configuration for Same SF crossed in different blocks (left and right).  

 

Adaptation:  

Following the baseline presentation, we measured the TAE in participants who adapted 

to a grating tilted in the counter-clockwise (CCW) or clockwise (CW) direction by 15° 

of vertical. CCW and CW adaptations were tested in separate blocks, with block order 

pseudorandomized across participants. As illustrated in Fig. 2.2a, participants fixated a 

central circle (diameter = 0.2°) centered on an oriented grating (adaptor) for 20s. After 

the grating was removed, a top-up adaptor appeared for 5s, followed by a grey screen 
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(250ms) and the two test stimuli (50ms). The participants’ task was the same as in the 

baseline. Following response, the next trial began with a fixation followed by a top-up 

adaptor. To avoid Troxler fading (disappearance of stimuli with stabilized gaze), 

adaptors were counter-phase flickering at 2.5Hz in all conditions.   

 

In the same SF orthogonal condition, the tests were tilted relative to horizontal (90°) 

during baseline as well as adaptation blocks and we measured the perceptual bias for 

gravitational horizontal. The participants’ task was to choose the test stimulus that 

appeared more horizontal. The adaptor was tilted by 15° relative to vertical which 

resulted in a mean angular separation of 75° between the adaptor and tests.    

 

Procedure specific to the same SF crossed condition  

I divided the baseline as well as each adaptation condition into two blocks. For the 

baseline, the two test gratings appeared in opposite visual fields with respect to both 

vertical (left and right of fixation) and horizontal (above and below fixation) meridians 

for one block. For the second block the test positions switched to the opposite 

quadrants. The block order was pseudorandomized. During adaptation, two diagonally 

located adaptors counter-phase flickering in-phase at 2.5Hz were presented in (for 

example) the upper left and lower right quadrants and the two tests were presented in 

the opposite (upper right and lower left) quadrants (Fig. 2.2c). Stimulus presentation 

timings were identical to the other three conditions.  

 

The centre-to-centre (CTC) radial distance between fixation and adaptor or test stimuli 

was maintained at 3.07°. The horizontal CTC distance between the adaptor and test in 

the left and right visual fields was 3.70°, and the vertical CTC distance between the 

adaptor and test in the upper and lower visual fields was 4.95°. The procedure was the 
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same as above and participants indicated whether the test grating above or below the 

horizontal midline appeared more vertical using the arrow keys ‘up’ and ‘down’.  

 

Fixation monitoring 

To ensure fixation stability, three participants in the same SF (AM, IM, SB), different 

SF (AM, IM, JF) and same SF crossed (AM, JS, JP) conditions had their gaze position 

monitored during both baseline and adaptation blocks. Binocular gaze position was 

recorded using an EyeTribe table mount infra-red eye tracker sampling at 30Hz with an 

accuracy of 0.5 degrees. For those participants who were gaze tracked, all experimental 

blocks began with a 9-point calibration. During experimental trials, gaze position was 

monitored with an online rejection criterion, from the beginning of the fixation stimulus 

until the test gratings disappeared. Starting from the 20
th

 gaze sample (excluding 

blinks), we used a sliding temporal window that computed the mean gaze position of 

the 5 preceding samples at every point. If the mean horizontal gaze position exceeded 

±1.5° from the fixation point, the trial was aborted and restarted. In all cases, 

participants held fixation and rejections occurred infrequently.    

 

Psychophysical model 

Data were analyzed within the context of signal-detection theory, as described by 

Morgan et al. (2015). Within this model, the appearances of pedestal (S) and 

comparison (C) are normally distributed, i.e., 𝑆~𝛮(𝑝 + 𝜇, 𝜎2/2) and 𝐶~ 𝛮(𝑝 + 𝜇 +

𝑡, 𝜎2/2), where 𝜎2 is the variance of the performance-limiting noise, p is the pedestal 

tilt, t is the offset added to the comparison, and 𝜇 is the perceptual bias specific to each 

test block. If there were no perceptual bias, the distributions for pedestal and 

comparison would have means of p and p + t respectively. The participant chooses the 

pedestal as closer to vertical (or horizontal in the Same SF orthogonal condition) when 
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it appears less tilted than the comparison. Accordingly, the probability of this choice 

𝑃("𝑆") =  𝑃(|𝑆| < |𝐶|) = 𝑃(𝑆2/𝐶2 < 1), has a doubly non-central F distribution. This 

distribution's denominator's noncentrality parameter is 2(𝑝 + 𝜇 + 𝑡)2/𝜎2, its 

numerator's noncentrality parameter is  2(𝑝 + 𝜇)2/𝜎2, and both denominator and 

numerator have 1 degree of freedom. 

 

2.3. Results 

 

For each condition and each test block (baseline, CCW and CW), we plotted the 

proportion of times the pedestal was chosen to appear more vertical (or horizontal in the 

Same SF orthogonal) as a function of the offset tilt added to the pedestal (i.e., the 

comparison’s tilt relative to the pedestal). From these plots, we obtained maximum 

likelihood estimates of bias 𝜇 and the variance of performance limiting noise 𝜎2 by 

fitting the above mentioned psyhophysical model to the data (Fig. 2.3). For conditions 

Same SF, Different SF and Same SF crossed, negative biases with CCW adaptors and 

positive biases with CW adaptors (relative to the baseline’s bias) are indicative of 

repulsive (i.e., direct) TAEs. On the other hand, for the Same SF orthogonal condition, 

negative biases with CCW adaptors and positive biases with CW adaptors (relative to 

the baseline’s bias) are indicative of attractive (i.e., indirect) TAEs. To quantify the 

reliability in individual estimates of 𝜇, we performed non-parametric bootstrapping 

(Efron & Tibshirani, 1994). First, 1000 maximum likelihood estimates of 𝜇 were 

derived by randomly sampling the (proportion choosing pedestal) data with 

replacement. The bootstrapped estimates were bias-corrected for asymmetry around the 

maximum likelihood estimate of 𝜇 on the observed data. Finally, upper and lower 

bounds of the distributions 95% confidence intervals were calculated.  
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Figure 2.3. Psychometric fits for IM from the Same SF condition. The ordinate refers to 

the probability of choosing the pedestal while the abscissa is the offset tilt added to the 

pedestal. Top, middle and bottom panels show fits for the baseline, CCW and CW test 

blocks, respectively, collapsed between the two pedestals (left and right panel). Blue 

curves represent separate fits for each test block. The nested model fit for CCW and 

CW conditions are denoted by orange curves. In all subplots, error bars denote 

approximate Bernoulli confidence intervals (95%) around each data point.   

 

We also fit each participant's data from CCW-adaptor and CW-adaptor blocks 

simultaneously, forcing the bias parameter µ to be the same in both cases, but 

allowing σ to vary (Fig. 2.3). The ratio L, between the likelihood of this nested model fit 
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and the joint likelihood of the aforementioned separate fits to the same data is 

necessarily no greater than 1. To evaluate the ‘null’ hypothesis of no significant TAE in 

individual participants, we compare the criteria α = 0.05 and α = 0.001 to the value 1 –

 F(–2 ln L), where F is the cumulative 𝜒2 distribution, with 1 degree of freedom. This is 

known as the generalized likelihood-ratio test (Mood, Graybill and Boes, 1974, pp. 

440–441). 

 

To evaluate the null hypotheses at the group level, we performed two-tailed one-

sample t-tests using estimates of repulsion, which can be quantified either in degrees of 

tilt or in terms of the ‘just-noticeable difference’ (JND). A single value for repulsion, in 

degrees of tilt, can be obtained by subtracting one maximum-likelihood estimate 

of µ (the one obtained with CW adaptors) from the complementary estimate (obtained 

with CCW adaptors), and dividing the difference by 2. The ‘conspicuousness’ of 

repulsion can be quantified by further dividing this quotient by the JND (Eq. 2.1). For 

the latter, we use the root mean-square of the maximum-likelihood estimates of σ. 

Results of the group-level t-tests appear in Table 2.1. 

 

𝑐𝑜𝑛𝑠𝑝𝑖𝑐𝑢𝑜𝑢𝑠𝑛𝑒𝑠𝑠 =  
(𝜇𝐶𝐶𝑊 − 𝜇𝐶𝑊)

2 × √(𝜎𝐶𝐶𝑊)2+(𝜎𝐶𝑊)2

2

 
(2.1) 
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Table 2.1. Group level statistics of two-tailed one-sample t-tests conducted on mean 

repulsion and mean conspicuousness across participants.   

Condition Mean (°) t-statistic p-value Cohen’s d 

 Repulsion 

Same SF 1.07 7.85 0.001 3.20 

Different SF 1.19 4.94 0.004 2.02 

Same SF 

crossed 

0.88 9.15 <0.001 3.74 

Same SF 

orthogonal 

0.00 0.01 0.993 0.00 

 Conspicuousness 

Same SF 0.34 5.64 0.002 2.30 

Different SF 0.33 4.22 0.008 1.72 

Same SF 

crossed 

0.18 5.01 0.004 2.04 

Same SF 

orthogonal 

-0.01 -0.14 0.891 -0.06 

 

 

Individual biases for each condition and test block are plotted in Fig. 2.4. In the same 

SF, Different SF and Same SF orthogonal conditions, TAEs were repulsive in general. 

As revealed by likelihood-ratio tests, TAEs were significantly repulsive for 6/6 

participants in the Same SF, 5/6 in the Different SF and 4/6 in the Same SF crossed 

conditions. Group level analyses revealed that both mean repulsion and mean 

conspicuousness across participants were significantly different from zero (no TAE) at 

the level of p < 0.01, for all three conditions. In the Same SF orthogonal condition, only 

one participant experienced a repulsive TAE that was significant based on a likelihood-

ratio test. Both mean repulsion and conspicuousness did not differ from zero for this 

condition.     
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Figure 2.4. Maximum likelihood estimates of perceptual bias for baseline (brown), CW 

(green) and CCW (blue) test blocks from a) Same SF, b) Different SF, c) Same SF 

crossed and d) Same SF orthogonal conditions. Error bars denote bootstrapped 95% 

confidence intervals. Single asterisks (*) denote TAEs significant at the 𝛼 = 0.05 level 

for repulsion. Double asterisks (**) denote TAEs significant at the 𝛼 = 0.001 level for 

repulsion. 

 

2.4. Discussion 

 

Traditionally, TAEs to gratings are believed to originate in the early stages of the visual 

system, more specifically in V1 neurons encoding information from confined retinal 

positions. Contrary to the strict retinal/spatial selectivity of TAEs mostly reported in the 

literature, here we find significant TAEs induced by adapting gratings that do not 

overlap with the tests in both retinal and spatial coordinates. These non-specific TAEs 
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produced by adaptors with a mean angular separation of 15° from the tests, were 

repulsive in nature. Mean TAEs were roughly 1° in magnitude and reliably survived 

further manipulations of spatial frequency and cortical distance between adaptor(s) and 

tests. The pattern of results was highly consistent across participants, with most 

participants experiencing significant TAEs in the Same SF, Different SF and Same SF 

crossed conditions. However, when the mean angular separation between adaptor and 

tests was 75° (Same SF orthogonal), no reliable TAEs were observed. These non-

specific TAEs could not have arisen simply due to some response bias, as we adopted a 

design that is immune to non-perceptual sources of bias (Morgan et al., 2015). 

 

Can these non-specific TAEs be attributed to spillage from retinotopic adaptation? 

Firstly, it is possible that participants moved their eyes during the adaptation period, 

which could have resulted in retinal overlap between the adaptor(s) and tests. However, 

in all but the Same SF orthogonal condition, half the participants’ gaze positions were 

monitored throughout each trial. Yet, all gaze monitored participants (except JS in Same 

SF crossed) experienced significant TAEs. Secondly, one could argue that the fixation 

monitoring criteria used here is less stringent given that the adaptor in the Same SF and 

Different SF conditions were abutting the tests, although not overlapping. If that is the 

case, and the non-specific TAEs here were mediated by retinotopic adaptation, it would 

be expected that adding a 2-octave spatial frequency difference between the adaptor and 

tests would reduce the size of the TAE by less than 50% compared to a case where both 

have identical spatial frequencies (Ware & Mitchell, 1974). However, we found that this 

is not the case. Mean TAEs were similar in both Same SF and Different SF conditions. 

This supports the fact that some form of weak retinotopic adaptation in V1 cannot 

explain non-specific TAEs reported here. 
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Alternatively, non-specific TAEs could result from adaptation in orientation selective 

units beyond V1 with larger receptive fields, such as those found in V2, V3 or V4 

(Boynton & Finney, 2003; Smith et al., 2001). For example, V4 neurons are orientation 

and spatial frequency selective, with broader spatial frequency tuning (Desimone & 

Schein, 1987), and therefore similar TAEs for the Same SF and Different SF does not 

really rule out the possibility that adaptation might be happening in these regions. 

However, if this is in fact the case, then further increasing the cortical separation 

between adaptors and tests should dissipate any small-magnitude TAEs. In fact, studies 

that measured the spatial extent of the retinotopic TAE have reported TAEs of ~1° 

when adaptors and tests were spatially separated by a CTC distance of 4°, but no TAE 

with larger separations of 7° (Melcher, 2007).  

 

To assess if adaptation is occurring in orientation selective units with relatively larger 

receptive fields, in the Same SF crossed condition, the cortical separation between 

adaptor and test was increased by presenting them in opposite sides of the vertical and 

horizontal meridians. Although the CTC spatial separation was either 3.70° or 4.95°, the 

cortical separation was much larger. This is because of discontinuities in how the visual 

field is mapped onto V1, V2, V3 and V4 across hemifields (Sereno et al., 1995). Stimuli 

adjacent in space would be represented by neighbouring neurons if they are presented 

within the same hemifield (left or right of vertical meridian or above or below 

horizontal meridian), but if they are presented in different hemifields, despite being 

close in space, they would be encoded by neurons that are cortically much farther apart. 

In fact, Liu, Jiang, Sun, and He (2009) successfully utilised this dissociation between 

spatial and cortical distance to examine the mechanisms of crowding. Further, the 

crossed stimulus configuration was chosen in order to maintain identical test stimulus 

eccentricity (from fixation) across all 4 experimental conditions. Nonetheless, despite a 
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large cortical separation, most participants experienced significant TAEs, where mean 

repulsion and conspicuousness was significant, thus showing that non-specific TAEs 

could not have been mediated by orientation selective neurons with larger receptive 

fields than those found in V1. 

 

A further possibility is that adaptation in one cortical level could have modulated 

activity of neurons in other cortical levels. For example, Xu et al. (2008) showed that 

adapting to a concave or a convex curve, a low-level feature, biased the perception of 

facial expressions of emotion, a higher-level feature. This shows that adaptation 

transfers between cortical levels, in this case in the form of feedforward propagation. 

With regard to orientation processing, Roach, Webb, and McGraw (2008) showed that 

adapting to concentric or radial patterns displaying global form caused TAEs, where the 

perceived orientation of subsequently presented gratings at unadapted locations (that 

matched empty regions of adapting patterns) was biased. These non-specific TAEs were 

not tuned to spatial frequency. It is believed that such TAEs are likely caused by higher-

level form processing mechanisms attempting to fill-in empty regions within global 

patterns by means of extrapolation, which in turn results in feedback-modulation of 

activity in orientation selective V1 neurons from which form processing regions pool 

information (Roach & Webb, 2013; Roach et al., 2008). However, when the adapting 

patterns did not contain a global structure (e.g., a large sinusoidal grating) no non-

specific TAE was observed. Therefore, it is unlikely that top-down feedback 

mechanisms from form processing regions account for non-specific TAEs reported here.        

 

On the other hand, Liu and Hou (2011) reported non-specific TAEs of the magnitude 1-

1.5°. They presented adaptors in one of the 4 quadrants of the screen at an eccentricity 

of 7° from fixation. Adaptors always had two oppositely oriented gratings (15° CCW 
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and 15° CW of vertical) superimposed and participants were asked to pay attention to 

one of them. The attended grating caused repulsive TAEs on vertical tests presented in 

unadapted quadrants at similar eccentricity. The size of these non-specific TAEs were 

unaffected by presenting adaptor and test in either the same or in different hemifields. 

Hence, for attention modulated TAEs, the cortical distance appears to be negligible. The 

authors attributed the TAEs to attentional modulation of neural activity within V1, a 

process that they believe is global (i.e., not restricted to the adapted cortical location). 

Moreover, attention is also found to result in motion after-effects that are spatially non-

specific, showing that attentional modulation can be generalised across many low-level 

features (Liu and Mance, 2011). With the current set of data, it is difficult to firmly 

attribute TAEs reported here to attentional modulation, given that attention was not 

manipulated. However, it still remains a plausible candidate given that no other stimuli 

competed for attention during adaptation.  

 

When participants adapt to low-level features like orientation, in addition to adapted 

neurons, it is possible that unadapted neurons (in distant cortical locations) with 

preferred orientations closer to the adaptor also change their response state. In support 

of this, a recent physiological study on cats’ striate neurons reported that adapting to 

oriented stimuli changes the orientation preferences of cortically distant unstimulated 

channels up to 15° away from the adapted site (Bachatene, Bharmauria, Cattan, Rouat, 

& Molotchnikoff, 2015). This is similar to the changes in orientation preference 

reported in orientation-adapted V1 channels (Dragoi et al., 2000; Jin et al., 2005). 

However, it is unclear how such distant modulations occur within V1. A possible 

mechanism may involve long-range horizontal connections within V1 that connect 

orientation columns of like orientation preference (Gilbert & Wiesel, 1979, 1989; Ts'o, 

Gilbert, & Wiesel, 1986; Weliky, Kandler, Fitzpatrick, & Katz, 1995). These extend 
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over several degrees of visual angle between cells with non-overlapping receptive fields 

(Livingstone & Hubel, 1984). However, this connectivity must be carefully examined 

by means of physiological measures in the context of TAEs to arrive at a valid 

conclusion about its role in non-specific TAEs.      

 

In summary, our results reveal some important characteristics of TAEs to local 

orientation with respect to positional selectivity. Although the origin of these non-

specific TAEs remains unclear, these findings provide useful guidance in interpreting 

after-effects to image uprightness in the next chapter.  
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3. Chapter 3 - Selective encoding of uprightness: Tilt after-effects to images of 

buildings 

3.1. Introduction 

 

The aim of this chapter is to examine the selectivity of our visual system to the global 

orientation (“uprightness”) of natural images which is suggested to correspond to the 

canonical representation of some categories of images that we hold in our long-term 

memory (Tarr & Pinker, 1989). Other images such as a ball do not have a clear upright 

posture. Although the representation of an image, and consequently the uprightness of 

it, is determined by the geometry formed by the local orientations present within it, 

uprightness of an image and the orientation of its local edges can be perceptually 

dissociated. For example, an image of a face or a bottle will have an upright percept in 

its canonical posture but will appear inverted when it is rotated 180° in the fronto-

parallel plane. However, the percept of a local edge in one of those images that is 

initially vertical will remain vertical even after rotating 180°. 

 

3.1.1. Uprightness versus subjective vertical 

 

Dyde, Jenkin, and Harris (2006) distinguished between uprightness and subjective 

vertical and measured uprightness using a letter naming task. The idea was that 

recognition of a letter depends on its orientation (e.g., when the letter ‘d’ is rotated 180° 

it becomes letter ‘p’). An index of uprightness was obtained by measuring the 

orientation at which participants were equally likely to judge the letter as a d or a p. 

Subjective vertical (SV) was measured by asking participants if a line stimulus was 

clockwise or counter-clockwise of vertical. An index of SV was obtained by measuring 

the orientation at which participants were equally likely to judge a line to be clockwise 
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or counter-clockwise. The authors found that uprightness and SV are perceptually 

distinct by showing that when participants laid right-side down (a body posture parallel 

to the ground surface), their SV judgements were biased towards gravity (perpendicular 

to the ground) and uprightness judgements were biased towards the axis of the body 

(parallel to the ground). They found gravity and body axis to differently affect 

uprightness and SV. Therefore, they suggested that uprightness is a unique perceptual 

property. 

 

3.1.2. Functional significance of uprightness 

 

Image uprightness is important for several reasons. Firstly, perceived global orientation 

of an image provides visual information about the direction of gravity, which in turn 

informs self-orientation relative to gravity. This is particularly relevant when gravity 

information provided by other sensory sources is discordant (Howard & Childerson, 

1994). Secondly, judgements of subjective visual vertical are affected by the 

uprightness of background images, which serve as a global frame of reference for 

perceptual judgements (Asch & Witkin, 1948; Haji-Khamneh & Harris, 2010). Finally, 

it has been reported that scene orientation affects how people deploy overt attention 

within a scene, where scene-centric directional asymmetries of eye movements always 

remain aligned with the orientation of the scene (Foulsham & Kingstone, 2010; 

Foulsham, Kingstone, & Underwood, 2008). 

 

Furthermore, image uprightness is crucial for the classification of many image types. 

Faces for example, are recognized more accurately when they are upright as opposed to 

when they deviate from upright (Hochberg & Galper, 1967; Yin, 1969). This also 

applies to other types of natural images.  Jolicoeur (1985) showed that when line 
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drawings of images (e.g., animals, furniture, vehicles) deviated from canonical upright 

postures, the time required to name images increased monotonically with increasing 

deviations within 120° from upright. Recently, Loschky, Ringer, Ellis, and Hansen 

(2015) studied the effect of uprightness on scene classification and found that 

classification accuracy reduced as scene orientations deviated from upright up until 

135°. One of the theories of image classification posits that we hold templates of images 

in our long-term memory, and we attempt to classify images in different orientations by 

means of mentally rotating these images via the shortest angular route to match 

canonical orientations (Jolicoeur, 1985; Jolicoeur & Milliken, 1989; Tarr & Pinker, 

1989). However, to be able to optimally perform mental rotation one should be aware of 

the image’s current state of uprightness. This suggests the need for a mechanism that 

encodes image uprightness and to date it is unclear if we possess one.  

 

In order to examine if we have a mechanism for scene uprightness, we will use 

adaptation to measure TAEs to “uprightness” of natural images. Recently, Dekel and 

Sagi (2015) demonstrated that, adapting to synthetic 1 𝑓2.5⁄  noise patterns and patches 

of unaltered natural images (e.g., animals, plants) with Fourier power distributions 

biased at 25° off vertical induced TAEs on vertical Gabor tests. In a similar vein, 

Goddard, Clifford, and Solomon (2008) demonstrated tilt illusions that mimic the 

classic angular function of TAEs using orientation filtered natural images as surround 

and test stimuli. Although these studies demonstrate that the characteristics of the 

classic TAE obtained with synthetic stimuli extend to natural / naturalistic stimuli, they 

can be accounted for exclusively by local orientations within the stimuli, and do not 

speak to uprightness per se.   
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Here we examine if we have a mechanism selective for uprightness, by studying TAEs 

to uprightness of natural images. Using after-effects, psychophysicists have inferred the 

existence of neural selectivity to a range of complex natural image attributes like the 

gender of a face (see section 1.2.4). However, it is possible that some of these after-

effects might be the result of adaptation in "low-level" visual mechanisms, tuned to 

stimulus values that have nothing to do with the complex property per se. For example, 

in the case of after-effects to face gender, if adapting to a thick, masculine eyebrow 

suppresses a few neurons that prefer (low spatial frequency) shapes like that, then a 

subsequently viewed, androgynous eyebrow (with a slightly higher spatial frequency) 

will appear much thinner, making a face it is on appear more feminine. Thus, inferring 

neural mechanisms from perceptual after-effects is not always as straightforward as one 

might hope.   

 

Inferring neural selectivity from psychophysics is complicated, not only because after-

effects can reflect adaptation by low-level mechanisms, but also because many 

conventional measurements of appearance are susceptible to contamination from non-

perceptual sources of bias (e.g., expectation effects and response biases; (Storrs, 2015)). 

In this study, we minimize the influence of low-level adaptation by presenting adaptor 

and tests in different regions of the visual field and / or different regions in frequency 

space. Adaptor and tests were separated in frequency space by filtering adaptors and 

tests to have different spatial frequency content or different orientation content. We 

minimize the influence of non-perceptual sources of bias by adopting the recently 

developed, two-alternative, forced-choice (2AFC) comparison-of-comparisons 

paradigm, with roving pedestals (Morgan et al., 2013; Yarrow, Martin, Di Costa, 

Solomon, & Arnold, 2016). 
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In Experiment 1 we confirm that the TAE for natural scenes can be obtained with 

different (and differently sized) adapting and test images, which are presented in a 

partially overlapping spatial configuration but share minimal spatial frequency 

components due to spatial frequency filtering. In Experiment 2, we examine whether the 

TAE for uprightness arises because of interactions between mechanisms selective for 

natural scenes, or whether it is simply a by-product of suppression between lower-level 

mechanisms. To disentangle these possibilities, we use orientation-filtered and phase-

scrambled stimuli. Vertically filtered images are designed to have a negligible effect on 

the responsivity of low-level mechanisms tuned to near-horizontal orientations. Phase-

scrambled stimuli are designed to have a similarly negligible effect on the responsivity 

of mechanisms selective for natural scenes. 

 

3.2. Methods 

 

Participants 

A total of 23 participants (18 – 46 years of age), each having a unique two-character set 

of initials (see figures 3.2 and 3.3), from Queen Mary University of London, with 

normal or corrected-to-normal visual acuity took part in the experiments. Procedures 

were approved by the Queen Mary University of London research ethics committee and 

written informed consent was obtained from all participants. The number of participants 

for each experimental condition was determined based on previous studies investigating 

higher-level visual after-effects, which involved from 5 to 10 participants per condition 

(Melcher, 2007; Roach et al., 2008; Xu et al., 2008). 

  

 

 



 81 

Experimental set-up and apparatus 

Participants were seated in a dark room, and were instructed to keep their head upright 

and maintain the same distance from the screen throughout the experiment. Stimuli 

were presented on a 20" Iiyama CRT monitor with a 1600 × 1200 screen resolution and 

a refresh rate of 60 Hz. The viewing distance was approximately 57 cm, such that each 

pixel subtended 1.5 arcminutes. A black mask with a circular aperture (diameter = 

24.5°) was overlaid on the monitor to eliminate the use of monitor edges as cues to 

vertical or horizontal. Stimulus presentation and data collection used Matlab 

(Mathworks) and Psychtoolbox (Brainard, 1997; Pelli, 1997).  

 

Stimuli 

Images of 5 different houses (Fig. 3.1B), in their frontal views, appearing to be at eye 

level from a standing position, were obtained from an archive of the Caltech 

Computational Vision Group (available online at 

http://www.vision.caltech.edu/archive.html). We used images of houses because: 1) 

scene orientation of man-made scenes is judged with better discrimination precision 

than non-man-made scenes (Haji-Khamneh & Harris, 2010) and 2) houses have a clear 

frontal facade and cover limited depth, resulting in minimal linear perspectives. The 

images were initially cropped to a square aspect ratio and then resized to 300 × 300 

pixels using bicubic interpolation. Cropped images were converted to grayscale by 

independently weighting and summing the red, green and blue channels of the image 

according to the CIE procedure (0.299 × R + 0.587 × G + 0.114 × B; Hughes et al., 

2013). These images were presented as adaptors within a hard-edged circular aperture 

(diameter = 7.5°; Fig. 3.1A). The test images were resized to 75% of the adaptor’s size 

and presented within a hard-edged window of diameter 5.7°.      

 



 82 

Images of houses were tilted and, in some cases, filtered. Filtering was a 7-step 

procedure. In step 1 the mean graylevel of a tilted image was subtracted, creating a 

difference image with no DC component. In step 2 this difference image was multiplied 

with a 2-dimensional, separable cosine window of the same size. In step 3 the 

windowed image was Fourier transformed (applying the cosine window before Fourier 

transformation helps to reduce wrap-around artefacts). In step 4 the transformed image 

was multiplied by one of the filters described below. In step 5 the product was inverse-

Fourier transformed. In step 6 the image was scaled such that adaptors would have a 

root mean square (RMS) contrast of 0.10 and tests would have an RMS contrast of 0.18. 

Finally, in step 7, a graylevel of 0.50 was added to each image. This matched the 

graylevel of the screen background. 

 

Procedure 

Trials were blocked by condition (there were three conditions in Experiment 1 and two 

conditions in Experiment 2) and adaptor orientation: either –15° or +15°. By 

convention, we consider tilts clockwise (CW) from vertical to be negative and tilts 

counter-clockwise (CCW) from vertical to be positive. Each condition in Experiment 1 

and 2 was also associated with a "baseline block" in which no adaptor was shown.  
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Figure 3.1. TAEs to uprightness methods: (A) Stimulus configuration and timeline of a 

sample trial from Experiment 1. (B) Five different house scenes used across the 

different conditions in the study. 

 

The general procedure is outlined in Fig. 3.1A. Participants were instructed to fixate a 

centrally presented white circle (diameter = 0.2°) for the duration of each block. All 

blocks (except baseline blocks) began with an initial adaptation phase of 20 s. 

Following this, each test trial started with a “top-up” adaptation phase of 5 s. During 

adaptation phases, the adaptor was jittered every 0.5 s by recentering it on a random 

pixel within a predefined jitter area of 0.25° × 0.25° surrounding fixation. Top-up 

adaptors were followed, after 0.25 s, by two test houses, presented immediately to the 

left and right of fixation, for 0.05 s. One of the test houses was the “pedestal,” with one 

of two fixed tilts: –3° or +3°. The other test was the “comparison,” with an offset added 

to the fixed tilt, randomly selected from the set {–15°, –12°, –9°, –6°, –3°, 0°, +3°, +6°, 

+9°, +12°, +15°}. Each combination of pedestal and comparison tilt was tested 10 

times, resulting in 220 trials per block. The spatial positions (left and right of fixation) 
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of the pedestal and comparison were randomized on every trial. Participants chose 

which of the two test houses appeared more upright, using keys "1" (for left) and "2" 

(for right). Participants were told that an upright house is how they would imagine it to 

appear, if they stood in front of it with their head held straight. 

 

As is evident from Fig. 3.1A, there was a small amount of spatial overlap between the 

adaptor and tests. However, the overlapping parts of the images were not the same (e.g., 

the right half of the adaptor overlapped with the left half of one test) and images were of 

different sizes to reduce retinotopic adaptation (Webster & MacLeod, 2011).  

 

Methods specific to Experiment 1 

In the same house condition image H1 was used for both adaptor and test stimuli. In the 

different house condition image H2 was the adaptor and image H3 was used for the tests 

(Fig. 3.1B). In the different SF house condition the adaptor and test stimuli were images 

of the same house, but filtered to separate them for their spatial frequency (SF) content 

(Fig. 3.2B). In this condition, three different house images were used (H2, H4 & H5; 

Fig. 3.1B). Two participants were tested with H2, two with H4 and two with H5.  

 

Log-normal filters were used for the different SF house condition. The filter used for 

adaptors had a peak SF of 10 cycles / degree. The filter used for the tests had a peak SF 

of 1.25 cycles / degree.  Both filters had a half-bandwidth at half-height of 1.5 octaves.  

 

Methods specific to Experiment 2 

All 10 participants participated in both the orthogonal house condition and the phase-

scrambled house condition. In both conditions adaptors were first tilted (either CW or 

CCW) and then filtered to retain Fourier amplitudes close to vertical orientations (Fig. 
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3.3). Tests were upright images of the same house, initially filtered horizontally and 

then tilted by different amounts in each trial, as in Experiment 1. Five participants were 

tested using H1; the other five were tested using H2. For each participant, the adapting 

and test stimuli were differently filtered versions of the same house image. In the 

orientation domain, each filter was a Gaussian function of angle, centred on 0° (for the 

vertically filtered adaptors) or 90° (for the horizontally filtered tests); with a half-

bandwidth at half-height of 23.5° and was clipped at ± 40° from the peak, resulting in 

zero gain at orientations beyond the clip. In the phase-scrambled condition, tilted 

adaptors were phase-scrambled prior to orientation filtering, by adding the Fourier 

phase spectrum of a unique white noise pattern (having the same dimensions as the 

image and with a uniform distribution of pixel intensities ranging from 0 to 1) to the 

phase spectrum of the image. The amplitude spectra and RMS contrast of adaptors in 

the phase-scrambled house condition matched the amplitude spectra and RMS contrast 

of adaptors in the orthogonal house condition. Identical (unscrambled), horizontally 

filtered, tilted tests were used in both conditions.  

 

Psychophysical model 

Data were analysed within the context of signal-detection theory, as described by 

Morgan et al. (2015). Within this model, the appearances of pedestal (S) and 

comparison (C) are normally distributed, i.e., 𝑆 ~ 𝛮(𝑝 + 𝜇, 𝜎2/2) and 𝐶 ~ 𝛮(𝑝 + 𝜇 +

𝑡, 𝜎2/2), where 𝜎2 is the variance of the performance-limiting noise, p is the pedestal 

tilt, t is the offset added to the comparison, and 𝜇 is the perceptual bias specific to each 

test block. If there were no perceptual bias, then the distributions for pedestal and 

comparison would have means of p and p + t respectively. The participant chooses the 

pedestal as closer to upright when it appears less tilted than the comparison. 

Accordingly, the probability of this choice 𝑃("𝑆") =  𝑃(|𝑆| < |𝐶|) = 𝑃(𝑆2/𝐶2 < 1), 
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has a doubly non-central F distribution. This distribution's denominator's noncentrality 

parameter is 2(𝑝 + 𝜇 + 𝑡)2 / 𝜎2, its numerator's noncentrality parameter is 2(𝑝 + 𝜇)2 /

 𝜎2, and both denominator and numerator have 1 degree of freedom. 

 

 

Figure 3.2. (A) Maximum likelihood estimates of perceptual bias for baseline (brown), 

CW (green) and CCW (blue) blocks from the same house, different house and different 

SF house conditions in Experiment 1. Error bars are bootstrapped 95% confidence 
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intervals. Single asterisks (*) denote after-effects significant at the 𝛼 = 0.05 level for 

repulsion. Double asterisks (**) denote after-effects also significant at the 𝛼 = 0.001 

level for repulsion. (B) Examples of adaptors and test stimuli used in each of the 

conditions tested (where necessary, contrast has been amplified for visibility). 

 

 

Figure 3.3. Maximum likelihood estimates of perceptual bias for baseline (brown), CW 

(green) and CCW (blue) blocks from (A) the orthogonal house and (B) the phase-

scrambled house conditions in Experiment 2. Error bars are bootstrapped 95% 

confidence intervals. Single asterisks (*) denote after-effects significant at the 𝛼 = 0.05 

level for repulsion. Double asterisks (**) denote after-effects also significant at the 𝛼 = 

0.001 level for repulsion. Examples of CW-tilted adaptors with untilted test stimuli used 

in each condition are illustrated to the right. The image number used for each participant 

is given below their initials.  
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3.3. Results 

 

From each block of trials (baseline, CCW and CW), we obtained maximum-likelihood 

estimates of bias 𝜇 and the variance of performance-limiting noise 𝜎2
. Negative biases 

with CCW adaptors and positive biases with CW adaptors are indicative of the repulsive 

TAE. Non-parametric bootstrapping (with bias-correction (Efron and Tibshirani, 1994)) 

was used to quantify the reliability of parameter estimates. The error bars shown in 

figures 3.2 and 3.3 contain the resultant 95% confidence intervals.  

 

We also fit each participant's data from CCW-adaptor and CW-adaptor blocks 

simultaneously, forcing the bias parameter 𝜇 to be the same in both cases, but allowing 

𝜎 to vary. The ratio L, between the likelihood of this nested model fit and the joint 

likelihood of the aforementioned separate fits to the same data is necessarily no greater 

than 1. To evaluate the "null" hypothesis of no significant TAE in individual 

participants, we compare the criteria 𝛼 = 0.05 and 𝛼 = 0.001 to the value 1 – F(–2 ln L), 

where F is the cumulative chi-square distribution, with 1 degree of freedom. This is 

known as the generalized likelihood-ratio test (see Mood, Graybill & Boes, 1974, 

p.440–441). 

 

To evaluate null hypotheses at the group level, we performed two-tailed one-sample t-

tests using estimates of repulsion, which can be quantified either in degrees of tilt or in 

terms of the "just-noticeable difference" (JND). A single value for repulsion, in degrees 

of tilt, can be obtained by subtracting one maximum-likelihood estimate of 𝜇 (the one 

obtained with CCW adaptors) from the complimentary estimate (obtained with CW 

adaptors), and dividing the difference by 2. The "conspicuousness" of repulsion can be 

quantified by further dividing this quotient by the JND. For the latter, we use the root-
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mean-square of the maximum-likelihood estimates of 𝜎. Results of the group-level t-

tests appear in tables 3.1 and 3.2. 

 

Table 3.1. Group level statistics for repulsion in Experiment 1 and 2 

  Repulsion (R)  
 

Condition N 
mean 

R (°) 

t -

statistic 

(R > 0) 

p -

value 

Cohen’s 

d 

paired t 

-

statistic 

p -

value 

Cohen’s 

d 

E
x
p
er

im
en

t 
1

 Same 

house 
7 1.13 2.25 0.066* 0.85 

   

Different 

house 
6 1.31 3.62 0.015 1.48 

   

Different 

SF house 
6 1.31 4.90 0.004 2.00 

   

E
x
p
er

im
en

t 
2

 Orthogonal 

house 
10 0.65 4.11 0.003 1.30 

2.42 0.039 1.16 
Phase-

scrambled  
10 0.20 2.68 0.025 0.85 

house 

 

        

Notes: N denotes the number of observers in each condition. The asterisk (*) denotes 

that the p value was approaching significance. Removing observer IM from analysis 

makes the p = 0.002. All t-tests are two-tailed. 
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Table 3.2. Group level statistics for conspicuousness in Experiment 1 and 2  

  Conspicuousness (CI)  

 

Condition N 

mean 

CI 

(JND) 

t -

statistic 

(CI > 

0) 

p -

value 

Cohen’s 

d 

paired t 

-

statistic 

p -

value 

Cohen’s 

d 
E

x
p
er

im
en

t 
1

 Same 

house 
7 0.26 2.42 0.052* 0.91 

   

Different 

house 
6 0.27 4.24 0.008 1.73 

   

Different 

SF house 
6 0.33 5.84 0.002 2.38 

   

E
x
p
er

im
en

t 
2

 Orthogonal 

house 
10 0.21 4.36 0.002 1.38 

2.88 0.018 1.30 
Phase-

scrambled  
10 0.06 2.45 0.037 0.77 

house 

 

        

Notes: N denotes the number of observers in each condition. The asterisk (*) denotes 

that the p value was approaching significance. Removing observer IM from analysis 

makes the p = 0.003. All t-tests are two-tailed. 

 

Experiment 1 

Estimates of bias (𝜇) from Experiment 1 are plotted in Fig. 3.2A. For the majority of 

participants, adaptation to a house tilted 15° (CCW of upright) produced a negative bias 

(relative to the baseline’s bias) in subsequently viewed test houses, and adaptation to a 

house tilted –15° produced a positive bias. Generalized likelihood ratio tests suggest 

after-effects significant at the 𝛼 = 0.05 level for repulsion in the data from 5 of the 7 

participants in the same house condition, 5 of the 6 participants in the different house 

condition, and all 6 of the 6 participants in the different SF house condition. Group-level 

statistics appear in tables 3.1 and 3.2. 

  

Experiment 2 

Estimates of bias from Experiment 2 are plotted in Fig. 3.3. Generalized likelihood ratio 

tests suggest after-effects significant at the 𝛼 = 0.05 level for repulsion in the data from 

8 of the 10 participants in the orthogonal house condition and none of the (same) 10 
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participants in the phase-scrambled house condition. Group-level statistics appear in 

tables 3.1 and 3.2. At the group level, both conditions produced mean repulsion and 

conspicuousness significantly larger than zero. However, a comparison using a paired-

samples t-test between the means of the two conditions revealed that the orthogonal 

house condition produced a significantly larger repulsion compared to the phase-

scrambled house condition (tables 3.1 & 3.2).     

 

3.4. Discussion 

 

Results reported in Experiment 1 demonstrate that the TAE for natural images (houses) 

can be obtained with partially overlapping, yet different (and differently sized) adapting 

and test images, widely separated in spatial frequency content. Similar results have been 

obtained with sinusoidal gratings (in chapter 2 and also by others such as Melcher, 

2007; Liu and Hou, 2011) and with circular / radial patterns (Roach et al., 2008). When 

after-effects survive manipulations of image, size and spatial frequency, their origin 

cannot be attributed to low-level visual mechanisms (Webster & MacLeod, 2011). 

Experiment 1’s results extend Dekel & Sagi’s (2015) findings of TAEs with natural 

images as adaptors and sinusoidal gratings as tests, by showing that adaptation to global 

orientation can occur between adaptors and tests that are natural images. However, it is 

unclear from Experiment 1 whether the TAE for natural images arises because of 

interactions between high-level mechanisms selective for natural images, or whether it 

is simply a by-product of suppression between mid-level mechanisms, selective for 

spatial orientation in general.  

 

To distinguish between these alternatives, in Experiment 2, we applied perpendicular 

filters to the stimuli, widely separating the orientation contents of adaptor and tests. The 



 92 

finding of a repulsive TAE in this condition qualitatively differs from the assimilative 

"indirect effect" found when retinally overlapping lines or gratings are separated 

between 60° and 87.5° (Gibson & Radner, 1937). We attribute this repulsion to the 

images' recognisability as slightly tilted scenes, rather than their Fourier image 

components. In support of this viewpoint, we found no after-effect at the individual 

participant level when the Fourier phases of the adaptors were scrambled. However, the 

group level analyses did reveal a relatively small but significant TAE (tables 3.1 & 3.2), 

with phase-scrambled adaptors. This must be attributed to Fourier image components. A 

possible reason for this is that since man-made images are usually dominated by 

cardinal orientations, a sense of global tilt is still apparent in the images even after 

randomizing Fourier phase information (see figure 3.3B, where randomized images 

might appear tilted CW).  

 

The most interesting finding is that vertically filtered houses induce repulsive TAEs on 

horizontally filtered houses. These TAEs were not only evident in most participants, but 

they were also much larger than the TAEs from phase-scrambled adaptors at the group 

level. Comparing this with non-specific adaptation to meaningless gratings reported in 

chapter 1, when adaptor and test gratings were orthogonal, it did not produce any TAE. 

Although the orientation-filtered houses are not as easily recognizable as their unfiltered 

counterparts, they possess clear higher-order structure, which is lacking in the phase-

scrambled versions used for adaptation. Textures with similar higher-order 

(meaningless) structure are also more effective than phase-scrambled scenes as 

backward masks of 'scene gist' (Loschky, Hansen, Sethi, & Pydimarri, 2010). This 

suggests that textures with higher-order structure are fundamentally different from 

phase-randomized stimuli with similar orientation statistics.  Nonetheless, the after-

effect of adapting to tilted buildings is different from the after-effect elicited by the 
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perception of a global form contained in meaningless textures. Whereas Experiment 2 

showed that the former can survive large differences between the orientation contents of 

adaptor and test, the latter cannot (Roach et al., 2008).  

 

This chapter’s results are unique in the literature on the appearance of uprightness, 

because they show that the global orientation of a scene can be encoded separately from 

its local feature content. It is assumed that information about image orientation is 

embedded in the early global percept of image layout, a property which is rapidly 

extracted when looking at a meaningful image like a scene (Foulsham & Kingstone, 

2010; Greene & Oliva, 2010). Based on this assumption, at present, we can only 

speculate regarding where selectivity for the orientation of natural images arises in the 

brain. One possible candidate is the Parahippocampal Place Area, which is thought to 

encode scene layout rather than object content and shows greater sensitivity to images 

of buildings like houses as opposed to other objects like faces (Epstein & Kanwisher, 

1998). In support of this, such scene selective regions are known to respond equally to 

scenes containing only close-to-vertical or close-to-horizontal orientations (Watson, 

Hymers, Hartley, & Andrews, 2016), akin to the stimuli we used here. Different local 

feature content can therefore lead to the encoding of similar global spatial layout in 

scenes, which presumably is what led to a repulsive TAE from vertically filtered 

adaptors on horizontally filtered tests.  

 

As noted in chapter 2, the TAE is routinely invoked as a manifestation of the mutual 

inhibition between visual mechanisms selective for orientation. Consequently, the 

natural conclusion to draw from the results is that there must be mechanisms selective 

for the orientations of images with meaningful, higher-order structure. Of course, we 

cannot say whether those mechanisms are mutually inhibitory, or whether the TAE for 
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natural scenes should be attributed to their modulation of lower-level mechanisms. 

Indeed, other authors have invoked pre-saccadic remapping in space (Melcher, 2007), 

top-down modulation of low-level feature detectors through feedback from form 

processing regions (Roach et al., 2008) and selective attention (Liu and Hou, 2011) in 

attempts to explain how the TAE can survive the spatial separation of adaptor and tests. 

  

One further possibility is normalization. Extensive real-world experience with close-to-

upright scenes (canonical orientation) may have resulted in the establishment of 

uprightness as a norm against which other orientations are compared. Exposure to tilted 

scenes may simply shift the subjective norm of uprightness towards the tilted direction, 

which then results in an objectively upright scene seen as tilted away. Indeed, Asch and 

Witkin (1948) report that tilted scenes eventually appear upright over extended viewing, 

implying normalizing towards uprightness. 
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4. Chapter 4 – Orientation sensitivity during image classification 

4.1. Introduction 

Perception of a natural image necessarily involves encoding of (some of) its low-level 

structures that vary in contrast, orientation and spatial frequency (SF). Consequently, it 

is imperative to understand to what extent our perception or identification of faces, 

objects and scenes is dependent on the low-level information contained within these 

images. This can be examined from two perspectives. Firstly, we can ask to what extent 

invariable higher-level representations can be achieved despite variability in the types 

and amounts of low-level information present in an image, such as when an image is 

partially degraded or filtered. Secondly, we can ask to what extent higher-level 

representations are influenced by non-uniformities in how the brain encodes low-level 

features and by non-uniformities in the distribution of low-level features present in the 

environment. These two sources of non-uniformity are linked; it is believed that the 

visual system has evolved to efficiently capture information from our environment, and 

this results in non-uniformities in how the visual system encodes this environmental 

information (Simoncelli & Olshausen, 2001). 

 

4.1.1. Image classification as a tool to study higher-level representations 

 

Studying categorical perception of natural images, either psychophysically or 

physiologically, is one way to answer the aforementioned questions. Consider the set of 

images shown in Fig. 4.1a. Images with obvious large variability in their low-level 

structures can be classified as belonging to the same category (e.g., “a forest”), yet 

small variations in structures between images can lead to distinct categorical percepts 

(e.g., “a pool” and “a bay”; Fig. 4.1b). Despite such differences underlying perception, 
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humans are remarkable in accurately classifying images, typically within the first 200 

ms of seeing the image (Kirchner & Thorpe, 2006; Potter & Levy, 1969; Seeck et al., 

1997; Thorpe et al., 1996). It has also been shown that we can rapidly classify images 

even in the near-absence of attention (Fei-Fei, VanRullen, Koch, & Perona, 2005; Li, 

VanRullen, Koch, & Perona, 2002). Given that such a complicated task can be achieved 

within a short period, this allows researchers to uncover the extent to which image 

classification relies on encoding low-level features, by systematically manipulating the 

low-level information in an image and measuring rapid classification performance. 

 

Figure 4.1. Variabilities between images and semantic categorisation: a) Large 

variabilities in local structures between two images can lead to the same categorical 

percept. Both images would be classified as a “forest”. b) Small variabilities in local 

structures can lead to different categorical percepts of the two images as “a pool” (left) 

and “a bay” (right). 
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4.1.2. Robustness of image classification to manipulated low-level information 

 

Image classification generally survives large manipulations in an image’s low-level 

information. Broadly speaking, the “inverse problem” discussed in section 1.3.1 is a 

clear example of this. We can assign the same categorical label to images that produce 

different 2D retinal images as a result of changes in scale (e.g., image size changes with 

increasing depth), lighting conditions, and changes in observer’s viewpoint (DiCarlo et 

al., 2012). Interestingly, we can also recognize newly learnt objects from different 

viewpoints, showing that viewpoint invariance is not simply achieved by matching 

different retinal images to image templates we might hold in our memory (Biederman & 

Bar, 1999). Therefore, irrespective of our experience, many different low-level 

representations can trigger a categorical percept.  

 

More specific examples of image classification also provide evidence to support the 

robustness of categorical perception despite alterations to low-level information. For 

instance, it is believed that classifying an image as a face as opposed to a non-face 

depends more on the configuration or the arrangement of its low-level features, than the 

precise nature of these features (Tsao & Livingstone, 2008). Two findings support this. 

Firstly, even though all low-level information is preserved in an image, when the top 

and bottom halves of faces are misaligned, our ability to discriminate faces is impaired 

(Young, Hellawell, & Hay, 2013). Secondly, an image can be classified as a face even 

with very limited low-level information as long as the (face) specific configuration 

between the low level features is maintained. For example, a circle, two dots, a vertical 

line and a curved line do not convey any meaning on their own. However, they can be 

arranged in a specific manner to elicit not just the percept of a face, but also its 
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emotional state (smiling or sad). Churches, Nicholls, Thiessen, Kohler, and Keage 

(2014) showed using electrophysiological recordings that emoticons conveying an 

emotional expression (e.g., “:-)”), are processed in a similar manner to real faces in the 

brain, recruiting the same cortical sites that encode facial configuration. Further, Xu et 

al. (2008) showed that adaptation after-effects of facial expression (e.g., happy or sad) 

can be obtained from adapting to smiley faces as well as to photographs of real faces. 

Therefore, a simple edge-representation of an emoticon can sometimes be comparable 

to a real photograph of a face that is rich in many surface properties like shading and 

texture.    

 

The robustness of categorical percepts to limited low-level information also applies to 

other natural images like objects and scenes. For example, Biederman and Ju (1988) 

showed that people classified images of commonly encountered objects (e.g., chair, 

telephone) with similar speed and accuracy when they were either line drawings or 

actual photographs. With respect to scenes, Walther et al. (2011) showed that scene 

category can be successfully decoded from brain activations in scene selective regions 

in response to both line drawings and normal photographs. In summary, the findings 

discussed in this section reveal that higher-level representations underlying accurate 

image categorisation can occur despite large manipulations in the low-level information 

typically present in a real-world image. 

  

4.1.3. Preferential encoding of low-level features in artificial stimuli 

 

At the earliest stages of our visual system, neurons are selective to the SF and 

orientation of edges (see section 1.1.4). However, these neurons do not encode all 
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feature values uniformly which might cause us to be more sensitive to some feature 

values more than others. In humans, non-uniformities in sensitivity have been examined 

in psychophysics by measuring contrast sensitivity to artificial stimuli like sinusoidal 

gratings that vary in SF and/or orientation. Contrast sensitivity for gratings is usually 

measured by obtaining the reciprocal of the minimum Michelson contrast required for 

the viewer to detect the presence of a grating, where the Michelson contrast of a grating 

is defined as 𝐶𝑀 =  𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛 2𝐿̅⁄ . Here 𝐶𝑀 denotes the Michelson contrast, 𝐿𝑚𝑎𝑥 

denotes the maximum luminance of the stimulus, 𝐿𝑚𝑖𝑛 denotes the minimum luminance 

and 𝐿̅ denotes the mean luminance.  

 

Campbell and Robson (1968) found that Michelson contrast sensitivity was highest for 

gratings with a SF of 4 cycles / degree (cpd). Sensitivity decreased monotonically as the 

SF increased or decreased from the optimal frequency of 4 cpd. This dependence of 

contrast sensitivity on SF, commonly known as the “contrast sensitivity function” 

(CSF), maintains the same pattern irrespective of the orientation of the grating; vertical, 

horizontal and 45° or 135° clockwise of vertical (Campbell, Kulikowski, & Levinson, 

1966). Although the shape of the CSF remains similar, absolute values of sensitivity 

also depend on the orientation of the grating. Campbell et al. (1966) showed that, for a 

grating with a SF of 25 cpd, contrast sensitivity is best at cardinal (vertical and 

horizontal) orientations and decreases with increasing deviation from cardinal 

orientations, with the lowest sensitivity reported for inter-cardinal (45° and 135° 

clockwise of vertical) orientations. However, increased sensitivity to cardinals is 

negligible when the SF is near or less than the optimal SF and is only present at SFs 

higher than the optimal SF; the higher the SF the larger the cardinal advantage (Berkley, 

Kitterle, & Watkins, 1975; Campbell et al., 1966; Freeman & Thibos, 1975). In support 

of this, Li et al. (2003) found that, in the cat’s striate cortex, there are more high SF 
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neurons tuned to cardinal orientations, and that they also have narrower orientation 

tuning widths, than low SF tuned neurons that generally display no orientation 

anisotropies.  

Increased contrast sensitivity to cardinal orientations above the optimal SF is one 

example of the “oblique effect” proposed by Appelle (1972) where detection is in many 

cases found to be superior for cardinally compared to inter-cardinally oriented stimuli. 

Another example of the oblique effect is that our ability to discriminate the orientations 

of two stimuli is better near cardinal orientations, requiring a relatively smaller 

orientation difference between the two stimuli, compared to when stimuli are oriented 

near the inter-cardinal axes (Caelli, Brettel, Rentschler, & Hilz, 1983; Girshick et al., 

2011).  

 

4.1.4. Preferential encoding of low-level features in naturalistic stimuli 

 

Much of our understanding of the early visual system is derived from experiments using 

stimuli such as gratings, where results are sometimes generalised to more complex, 

ecologically relevant stimuli. However, this approach has been challenged by recent 

inconsistencies with findings obtained using more naturalistic stimuli (Felsen & Dan, 

2005; Olshausen & Field, 2005; Rust & Movshon, 2005). For example, some of the 

previously discussed studies, measuring contrast sensitivity to gratings of different 

orientations and SFs, assumed that perceived contrast correlates with the physical 

(Michelson) contrast of the stimulus. Indeed in early cortical regions (V1, V2 and V3) 

there is a strong association between a grating’s Michelson contrast, its perceived 

contrast and fMRI BOLD amplitudes (Boynton, Demb, Glover, & Heeger, 1999; 

Campbell & Kulikowski, 1972). However, Michelson contrast is not a good predictor of 

perceived contrast for complex stimuli with a broader band of orientations and/or SFs 
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(Bex & Makous, 2002; Meese, Baker, & Summers, 2017). Bex and Makous (2002) 

showed that contrast detection thresholds to natural images were best predicted by root-

mean-squared (RMS) contrast of the stimulus, rather than its Michelson contrast. 

Further, Olman, Ugurbil, Schrater, and Kersten (2004) showed that BOLD responses in 

V1 are proportional to the RMS contrast of natural images when they contained their 

unaltered amplitude spectrum, compared to when they had an amplitude spectrum that 

is uniform across all SFs. Natural images typically contain a characteristic 1 𝑓𝛼⁄  

amplitude spectrum, displaying greater power at low SFs and decreasing power with 

increasing SF (Van der Schaaf & van Hateren, 1996), where 𝛼, the slope of a power 

against SF plot can range between 0.6 and 1.6 (Hansen, Haun, & Essock, 2008). Olman 

et al.’s (2004) findings suggest that this characteristic strongly determines the BOLD 

response patterns in V1.    

 

Some studies have also challenged findings regarding the early visual system’s 

anisotropic sensitivity to low-level features like spatial frequency and orientation, 

obtained using simple stimuli. Bex, Solomon, and Dakin (2009) showed that contrast 

sensitivity to structures of different spatial frequencies embedded in natural images 

could not be predicted by the CSF obtained with gratings presented in backgrounds of 

uniform luminance. Because of the broadband nature of natural images, interactions 

between different spatial frequency channels resulted in sensitivity that was 

disproportionately suppressed at the lower than the higher spatial frequencies. They also 

proposed that the CSF obtained with natural images can be partly attributed to the 1 𝑓𝛼⁄  

characteristic of natural scenes and partly to the density of edges surrounding the target 

structure to be detected. Moreover, Tadmor and Tolhurst (1994) conducted an 

experiment where participants discriminated between two natural images that varied in 

the slope of the amplitude spectrum but were otherwise identical in total power. They 
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found that, discrimination threshold was highest for slope values typical of natural 

scenes. They interpreted this as evidence for a visual system that is optimised to encode 

naturally occurring amplitude spectra, by having stronger tolerance to variations near 

the optimal slope.  

Regarding orientation, the oblique effect reported with narrowband stimuli does not 

hold for stimuli resembling naturally encountered (broadband) images. Essock, DeFord, 

Hansen, and Sinai (2003) showed that when participants had to detect increments of 

spectral amplitude at specific orientations within broadband noise patterns, sensitivity 

was highest for inter-cardinal orientations, with relatively reduced sensitivity to vertical 

orientations. They found that sensitivity was lowest for horizontal orientations, a 

finding they called the “horizontal effect”. Even with the use of natural images with an 

amplitude spectrum roughly isotropic for orientation, the horizontal effect occurs 

(Hansen & Essock, 2004). Natural scenes, both carpentered (man-made) and 

uncarpentered (natural), typically display an anisotropic power spectrum with greater 

power near cardinal than inter-cardinal orientations (Switkes, Mayer, & Sloan, 1978). It 

has also been reported that there is higher spectral power near horizontal orientations 

than near vertical orientations in most natural scenes (Baddeley & Hancock, 1991; 

Hansen & Essock, 2004). Hansen et al. (2008) proposed that the horizontal effect is a 

result of early cortical regions optimized to encode orientations that are generally 

lacking in natural scenes, the inter-cardinals. They showed that a model of divisive 

contrast normalization in V1 could account for both an oblique effect with narrowband 

stimuli and a horizontal effect with broadband stimuli. This is essentially based on a 

physiological over-representation of cardinal orientations in V1, with more, and more 

narrowly tuned neurons encoding cardinals (Furmanski & Engel, 2000; Li et al. 2003). 

An over-representation, coupled with a normalizing mechanism produces BOLD 
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responses in V1 that mimic the psychophysical horizontal effect (Mannion, McDonald, 

& Clifford, 2010).  

 

Collectively, the studies discussed in this section reveal that responsivity of the early 

visual system is different to natural and artificial stimuli. More importantly, this 

difference highlights that the visual system is optimized to encode low-level 

information typically present or sometimes lacking in natural scenes. 

 

4.1.5. Do some orientations facilitate image classification? 

 

During natural image perception, there is preferential encoding for specific edge 

orientations. For example, it has been demonstrated that performance in either the 

identification of familiar faces or discriminating between unfamiliar faces is 

significantly better when faces retain close to horizontal structures as opposed to 

structures close to any other orientations including vertical or inter-cardinal (Dakin & 

Watt, 2009; Goffaux & Dakin, 2010). This horizontal advantage cannot be attributed to 

increased sensitivity to cardinal orientations for two reasons: 1) identification 

performance is worse for faces retaining vertical as compared to inter-cardinal 

structures (Dakin & Watt, 2009) and 2) only faces retaining horizontal information 

preserve the face inversion effect, where face discrimination performance is poorer for 

inverted compared to upright faces (Goffaux & Dakin, 2010). Notably, the face 

inversion effect is generally used to indicate the involvement of special face-specific 

mechanisms in classification, because inverting faces disproportionately impairs their 

classification as compared to other types of objects (Valentine, 1988). However, this 

horizontal advantage for faces is not the result of increased sensitivity to horizontal 

orientations per se. Structures near the horizontal band are more informative during face 
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perception because of a characteristic arrangement of horizontal structures uniquely 

present in faces compared to other natural images. Dakin and Watt (2009) defined this 

arrangement of horizontal structures as “bar-codes” of faces and showed that these bar 

codes are tolerant to many everyday transformations of faces we experience such as 

changes in pose, viewpoint and illumination.        

Anisotropic sensitivity to orientations has also been reported for natural images other 

than faces. Recently, Nasr and Tootell (2012) found stronger BOLD responses in the 

Parahippocampal Place Area (PPA) (a brain region that selectively encodes natural 

scenes, as opposed to faces or other artificial stimuli (Epstein & Kanwisher, 1998)), in 

response to cardinal orientations in natural scenes as opposed to inter-cardinal 

orientations. They interpreted this as evidence that areas processing natural images 

exploit our knowledge of the orientation statistics in the environment, specifically the 

dominance of cardinal orientations. However, their difference in BOLD response was 

not unique to natural image stimuli. Even meaningless stimuli made of geometrical 

structures such as lines elicited this effect. Therefore, it is unclear if higher-level 

mechanisms prioritise cardinal information during natural image perception per se, by 

increasing sensitivity to cardinal orientations.  

 

To our knowledge, no previous study has directly examined if humans prioritise 

cardinal orientations during the classification of natural scenes, by increasing the visual 

system’s sensitivity to cardinals. Given that the natural images we experience are 

typically dominated by cardinal structures (Coppola, Purves, McCoy, & Purves, 1998; 

Switkes et al., 1978), it might be advantageous for image classifying mechanisms to 

prioritise this information. Accordingly, we measured RMS contrast thresholds required 

for participants to correctly classify scenes as either outdoor or indoor. Ideally this 
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would involve measuring contrast thresholds for scenes retaining near-cardinal 

orientations only and compare it to thresholds obtained with scenes retaining near-inter-

cardinal orientations only. However, given the anisotropic distribution of orientations 

typically present in scenes, if an increased threshold for inter-cardinally filtered images 

is obtained, that could be due to the lack of structure near inter-cardinals. Therefore, we 

filtered images cardinally and measured thresholds while the scene is upright and tilted 

45° clockwise. The latter would provide thresholds for scenes with inter-cardinals only, 

but any difference in thresholds would also be contaminated by tilting the image. To 

disentangle differences in thresholds purely due to the presence of different orientations 

from differences that arise due to tilting, we also quantified the effect of tilting alone by 

measuring thresholds for unfiltered images that are upright and tilted. A difference in 

threshold over and above differences arising due to filtering and/or tilting can be 

attributed to a difference in sensitivity.                 

 

A further obstacle is that according to “Bloch’s law”, contrast detection thresholds for 

simple stimuli are inversely proportional to the stimulus duration when stimuli are 

presented for short durations (Gorea, 2015). At longer stimulus durations (greater than 

100ms), temporal summation ceases and contrast thresholds only depend on luminance 

(Barlow, 1958; Kelly & Savoie, 1978; Roufs, 1974). This suggest that measuring 

contrast thresholds for stimulus durations less than 100 ms could encompass differences 

due to differences in our ability to detect specific orientations and differences in 

temporal summation of specific orientations. For example, in the pathway between the 

retina and V1, macaque physiology shows that V1 receives connections from the 

magnocellular pathway that carries low SF information around 20 ms earlier than from 

the parvocellular pathway that carries high SF information (Nowak, Munk, Girard, & 

Bullier, 1995). Breitmeyer (1975) showed that when viewers had to detect the presence 
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of vertically oriented gratings having a range of SFs from 0.5 - 11 cpd, response 

latencies increased with increasing SF. This pattern survived even after matching 

gratings of different SFs for subjective contrast. Although Li et al. (2003) did not find a 

difference in response latency of V1 simple cells to gratings of different orientations, it 

would not completely discount the possibility that response latencies would not differ 

when measured with oriented structures from natural images, because V1 behaves 

differently to artificial narrowband and natural (or naturalistic) broadband stimuli (Bex 

et al., 2009; Hansen et al., 2008). For these reasons, we measured thresholds for stimuli 

presented at durations above 100 ms and further increased their processing time by 

adding an interval between the offset of a stimulus and the onset of a backward mask 

that ceases stimulus processing. Moreover, we also presented stimuli at two different 

durations to examine if any differences found in thresholds simply represent participants 

requiring longer durations to classify filtered and/or tilted images.           

 

4.2. General Methods 

 

Participants 

We performed an image classification experiment at two durations: a short duration 

(Exp 1) and a longer duration (Exp 2). We recruited thirteen participants for each 

experiment and one participant (MS) did both. In Experiment 3 (Exp 3), we measured 

detection thresholds in four participants. Observer IM and AV participated in both Exp 

2 and Exp 3. Experimental protocols were approved by the Ethics committee of Queen 

Mary University of London and all participants provided informed consent.  
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Apparatus 

Participants were seated in a dimly lit room. Stimuli were presented using Psychtoolbox 

(Brainard, 1997; Pelli, 1997) and custom-written scripts for Matlab (Mathworks) on a 

16" Dell CRT monitor with a screen resolution of 1024 × 768 and a refresh rate of 60 

Hz. Display luminance was linearized to a pseudo 12-bit accuracy with an ISR video 

attenuator (Pelli & Zhang, 1991). Mean display luminance was set to 50 cd/m
2
. A 

chinrest placed 57 cm in front of the screen was used to maintain observers’ head 

upright and a constant viewing distance at which each pixel subtended 1.8 arcmin. 

 

4.2.1. Methods specific to Experiments 1 and 2 - classification threshold 

 

Stimuli 

525 indoor and 525 outdoor scenes were collected from the SUN database (Xiao, Hays, 

Ehinger, Oliva, & Torralba, 2010). As shown in Fig. 4.2a, the indoor scenes included 

images belonging to a range of indoor environments including offices, bedrooms, 

airports, auditoriums, living rooms and restaurants. The outdoor scenes comprised of 

castles, places of worship, fuel stations, houses, and commercial buildings (Fig. 4.2a). 

The images were altered from their originals in the following manner. Firstly, all images 

were converted to grayscale by computing the weighted sum of red, green and blue 

channels of an image (0.299𝑅 +  0.587𝐺 + 0.114𝐵; Hughes et al., 2013). Secondly, all 

images were cropped to a square of side length 300 pixels. Thirdly, a 2-dimensional, 

circularly symmetric, raised cosine window was applied to each image (Eq. 4.1).  

 

𝑊𝑥,𝑦 = (0.5 + 0.5𝑐𝑜𝑠 (
𝑟𝑥,𝑦𝜋

𝑅
))

𝑝

 (4.1) 
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where 𝑊 is the window, 𝑟 is the distance of each pixel from the centre of a 2-

dimensional array whose column and row numbers are denoted by 𝑥 and 𝑦, 

respectively, 𝑅 is the radius of the window (150 pixels) and 𝑝 is the power to which the 

cosine function is raised (0.5).  

 

As suggested by Van der Schaaf and van Hateren (1996), the window was applied after 

subtracting the weighted mean intensity from the image and normalizing it as in Eq. 4.2.                

 

𝐶𝑥,𝑦 =  (
𝐼𝑥,𝑦 −  𝜇

𝜇
) 𝑊𝑥,𝑦 (4.2) 

Where 𝐶𝑥,𝑦 is the windowed image, 𝜇 =  ∑ (𝐼𝑥,𝑦 −  𝑊𝑥,𝑦)𝑥,𝑦 ∑ 𝑊𝑥,𝑦𝑥,𝑦⁄ , 𝐼𝑥,𝑦 is the image 

to be windowed and 𝑊𝑥,𝑦 is the cosine window. 𝑥 and 𝑦 denote the column and row 

number of pixels, respectively. 

 

In some cases (see procedure), the images were filtered with a cardinal orientation filter 

created using two wrapped Gaussian functions in the frequency domain. Each Gaussian 

function had a half-width at half-height of 14.7° and was clipped to have zero gain 

beyond ±30° from its peak. One of the Gaussians peaked at 0° (horizontal) and the other 

peaked at 90° (vertical). To filter an image, its amplitude spectrum was obtained by 

Fourier transformation and was then multiplied by the cardinal orientation filter. The 

product of the two was combined with the image’s original phase spectrum to obtain the 

filtered image by inverse Fourier transforming.       
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In all cases the image presented as a test stimulus was windowed (either unfiltered or 

orientation filtered), and was assigned a specific RMS contrast (see procedure). Since 

images were in the range -1 to 1, with a mean of 0, the assigned RMS contrast was 

equal to the standard deviation of pixel intensities. For every test image, a unique 

backward mask was created by phase-scrambling a different image from the same 

category. This was achieved by adding the Fourier phase spectrum of a unique white 

noise pattern (having the same dimensions as the image and with a uniform distribution 

of pixel intensities ranging from 0 to 1) to the phase spectrum of an image. The RMS 

contrast of the backwards mask was always yoked to that of the test image. Finally, both 

the test and mask were scaled to have a pixel intensity range of 0 - 255, with a mean 

pixel intensity of 127.5.  
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Figure 4.2. Orientation sensitivity during image classification methods: a) A 

representative selection of images obtained for each image category. b) Example stimuli 

used in the 4 different conditions (‘UU’ - unfiltered upright, ‘UT’ - unfiltered tilted, 

‘FU’ - filtered upright and ‘FT’ - filtered tilted). c) Timeline of a trial in Experiments 1 

and 2.   
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Procedure 

Four conditions were tested in both experiments. In the first two conditions, test images 

were unfiltered and were presented either in an upright orientation (UU) or tilted 45° 

clockwise in the fronto-parallel plane (UT). In the other two conditions, orientation 

filtered images were presented as tests, in either an upright orientation (FU) or tilted 45° 

clockwise (FT). In each trial, a test stimulus was created by taking an image from one of 

the two image categories, indoor and outdoor, and was given an RMS contrast that was 

pseudo-randomly picked from a set of 11 possible values {0.005, 0.014, 0.023, 0.033, 

0.042, 0.051, 0.060, 0.098, 0.0135, 0.0173, 0.210}.   

 

In each condition, each combination of image category and RMS contrast was repeated 

10 times. This resulted in a total of 880 trials per experiment (4 conditions × 2 

categories × 11 RMS contrasts × 10 repeats). As shown in Fig. 4.2c, an experimental 

trial began with a white central fixation circle (diameter = 0.3°) presented on a uniform 

grey background for 1 s. Subsequently, a unique test stimulus, selected randomly from 

one of the two categories and at one of the contrast levels, was presented followed by a 

phase-scrambled mask. Both test and mask were presented within a hard-edged circular 

window of diameter 9.4° (300 pixels). In the short experiment, the test was shown for 

0.133 s and the mask was shown for 0.266 s. In the long experiment, the test was shown 

for 0.266 s and the mask for 0.532 s. In both experiments, there was an inter-stimulus 

interval (ISI) of 0.5 s that displayed a uniform grey screen. After the offset of the mask, 

participants were prompted with a ‘RESPOND’ text in the screen and they indicated the 

category of the test stimulus they saw by pressing one of two keys, ‘1’ for outdoor and 

‘2’ for indoor. 
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4.2.2. Methods specific to Experiment 3 - detection threshold 

 

Stimuli 

All test stimuli and masks were created in the same way as in Experiment 1 and 2. 

However, test stimuli were always orientation filtered. 

 

Procedure 

I varied the RMS contrast and the tilt of a test stimulus to measure the minimum RMS 

contrast required for a participant to detect the presence of an upright and 45° test. In 

each trial a unique image was randomly selected from one of the two categories, such 

that in half the trials the test depicted an indoor scene while in the other half the test 

depicted an outdoor scene. As in Experiments 1 and 2, for each test, a unique image 

from the same category was selected to create the backward mask. Once images for the 

test and mask were selected, both were assigned an RMS contrast of one of 11 possible 

values {2.00, 2.57, 3.31, 4.27, 5.49, 7.07, 9.10, 11.72, 15.09, 19.42, 25} × 10
-3

 and was 

presented either upright or tilted 45° clockwise. Each combination of image category, 

RMS contrast and image orientation was repeated 5 times. Therefore, an experimental 

block contained a total of 220 trials (2 categories × 11 contrasts × 2 orientations).    

 

Figure 4.3 shows the timeline for a trial. Each trial consisted of two stimulus intervals 

and the interval in which the test stimulus is presented was randomized across trials. In 

half the trials, the first interval contained the test and began with an auditory beep 

played for 0.2 s followed by a black fixation circle (diameter = 0.3°) presented in the 

centre of the screen on a uniform grey background for 1 s. Subsequently, the test image 

was shown for 0.133 s in the screen centre followed by a uniform grey screen presented 
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for 0.5 s. The first interval ended with a mask presented for 0.266 s. The second interval 

began with an auditory beep played for 0.2 s followed by a white fixation circle 

(diameter 0.3°) presented for 1 s. Following fixation, a grey screen was shown for 0.633 

s and the second interval ended with a 0.266 s presentation of the same mask used in the 

first interval. In the other half of the trials, the test was shown in the second interval, 

following a similar procedure and timeline as described above. At the end of the second 

interval, the participant viewed a ‘RESPOND’ text on the screen and judged which 

interval contained the test stimulus by pressing ‘1’ for the first and ‘2’ for the second 

interval.  

 

 

Figure. 4.3. Timeline of a trial in Experiment 3 measuring detection thresholds, in 

which the test image was presented in the first interval.   
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4.3. Results 

4.3.1. Experiment 1 and 2 - classification threshold 

 

The proportion of correct classification of the test stimulus was plotted against the RMS 

contrast for each experiment, each condition and each participant separately. By fitting 

a Weibull function to this data using the Psignifit 4 toolbox (Schütt, Harmeling, Macke, 

& Wichmann, 2016), we obtained maximum likelihood estimates of the threshold (63% 

of the unscaled sigmoid) which corresponds to the point of inflection (Fig. 4.4a). The 

threshold was used as an estimate for the minimum RMS contrast required to reliably 

classify a scene. For each condition and duration, mean estimates of thresholds across 

participants are given in Fig. 4.4b.  A full-factorial mixed-subjects analysis of variance 

(ANOVA) was performed on the estimated thresholds, with image orientation (upright 

and 45° clockwise) and filtering (unfiltered and filtered) as within-subjects factors and 

stimulus presentation duration (short and long) as a between-subjects factor.   

 

There was no main effect of duration, F(1,22) = 1.71, p = 0.205, revealing that 

presentation duration did not affect the estimated thresholds. There was a main effect of 

image orientation F(1,22) = 32.73, p < 0.001. This shows that, in general, thresholds for 

tilted images were higher than thresholds for upright images. There was also a main 

effect of filtering, showing that filtered images had higher thresholds than unfiltered 

images, F(1,22) = 29.19, p < 0.001. Inspecting the two-way interactions, we found no 

interaction between orientation and duration F(1,22) = 0.92, p = 0.348, or between 

filtering and duration, F(1,22) = 1.36, p = 0.256. However, there was a significant 

interaction between orientation and filtering, F(1,22) = 28.56, p < 0.001. This 

interaction was further analysed by paired samples t-tests. For both short and long 

durations, when the images were unfiltered, there was no significant difference in the 
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thresholds between upright and tilted images; short: t(11) = -1.48, p = 0.167 and long: 

t(11) = -0.19, p = 0.854. However, when the images were filtered, there was a 

significant difference in threshold between upright and tilted images, for both durations; 

short: t(11) = -4.55, p = 0.001 and long: t(11) = -3.45, p = 0.006. These p-values are 

significant after Bonferroni corrections too (p < 0.05 / 4). The three-way interaction 

between duration, orientation and filtering was not significant, F(1,22) = 0.00, p = 

0.722. 
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Figure 4.4. Orientation sensitivity during image classification results: a) Sample 

psychometric functions from participant IM for each condition from the long 

experiment. Data points plot the proportion of correct classification as a function of 

RMS contrast and black curves are best-fitting Weibull functions. Blue vertical lines 

denote the maximum likelihood estimates of threshold. b) Bar plots showing mean 

threshold across participants for each condition in the short (left) and long (right) 

experiments. Error bars denote 95% confidence intervals obtained from parametric 

bootstrapping.     
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4.3.2. Experiment 3 - detection threshold 

 

After pooling trials from both image categories, the proportion of choosing the correct 

interval with the test was plotted as a function of the RMS contrast of the test, for each 

image orientation and each participant, separately. Each data point would contain 

responses from 10 trials. By fitting a Weibull function to these data using the Psignifit 4 

toolbox (Schütt et al., 2016), we obtained maximum likelihood estimates of 63% 

threshold (of unscaled sigmoid) for each image orientation. This threshold denoted the 

minimum RMS contrast required to reliably detect the presence of a scene retaining 

specific orientations only. Table 4.1 provides individual and mean estimates of 

threshold across observers for upright and 45° clockwise tilted images. 

 

Table 4.1. Individual and mean detection thresholds for upright and 45° clockwise tilted 

images.  

Participant Upright Tilted 45° clockwise 

 Individual Mean Individual Mean 

AM 0.004 

0.009 

0.005 

0.008 
IM 0.009 0.007 

DA 0.009 0.007 

AV 0.012 0.012 
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4.4. Discussion 

 

Experiments 1 and 2 revealed three major results. Firstly, contrast thresholds increased 

when scenes were tilted 45° away from an upright position, irrespective of whether they 

retained all or a limited band of orientations, and irrespective of their presentation 

duration. This shows that scene classification is disrupted when scenes do not appear in 

their canonical orientations. This supports the findings of Loschky, Ringer, Ellis, and 

Hansen (2015) who showed that the accuracy of scene classification decreases 

monotonically with increasing tilt in the fronto-parallel plane up to 135° away from 

upright. Therefore, when we classify natural scenes within a single fixation, the global 

orientation of the scene appears to play a crucial role. This would suggest that a 

mechanism that is selectively encoding the global orientation or the uprightness of a 

scene may also contribute to mechanisms encoding scene category.        

 

Secondly, we find that filtering images to retain near-cardinal structures alone increased 

contrast thresholds, irrespective of the presentation duration and the tilt of images. This 

might appear unsurprising given that filtered images retained limited structural 

information compared to unfiltered images. Although thresholds increased, these 

findings also show that orientation-filtered scenes did not eliminate participant’s ability 

to classify scenes. Scenes were reliably classified 63% above chance with limited 

structural information present, irrespective of whether they were presented upright or 

tilted. Notably, the cardinal orientation filter used here removed structures within a 60° 

band. However, this could be because carpentered scenes like the ones used here are 

generally dominated by near-cardinal structures (Coppola et al., 1998; Switkes et al., 

1978), and these structures which are possibly diagnostic of the image’s category are 

preserved by the filter used here. It is unclear how current findings would generalise to 
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uncarpentered images, but Goffaux and Dakin (2010) found that people could reliably 

discriminate between natural scenes (that included some uncarpentered images), when 

they were filtered to retain near vertical, near horizontal or both near-vertical and near-

horizontal orientations only. Notably, they also used Gaussian filters with similar 

bandwidths to those used here.   

 

Some recent theories of rapid scene classification propose that people utilise properties 

of the power spectrum that represents the spatial distribution of edges of different 

orientations and spatial frequencies. This spectral analysis would allow a viewer to 

obtain a rapid representation of a scene’s layout and therefore facilitate scene 

classification (Brady et al., 2017; Greene & Oliva, 2010). Here we show that the whole 

spectrum need not be visible for people to reliably classify scenes. With higher image 

contrasts people could reliably classify orientation-filtered images irrespective of 

whether they were upright or tilted. It is possible that an analysis of the power spectrum 

within a diagnostic band of orientations is sufficient for classification since carpentered 

images like the ones used here contain most of their spectral power near their cardinal 

orientations. In support of this, Walther et al. (2011) examined the effect of removing 

contours on classification performance and found that removing long contours impaired 

classification performance more than removing short contours. They concluded that 

scene classification survives removal of short contours because long contours are 

diagnostic of a scene’s spatial layout that is essential for rapid scene classification. 

Therefore, in the current study, classifying carpentered scenes may have survived 

removing inter-cardinal structures because cardinal structures carry the diagnostic 

information.          

  



 120 

Thirdly, here we find that when images were both filtered and tilted, the increase in 

threshold is more than would be predicted by the combined effects of filtering and 

tilting. This suggests that, during image classification, people have difficulty in utilising 

orientation information presented near the inter-cardinal axes with reference to a 

gravitational or an egocentric (head-centric or body-centric) reference frame. The 

critical spatial frame of reference can only be deduced by manipulating the head and/or 

body orientation of the participant, which is a possible thought for future experiments. 

Nonetheless, the current findings show that when near-cardinal structures of an image 

are aligned with the gravitational / egocentric cardinal axes, the image requires 

relatively lower RMS contrast than when the same structures are aligned with the 

gravitational / egocentric inter-cardinal axes. Further, the difficulty in utilising 

orientations near the inter-cardinal axes remained across both stimulus durations tested, 

showing that the difference in thresholds cannot be attributed to scene classifying 

mechanisms requiring longer durations to classify scenes that contain limited structural 

information and/or tilted from canonical orientations.    

 

It is possible that the current findings reveal non-uniformities in orientation sensitivity 

in the early visual system, specifically in V1. Increased RMS contrast thresholds to 

detect inter-cardinal orientations could therefore propagate to influence processing in 

subsequent scene classifying higher-level regions that receive information from regions 

like V1. However, it has been shown that non-uniformities in contrast sensitivities to 

different orientations and spatial frequencies are not maintained for suprathreshold 

stimuli (Georgeson & Sullivan, 1975; Zemon, Conte, & Camisa, 1993). In Experiment 

3, we found that the mean threshold for detecting oriented structures near-cardinal and 

near-inter-cardinal axes are 0.009 and 0.008, respectively. These values are 2.88 

(cardinal) and 3.09 (inter-cardinal) times lower than the minimum mean classification 
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thresholds reported for any condition in Experiment 1 and 2. Given that contrast 

thresholds for classification were approximately 3 times above detection thresholds, it is 

unlikely that non-uniformities in contrast sensitivity in early cortical neurons influenced 

higher-level scene classification.  

 

Another reason why the differences in classification thresholds reported here are 

probably not simply propagating effects from V1 is that the change in magnitude of the 

cortical response to stimuli of increasing suprathreshold contrasts in V1 is not 

proportional to changes in cortical responses in higher-level areas. For instance, Avidan 

et al. (2002) showed that, although BOLD responses in early cortical regions like V1, 

V2 and V4 of humans show an increase in their BOLD response for suprathreshold 

contrasts, the lateral occipital complex (LOC) which is involved in object classification 

did not show any such increase. In fact, the LOC’s BOLD response was saturated at 

threshold. However, we cannot completely rule-out the possibility that these results 

reflect propagative effects for two reasons. Firstly, contrast sensitivity has not been 

examined in scene selective regions like the PPA yet. Secondly, non-uniformities in 

sensitivity to different orientations are also reported in higher-level regions like the 

Middle Temporal area (Mannion et al., 2010; Shen, Tao, Zhang, Smith, & Chino, 2014; 

Xu, Collins, Khaytin, Kaas, & Casagrande, 2006). Therefore, the effect could have 

propagated from intermediate regions that then feed into scene classifying regions.  

 

Alternatively, the current findings could be attributed to an increased sensitivity of 

scene classifying brain regions to orientations near the cardinal axes. In fact, Nasr and 

Tootell’s (2012) finding that the PPA responds strongly to cardinal orientations 

supports this claim. There are also other studies which have shown that BOLD 
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responses in PPA are stronger to indoor scenes having relatively more cardinal 

orientations than to outdoor scenes (Bar & Aminoff, 2003; Henderson, Larson, & Zhu, 

2007). However, since Nasr and Tootell (2012) also found stronger PPA activation to 

meaningless stimuli with cardinal orientations, it was unclear to what extent sensitivity 

to orientations in the PPA is specific to classification per se. The current findings 

strongly suggest that increased sensitivity to cardinal orientations play a significant role 

in facilitating scene classification. By drawing parallels between orientation statistics of 

the environment and perceptual performance, it has been shown how low-level feature 

encoding mechanisms efficiently capture non-uniformities in the distribution of 

orientations in the environment (Girshick et al., 2011; Hansen et al., 2008; Tomassini et 

al., 2010). Our findings suggest that, in addition to affecting initial low-level encoding 

of spatial structure, environmental non-uniformities may also influence classification 

mechanisms to optimally capture dominant orientation structures in the environment.  
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5. Chapter 5 - A bias for carpentered images in classification 

 

 

5.1. Introduction 

 

Chapter 4 addressed the influence of low-level features on image classification. 

Although the percept of any image arises from an analysis of low-level information, the 

final percept is not solely determined by this low-level information. For example, our 

knowledge or expectations about the environment can strongly modify perception 

(section 1.3). These expectations may have an evolutionary origin leading to permanent 

changes in the visual system, may develop with years of living in a specific type of 

environment or could also be learnt in an experimental setting causing temporary 

changes in the visual system’s functioning (Geisler & Diehl, 2003; Geisler & Kersten, 

2002; Girshick et al., 2011; Körding & Wolpert, 2004). Using artificial stimuli, it has 

been shown that the perception of simple features like orientation or motion direction, 

and more complex features like shape from shading are found to be influenced by prior 

expectations about the occurrence of these features in the environment (Girshick et al., 

2011; Stocker & Simoncelli, 2006; Sun & Perona, 1998; Tomassini et al., 2010). 

Generally, our perception of these features is biased towards most frequently 

encountered features in the environment. 

 

We can manipulate stimuli such as Gabors or dot patterns to vary along a single feature 

dimension like orientation or motion direction, and then measure perceptual biases that 

are specific to the manipulated feature. Similarly, we can also manipulate naturalistic 

complex stimuli (e.g., faces) along a single continuum (e.g., gender) and measure biases 

specific to this manipulated feature based on people’s classification of stimuli. 

Accordingly, a few studies have examined how our perception of complex image 

properties is influenced by expectations. Biases have been reported for properties like 



 124 

gaze direction and gender of images depicting faces or bodies (Armann & Bulthoff, 

2012; Mareschal et al., 2013; Troje et al., 2006; Watson, Otsuka & Clifford, 2016).  

 

Here, we were interested in examining (a) whether people have perceptual biases for 

meaningful everyday scenes, and (b) whether these biases result from processes 

encoding more simple, lower level properties (such as orientation mentioned above). To 

this end, in Experiment 1, we used a novel, highly versatile method of creating “hybrid” 

images that allows us to measure biases for complex categorical attributes of natural 

images while controlling for the visibility of the separate components making-up the 

hybrid, bypassing confounds that may arise due to differences in sensitivity to low-level 

visual features (e.g., orientation and spatial frequency). To examine if differences in 

sensitivity to structural features can account for categorical biases, we conducted 

Experiment 2 to measure minimum root mean square (RMS) contrast required for 

participants to detect structures that can be used to classify images from each category.         

 

We investigated whether living in highly carpentered/constructed environments may 

have altered human perception. We predicted that, our frequent exposure to carpentered 

images would bias classification of ambiguous hybrids as carpentered rather than 

uncarpentered (natural). The ambiguous stimuli described below aren’t merely 

ambiguous with respect to orientation content; they are hybrids, whose component 

images come from two of four different categories, namely “animal”, “flower”, “house” 

and “vehicle”. The purpose of using these ambiguous hybrids was to maximise the size 

of the perceptual bias since perceptual biases generally arise when stimuli are highly 

ambiguous (section 1.3.2). Participants were instructed to report the category of the 

perceptually dominant component of a series of hybrid images. Their responses proved 

to be biased toward “house” and “vehicle,” categories containing predominantly 
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cardinal (vertical and horizontal) image structure, even when those orientations were 

filtered out of the component images. This strongly suggests that the carpentered bias is 

not the result of the dominance of cardinal structure in carpentered images. Thus, to pre-

empt our results, our participants seem to harbour priors favouring the type of images 

most often seen in their urban environments.  

 

5.2. General Methods 

 

All experimental procedures were approved by the Ethics committee of Queen Mary 

University of London (QMUL). All participants were members of QMUL and had 

normal or corrected-to-normal visual acuity. They provided informed consent to 

participate. All participants have lived in cities with exposure to abundant constructed 

environments, for at least 10 years prior to the experiment.  

 

Participants were seated in a dimly lit room. A chinrest helped participants to maintain a 

distance of 0.57 m from the 16" Dell CRT monitor upon which the stimuli were 

presented. At this distance, each of the screen’s 1024 × 768 pixels subtended 1.8 

minutes of visual angle. The monitor’s refresh rate was 60 Hz. Experimental programs 

were written in Matlab, using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).  

 

5.2.1. Experiment 1: filtered hybrids 

 

Participants 

Ten participants (3 males; all naïve except AM and IM) took part. This sample size was 

calculated using a power analysis performed using the G*Power software (Faul, 

Erdfelder, Lang, & Buchner, 2007), based on the results of a pilot experiment 
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measuring classification biases for hybrids containing image components that are 

unfiltered for orientation content. According to the pilot’s results, a minimum of 8 

observers were required to detect a classification bias significantly different from zero, 

while achieving a statistical power of 80%, a value recommended by Cohen (1992). 

   

Stimuli 

From an initial pool of 500 images obtained from the ImageNet database (Deng et al., 

2009), we created a 100-image set “C,” within which each image was unambiguously 

recognizable as an animal after application of the cardinal filter described below. Next, 

we created a 100-image set “I,” within which each image was unambiguously 

recognizable as an animal after application of the intercardinal filter
2
. Some images 

appeared in both sets. Finally, this process was repeated, creating a set C and a set I for 

flowers, houses, and vehicles. Example images from all four categories appear in Fig. 

5.1.  

                                                           
2
 This was the image selection procedure. Each of the 500 images from each category (animal, flower, 

house and vehicle; 2000 images in total) was windowed, filtered with a cardinal filter and was presented 
to participant AM for an unlimited duration, in a random order. Participant AM judged if each image 
was unambiguously recognizable as an animal, flower, house or vehicle. From the correctly recognized 
set of images, the first 100 were chosen to create set C for each category. The same procedure was 
repeated to obtain images for set I, with the exception that instead of a cardinal filter, an intercardinal 
filter was applied before presenting the image.          
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Figure 5.1. Sample images from each category used in filtered hybrids experiment 

(Experiment 1). 

 

Hybrids were created using a 7-step procedure (steps 3 to 7 are shown in Fig. 5.3a). In 

step 1, we randomly selected component images from sets C and I in two of the four 

available categories (e.g., house from set C and flower from set I, as in Fig. 5.3a). In 

step 2, each component was converted to grayscale by computing the weighted sum of 

red, green and blue channels of an image (0.299𝑅 +  0.587𝐺 + 0.114𝐵; Hughes et al., 

2013). To minimize wrap-around artefacts during Fourier transformation, pixel 

intensities of each component were multiplied by a 2-dimensional, circularly 

symmetric, raised cosine window in step 4 (Eq. 5.1). The window has maximum weight 

in the centre and decreases to zero towards the boundaries of the image. Prior to 

applying the window (i.e., in step 3), as suggested by van der Schaaf and van Hateren 

(1996), the weighted mean graylevel was subtracted from each pixel (to prevent leakage 
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in spectral information from the DC coefficient) and normalized, so that each windowed 

component would have zero mean intensity (Eq. 5.2).  

 

𝑊𝑥,𝑦 = (0.5 + 0.5𝑐𝑜𝑠 (
𝑟𝑥,𝑦𝜋

𝑅
))

𝑝

 (5.1) 

where 𝑊 is the window, 𝑟 is the distance of each pixel from the centre of a 2-

dimensional array whose column and row numbers are denoted by 𝑥 and 𝑦, 

respectively, 𝑅 is the radius of the window (150 pixels) and 𝑝 is the power to which the 

cosine function is raised (0.5).  

 

𝐶𝑥,𝑦 =  (
𝐼𝑥,𝑦 −  𝜇

𝜇
) 𝑊𝑥,𝑦 (5.2) 

Where 𝐶𝑥,𝑦 is the windowed image, 𝜇 =  ∑ (𝐼𝑥,𝑦 −  𝑊𝑥,𝑦)𝑥,𝑦 ∑ 𝑊𝑥,𝑦𝑥,𝑦⁄ , 𝐼𝑥,𝑦 is the image 

to be windowed and 𝑊𝑥,𝑦 is the cosine window. 𝑥 and 𝑦 denote the column and row 

number of pixels, respectively.     

 

In step 5, the C and I components were filtered to retain near-cardinal (horizontal and 

vertical) and near-intercardinal (45° and 135° clockwise of horizontal) orientations, by 

multiplying their amplitude spectra with cardinal and intercardinal filters, respectively. 

The cardinal filter’s pass-band was the sum of two wrapped Gaussian functions; one 

peaking at 0° (horizontal) and the other peaking at 90° (vertical). Each Gaussian had a 

half-width at half height of 23.6°. The intercardinal filter was rotated 45° but otherwise 

identical to that of the cardinal filter.  
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Figure 5.2. Mean orientation anisotropy and mean loss ratio for images: a) Mean 

orientation anisotropy (left) and mean loss ratio (right) for images in each category (A - 

animal, F - flower, H - houses, V - vehicle) of set C. b) Mean orientation anisotropy 

(left) and mean loss ratio (right) for images in each category (A - animal, F - flower, H - 

houses, V - vehicle) of set I.   

 

To quantify the orientation ‘anisotropy’ in images, we obtained the log-ratio of total 

power (integral of power spectrum) after filtering each image cardinally and 

intercardinally: 𝐴 =  ln(𝑃𝐶 − 𝑃𝐼), where 𝐴 is the anisotropy, 𝑃𝐶 is the total power after 

cardinal filtering and 𝑃𝐼 is the total power after intercardinal filtering. A positive value 

represents anisotropy, where there is relatively greater power at near-cardinal than near-

intercardinal orientations. Fig 5.2 plots the mean anisotropy across all images from each 

category (animal, flower, house and vehicle) and each set (C and I). In both sets, houses 

and vehicles had higher anisotropy while animals and flowers had lower anisotropy. To 
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quantify how much spectral power is lost in images following orientation filtering, we 

also calculated the ‘spectral loss’, by obtaining the log-ratio of total power between an 

unfiltered image and a cardinally filtered image (for set C images), or between an 

unfiltered image and an intercardinally filtered image (for set I images): 

𝑆 =  ln(𝑃𝐵 − 𝑃𝐴),  where 𝑆 is the spectral loss, 𝑃𝐵 is the total power before filtering and 

𝑃𝐴 is the total power after filtering. A positive spectral loss value indicates a reduction 

in power after filtering. Mean spectral loss across all images from each category and 

each set are plotted in Fig. 5.2. Cardinal filtering (that attenuates intercardinal 

orientations) of set C images led to a relatively greater loss of power in animals and 

flowers, whereas intercardinal filtering (that attenuates cardinal orientations) of set I 

images resulted in a greater loss of power in houses and vehicles.           

 

In step 6, we uniformly adjusted (reduced or elevated) the amplitude of each 

component’s spatial frequency content, so that the two components would have the 

desired sum (fixed at 1.33 ×  108) and ratio (an independent variable) of notionally 

visible energies. Notionally visible energy (hereafter “visible energy”) is defined as the 

dot product between an orientation-filtered image’s power spectrum and a “window of 

visibility” that we created, based on Watson and Ahumada (2005). The ‘window of 

visibility’ (WV) was the product of two 2-dimensional filters that were the same size as 

the amplitude spectrum of a component. The first was a 'contrast sensitivity filter' 

(CSF), whose gain—a truncated log-parabola of spatial frequency (as suggested 

byLesmes, Lu, Baek, & Albright, 2010; Eq. 5.3.)—was independent of orientation. 

Three out of four parameters of the truncated log-parabola 

(𝑓𝑚𝑎𝑥 = 3.5 cycles per degree, 𝛽 = 3.4 octaves and 𝛿 = 0.3 decimal log units 

below 𝛾𝑚𝑎𝑥) were those best-fitting the ModelFest dataset (Watson and Ahumada, 

2005). The parameter which represents the peak sensitivity (𝛾𝑚𝑎𝑥) was set at 1.  
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The CSF takes the form: 

𝑆′(𝑓) = log10 𝛾𝑚𝑎𝑥 − 𝐾 (
log10(𝑓) − log10(𝑓𝑚𝑎𝑥)

𝛽′ 2⁄
)

2

, 

𝑆(𝑓)  = {
𝑆′(𝑓), 𝑓 ≥ 𝑓𝑚𝑎𝑥                                  

log10 𝛾𝑚𝑎𝑥 − 𝛿 , 𝑓 < 𝑓𝑚𝑎𝑥  𝑎𝑛𝑑 𝑆′(𝑓) < log10 𝛾𝑚𝑎𝑥 − 𝛿
} 

 

 

(S3) 

 

where 𝛾𝑚𝑎𝑥is the peak sensitivity, 𝑓 is the spatial frequency, 𝑓𝑚𝑎𝑥 is the peak spatial 

frequency, 𝛽′ =  log10 𝛽 and 𝛽 is the full-bandwidth at half-height (in octaves), 𝛿 is the 

truncated sensitivity at low spatial frequencies and 𝐾 is a constant (𝐾 =  log10 2). 𝑆(𝑓) 

and 𝑆′(𝑓) define sensitivity with and without truncation respectively.     

 

The second filter was an 'Oblique Effect filter' (OEF), which models contrast sensitivity 

as a function of grating orientation and was dependent on spatial frequency (Eq. 5.4; see 

Watson and Ahumada, 2005).  

 

The OEF takes the form: 

𝑆(𝑓, 𝜃)  = {
1 − (1 −  𝑒(−

𝑓−𝛾
𝜆

)) 𝑠𝑖𝑛2(2𝜃), 𝑓 >  𝛾 

                                                 1,        𝑓 ≤  𝛾
} 

 

(S4) 

 

 

where 𝑆(𝑓, 𝜃) defines sensitivity (maximum gain = 1), 𝑓 is the spatial frequency, 𝛾 is 

the spatial frequency at which sensitivity starts to decline (3.48 cycles per degree), 𝜆 is 

the slope of decline in sensitivity (13.57 cycles per degree) and 𝜃 is the orientation.   

 

Combining the CSF with OEF gives the WV, a non-separable filter which models 

contrast sensitivity as a function of both spatial frequency and orientation of a stimulus. 

When two hybrid components have equal visible energy (i.e., at a log-ratio of 0), we can 

assume that the two are equated for low-level visibility, since the WV gives an index of 
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effective contrast after taking into account non-uniformities in contrast sensitivity to 

structures of different orientations and spatial frequencies.  

 

In step 7, the filtered, scaled components were back-transformed and combined by 

adding pixel intensities to create a hybrid. Pixels beyond or below the interval of 

achievable graylevels were given the maximum or minimum value (i.e., 255 or 0). 

Although this pixel clipping occurred in 40% of our images, this never affected more 

than 0.42% of the pixels in the hybrids. 

 

We also created a unique mask for every hybrid image by phase-scrambling the hybrid. 

This was achieved by adding the phase spectrum of a white noise pattern (300 × 300 

pixels with a uniform distribution of pixel intensities between 0 and 1) to the phase 

spectrum of a hybrid. A unique white noise pattern was generated for each hybrid we 

created.     
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Figure 5.3. Filtered hybrids experiment methods:  a) Steps involved in creating a hybrid 

from two sample grayscale images passed through steps 1 and 2. The house depicted 

here is the cardinal component and the flower depicts the intercardinal component. b) 

An example range of hybrid images with different log-ratios (to the left) of visible 

energy between each hybrid’s cardinally and intercadinally filtered components. c) 

Timeline of a trial from filtered hybrids experiment.        
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Procedure 

There were 8 different conditions, characterized by either the cardinal or the 

intercardinal component of the hybrid. In 4 conditions, we fixed the cardinal 

component’s category as the animal (CA), flower (CF), house (CH), or vehicle (CV), 

with the intercardinal component randomly chosen from the remaining 3 categories. In 

the remaining 4 conditions, we fixed the intercardinal component to be the animal (IA), 

flower (IF), house (IH), or vehicle (IV), and the cardinal component was randomly 

chosen from the 3 remaining categories. 

 

Within each condition the log ratio between visible energies of (cardinal and 

intercardinal) components was selected at random (without replacement) from the set 

containing 8 copies of these 11 values: {-3.66, –2.20, –1.39, –0.41, –0.20, 0, +0.20, 

+0.41, +1.39, +2.20, +3.66}. The 8 different conditions were randomly interleaved 

within each 704-trial session. In every trial, the participant’s task was to report the 

category of the hybrid’s most visible component. 

 

The experimental procedure is shown in Fig. 5.3c. Each trial began with the 

presentation of a white fixation dot (0.3° diameter) centred on a uniform gray 

background for 1.00 s. This was followed by a hybrid image that was shown for 0.10 s, 

immediately followed by a mask for 0.20 s. Hybrid and mask were presented in the 

centre of the screen within a hard-edged circular window (9.4° diameter). After the 

mask, 4 circular labels (3.8° diameter) of each image category appeared, and the 

participant responded using one of four keys (‘4 – top left’, ‘5 – top right’, ‘1 – bottom 

left’, ‘2 – bottom right’), which mapped to the screen position of the category label. The 

position of a given category listed in one of the 4 labels was randomized on every trial.  
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5.2.2. Experiment 2: detection  

 

Participants 

Five participants took part (2 females; all naïve except AM and IM). Three of these 

participants also took part in Experiment 1. This sample size exceeds that of other 

studies in which detection thresholds were measured with natural images (Bex & 

Makous, 2002; Bex et al., 2009). 

  

Stimuli 

The image set was expanded to include 555 images per category. Each target and non-

target was based on one of these images. To create a target, we started with a Gaussian 

white-noise pattern of the same size as any image (300 × 300 pixels), having an RMS 

contrast of 10.00 × 10
-2

. Secondly, an image was randomly chosen from one of four 

available categories (e.g., house) and a circularly symmetric raised cosine window was 

applied as in Experiment 1. The noise’s amplitude spectrum was replaced with the 

image’s amplitude spectrum. Finally, the noise and the image were combined (by 

adding pixel intensities) to create a target stimulus (Fig. 5.4). The non-target was 

created in a similar manner except that the image was phase-scrambled before 

combining with the noise (Fig. 5.4) to preserve the Fourier energy distribution of the 

image while distorting the higher-order structure.  

 

Procedure                       

In each trial, we varied the image category used to create target and non-target stimuli 

and randomly selected two unique images from the same image category. One of the 

two unique images was superimposed on noise to create the target stimulus and the 

other was phase-scrambled and superimposed on noise to create the non-target. RMS 
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contrasts used for the target and non-target were identical and was randomly picked 

from one of 11 possible values {1.00, 1.26, 1.58, 2.00, 2.51, 3.16, 3.98, 5.01, 6.31, 7.94, 

10.00} × 10
-2

. RMS contrast of the unique noise patterns generated in every trial for the 

target and non-target was set at 10.00 × 10
-2

. Each combination of image category and 

RMS contrast was repeated in 20 trials. A trial began with a white fixation circle (0.3° 

diameter) on a uniform gray background, shown for 1.00 s. Subsequently, the 

participant saw the first stimulus followed by the second, each presented for 0.05 s. 

After each stimulus, a uniform gray screen was presented for 0.30 s. Order of 

presentation of the target and the non-target was randomized across trials. Participants 

performed a two-interval-forced-choice task to indicate which stimulus interval 

contained an image classifiable as an animal, flower, house or vehicle by pressing keys 

‘1’ (for first) or ‘2’ (for second). 

 

 

Figure 5.4. Sample images from each category used as target and non-target stimuli in 

the detection for classification experiment (Experiment 2): top row - unscrambled 

images superimposed on noise, bottom row – phase-scrambled images superimposed on 

noise (A - animal, F - flower, H - house and V - vehicle). 
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5.3. Results 

5.3.1. Experiment 1: behavioural results 

 

We obtained estimates of each participant’s bias (−𝜇), in each of the 8 conditions, by 

maximum-likelihood fitting the two parameters (𝜇 and 𝜎) defining a cumulative Normal 

distribution to the psychometric function mapping log energy ratio to the proportion of 

trials on which the cardinal component was selected (Fig. 5.5a). When the two 

components have equal visible energies (log ratio=0), an unbiased observer should 

select either component with equal frequency. Positive (negative) biases at log ratio = 0 

therefore indicate a tendency for the cardinal (intercardinal) component to dominate 

perception.  

 

For each estimate of bias, a generalised likelihood-ratio test was performed to evaluate 

the null hypothesis that the bias does not differ from zero. For this, we fit the data in 

each condition again with a constrained psychometric function that forced the bias to be 

zero. We compared the criterion α = 0.05 to the value 1 − 𝐹(−2 ln 𝐿), where 𝐹 is the 

cumulative 𝜒2 distribution with 1 degree of freedom and 𝐿 is the ratio of likelihood of 

the constrained fit to the unconstrained fit. If the value is less than 𝛼, the bias is 

significantly different from zero. Table 5.1 shows the number of participants who had 

positive or negative biases that were significantly different from zero using this 

likelihood-ratio test. For any given condition, two-tailed one-sample t-tests were also 

conducted to determine if the bias across all participants (mean bias) was significantly 

different from zero (Table 5.1).   

 

Figure 5.6 (left hand and middle columns) plots the biases from each condition for each 

participant. It is clear from Table 5.1 and Fig. 5.6 that classification biases were 
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dependent on the category of images that formed the hybrid’s components. In general, 

when the cardinal component contained an animal or flower the biases were negative, 

whereas when the intercardinal component contained them, biases were positive. When 

the cardinal component contained houses or vehicles biases were positive, whereas 

when the intercardinal component contained them biases were negative.  

 

Figure 5.5. Example psychometric functions from participant AM in the filtered hybrid 

experiment: a) Blue dots plot the proportion of choosing the cardinal component as 

dominant (ordinate) against the log-ratio of visible energy between cardinal and 

intercardinal components (abscissa). Each subplot refers to a condition (CA - cardinal 
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animal, CF - cardinal flower, CH - cardinal house, CV - cardinal vehicle, IA - 

intercardinal animal, IF - intercardinal flower, IH - intercardinal house and IV - 

intercardinal vehicle). b) Blue dots plot the proportion of choosing the specific category 

as dominant (ordinate) against the log-ratio of visible energy between categorical and 

non-categorical component. Each subplot refers to a category (A - animal, F - flower, H 

- house and V - vehicle). In all plots (a and b), black curves are best fitting cumulative 

Normal distribution functions and solid vertical lines denote maximum likelihood 

estimates of the mean (𝜇).     

 

Figure 5.6. Filtered hybrids results: Bar plots showing biases in each condition (left and 

middle panel: CA - cardinal animal, CF - cardinal flower, CH - cardinal house, CV - 

cardinal vehicle, IA - intercardinal animal, IF - intercardinal flower, IH - intercardinal 

house and IV - intercardinal vehicle) and categorical biases (right panel: A - animal, F - 
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flower, H - house and V - vehicle) for each participant. In each subplot, each bar 

denotes a single observer (identified by a unique two character initial); blue bars 

represent biases that significantly differed from zero based on likelihood ratio tests. 

Error bars represent bias-corrected and accelerated 95% confidence intervals (Efron and 

Tibshirani, 1994).  

 

We find that at the point of subjective equality, animals and flowers required more 

energy than the other component of the hybrid, while houses and vehicles required 

relatively less energy than the other component. Categorical biases were estimated by 

fitting a cumulative Normal distribution to the function mapping log energy ratio 

between categorical and non-categorical component to the proportion of trials on which 

a specific category was selected (i.e., irrespective of filtering; Fig. 5.5b). This involved 

pooling data from conditions in which a specific category was fixed as either the 

cardinal or the intercardinal component. For example, data from conditions CA and IA 

were pooled to plot the proportion of choosing the animal component as dominant 

against the log-ratio of visible energy between the animal and the non-animal (flower, 

house or vehicle) components. Individual biases for each image category are given in 

the right-hand column in Fig. 5.6. As summarized in Table 5.2, group biases were 

negative and significantly different from zero for animals and flowers, whereas they 

were significantly positive for houses and vehicles.  
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Table 5.1. Individual and group statistics on biases from each hybrid condition. 

Condition 

Number of 

participants Mean 

bias 

One 

sample 

t-

statistic 

p-value 
Cohen’s 

d 
PB NB 

CA 0 6 –0.46 –3.97* 0.003 –1.25 

CF 0 9 –0.89 –5.94* <0.001 –1.88 

CH 6 0 +0.43 +4.21* 0.002 +1.33 

CV 4 0 +0.29 +4.26* 0.002 +1.35 

IA 2 0 +0.43 +4.08* 0.003 +1.29 

IF 6 0 +0.51 +3.81* 0.004 +1.20 

IH 0 4 –0.49 –3.77* 0.004 –1.19 

IV 0 5 –0.35 –3.31* 0.009 –1.07 

Note: 'PB' denotes the number of participants whose bias was positive and significantly 

different from zero and 'NB' denotes the number of participants with a bias that is 

negative and significantly different from zero. 

 

 

Table 5.2. Individual and group statistics on categorical biases.  

Category 

Number of 

participants Mean 

bias 

One 

sample 

t-

statistic 

p-value 
Cohen’s 

d 
PB NB 

Animal 0 6 –0.39 –6.06* <0.001 –1.92 

Flower 0 8 –0.62 –4.31* 0.002 –1.36 

House 7 0 +0.44 +5.29* <0.001 +1.67 

Vehicle 8 0 +0.34 +5.68* <0.001 +1.80 

Note: 'PB' denotes the number of participants whose bias was positive and significantly 

different from zero and 'NB' denotes the number of participants with a bias that is 

negative and significantly different from zero.  

 

We conducted a one-way repeated measures analysis of variance and found a significant 

difference between mean categorical biases, F(3, 27) = 25.83, p < 0.001. As 

summarized in Table 5.3, pairwise comparisons (two-tailed t-tests) revealed that mean 

biases for houses and vehicles were significantly more positive than those for animals 

and flowers. There was no difference in mean biases between houses and vehicles or 

between those for animals and flowers. 
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Table 5.3. Pairwise comparisons between mean categorical biases.  

Comparison 
Mean 

difference 

p-

value 

House – Animal +0.83 <0.001 

House – Flower +1.06 0.005 

House – Vehicle -0.09 0.826 

Vehicle – Animal +0.74 <0.001 

Vehicle – Flower +0.96 0.004 

Animal – Flower +0.23 1.000 

Note: p-values displayed are following Bonferroni corrections 

 

5.3.2. Experiment 1: image statistics 

 

Using values of orientation anisotropies computed on unfiltered images (see Methods), 

we allocated images in both sets C and I to two different groups. One group was named 

‘ANI’ and included images that were highly anisotropic (anisotropy values in the range 

0.7 to 1.3). The other group was named ‘ISO’ which had images with near perfect 

isotropy (anisotropy values between -0.3 and 0.3). Thirty-four percent of all images did 

not belong to either of these groups.  We found that in the ANI group 95% of images 

were either houses or vehicles. Consequently, these categories may be considered to 

contain predominantly “carpentered” images (cf. Coppola et al., 1998; Switkes et al., 

1978). In the ISO group 91% were either animals or flowers. Consequently, we consider 

the images in these categories to be “uncarpentered.”  

  

For each condition, we computed the difference in mean anisotropy (DMA) between 

hybrid components. For example, for condition CA, this corresponds to the difference 

between the mean anisotropy of all animal images used for the cardinal component and 

the mean anisotropy of all flower, house and vehicle images used for the intercardinal 

component. In Fig. 5.7 we plot the relationship between DMA and bias of each 

condition for each participant. We conducted a Pearson’s correlation between bias and 

DMA of all conditions and found significant correlations (p < 0.05) for all 10 
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participants. There was also a strong correlation between mean bias across participants 

and DMA, r(8) = 0.96, p < 0.001, 𝑅2 = 0.93. Accordingly, our results indicate that the 

more an image category is anisotropic, the less energy is required for its component at 

the point of subjective equality, irrespective of how it was presented in the hybrid.  

 

 

Figure 5.7. Correlation between orientation anisotropy and biases in hybrid conditions: 

Bias obtained from each condition (CA - cardinal animal, CF - cardinal flower, CH - 

cardinal house, CV - cardinal vehicle, IA - intercardinal animal, IF - intercardinal 

flower, IH - intercardinal house and IV - intercardinal vehicle) plotted against difference 

in mean anisotropy between the cardinal and intercardinal components. Each subplot 

represents a participant. Each condition is denoted by a uniquely coloured data point 

(with or without a black border). The coefficient of determination (𝑅2) of Pearson’s 

correlation for each participant is given at the top left of subplots. Solid blue lines are 

linear least squares regression fits to the data and asterisks denote significant 

correlations, *: p < 0.05, **: p < 0.001.   
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5.3.3. Experiment 2: detection 

 

We obtained estimates (see Fig. 5.8) of each participant’s 63% correct threshold (𝛼; 

point of inflection of the unscaled sigmoid), for each of the four image categories, by 

maximum-likelihood fitting a Weibull distribution to the psychometric function 

mapping log target RMS contrast to the proportion of trials on which the target (rather 

than the phase-scrambled non-target) was selected. A one-way repeated measures 

analysis of variance performed on mean thresholds (across participants) revealed no 

significant difference between image categories, F(3,12) = 2.84, p = 0.08. Although this 

p value is approaching significance, none of the (Bonferroni corrected) pairwise 

comparisons between image categories revealed a significant difference in mean 

thresholds at the level of p < 0.05.    

 

 

Figure 5.8. Detection thresholds for each image category (A - animal, F - flower, H - 

house, V - vehicle). Each uniquely coloured bar represents an individual participant. 

Error bars denote bias-corrected and accelerated 95% confidence intervals. 
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5.4. Discussion 

 

Here we examined biases in people’s categorization of different types of natural images. 

It was found that, when an ambiguous hybrid image was formed of structures from two 

different image categories, classification was biased towards the carpentered categories 

(houses and vehicles) rather than towards the uncarpentered categories (animals and 

flowers). We propose that this “carpentered bias” is the result of expectations about the 

world that favor the rapid interpretation of complex scenes as carpentered. Given that 

the visual diet of our participants is rich in carpentered structures, our results are 

consistent with a Bayesian formulation of perceptual biases whereby ambiguous stimuli 

result in biases towards frequently occurring features (Knill et al., 1996). 

 

Schyns and Oliva (1994) report classification biases for the low spatial frequency 

component in spatial frequency hybrids for short durations only. They interpret this as 

evidence for a temporal prioritization of low spatial frequency processing during 

classification, supporting the idea of a “coarse-to-fine” strategy of processing visual 

information (Breitmeyer, 1975). This strategy is proposed to arise from our experience 

with natural scenes, whose power spectra display a dominance of low spatial frequency 

structures (Hughes, Nozawa, & Kitterle, 1996). In the current study, the carpentered 

bias occurred irrespective of whether the components were filtered to contain near-

cardinal or near-intercardinal orientations. Therefore, despite cardinal orientations 

dominating the structure of our environment (Coppola et al., 1998; Switkes et al., 1978), 

we find no evidence of an equivalent orientation bias, whereby cardinal orientations 

would be processed before non-cardinal orientations which would result in a bias to see 

the image containing cardinal orientations, regardless of its category.  
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We stress that the carpentered bias is not merely a manifestation of the relative 

insensitivity to tilted (i.e., neither vertical nor horizontal) contours known as the oblique 

effect (Appelle, 1972; Berkley et al., 1975). Not only did the participants exhibit biases 

in favor of houses and vehicles when cardinal orientations had been filtered out of these 

carpentered components, the detection experiment revealed that houses and vehicles 

were not any more readily detected than images from the non-carpentered categories. 

Whereas the oblique effect was established using narrow-band luminance gratings on 

otherwise uniform backgrounds, it is not expected to influence the perception of broad-

band, natural images, such as those used in experiments here. Indeed, if anything, 

detection thresholds for cardinally oriented structure tend to be higher than those for 

tilted structure, when those structures are superimposed on broad-band masking stimuli 

(Essock, DeFord, Hansen, & Sinai, 2003).  

 

We do not claim that intercardinal filtering suffices to remove all easily detectable 

structures from the images in carpentered categories. Indeed, houses and vehicles 

almost certainly contain longer straight contours than flowers and animals. However, 

the results of the detection experiment provide strong ammunition against any 

sensitivity-based model of the carpentered bias. Whatever structure is contained in 

unfiltered images of houses and vehicles, on average that structure proved to be no 

easier to detect than the structure contained in unfiltered images of animals and flowers. 

 

The absence of a difference in sensitivity appears to contradict findings from Crouzet, 

Joubert, Thorpe, and Fabre-Thorpe (2012), who report that the detection of animals 

precedes that of vehicles using a saccadic choice task. However comparing contrast 

sensitivity (detection) to saccadic reaction (decision) is problematic, especially with 

high contrast stimuli (Carpenter, 2004). Secondly, the difference could be attributed to 
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the background of images that must be categorized. While Crouzet et al. (2012) 

controlled contextual masking effects on image category by presenting images 

occurring in both carpentered and natural contexts, images in the current study were 

embedded in white noise with the same amplitude spectrum as the image. As Hansen 

and Loschky (2013) report, the type of mask used (e.g., using a mask sharing only the 

amplitude spectrum with the image versus one sharing both amplitude and phase 

information with the image) affects masking strength. It is still unclear which type of 

masks work best across different image categories (Hansen and Loschky, 2013).  

 

Why might we have a carpentered bias? Clifford, Mareschal, Otsuka, and Watson 

(2015) proposed that certain biases may have potential benefits in daily life, minimizing 

the cost of errors. For example, in the gender bias, Armann and Bulthoff (2012) 

suggested that classifying a male face as female could be relatively costlier than the 

other way around. Given the city context we live in, it might be advantageous to first 

interpret our surroundings as carpentered. Carpentered environments are better at 

providing cues for perceptual judgements, notably providing information about the 

direction of gravity and influencing our judgements of subjective visual vertical (Haji-

Khamneh & Harris, 2010). Greene (2013) analysed object frequency in image 

categories, by measuring the proportion of scenes of a category in which a given object 

naturally occurring in that category is present. She found that, in general, object 

frequency was higher for carpentered (indoor and outdoor) scenes than natural scenes. 

Therefore, our familiarity with carpentered scenes may facilitate identifying things 

frequently occurring in them. In support of this this view, Remy et al. (2013) found that 

the ‘congruency effect’ (i.e., our ability to quickly and more accurately recognise 

objects when they appear in their naturally occurring contexts) is stronger for 

carpentered objects in carpentered scenes than for non-carpentered objects in non-
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carpentered scenes. When the carpentered nature of environments confers decisional 

advantages, misclassifying a carpentered scene as non-carpentered may be 

behaviourally costlier than the other way around. 
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6. Chapter 6 - Summary 

 

In this thesis, we addressed three different aspects of higher-level natural image 

representations in the human visual system. We first examined if we possess neural 

mechanisms that selectively encode higher-level properties of meaningful natural 

images, and found a mechanism that selectively encodes image “uprightness”. Next, we 

examined if we prioritise specific low-level properties of edges when encoding higher-

level representations of images. We found that neural mechanisms underlying the 

classification of meaningful natural images are highly sensitive to edges near cardinal 

(vertical and horizontal) orientations that dominate natural scenes we mostly 

experience. Finally, we examined if our semantic classification of images is influenced 

by our expectations about the environment, over and above the visual system’s 

differences in sensitivity to low-level properties of edges that construct the image. We 

found that, in cases of high ambiguity people are biased to classify natural images as 

“carpentered” (man-made), possibly because we live in an urban environment. The rest 

of this chapter will summarise these major findings and discuss their implications.                    

 

6.1. Selectivity to a higher-level natural image property 

 

Adaptation after-effects have been widely used among psychophysicists to reveal the 

sensitivity of the mechanisms involved in image processing. However, the majority of 

the studies have identified selective mechanisms for very basic low-level features of 

localised edges in images such as luminance contrast, orientation and spatial frequency. 

In general these studies find that prolonged exposure to a specific feature value (the 

“adaptor”), repulsively biases the perception of a subsequently viewed feature value 

(the “test”). These repulsive after-effects are used as evidence to suggest the existence 
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of neural mechanisms that are tuned to specific feature values. In most cases, selective 

encoding of low-level features has been attributed to neurons in the early stages of the 

visual system, such as V1 (sections 1.2.1. and 1.2.2.). Some studies have also revealed 

selectivity of the visual system to complex properties of natural images. When 

measuring selectivity to natural image properties, it is very important to demonstrate 

that after-effects to these properties: 1) do not simply reflect adaptation to low-level 

features and 2) do not reflect adaptation to a complex property that is not unique to 

natural images per se. By doing so, one can infer the existence of neural mechanisms 

specifically encoding natural image properties, while also proposing most likely 

candidate cortical regions that would be involved in this selectivity. Accordingly, 

several studies have demonstrated selectivity to properties of natural images, most often 

using faces as stimuli (section 1.2.4.1). 

 

A few studies have examined higher-level properties of natural images other than faces 

and provided evidence for the existence of mechanisms selectively encoding properties 

like viewpoint of objects and naturalness of scenes (Fang and He, 2005; Greene & 

Oliva, 2010; Kaping et al., 2007). However, most studies on adaptation after-effects, 

either using artificial or natural stimuli, have relied on using the method of single 

stimuli (MOSS), where a viewer adapts to a single image and is also tested on a single 

image. There is no way to be certain whether after-effects obtained using the MOSS 

reflect perceptual biases or non-perceptual biases such as response biases (Morgan et 

al., 2013). Therefore, experimental designs have recently been developed to measure 

after-effects largely uncontaminated from non-perceptual biases (Jogan & Stocker, 

2014; Morgan, 2014; Morgan, Grant, Melmoth, & Solomon, 2015), but so far, these 

designs have only been applied to measure adaptations to low-level features.             
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The aim of chapters 1 and 2 was to examine after-effects to the “uprightness” or the 

global orientation of images of houses. With carefully designed experiments we showed 

that: 1) we have neural mechanisms selectively encoding uprightness, 2) this 

mechanism is distinct from those low-level mechanisms encoding the orientation of 

localised edges, 3) uprightness is a unique property encoded from stimuli that contain 

higher-order structure which conveys semantic meaning and 4) uprightness after-effects 

weren’t a result of non-perceptual sources of bias.  

 

The first two claims are supported by findings showing that adapting to house images 

tilted in the fronto-parallel plane repulsively biased the appearance of subsequently 

viewed test houses. After-effects to uprightness survived manipulations of spatial 

position and spatial frequency overlap between adaptors and tests. However, contrary to 

many findings in the literature (sections 2.1.2 and 2.1.3), after-effects to the local 

orientation of gratings also survived these manipulations. The major finding that 

distinguished after-effects to uprightness and local orientations is that, when the 

difference in mean orientation content between adaptor and tests was 90°, after-effects 

to uprightness survived whereas the other did not. Together, these findings point to a 

higher-level neural mechanism that encodes uprightness that is invariably responsive to 

changes in spatial position, spatial frequency and orientation of local edges present in 

the image.  

 

After-effects to uprightness were unique to house images retaining higher-order 

structure and were not produced by adapting to images whose higher-order structure is 

fully distorted. Therefore, higher-order structure that conveys the semantic meaning of a 

scene (Andrews, Clarke, Pell, & Hartley, 2010; Coggan, Liu, Baker, & Andrews, 2016; 

Loschky et al., 2010) appears to be a prerequisite for encoding uprightness. However, it 
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must be noted that we have only examined selectivity to uprightness using a single 

category of images. Future works must therefore examine if this generalises to other 

categories of images, while making sure to avoid using images that people are poor at 

judging for uprightness as is the case with uncarpentered natural scenes (Haji-Khamneh 

& Harris, 2010). Given that the magnitude of the after-effects we report are 

comparatively smaller than tilt after-effects reported for reduced stimuli like gratings, it 

is possible that poor uprightness judgements could dilute after-effects of selectivity to 

uprightness. Nonetheless, this is the first time a psychophysical method immune to non-

perceptual biases like response and decisional biases have been exploited to examine 

adaptation after-effects to higher-level natural image properties. We stress that this 

psychophysical method qualifies to examine after-effects to more natural image 

properties with strong immunity against non-perceptual biases.   

 

A mechanism to encode the global orientation of a scene is advantageous because it 

may play a role in several other perceptual components of vision. Global scene 

orientation influences perception by: 1) informing the viewer of the direction of gravity 

(Howard & Childerson, 1994), 2) affecting judgements of subjective vertical of 

localised edges within a scene (Haji-Khamneh & Harris, 2010) and 3) facilitating 

semantic classification, since uprightness in most cases reflect the canonical orientation 

in which we are used to seeing images in the real world (Loschky et al., 2015; also see 

chapter 4). In addition, global scene orientation is also known to affect behavioural 

components of vision, for instance, showing its influence on the pattern of eye 

movements during the initial exposure to a scene (Foulsham et al., 2008). Therefore, it 

is possible that uprightness mechanisms exert feedback modulations on mechanisms 

encoding other image attributes and mechanisms mediating associated oculomotor 

behaviour. Further work is required to elucidate the nature of these interactions.  
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Studying global properties like the uprightness of an image is not only important to 

unravel attribute-selective neural mechanisms, but can also reveal how the visual 

system in different populations functions. For example, there is ample evidence to show 

that some individuals with autism demonstrate enhanced processing of fine local 

information within an image while also lacking a sense of its global properties 

(Mottron, Dawson, Soulieres, Hubert, & Burack, 2006). Adaptation after-effects can be 

used to examine if neural mechanisms responsible for encoding global image properties 

are present in autistic individuals who are known to have impaired global perception. 

 

6.2. Low-level features of edges and scene classification 

 

Vision has evolved to efficiently capture the information typically present in the 

environments in which we live. Most studies have examined the relationship between 

the anisotropic distribution of local edge features in the environment and the properties 

of early cortical mechanisms encoding these features (Bex et al., 2009; Girshick et al., 

2011; Hansen et al., 2008). Recently, some findings have revealed how our visual 

system prioritises some low-level features typically experienced in everyday life to 

facilitate higher-level meaningful attributes we perceive from images. For example, 

structures near the horizontal axes are found to be relatively more informative when 

perceiving meaningful attributes of faces and structures near low spatial frequencies are 

processed more rapidly when passively classifying faces and scenes (Dakin & Watt, 

2009; Kauffmann, Chauvin, Guyader, & Peyrin, 2015; Oliva & Schyns, 1997; Schyns 

& Oliva, 1994).   
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In a similar vein, we found that people are relatively more sensitive to structures near 

the cardinal axes when classifying natural scenes. Most importantly, this did not occur 

as a result of non-uniformities in sensitivity of V1 neurons in detecting oriented 

structures. The most plausible explanation for the findings in chapter 4 is that higher-

level scene classifying mechanisms prioritise cardinally oriented structures. Since 

natural scenes we often encounter are characterised by a dominance of cardinal 

structures (Coppola et al., 1998; Switkes et al., 1978), it is perhaps advantageous for 

scene classifying mechanisms to prioritise this information as they might contain most 

of the structures diagnostic of a scene’s semantic category.     

 

In a hierarchical framework of scene perception, early cortical regions such as V1 are 

believed to encode low-level properties of scenes like orientation and spatial frequency, 

and neurons down the hierarchy encode more complex attributes of scenes (Andrews, 

Watson, Rice, & Hartley, 2015; Felleman & Van Essen, 1991; Hochstein & Ahissar, 

2002). Generally, it is believed that higher-level regions such as the PPA encode higher-

dimensional attributes like spatial layout (e.g., openness) and semantic category (e.g., 

carpentered) of images. This is because response properties of higher-level regions are 

specific to the semantic category and spatial layout of images and the two properties can 

also be used in turn to predict response patterns in scene selective regions (Huth et al., 

2012; Kravitz, Peng, & Baker, 2011; Park, Brady, Greene, & Oliva, 2011; Park, 

Konkle, & Oliva, 2014; Stansbury et al., 2013; Walther et al., 2009; Walther et al., 

2011). The invariable behavioural judgements of higher-level image attributes on 

stimuli with large manipulations of low-level features also support this claim (section 

4.1.2.). However, some recent findings challenge this and show that higher-level 

regions may in fact be sensitive to low-level properties like orientation and spatial 

frequency of images that are otherwise identical in semantic attributes (Nasr & Tootell, 



 155 

2012; Watson, Hartley, & Andrews, 2014, 2017; Watson et al., 2016). These studies 

also propose that scene selective regions can distinguish between semantic categories 

based on low-level properties that covary with an image’s category.  

 

The afore-mentioned studies (Nasr & Tootell, 2012; Watson et al., 2014, 2017; Watson 

et al., 2016) have generally relied on measuring differences in BOLD response patterns 

in higher-level areas to stimuli created by filtering natural images to retain some feature 

values, but they did not find behavioural judgements of higher-level scene attributes that 

vary alongside differential representations of low-level features in higher-level areas. 

This raises a question as to what is the use of differential representations if we do not 

know how they influence the ultimate perceptual judgements of an observer.  

 

The findings from chapter 4 establish a possible link between non-uniform 

representations of low-level features in higher-level areas and resultant behavioural 

judgements of image category. We suggest that experiments measuring behavioural 

judgements must be incorporated into experiments measuring higher-level cortical 

response patterns to unravel interdependencies between their sensitivity to low-level 

properties and categorical perception. Furthermore, although some studies have 

examined the visual system’s sensitivity to other low-level properties like spatial 

frequency of edges or more complex properties like 1 𝑓𝛼⁄  spectral slope of naturalistic 

stimuli (Bex et al., 2009; Tadmor & Tolhurst, 1994), they haven’t really explored how it 

affects scene classification. Since these are properties we might be using to judge the 

semantic category of a scene, it is important to understand if a visual system optimized 

to encode specific features is in fact facilitating classification using those features.  
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6.3. Priors for meaningful natural image properties 

 

Visual perception is a product of two components which form the crux of the Bayesian 

formulation of vision - a sensory representation of a stimulus combined with our 

expectations about the stimulus. While chapter 4 demonstrated how image classification 

is affected by non-uniformities in our sensory representation of an image, chapter 5 

showed that expectations might play a role in influencing image classification, beyond 

non-uniformities in sensory representations. Here we exploited the Bayesian prediction 

that when the stimulus is highly degraded, people demonstrate biases reflecting our 

expectations about the environment. Accordingly, when natural image components from 

carpentered and uncarpentered categories were combined to create ambiguous hybrids, 

people’s classifications of hybrids were biased towards carpentered categories. These 

hybrid components were matched for low-level visibility by using a “window of 

visibility” that was created based on existing models of sensitivity to low-level features 

like orientation and spatial frequency of edges. Accordingly, we are confident that 

biases were not the result of increased sensitivity to low-level structures that could be 

prevalent in carpentered images.    

 

Structures of carpentered images contain a dozen other attributes that are prevalent in 

carpentered scenes such as long and straight contours and rectilinear structures and 

neurons in any cortical area that is involved in scene perception could be more sensitive 

to these structures. In fact, a recent study had shown that scene selective regions are 

highly responsive to rectilinear compared to curved or non-rectangular structures (Nasr, 

Echavarria, & Tootell, 2014). However, minimum contrasts required to detect structures 

from images that can be used to classify them did not differ between the image 

categories we have used to create hybrids. This clarified that biases weren’t the result of 
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the visual system’s increased sensitivity to attributes of structures that could be 

dominant in carpentered images.  

 

Chapter 5 has only measured biases at a high level of stimulus uncertainty. A more 

comprehensive assessment of perceptual biases in the context of Bayesian perception 

would therefore require a manipulation of ambiguity in hybrid images to measure how 

biases change with different levels of ambiguity. When doing so, it is important to be 

careful of the source of ambiguity being manipulated. For example, in chapter 5, the 

high ambiguity in hybrids was a result of combining two images while also orientation 

filtering them, where the latter was aimed at examining if biases to carpentered images 

are a result of a dominance of cardinal orientations typical of scenes.  

 

Nonetheless, chapter 5 has two major implications for research on natural image 

perception. Firstly, the current work has successfully implemented an experimental 

design that can measure perceptual biases for complex meaningful attributes of natural 

images, while also controlling for possible confounds arising from sensitivity to 

different attributes of structures that make-up the image. This method could be applied 

to examine biases for semantic properties of natural images like faces, objects and 

scenes, and also for complex spatial layout properties of scenes like openness. 

Secondly, given the possibility that expectations of people extensively experiencing 

urban views throughout their life may have resulted in carpentered biases we report, it 

raises the intriguing question of whether people (e.g., indigenous communities) living in 

different, non-urban environments display such biases. In fact, a few decades back, 

studies had shown how people living in different environments (e.g., city dwellers 

versus tribal communities) are differently susceptible to visual illusions like the Müller-
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Lyer illusion which is believed to arise from how people make inferences based on their 

expectations of the environment (Jahoda, 1966; Segall, Campbell, & Herskovits, 1963).            

 

Unfortunately, this idea of studying how expectations of people living in different 

environments may influence visual perception has not gained much popularity in vision 

research. For the most part influence of prior expectations on image perception has been 

studied by reverse engineering the shape of the prior common to a group of participants 

after measuring how different levels of stimulus uncertainty affect perceptual biases. 

Alternatively, Powell, Meredith, McMillin, and Freeman (2016) have modelled 

individual differences in the shape of the prior by comparing how perceptual biases to 

attributes like perceived speed of dot patterns in autistic and non-autistic individuals 

vary. They found that autistic individuals have a flatter prior for perceived speed 

compared to non-autistic individuals with a prior peaking at low-speeds. However, since 

these groups share the same environment, differences in priors cannot be attributed to 

the environment. Therefore, it is important that priors in people living in different 

environments are measured to reveal how perception has evolved in tandem with our 

environment. 
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