
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 1

LazyCtrl: A Scalable Hybrid Network Control
Plane Design for Cloud Data Centers

Kai Zheng, Lin Wang, Baohua Yang, Yi Sun, and Steve Uhlig

Abstract—The advent of software defined networking enables flexible, reliable and feature-rich control planes for data center networks.
However, the tight coupling of centralized control and complete visibility leads to a wide range of issues among which scalability has risen
to prominence due to the excessive workload on the central controller. By analyzing the traffic patterns from a couple of production data
centers, we observe that data center traffic is usually highly skewed and thus edge switches can be clustered into a set of communication-
intensive groups according to traffic locality. Motivated by this observation, we present LazyCtrl, a novel hybrid control plane design for
data center networks where network control is carried out by distributed control mechanisms inside independent groups of switches
while complemented with a global controller. LazyCtrl aims at bringing laziness to the global controller by dynamically devolving most of
the control tasks to independent switch groups to process frequent intra-group events near the datapath while handling rare inter-group
or other specified events by the controller. We implement LazyCtrl and build a prototype based on Open vSwitch and Floodlight. Trace-
driven experiments on our prototype show that an effective switch grouping is easy to maintain in multi-tenant clouds and the central
controller can be significantly shielded by staying “lazy”, with its workload reduced by up to 82%.

Index Terms—Software defined networks, network control, data center, cloud computing.

F

1 INTRODUCTION

PUBLIC clouds are becoming increasingly popular due
to their pay-as-you-go model, which attracts many small

and medium business. Some of them, thanks to their suc-
cess, have grown very large, each containing hundreds
thousand of servers and hosting up to millions of vir-
tual machines [1]. To support flexible and efficient inter-
node communication in these large-scale cloud data centers,
researchers have proposed many novel designs (e.g., [2],
[3]) for data center networks to replace traditional tree-
based architectures. However, the routing and forwarding
protocols used in most designs are restricted to very spe-
cific deployment settings, leading to inflexible configuration
and management. The situation has been revolutionized
by Software Defined Networking (SDN), where the control
plane, separated from the data plane, is implemented with
a logically centralized controller. As a result, when adopting
SDN, flow-based polices can be conveniently applied to
achieve fine-grained control over the data center network.

While flow-based centralized control has been recently
employed in several proposals for traffic management in
data center networks [4], [5], [6], the excessive coupling of
central control and complete visibility has brought many
scalability challenges to both the network control and data
planes in large-scale data centers. On the one hand, having
the controller to set up all flows would bring too much
workload to the controller and such centralized bottlenecks
are difficult to scale. On the other hand, maintaining visibil-
ity of all flows in a large-scale network can require hundreds

• Kai Zheng is with Huawei Technologies.
• Lin Wang is with SnT, University of Luxembourg.
• Yi Sun are with the Institute of Computing Technology, Chinese Academy

of Sciences.
• Baohua Yang are with IBM Research.
• Steve Uhlig is with Queen Mary University of London.

Manuscript received April 19, xxxx; revised September 17, xxxx.

of thousands of flow table entries at each switch, which is
far from practical for commodity switches.

1.1 Bringing Laziness to the Controller
It has been demonstrated that full control and visibility
over all flows are not always necessary and devolving
some control authority to the data plane by proactively
suppressing frequent events can result in better scalability
in software defined data center networks [7]. However,
the right granularity of flows to be handled by the con-
troller is still not clear (or hard to define). In this paper,
we advocate a new solution for control devolvement in
data center networks based on traffic locality. Our idea
stems from the observation that traffic distribution in data
centers (especially those with multi-tenancy support) could
be highly skewed, i.e., frequent communications are more
likely to take place inside certain small groups of hosts. As a
result, it is possible to shield the global controller from many
frequent events inside these groups if distributed control
mechanism is applied independently in each of the groups.

We propose LazyCtrl, a hybrid network control plane
design for large-scale data centers, which seeks to bring
laziness to the global controller. In the LazyCtrl design,
edge switches are grouped dynamically according to their
communication affinity. The central controller devolves the
coarse-grained control for frequent intra-group events to
each switch group while handling infrequent inter-group
and other specified (fine-grained) control tasks by itself.
Each switch group autonomously carries out distributed
control within the group, keeping the intra-group packets
in the data plane. The controller groups the switches in such
a way that the size of each group is as large as possible to
exhaust switches’ memory (such as TCAMs) capacity while
inter-group traffic is minimized to support the laziness of
the controller.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159079822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 2

We have completed a full implementation of LazyC-
trl based on Open vSwitch and the Floodlight OpenFlow
controller. Experiments on our prototype with both real
and synthetic traffic traces show that an effective switch
grouping is easy to maintain in multi-tenant clouds and the
hybrid control design highly reduces the workload of the
controller and provides lower delay in packet forwarding.
As expected, the laziness we introduced to the controller
decouples centralized control and complete visibility and
consequently scale the system much better compared with
totally centralized designs.

Section 2 reveals some observations that motivate our
design. Section 3 presents the LazyCtrl architecture with
design details. Section 4 presents our implementation, fol-
lowed by the performance evaluation in Section 5. Section 7
concludes the paper.

1.2 Related Work

Ethernet stands as one of the most widely used networking
technologies today due to its plug-and-play semantics such
as automatic host location learning and flat addressing,
which can highly simplify many aspects of network con-
figuration and ensure service continuity. However, reply-
ing on network-wide dissemination of per-host information
makes Ethernet-based solutions difficult to scale and forcing
paths to comprise a spanning tree introduces substantial
inefficiencies. In contrast, IP networks can easily scale to
large networks but require massive effort to configure and
manage.

As a promising solution for building large-scale data
center networks, network overlay can exploit the advan-
tages of both Ethernet and IP networks. An overlay network
in a data center consists in creating a dynamic mapping
between the overlay (virtual) network and the underlying
(physical) infrastructure. This mapping ensures that packets
can be transmitted by the routing substrate between any
pair of overlay nodes. However, in order to handle location
resolution at network edge, a global location information
base has to be maintained, which can be challenging in large
networks.

There has been a large body of work falling in this cat-
egory. SEATTLE [8] simplifies network management by flat
addressing while providing hash-based resolution of host
information (using a one-hop DHT) to ensure scalability.
VL2 [9] implements a layer 2.5 stack on hosts and uses IP-
in-IP encapsulation to deliver packets. PortLand [10] assigns
Pseudo MAC (PMAC) addresses to all end hosts to enable
efficient, provably loop-free forwarding with small switch
state while leveraging a central fabric manager to address IP
to PMAC translation in multi-rooted tree networks. NetLord
[11] employs a light-weight agent in the end-host hypervi-
sors to encapsulate and transmit packets over an underly-
ing, multi-path L2 network, using an unusual combination
of IP and Ethernet packet headers.

With the rapid evolvement of SDN, flow-based central-
ized control has been recently adopted as a mainstream
control plane design for data center networks. As one of
the first SDN solutions for enterprise networks, Ethane
[12] enables the direct application of fine-grained flow-
based policies to the network by coupling flow switches

with a centralized controller. However, exposing all flows
to the controller could bring too much workload to the
controller, leading to poor scalability. Even after applying
multi-threading optimizations that help achieve graceful
linear core scaling factors [13], the gap between actual and
desired performance of the centralized controller is still
very significant. It was shown that the popular OpenFlow
controller can only be able to handle approximately 30 thou-
sand flow initiation requests per second on commodity x86
platforms [14]. Unfortunately, a small network consisting of
only 100 switches could have a spike of more than 10 million
flow arrivals per second [15]. Even after applying multi-
threading optimizations that help achieve graceful linear
core scaling factors [13], [16], the gap between actual and
desired performance of the centralized controller is still very
significant.

Recently, massive effort has been devoted to scaling
centralized control to large networks. Existing solutions can
be roughly classified into three categories:

1) Specific modifications: DIFANE [17] aims at handling
all traffic in the data plane by selectively directing
packets through intermediate (authority) switches that
store the necessary rules pre-installed by the controller.
DevoFlow [7] decouples control and global visibility
and partly devolves control to switches by employing
rule cloning and local actions at switches. The main
disadvantage of this category of solutions is the re-
quirement of modifying switches which largely limits
its applicability in practice.

2) Distributed solutions: Onix [18], HyperFlow [19], Elasti-
Con [20], and Pratyaastha [21] are distributed platforms
on top of which the network control plane can be im-
plemented as a distributed system. Although they work
well in moderate networks, this category of solutions
does not solve the super-linear increase of control tasks
when network scales to very large.

3) Centralized hierarchical solutions: Kandoo [23] is a two-
layer control framework where network applications
are classified into local and global control applications
are handled by bottom- and top-layer controllers, re-
spectively. These hierarchical solutions have the prob-
lem of path stretching, resulting in unnecessary delay
in handling control tasks, although the scalability issue
is highly mitigated [24].

There are also some distributed control plane proposals
for specific networks such as [22], [25] for multi-domain
networks, D-SDN for security issues [26]. Recently, Jain et al.
[27] presented B4, a private WAN connecting Google’s data
centers worldwide based on a multi-layer software defined
networking architecture.

LazyCtrl also targets the scalability issue of centralized
control in large-scale data center networks. The most salient
feature of LazyCtrl is that it carries out network control in
the right granularity by exploring traffic locality in data cen-
ter networks. We summarize the advantages of LazyCtrl as
follows. Firstly, it solves the super-linear complexity prob-
lem by devolving control tasks to local control mechanisms.
Secondly, it prevents path-stretching by taking advantage of
direct distributed control for local traffic-intensive commu-
nication identities. Lastly, LazyCtrl requires no modification



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 3

on physical switches and it is very easy to implement.
Nevertheless, our solution is also orthogonal to dis-

tributed designs in the sense that it employs a hybrid control
model, aiming at trying best to offload frequent coarse-
grained control tasks from the central controller and handle
them using distributed control mechanisms near datapaths.
Therefore, the aforementioned research efforts for scaling
flow-based fine-grained control is still applicable on top
of LazyCtrl to further mitigate the performance bottleneck
at the controller and consequently improve control plane
scalability in data center networks.

2 MOTIVATION

The following salient features of current cloud data centers
largely motivate our design of LazyCtrl.

2.1 Traffic Locality in Data Centers
In cloud data centers, the traffic among the hosts is usually
unevenly distributed and is strongly localized within some
groups of hosts. To verify the correctness of this notion,
we collected a day-long traffic trace from a production
data center in Europe running multi-tenant applications and
made the following quantitative findings:

. The traffic distribution is uneven among hosts. Among a
total of 6509 hosts, only 11,602 of more than 20 mil-
lion distinct 〈src, dst〉 host pairs exchanged traffic in
the trace. And over 90% of the flows are contributed
by about 10% of the host pairs that exchanged traffic.

. The traffic appears to be concentrated within some groups
of hosts. For example, when partitioning the 6509
hosts evenly into 5 groups using k-way partitioning,
we observe that only less than 9.8% of the traffic
traversed different groups. We define the centrality of
a group as the ratio (in [0, 1]) of the intra-group traffic
and the total traffic related to the hosts in this group.
For the collected trace, the average centrality of the 5
groups is 0.853, indicating a very high concentration
of the data center traffic.

The above findings are not accidental and similar evi-
dences can be found in [15], [28]. Actually, in a multi-tenant
data center, network traffic tends to be localized within each
tenant, as the applications from different tenants are isolated
by virtualization techniques [29]. Therefore, we believe that
by taking advantage of traffic locality, a global, fine-grained,
and real-time network control may not be necessary for
multi-tenant data centers.

2.2 Relatively Stable Tenant Size
For multi-tenant cloud data centers, we observe that the
number of virtual machines for a single tenant is changing
slightly, while the number of tenant users, as well as the
total number of hosts in a multi-tenant data center, is expe-
riencing a significant increase. For Amazon, a popular cloud
service provider, the number of tenants, as well as total
virtual machine instances of Amazon’s EC2, grew about 2.5
times annually since 2006 [30]. The total number of objects
held by Amazon S3 has grown 150 times from 2006 to 2011
[31]. In contrast, the size of a specific tenant in terms of

number of rented virtual machines is constantly around
20–100 [1]. These facts consequently lead to the property
that traffic is aggregated within some size-limited groups of
hosts in multi-tenant data centers as the traffic exchanged
among different tenant slices is very limited. By taking
full advantage of this property, we show that the explosive
increase in the number of tenants does not necessarily result
in scalability issues for centralized control in data center
networks.

3 DESIGN

LazyCtrl realizes a hybrid control plane for data center
networks. In this section, we discuss four aspects of its
design: the architecture, the switch grouping scheme, the
packet forwarding routine, and the failover mechanisms. We
first provide a high-level overview to state the intuition of
our design.

3.1 High-level Overview

In conventional flow-based centralized control environ-
ments such as those based on OpenFlow [32], the controller
maintains the network-wide state (the host-to-switch map-
ping here) and handles all the flows between switch pairs
that exchange data, bringing extremely high burden to the
controller. LazyCtrl mitigates this problem by clustering
the switches into multiple switch groups according to their
communication affinity and devolving intra-group control
to these switch groups (termed Local Control Group, LCG).1

To support its laziness, the controller prefers clustering the
switches into a few big groups in order to reduce inter-group
communication. However, larger group size would result
in larger distributed forwarding tables and more control
tasks inside each local control group. Due to the limited
size of high-speed memory in switches, the largest size of
a group will be constrained by some constant. The controller
clusters the switches in such a way that the size of each group
is maximized under a given limit while the inter-group traffic
volume is minimized.

Example: Consider a multi-tenant cloud data center con-
taining a central controller and five edge switches (namely
SA, SB, SC, SD, and SE) with hosts2 directly attached.
We focus on the scenario shown in Fig. 1. There are three
tenants, A, B, and C, each of which has some virtual ma-
chines. The left figure illustrates the case when centralized
controlling is applied directly and thus the central controller
has to handle all the flows among all edge switches. LazyC-
trl changes this situation by clustering edge switches into
independently groups. As can be seen in the right figure,
the controller clusters SA, SC, and SE into the first group
while SB and SD together form the second group. (We
assume that the group size limit is three in our example.)
This way, the traffic within the first group (e.g., SA↔SC), as
well as the traffic within the second group (e.g., SB↔SD),
can be handled by carrying out local control mechanism
that is dedicated for each group. The controller then is only

1. We will use group and local control group (LCG) interchangeably
in the rest of this paper.

2. With a bit abuse of notation, we will use host to refer to virtual
machine that is running in a physical server.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 4

Edge switch

Host from Tenant A
Host from Tenant B

Host from Tenant C Controller-handled traffic
LCG-handled traffic

LCG #1

LCG #2

A1 B1 B2

B3

B4A2

C1

C2

C3 C4

A1 B1 B2

B3

B4A2C3 C4

C1

C2

SB

SD
SE

SC

SA

SB

SD
SE

SC

SA

Fig. 1. Example to demonstrate the idea of LazyCtrl. Edge switches are
clustered into multiple local control groups according to their communi-
cation affinity.

NETWORK
CORE

Distributed 
Control 
Module

Flow 
Table

LCG #1

LCG #2

LCG #K

Edge switch

Fabric, SRAM, TCAM, etc.

Bloom 
Filter

FIB

Controller Designated edge switch

Fig. 2. Architecture design of LazyCtrl, where the network control plane
consists of a logically centralized controller and distributed control mod-
ules in multiple local control groups.

needed to take charge of the inter-group traffic, i.e., SA↔SD.
The switches will be dynamically regrouped in response to
traffic variation.

3.2 LazyCtrl Architecture

The architecture design of LazyCtrl is depicted in Fig. 2.
In our design, the network is separated into two parts:
the core and the edge. We employ a hybrid control model
where control tasks are handled by the distributed control
mechanisms in LCGs at the network edge, complemented
by a central controller.

3.2.1 Core–Edge Separation

Our design splits the core from the edge. The network
core can be any simple and scalable network (e.g., an IP
unicast network), which serves as the underlay providing
connectivity for edge switches. The core–edge separation
releases the network core from handling complicated and
dynamic network control tasks (e.g., network virtualization,
virtual machine migration) and thus allows the network
core to be constrained only by performance and reliability.
Since our focus is the control plane, we omit the detailed
design of the network core.

In contrast, the network edge is in charge of network in-
telligence, i.e., host-to-switch mapping. The layer two virtual
networks (overlays) for providing connectivity for the edge
switches are conducted by the network edge via encapsula-
tion or tunneling on top of the underlying physical network
core. As a result, one-hop distance can be assumed for each
pair of edge switches. We introduce a hybrid control model
for the control plane to handle network control tasks.

3.2.2 Hybrid Control Model
To extend the scalability of the control plane, we introduce
a hybrid control model in the LazyCtrl design. This hybrid
control model involves a central controller and a set of local
control groups.

The central controller has holistic visibility over the
entire data center network and is responsible for i) main-
taining a Central Location Information Base (C-LIB) which
preserves host location information, ii) adapting the group-
ing of the edge switches, and iii) managing the flow tables
on the edge switches to handle inter-group traffic and any
specific traffic that needs flexible centralized control. The
goal of the central controller is to stay lazy by devolving as
many control tasks as possible to the local control groups.
The central controller can be a stand-alone physical server
or a logical controller comprised of a cluster of servers with
strong reliability and coherency of network state.

A local control group is a group of edges switches whose
clients are observed to have frequent mutual communica-
tion. These switches are grouped together by the controller
and share the network state with each other consistently.
Each local control group employs a distributed control
mechanism to take over the control workload of intra-
group traffic from the controller. The distributed control
mechanism inside each group is carried out by equipping
each edge switch with some local forwarding tables that
are maintained by the switches themselves. These local
forwarding tables keep track of network states such as
host-to-switch mapping inside the corresponding group. For
each local control group, a designated switch (with some
backups) is selected randomly by the controller, which is
responsible for aggregating group-wide network states from
the edge switches in this group and reporting them to the
controller in an asynchronous manner.

3.2.3 Control Message Channels
There are three types of control message channels, i.e.,
logical links, in the hybrid control model for LazyCtrl.

. Control link. A control link refers to a logical control
channel (an IP tunnel or a TCP/SSH connection on
top of the underlay network) via which the con-
troller receives forwarding requests, and/or sends
commands or rules to individual edge switches. The
control link is extended from the secure channel
between an OpenFlow controller and an OpenFlow
switch by allowing the exchange of switch grouping
and other related messages. When a control task
cannot be handled by local control groups, packets
will be forwarded to the controller and the controller
will react to the edge switches by sending them flow
rules or other commands, all through the control link.

. State link. A state link is a logical communication
channel between the controller and a designated
switch. The designated switch in each group aggre-
gates the network states it collects from other edge
switches in the group and reports them to the con-
troller periodically via the state link. Thus, global and
coherent visibility can be achieved at the controller.

. Peer link. A peer link refers to a logical control
channels used for disseminating network states for



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 5

address learning and updating among the switches
in the same local control group. In principle, peer
links would rely on multicasting. However, assum-
ing native multicast support for the underlay may
not be practical. Therefore, our design adopts an
alternative approach: the designated switch (or its
backup, if any) gathers network states from every
peer edge switch and then disseminates them to
all other switches in the same group with multiple
unicast messages.

3.3 Switch Grouping
The design of LazyCtrl is based on the concept of grouping
switches to form multiple local control groups. Thus the
quality of efficiency of the grouping is essential to the
whole design. Given a limit for the group size (determined
according to empirical or historical data), a good grouping
scheme is defined as one in which the inter-group traffic is
small (in order to facilitate the laziness of the controller) and
the computational complexity of the grouping algorithm
is sufficiently low such that it can fast adapt to traffic
dynamics. Our grouping algorithm aims at satisfying the
above principles and we base our design on solving the
classical graph partition problem, with improvements on
time complexity and support for incremental updates.

3.3.1 Problem Modeling
Denote by S = {S1, S2, ..., SN} the set of edge switches
in the multi-tenant data center network. Let W =
{wi,j | Si, Sj ∈ S} be an intensity matrix where each
element wi,j represents the normalized traffic intensity
(i.e., number of new flows per second) between two edge
switches Si and Sj . A grouping scheme G is a series of
disjoint subsets of edges switches, which can be defined by
G = {G1, G2, ..., GK | (Gi ⊆ S)∧ (Gi∩Gj = ∅)}. Then, the
normalized inter-group traffic intensity (denoted by Winter)
can be represented by

Winter =
∑

{x,y∈[1,...,K]∧x6=y}

∑
{Sm∈Gx,Sn∈Gy}

wmn.

Given an intensity matrix W, the goal of the switch group-
ing problem is to find out a grouping scheme G such that
the inter-group traffic intensity Winter is minimized. This
problem is similar to the graph partition problem where the
goal is to partition a given graph into k roughly equal com-
ponents such that the total weigh of the edges connecting
the vertices in different components is minimized (called
k-way partitioning). The graph partition problem has been
shown to be NP-hard [33]. The switch grouping problem
differs slightly from the graph partition problem in terms
of that the largest size of a group is strictly contained by a
constant while the number of groups is variable.

3.3.2 Solving the Switch Grouping Problem
Our design for the switch grouping algorithm is based on
the Multi-Level k-way Partition (MLkP) algorithm proposed
by Karypis and Kumar for fast k-way partitioning for a
given graph [33]. MLkP first reduces the size of the graph by
collapsing vertices and edges. When a k-way partitioning
of the smaller collapsed graph is found, the algorithm

IniGroup:
1: // construct the intensity graph
2: ConstructGraph(history intensity matrix)
3: // obtain the initial grouping
4: MLkP(intensity graph, #partition k)

IncUpdate:
5: // running in background
6: while(true):
7: // the controller is overloaded
8: while (controller.load > threshold.high):
9: // find two candidate groups with
10: // the most significant traffic change
11: cgroups = FindGroups(all groups)
12: sgroup = MergeGroups(cgroups)
13: ngroups = SplitGroup(sgroup)
14: // the controller is underloaded
15: if (controller.load < threshold.low):
16: break

Fig. 3. Pseudocode for the SGI algorithm.

uncoarsens and refines this partitioning to construct a k-
way partitioning for the original graph. The running time
of MLkP is linear in the number of edges in the graph.
However, direct application of MLkP to the switch grouping
problem may lead to infeasible solutions, i.e., the sizes of the
resulted partitions may exceed the given group size limit.

We propose SGI, a Size-constrained Grouping algorithm
with Incremental update support. In the initial stage (func-
tion IniGroup), SGI first determines the right number k of
groups to be generated. This value can be estimated by the
number of switches divided by the group size limit. Next,
SGI constructs an intensity graph where the vertices in the
graph represent all the switches while each edge represents
the communication between the two end switches of this
edge. The weight on each edge indicates the normalized
traffic intensity between any pair of switches, which is
estimated based on history traffic statistics. Then, an initial
feasible grouping of the switches is produced by using the
MLkP algorithm with the constructed graph as input. Here-
after, SGI keeps running by monitoring the traffic condition
on the network. Upon a significant change3 on the traffic
distribution, SGI carries out a greedy refinement function
called IncUpdate to incrementally update the grouping
in order to reduce the inter-group traffic. The refinement
process runs iteratively and in each iteration, two groups
(cgroups) between which traffic volume increases the most
are merged (as sgroup) and split again to ensure minimized
communication between the two new groups (ngroups).
This is identical to finding a minimum bisection cut of
a given graph, which can be accomplished efficiently in
polynomial time [34]. The refinement process will terminate
when the workload of the controller meets some threshold.
The pseudocode of the SGI algorithm is given in Fig. 3.

3.4 Packet Forwarding
3.4.1 Setup Phase
Similar to that of typical OpenFlow control, in LazyCtrl,
the edge switches are configured to point to the central

3. The controller evaluates the significance of traffic change by mea-
suring the difference in its workloads.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 6

L-FIB (A)

G-FIB

Flow Table

L-FIB (B)

G-FIB

Flow Table

L-FIB (C)

G-FIB

Flow Table

Switch A Switch B
(Designated)

Switch C

L-FIB (A) L-FIB (B) L-FIB (C)

LCG #1

…C-LIB

…

State Link

Controller

LCG #K

Fig. 4. Table organization in the LazyCtrl design.

controller at the setup phase. Besides generating the local
control groups by invoking the SGI algorithm, the controller
is also in charge of the following configurations for every
group before the whole LazyCtrl system comes into func-
tion.

Selecting designated switches. For each local control group,
the controller selects a designated switch among all edge
switches in this group by applying some given principle
such as shortest physical distance, shortest response time
to the controller. If necessary, the selection process also in-
cludes choosing some backups for the designated switches.

Ordering and informing edge switches. The controller
orders all switches in a group according to the physical
(MAC) address of switch’s management interface. This is for
building a logical ring for failure auto-detection (detailed in
Section 3.5). The controller then delivers to each switch its
neighbors on the logical ring. Besides that, the controller
will also inform the switches in a group with the designated
switch ID and some global timing and performance param-
eters such as the group size, the frequency to apply group
synchronization or keep-alive heartbeats.

3.4.2 Table Organization
The core–edge separation enables one-hop “logical” dis-
tance between any pair of edge switches, leaving basic
packet routing to the IP underlay. What remains unsolved is
the host-to-switch mapping.

In the LazyCtrl design, each edge switch is associated
with a Local Forwarding Information Base (L-FIB), which
tracks the hosts or virtual machines that are attached to this
switch. To handle intra-group traffic, each edge switch also
maintains a replica of the L-FIBs of all other switches in the
same group, which we call Group Forwarding Information
Base (G-FIB). The central controller retains global visibility
of the network by maintaining a Central Location Informa-
tion Base (C-LIB), which contains the L-FIBs of all edge
switches in the network. Using this C-LIB, the controller
can handle inter-group traffic and any other specific flows
whose control requires global visibility. A general overview
of the table organization in the LazyCtrl design is depicted
in Fig. 4.

L-FIB: The L-FIB of each edge switch is implemented
with a conventional lookup mechanism similar to the
MAC/ARP table in ordinary layer two switches.

G-FIB: The G-FIB of each edge switch is a replica of the
L-FIBs of all switches in the same group. To save storage

space, we implement G-FIB using Bloom Filter (BF), as the
storage space required by a BF is independent from the
number of elements it contains. The G-FIB of each edge
switch is comprised of multiple BFs generated from the L-
FIBs of all switches in this group. Given an address of a
virtual machine, each BF decides whether this address is
under the corresponding edge switch. All the BFs together
will return a vector of Boolean values indicating the possible
location of this address. Note that it might happen that there
are multiple possible locations for one address, which is
resulted from the false positive of BFs. However, the false
positive rate is predictable and controllable by space-time
trade-offs [35].

3.4.3 State Dissemination
State dissemination consists of the mechanisms to spread
and synchronize network states (e.g., the host-to-switch
mapping) and updates in the control plane. In general, there
are two types of state dissemination in LazyCtrl:

Live/Synchronized state dissemination. Live state dissemi-
nation refers to the host discovery process driven by the end
hosts via ARP broadcasting in the bootstrapping stage and
at virtual machine migration or removal. In the LazyCtrl
design, live state dissemination can be cascaded in three
different levels: i) Upon receiving an ARP request, the edge
switch learns the source address by inserting or updating an
item in its L-FIB and then floods the request to all relevant
local ports. ii) If no local hosts (that are attached to this edge
switch) answer this request and the requested destination
cannot be recognized by the G-FIB of the switch either,
this request will be forwarded to the designated switch in
this group for an intra-group “broadcasting”. iii) Further, if
there is still no response from the hosts in this group, the
request will be forwarded to the central controller, which
relays the request to the designated switches in all other
groups that contain hosts belonging to the relevant tenant
(e.g., according to tenants’ VLAN settings).

Asynchronous state dissemination. When the traffic pattern
changes, the grouping of the switches may not be effec-
tive for shielding the central controller thus needs to be
adjusted. The condition of inter- and intra-group traffic is
also changed. Therefore, the host-to-switch mapping must
be re-disseminated across the control plane in order for
local control groups to handle all intra-group traffic. This is
different from the case of virtual machine migration in the
sense that there is no change to the host-to-switch mapping.
As a result, the end hosts cannot sense this change and
thus cannot accordingly drive any updates. Moreover, in an
extreme case where all hosts from a certain tenant appear
in the same local control group, the controller may want to
block all ARP request from that tenant to avoid unnecessary
workload of itself. However, this could lead to incomplete
visibility for the controller as the traffic from that tenant will
be transparent to the controller.

In order to handle the above circumstances, an asynchro-
nized switch-driven state dissemination mechanism must
be introduced. In LazyCtrl this mechanism contains two
aspects: i) When an update event occurs at an edge switch,
this switch sends its updated L-FIB to the designated switch
in the group via the peer link; the designated switch then
relays this update to all the other switches in the same



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 7

Upon arrival of a packet P at an edge switch S:
1: // P originates from a local host
2: if (P is a local plain packet):
3: // handled by flow table
4: if (P matches S.flow_table.rule):
5: apply S.flow_table.action to P
6: // handled by local control group
7: else:
8: // lookup in the L-FIB
9: host = LookUp(L-FIB, P.dest_addr)
10: // no match found
11: if (host == none):
12: // query in the G-FIB
13: dst_vec = Query(G-FIB, P.dst_addr)
14: // no match found, handled by controller
15: if (dst_vec == empty):
16: send P to the controller
17: // send P to all possible targets
18: else: for each (dst in dst_vec):
19: encap. and send a copy of P to dst
20: // match a local host
21: else: forward P to host
22: // P is an encapsulated packet
23: else:
24: Decapsulate(P)
25: // lookup in the L-FIB
26: host = LookUp(L-FIB, P.dst_addr)
27: // no match found (due to false positive)
28: if (host == none): Drop(P)
29: else: forward P to host

Fig. 5. Packet forwarding routine in LazyCtrl.

group to synchronize the group-wide network state. The
designated switch then sends the update to the controller
via the state link to synchronize the network state between
the controller and the local control group. ii) When the
grouping of the switches has been changed, the controller
sends the L-FIBs of the switches in a new group to the
designated switches in this group via the state links. The
designated switch then “broadcast” the L-FIBs to all the
edge switches in this group for updating their G-FIBs.

3.4.4 Packet Forwarding Routine

We describe now how traffic control is carried out in
LazyCtrl. The detailed forwarding routine of a packet is
shown in Fig. 5. When a packet arrives at an edge switch,
depending on packet type, the following two actions will
be applied: i) If the packet is plain (which originates from
a local host), the switch first carries out a lookup in its
flow table to check whether there are matched rules for
this packet. If so, the action corresponding to the rule is
then applied to the packet; otherwise, the switch continues
looking up in its L-FIB to check whether the destination of
this packet is a local host. A packet with an address of a
local host will be forwarded directly to that host. If no entry
matched the L-FIB, the switch carries out a query in its G-
FIB. Note that there might be multiple targets for this packet
returned from this query due to the false positive of BFs. The
switches then send to all the targets a copy of the packet. If
all the elements in the Boolean vector are false, it means that
the target of this packet is not in the current group and thus
the packet will be forwarded to the controller to request
inter-group control rules. ii) If the packet is encapsulated,

TABLE 1
Inferring failures in the control plane according to the place of packet

loss.

Failure Packet loss
Sn → Sn−1 Sn → Sn+1 Controller→ Sn

Control link X
Peer link (Up) X

Peer link (Down) X
Switch (Sn) X X X

the switch first decapsulates it and then carries out a lookup
in its L-FIB to determine its destination host. If no matched
entries are found, the switch simply drops the packet as it
knows that this packet is mis-forwarded to the switch due
to BF’s false positive. Optionally, this mis-forwarded packet
could also be directed to the controller for installing flow
entries on related switches to avoid further false positive for
the same destination.

3.5 Failover
3.5.1 Failure Detection
The switch grouping scheme ensures that switches in the
same group are “strongly connected” due to their frequent
traffic exchange. As a result, failures in the data plane can
be passively detected quickly. In contrast, handling failures
in the control plane is more laborious.

In the LazyCtrl design, we propose a self-detection
mechanism to handle failures in the control plane based
on a group-wide failure-detection wheel with the controller
at the center and the switches at the edge. As we have
mentioned previously, at the setup phase the controller
orders the switches to form a wheel and informing the
switches in the same group their neighbors on the wheel.
To detect failures, keep-alive messages will be initiated
from upstream switches to downstream switches and from
the controller to each switch. All possible cases of failures
depending on the place of packet loss are listed in Table 1.

3.5.2 Failover of Links
Link failures indicate routing-related issues, e.g., packet loss
due to link congestion or temporary routing loops on the
underlay. We adopt detour routing based approaches to
handle link failures in LazyCtrl. When a data path failure
occurs, for instance, between Sn and Sn−1, the controller
will be notified and an alternative path will be chosen for
delivering packets following Sn → Sn−1. For a failure on
the control link between the controller and a switch such
as Sn, the controller will send a request to the upstream
switch of Sn on the failure-detection wheel, i.e., Sn−1, to
pass on the control message from Sn to the controller. When
a peer link failure occurs (between Sn and Sn−1), the control
functionality is affected only when one of the two end
switches is the designated switch. In this case, the controller
will ask Sn or Sn−1 to quit as the designated switch and
reselects one from the backups for the designated switch to
fulfill the role of designated switch.

3.5.3 Failover of Switches
A switch failure usually turns to be a reboot or a reset of the
switch, especially in the case where edge switches are imple-
mented with virtual switches in hypervisors. The controller



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 8

is responsible for detecting the malfunction of the switch
and then carries out the following actions: i) informing
the designated switch in the same group this switch failure
and asking the designated switch to spread the temporary
outage of the failed switch in the group in order to avoid
unexpected detour routing requests; ii) rebooting the failed
switch remotely and checking its comeback periodically;
iii) removing the outage signal and proactively triggering a
state synchronization in the group when the switch is back
to function.

If the failed switch is the designated switch in the group,
in addition to the above actions, the controller will select a
new designated switch for the group. If backups are set for
the designated switch, no single point of failure exists since
those backups work simultaneously and will be fixed upon
a failure independently.

4 IMPLEMENTATION

We implement LazyCtrl by extending the OpenFlow proto-
col and developing edge switches and the controller based
on Open vSwitch [36] and Floodlight [37]. The source code
of our implementation can be found on [38].

4.1 Open vSwitch-based Edge Switch
The main forwarding component of Open vSwitch con-
sists of the ovs-vswitchd and datapath modules. The
ovs-vswitchd module works in the user space, handling
slow path processing such as learning, remote configuration,
full flow-table lookup; the datapath module in the kernel
space handles fast path processing including packet for-
warding, quick-table lookup, modification, and tunneling.
The implementation of the LazyCtrl edge switch follows a
similar design principle. Fast path processing, such as L-FIB
lookup (including BF matching), packet encapsulation, and
forwarding, are integrated into the kernel space (datapath)
module while a few slow path modules are integrated into
ovs-vswitchd which are listed as follows.

. Ctrl-IF module is an interface for the switch to interact
with the controller, which also implements the con-
trol link. Unknown packets (from inter-group traffic)
will be forwarded to the controller using OpenFlow
Packet_In messages.

. State advertisement module is introduced for collecting
and disseminating local host information and traffic
statistics among the switches in the same group.

. FIB maintenance module maintains the L-FIB and the
Bloom filter based G-FIB structures according to the
network states collected by the state advertisement
module and then updates the kernel space module
for fast path processing.

. State reporting module will only be activated when
the switch is selected as the designated switch for
the group. This module implements all functions
associated with the state link.

4.2 Floodlight-based Controller
The Floodlight OpenFlow controller provides a rich set
of components. The central controller in LazyCtrl is im-
plemented based on the existing Floodlight controller by
introducing the following extensions.

. Encap action realizes packet encapsulation in edge
switches by extending the existing OpenFlow v1.0
protocol. In the LazyCtrl architecture, packet for-
warding in the data plane overlay replies on a GRE-
like encapsulation. When a rule with this action is
applied to a flow, the switch will encapsulate the
packets with a new header targeting a given remote
IP address.

. C-LIB maintenance module implements the functions
of acquiring L-FIBs from the designated switch in
every group and building the C-LIB at the controller.

. Switch grouping management module handles the man-
agement of the local control groups. We base our
implementation of switch grouping on the proposed
SGI algorithm. A daemon module is introduced to
handle the state reports from the designated switches
in all groups and keep analyzing the changes in
traffic pattern. Re-grouping will be triggered when
i) the workload of the controller suffers from an
accumulated growth of up to 30% from last update
or ii) it has been two minutes since last update.
Setting up a minimum update interval (2 minutes
here) is to prevent the oscillation caused by short-
term traffic fluctuation.

. Tenant information management module is used to
manage tenant information such as VLAN IDs in
switches. Being aware of this information, the con-
troller can determine where to spread the ARP mes-
sages and when inter-group traffic control is neces-
sary.

. Failover module is in charge of failure detection and
recovery as we have discussed in Section 3.5.

5 EVALUATION

5.1 Prototype Setup

We conducted experiments based on a real traffic trace col-
lected from an enterprise production data center in Europe,
which consists of 272 GigE edge switches and 6509 hosts.
Accordingly, we built a prototype system using 6 Pronto
3290 switches and 24 IBM x3550 8-core (two quad cores)
servers. The switches were interconnected with a full mesh
via 10 GigE links, severing as the network core (IP-based
underlay). Each switch was connected with 4 servers via
GigE links. To emulate the 272 edge switches in the real data
center, we deployed 272 Linux virtual hosts running our
modified Open vSwitch implementation on the 24 servers. A
custom-made trace re-player was developed and deployed
on each of the 272 Linux virtual host to replay the inter-
switch traffic generated by the 6509 hosts in the trace.
The Floodlight-based central controller was hosted on a
standalone Linux PC (with Intel Core 2 Duo CPU 2.2 GHz)
and could be configured to run in either lazy or normal
mode.

5.2 Datasets

The real traffic trace we collected consists of the traffic
among 272 GigE edge switches and 6509 hosts over a
whole day. To check the consistency of the performance
results under different traffic scenarios, we generated three



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 9

TABLE 2
Characteristics of the traffic traces.

Trace # of flows Avg. centrality p (%) q (%)

Real 271M 0.85 N/A N/A
Syn-A 2720M 0.85 90 10
Syn-B 3806M 0.72 70 20
Syn-C 5071M 0.61 70 30

synthetic traffic traces based on the real trace. The main
characteristics of all traces are summarized in Table 2. In the
synthetic traces, traffic is assumed to be exchanged through
2713 edge switches among 65090 hosts, with a scaling-up
factor of 10 compared with the real trace. The traffic flows in
the synthetic traces were generated in the following manner
so that the key characteristics such as the temporal patterns
could be retained: p% of the flows are generated by selecting
from a given set of host pairs (q% of all host pairs) uniformly
at random in the synthetic topology, and assigning each
selected host pair a payload randomly chosen from the real
trace. We vary the values for p and q and three synthetic
traces are generated with significant differences in traffic
locality represented by average centrality. The rest flows are
generated by selecting host pairs uniformly at random from
all host paris in the synthetic topology. Each selected host
pair is assigned with a payload randomly chosen from the
real trace.

5.3 Performance of Switch Grouping
We evaluate the quality of the proposed switch grouping
scheme by calculating the normalized inter-group traffic
intensity (Winter as defined in Section 3.3). Fig. 6(a) depicts
the results of applying the size-constrained MLkP algorithm
(the IniGroup function in SGI) to the traffic derived from
each of the three synthetic traces with various numbers of
groups. We observe that the grouping quality varies across
different traces. In general for traces with higher average
centralities, it tends to have smaller values for Winter, in-
dicating better performance in reducing the workload of
the controller. We also observe that Winter increases almost
linearly with the increase of the number of groups, con-
firming that maximizing the sizes of single groups (thus
consequently reducing the number of groups) will best
facilitate the laziness of the controller.

We also carry out measurements to examine the com-
putation time in switch grouping generation on the three
synthetic traffic traces. The results of applying the IniGroup
function in SGI with various group size limits are shown
in Fig. 6(b). It can be seen that switch grouping can be
accomplished as fast as less than 5 seconds and the grouping
time is inversely proportional to group size limit. Note
that switch grouping is only carried out when there is a
very significant change in traffic pattern and incremental
updates are not possible to retain good grouping quality
in reasonable time. During most of the time, applying the
IncUpdate function is sufficient, which is more than one
order of magnitude faster than the IniGroup function.

5.4 Effectiveness of LazyCtrl
Controller workload. We validate the effectiveness of LazyCtrl
by measuring the controller workload under traffic dynam-

0 20 40 60 80 100 120 140
Number of Groups

5

10

15

20

25

30

35

40

45

50

N
o
rm

a
liz

e
d
 I
n
te

r-
G

ro
u
p
 T

ra
ff

ic
 I
n
te

n
si

ty
 (

%
) Syn-A Syn-B Syn-C

(a)

0 100 200 300 400 500 600
Group Size Limit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

se
c)

Syn-A Syn-B Syn-C

(b)

Fig. 6. a) Normalized inter-group traffic intensity when grouping with
different numbers of groups on each of the three synthetic traffic traces.
b) Computation time of switch grouping under different group size limits
on each of the three synthetic traffic traces.

ics. We first conduct a comparison to standard OpenFlow
control (with the original Floodlight implementation) using
the real traffic trace. For LazyCtrl, the initial grouping is
done based on the first-hour traffic pattern and we test in
both static and dynamic cases with and without incremental
updates for the grouping, respectively. To further verify
the consistency of the results, we expand the real trace by
introducing 30% extra flows among the hosts that did not
communicate with each other in the real trace during the
time interval from 8 to 24. Using the expanded trace, we
test again in both static and dynamic cases. We compare
the workload of the controller in the above cases and the
experimental results are illustrated in Fig. 7. It can be
observed that i) LazyCtrl can help achieve a significant level
of workload reduction (about 61%–82%) for the controller;
ii) The controller workload in LazyCtrl is relatively stable
during the day on the real trace, which is due to the fact
that majority of the traffic growth happens among those
“strongly connected” hosts inside local control groups, be-
ing transparent to the controller. iii) The controller work-
load can be significantly reduced when the IncUpdate
function is applied due to the fact that the additionally
introduced flows keep breaking the skewness of the traffic
over time and thus grouping updates have to be applied



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 10

0-2
2-4

4-6
6-8

8-10
10-12

12-14

14-16

16-18

18-20

20-22

22-24
Time (hour)

1

2

3

4

5

6

7

8
C

o
n
tr

o
lle

r 
W

o
rk

lo
a
d
 (

K
rp

s)
OpenFlow

LazyCtrl (real, static)

LazyCtrl (real, dynamic)

LazyCtrl (expanded, static)

LazyCtrl (expanded, dynamic)

Fig. 7. Controller workload.

0-2
2-4

4-6
6-8

8-10
10-12

12-14

14-16

16-18

18-20

20-22

22-24
Time (hour)

0

5

10

15

20

25

30

35

40

#
 o

f 
U

p
d
a
te

s 
p
e
r 

H
o
u
r

LazyCtrl (real)

LazyCtrl (expanded)

Fig. 8. Switch grouping frequency.

0-2
2-4

4-6
6-8

8-10
10-12

12-14

14-16

16-18

18-20

20-22

22-24
Time (hour)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

OpenFlow

LazyCtrl

Fig. 9. Steady state latency.

continuously to adapt to the changes in order to prevent the
controller from being overloaded.

Grouping update. In addition, we examine the update
frequency of switch grouping on both the real and expanded
traces. The update frequency results are shown in Fig. 8.
It can be noticed that the incremental update function has
very limited influence on the controller workload on the real
trace. At the same time, the update frequency keeps at a very
low level (10 updates per hour), indicating that maintaining
a relatively effective grouping is feasible in practice. On the
expanded trace, the cost for keeping the controller lazy is a
reasonable increase in update frequency (with a maximum
of 34 updates per hour).

Storage overhead. The storage cost of the BF-based G-FIB
on each switch is linear with the group size. For example,
when a group consists of 46 switches, for each switch the BF-
based G-FIB contains 45 bloom filters. Assuming that each
bloom filter has 16 128-byte entries, the memory required
for the BF-based L-FIB on each switch is 45 × 16 × 128 =
92, 160 bytes, resulting in a false positive rate of less than
0.1%.

5.5 Latency Overhead
Cold-cache forwarding latency. We evaluate the forwarding
latency under “cold-cache” scenarios upon the first packet
of a fresh flow is injected into the network. We emulate cold-
cache scenarios by launching 45 new flows among 5 newly
deployed hosts and compare the average forwarding la-
tency of the first packets of these flows in LazyCtrl to that in
the standard OpenFlow control. For intra-group traffic, the
cold-cache forwarding latency in LazyCtrl (0.83 ms) is more
than an order of magnitude smaller than that in OpenFlow
(15.06 ms). This is due to the fact that packets from intra-
group traffic will be forwarded locally without involving the
controller. The data plane operations such as L-FIB lookup
and packet encapsulation are very fast and thus packets can
be processed at line speed. For inter-group traffic, LazyCtrl
also outperforms standard OpenFlow by achieving a cold-
cache latency of 5.38 ms. This is because LazyCtrl requires
no passive learning of the network topology through all
ARP flooding as is the case of standard OpenFlow (the
learning-switch module in Floodlight), which is another
benefit brought by the lazy principle in LazyCtrl.

Steady-state latency. Steady-state latency refers to the av-
erage forwarding latency of all processed packets over a rel-

atively long period of time (2 hours here). The experimental
results on the real trace with a 24-hour span are illustrated
in Fig. 9. It can be observed that on average a 10% reduction
on latency can be achieved by LazyCtrl compared with stan-
dard OpenFlow. Moreover, this improvement is a byproduct
of reducing the workload of the controller as less load on
the controller leads to higher processing speed. Moreover,
the synchronized state dissemination speeds up topology
learning, which implicitly help reduce the response time of
the controller.

6 DISCUSSION

6.1 Scalability
Both distributed and centralized control approaches have
some instinct limitations in scaling to large-scale data center
networks. In general, distributed control such as link-state
protocols depends on broadcasting to synchronize network
states, which will be a disaster when the network becomes
inconceivably large. Moreover, the edge switches need to
learn the locations of all hosts, leading to explosive forward-
ing table sizes. While eliminating the need for state syn-
chronization in principle, centralized control suffers from
the stress of handling frequency and resource-exhaustive
events such as flow arrivals and network-wide statistics
collection events at the controller, which consequently limits
the scalability of network control in data centers.

LazyCtrl aims at finding out the right balance between
distributed and centralized control and integrates the ad-
vantages from both sides to fundamentally solve the scala-
bility issue of network control in data centers. The scalability
of LazyCtrl is interpreted in three aspects:

. Table organization and state dissemination. Due to
the group size limit, the L-FIB and G-FIB on each
switch will be constrained to limited sizes and thus
do not have any scalability issue. Switch-wide state
dissemination is also constrained in specific group
and is decoupled from the size growth of the data
center. The controller is designed to passively receive
network states from local control groups for state
dissemination and address leaching, which scales as
well.

. Location resolution. Location resolution responsibility
in LazyCtrl is shared among switches and the con-
troller. Switches handle the majority of tasks locally



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 11

in local control groups while the controller is only
involved when intra-group control is not sufficient.
As a result, the workload of the controller can be kept
at a very low level, mitigating the scalability issue.

. Failure detection and failover. Clustering switches into
“strongly connected” groups with limited sizes sim-
plifies the process of failure detection and recovery
of a large network system as failover tasks can be
carried out independently in each of the groups. In
addition, control authority in LazyCtrl is shared by
local control groups and the controller, avoiding a
single performance bottleneck.

6.2 Optimizations on Switch Grouping

For simplicity of exposition, we omitted some optimization
efforts we carried out for switch grouping in Section 3.3.
Now we highlight some of them.

. Host exclusion in switch grouping. When a edge switch
is connected to hosts belonging to many tenants, it
may be difficult for a greedy method to generate a
grouping with superb quality. In this case, the con-
troller can choose some hosts and exclude them from
the grouping process. The control tasks for these
hosts will be accordingly handled by the controller.

. Preload for seamless grouping update. During grouping
updates, the L-FIBs on the related switches will be
modified, leading to forwarding interruptions. To
relieve this, the controller can preload some rules
to the related switches to temporarily handle the
control tasks for them. These rules will be removed
when the grouping becomes stable.

. Acceleration by parallelism. The IncUpdate function
in the SGI algorithm can be easily parallelized by
carrying out merge and split operations simultane-
ously for multiple group pairs. Consequently, the
computation overhead brought by the regrouping
process can be further reduced.

6.3 Determining the Right Group Size

Determining the right sizes for groups plays an important
role in keeping LazyCtrl effective. Intuitively, the larger
the group size, the lower the expected workload for the
controller due to less inter-group traffic. On the other hand,
the larger the group size, the higher the control overhead
on the switch side, as a larger group means more network
states to spread among the switches in the group and more
L-FIBs and G-FIBs to maintain.

Compared with empirically driven or static group sizes,
we believe that a dynamic group size negotiation between
the controller and the switches can be helpful, as networks
can be heterogeneous and the switches might differ signif-
icantly in terms of performance and capacity. Furthermore,
the flexibility of on-demand group size makes it possible
for the controller to customize its workload (e.g., during
peak hours). As an alternative, we also implement a game-
based (modified Rubinstein Bargain Model) dynamic group
size limit negotiation approach in LazyCtrl. Before the con-
troller calculates the grouping, the switches are allowed to
dynamically bargain the group size limit with the controller

according to their real-time monitored and self-evaluated
data.

7 CONCLUSIONS

In this paper we present LazyCtrl, a novel hybrid control
plane design for data center networks. LazyCtrl is based on
a core-edge separated architecture and the control function-
ality is implemented in a hybrid fashion: frequent coarse-
grained control tasks are largely devolved to network edge
by clustering edge switches into local control groups accord-
ing to traffic locality and carrying out distributed control
independently inside each group; the central controller is
only in charge of very limited number of inter-group or
other fine-grained control events. The central controller
keeps adapting the grouping of edge switches to maintain
its laziness. Our evaluation on the LazyCtrl prototype with
both real and synthetic traffic traces show that LazyCtrl can
help reduce the workload of the central controller by up to
82%, improving the scalability of standard OpenFlow to a
large extend. Moreover, LazyCtrl is fully compatible with
existing solutions for scaling flow-based centralized control
to large networks.

ACKNOWLEDGMENTS

The authors would like to thank...

REFERENCES

[1] Amazon EC2. http://aws.amazon.com/ec2/.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity

data center network architecture,” in SIGCOMM, 2008, pp. 63–74.
[3] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,

and S. Lu, “Bcube: a high performance, server-centric network
architecture for modular data centers,” in SIGCOMM, 2009, pp.
63–74.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in NSDI, 2010, pp. 281–296.

[5] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data
center networks,” in NSDI, 2010, pp. 249–264.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine
grained traffic engineering for data centers,” in Co-NEXT, 2011,
pp. 8–20.

[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: scaling flow management for high-
performance networks,” in SIGCOMM, 2011, pp. 254–265.

[8] C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: a scalable
ethernet architecture for large enterprises,” in SIGCOMM, 2008,
pp. 3–14.

[9] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable
and flexible data center network,” in SIGCOMM, 2009, pp. 51–62.

[10] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland:
a scalable fault-tolerant layer 2 data center network fabric,” in
SIGCOMM, 2009, pp. 39–50.

[11] J. Mudigonda, P. Yalagandula, J. C. Mogul, B. Stiekes, and Y. Pouf-
fary, “Netlord: a scalable multi-tenant network architecture for
virtualized datacenters.” in SIGCOMM, 2011, pp. 62–73.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” in SIG-
COMM, 2007, pp. 1–12.

[13] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-
defined networks,” in Hot-ICE, 2012. [Online]. Avail-
able: https://www.usenix.org/conference/hot-ice12/workshop-
program/presentation/tootoonchian



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, SEPTEMBER XXXX 12

[14] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying
NOX to the datacenter,” in HotNets, 2009.

[15] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in IMC, 2010, pp. 267–280.

[16] E. Ng, “Maestro: A system for scalable openflow control,” TSEN
Maestro-Technical Report TR10-08, Rice University, Tech. Rep.,
2010.

[17] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-
based networking with DIFANE.” in SIGCOMM, 2010, pp. 351–
362.

[18] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” in OSDI, 2010, pp. 351–364.

[19] Y. Ganjali and A. Tootoonchian, “Hyperflow: A distributed control
plane for openflow.” in Internet Network Management Workshop
/ Workshop on Research on Enterprise Networking, 2010. [On-
line]. Available: https://www.usenix.org/conference/inmwren-
10/hyperflow-distributed-control-plane-openflow

[20] A. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R.
Kompella, “Towards an elastic distributed SDN controller,” in
HotSDN, 2013, pp. 7–12.

[21] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson,
“Pratyaastha: an efficient elastic distributed sdn control plane,” in
HotSDN. ACM, 2014, pp. 19–24.

[22] S. Schmid and J. Suomela, “Exploiting locality in distributed sdn
control,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking. ACM, 2013, pp. 121–126.

[23] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for effi-
cient and scalable offloading of control applications,” in HotSDN.
ACM, 2012, pp. 19–24.

[24] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A
hybrid hierarchical control plane of software-defined networking
for large-scale networks,” in Network Protocols (ICNP), 2014 IEEE
22nd International Conference on. IEEE, 2014, pp. 569–576.

[25] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-
domain sdn controllers,” in Network Operations and Management
Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–4.

[26] M. Santos, B. Nunes, K. Obraczka, T. Turletti, B. T. de Oliveira,
C. B. Margi et al., “Decentralizing sdn’s control plane,” in Local
Computer Networks (LCN), 2014 IEEE 39th Conference on. IEEE,
2014, pp. 402–405.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: experience with a globally-deployed
software defined wan,” in ACM SIGCOMM, 2013, pp. 3–14.

[28] A. Brodersen, S. Scellato, and M. Wattenhofer, “Youtube around
the world: geographic popularity of videos,” in WWW, 2012, pp.
241–250.

[29] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese,
“Netshare and stochastic netshare: predictable bandwidth alloca-
tion for data centers,” Computer Communication Review, vol. 42,
no. 3, pp. 5–11, 2012.

[30] Amazon usage estimates. http://blog.rightscale.com/
2009/10/05/amazon-usage-estimates.

[31] Amazon S3. http://aws.typepad.com/aws/2011/07/
amazon-s3-more-than-449-billion-objects.html.

[32] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: en-
abling innovation in campus networks.” Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[33] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme
for irregular graphs.” J. Parallel Distrib. Comput., pp. 96–129, 1998.

[34] M. Stoer and F. Wagner, “A simple min-cut algorithm.” 1997, pp.
585–591.

[35] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[36] Open vSwitch. http://openvswitch.org/.
[37] Floodlight. http://floodlight.openflowhub.org/.
[38] LazyCtrl open source project.

https://github.com/yeasy/lazyctrl.

Kai Zheng received his Ph. D and M.S. degree
from Tsinghua University, China, in 2006 and
2003, respectively, and his B.S. degree from Bei-
jing University of Posts and Telecommunications,
China, in 2001. He joined IBM Research in 2006
as a Staff Researcher. Kai now is Chief Architect
at Huawei Technologies. His current research
interests include many fields of data center net-
working, software defined networking, network
security, green networking, named data network-
ing, and high performance and high availability

data center network, among others. He is a senior member of the IEEE.

Lin Wang received his Ph.D. from the Institute
of Computing Technology, Chinese Academy of
Sciences and B.S. from the Beijing Institute of
Technology in 2015 and 2010 respectively, both
in Computer Science. He is now a Research As-
sociate at SnT, University of Luxembourg. Dur-
ing 2012-2014, he worked in IMDEA Networks
Institute, Madrid, Spain, as a research intern.
His current research interests include networked
systems, energy-efficient computing and large-
scale data analytics.

Baohua Yang received his Ph.D. degree in
Computer Science from Tsinghua University in
2013. Now he is a researcher at IBM Research.
His research interests include cloud comput-
ing, system performance, networking, and dis-
tributed system. He has published tens of papers
in high-quality conference and journals, and he
is also TPC or Invited Reviewer of numbers of
international conferences and journals.

Yi Sun received his Ph.D. degree in Computer
Science from the Institute of Computing Tech-
nology (ICT), Chinese Academy of Sciences
in 2007. Now he is an associate professor at
ICT since 2009. His research interests cover
network resource management, network archi-
tecture, and video streaming. He has already
published more than 60 academic papers, and
received the Outstanding Young Scientist Award
of the Chinese Academy of Sciences in 2014.

Steve Uhlig obtained a Ph.D. degree in Applied
Sciences from the University of Louvain, Bel-
gium, in 2004. From 2004 to 2006, he was a
Postdoctoral Fellow of the Belgian National Fund
for Scientific Research (F.N.R.S.). His thesis won
the annual IBM Belgium/F.N.R.S. Computer Sci-
ence Prize 2005. Between 2004 and 2006, he
was a visiting scientist at Intel Research Cam-
bridge, UK, and at the Applied Mathematics De-
partment of University of Adelaide, Australia. Be-
tween 2006 and 2008, he was with Delft Univer-

sity of Technology, the Netherlands. Prior to joining Queen Mary, he was
a Senior Research Scientist with Technische Universitt Berlin/Deutsche
Telekom Laboratories, Berlin, Germany. Starting in January 2012, he is
the Professor of Networks and Head of the Networks Research group at
Queen Mary, University of London.


