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Abstract— Optimally choosing wireless Access Points (APs) as 

urban areas become more densely packed with them becomes 

increasingly challenging. In WiFi-based Indoor Positioning 

Systems (IPS), Selecting Wireless Access Point (AP), namely, WiFi 

routers, is significant as the more APs that are selected, the higher 

the computation, energy and time cost. This is unsuitable for 

networking low-resource devices as part of an Internet of Things. 

In addition, selecting the optimum number of APs not only 

reduces redundant information but also improves the positioning 

accuracy. In this paper, we present a novel AP selection method 

that uses the RSSI Interval Overlap Degree (IOD) to discriminate 

between known location Reference Points. We validated our 

algorithm in an office-like indoor space at a Queen Mary 

computer science lab. The results show that our algorithm has an 

improved performance, which is 13.6%, 18.2%, and 7.6% better 

than IG (information gain), MI (mutual information), SD 

(standard deviation) used as baseline algorithms, respectively. 

Keywords—WiFi RSSI; IPS; Fingerprinting; Interval Overlap; 

Location-based Services;  

I. INTRODUCTION 

As both indoor and outdoor spaces become more complex, 
especially in urban areas, the need for indoor positioning and 
navigation services [1], [2], [3] becomes paramount. There are 
many other value-add location-based services (LBS) 
applications, e.g., commercial ads, can be made more 
personalized if they are location-aware [4]. Due to the 
increasing complexity of the indoor environment and the lack 
of a global positioning system, the research and development 
for low cost, high accuracy, real-time and high reliable LBS is 
still full of challenges [5].  

An indoor positioning system (IPS) is a system to locate 
objects or people inside a building using Radio Frequency (RF), 
magnetic fields [7], acoustic signals and dead-reckoning 
approaches using inertial sensors such as accelerometers and 
gyroscopes integrated into mobile devices [8]. Although a 
range of indoor localization technologies can be used [9], [10], 
the use of Wireless Fidelity (WiFi) as a positioning system has 
become more popular in recent years, especially indoors, 
because of the broad deployment of APs. Local area LBS tends 
to be based upon the use of Received Signal Strength Indicator 
(RSSI) that indicates the radio signal decay with distance [11]. 
This requires no specialist equipment unlike other methods 
based upon determining the timing delay between sending 
versus receiving signals over local area that requires more 
specialized clocks and their synchronization. RSSI based WiFi-

based LBS generally includes two approaches, a simple signal 
decay or signal attenuation or path loss model and a fingerprint-
based system. An advantage of the simple path loss model 
system is that it only requires off-the-shelf smartphones, tablets, 
or laptops to get the location of the device based on RSSI 
according to signal attenuation model [12]. Unfortunately the 
simple signal decay model assumes a free space for RF signal 
propagation but almost all physical space is not free it contains 
physical objects such as people and fixtures, which causes 
additional complex RF signal attenuation and reflection so 
reducing its accuracy. The fingerprint-based technique offers a 
more accurate positioning system in comparison, however, it 
typically works in two phases [13]. First it requires a fingerprint 
or radio map of RF signals to be collected in an offline phase 
where the RSSI signals from multiple APs are collected and 
mapped to locations determined by some other more accurate 
location determination method, e.g., laser tape, UWB, and then 
stored as a radio map or fingerprint database. Then during a 
second, operational or online phase, the location is determined 
through an estimation of matching the current position with the 
nearest known location in the pre-stored radio map.  

Many RSSI based positioning systems are client-driven 
architectures in terms of triggering and driving indoor LBS 
services.  This offers the clients’ devices a basic privacy filter 
in that at the very least, users can decide whether to switch 
client-side location based sensors on or off, albeit some mobile 
devices can be configured by providers to bypass this.  

Location sensing and the computation to determine the 
position can in general be somewhat power hungry for LBS 
applications in mobile client devices [14]. Hence, energy-
efficient indoor location services is a core issue, else the entire 
client device can become unusable and non-operational 
because of a lack of power to drive core wireless services [15].  

Due to the increasing availability and high density of 
heterogeneous wireless APs in indoor environments, more and 
more networks and APs are provided and can be detected by 
mobile (wireless) access devices. This however increases the 
power and computation efficiency to detect valid receivers, and 
their location, in the face of so many more competitive, 
possibly invalid transceivers and the need to efficiently select 
these. The mere fact that a wireless receiver can receive 
information means that it is in range of a transmitter and gives 
it a fix in relation to this transmitter. The use of multiple 
transmitters can give a more accurate fix over a single 
transmitter through comparing transceiver signal 
characteristics such as RSSI but this has limits.  When 
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discovering the transmitters or receivers, that are available, the 
more there are, requires more computation and power to 
differentiate and to map these to locations. 

Using more APs can improve the positioning accuracy due 
to more signal comparisons to determine the location. 
Unfortunately, some APs are affected more than others by 
dynamic effects which cause the RSSI values to fluctuate at the 
same location at the frequencies used, such as people moving 
or the proximity to other RF sources that are intermittently 
active in the same unlicensed RF frequencies as Wi-Fi such as 
Bluetooth and microwave ovens. These effects affect the 
location determination accuracy. Appropriate AP selection not 
only helps to remove the APs with a poorer location 
determination accuracy but also improves the computation and 
energy efficiency. It is a critical challenge how to choose the 
optimum number of APs for location determination. 
 The remainder of this paper is organized as follows: Section 
II reviews related work. Section III introduces the RSSI Interval 
Overlap Degree (IOD) algorithm to select APs and IV presents 
the experiments to determine the  AP selection performance. 
Section V concludes with a discussion and future work. 

II. RELATED WORK 

According to the wireless attenuation model [11], the WiFi 

signal intensity attenuation model is described by   

𝑃𝑟,𝑑𝐵(𝑑) = 𝑃𝑟,𝑑𝐵(𝑑0) − 10𝑛𝑙𝑜𝑔10(
𝑑

𝑑0
)            (1) 

where 𝑃𝑟,𝑑𝐵(𝑑) is the signal power received at a point which has 

a distance d to the transmitter; 𝑃𝑟,𝑑𝐵(𝑑0) is the signal power 

received at a reference point with a distance 𝑑0  to the 

transmitter; n is the pathloss factor.   

In equation (1), 𝑃𝑟,𝑑𝐵(𝑑0), 𝑑0 and n are known in advance. 

The relationship between d and 𝑃𝑟,𝑑𝐵(𝑑) can be determined to 

be 

𝑙𝑜𝑔10𝑑 =
𝑃𝑟,𝑑𝐵(𝑑0)−𝑃𝑟,𝑑𝐵(𝑑)+10𝑛𝑙𝑜𝑔10(𝑑0)

10𝑛
              (2) 

This expresses how  𝑃𝑟,𝑑𝐵(𝑑) changes with 𝑑. In a real world 

indoor space,  𝑃𝑟,𝑑𝐵(𝑑) may exhibit signal fluctuations caused 

by a variety of factors, e.g., multipath and non-line-of-sight 

(NLOS) propagation, time-variant attenuation such as people 

moving. Therefore, different locations often have different 

RSSI values from the same AP which is the foundation for 

fingerprint-based positioning approach.  

An essential goal of indoor location estimation systems is to 

increase the location estimation accuracy while reducing the 

power consumption. Many AP selection approaches have been 

proposed to help establish a more efficient and reliable 

positioning system as follows.  

A. Statistical Analysis-Based Methods for AP selection 

Statistical analysis based methods use values such as the 

mean and standard deviation to act as a criterion for AP 

selection. 

Youssef et al. [16] proposed selecting APs that have a high 

mean value of RSSI known as MaxMean. This method allocates 

higher importance to the strongest RSSI. However, the mean 

value of RSSI doesn’t always accurately reflect the dynamic 

variety of RSSI as RSSI can be easily affected by the 

environment factors described earlier. 

Another method called RSSI standard deviation (SD) in [17] 

is used as the standard deviation of RSSI series collected at a RP 

to analyze the signal stability of APs. Assuming 𝑅𝑆𝑆𝐼𝑖
𝑗
 denotes 

the j-th RSSI value of 𝐴𝑃𝑖 and 𝑅𝑆𝑆𝐼𝑖
̅̅ ̅̅ ̅̅ ̅ is the mean value of RSSI 

from 𝐴𝑃𝑖. 𝑆𝐷𝑖  denotes the SD of 𝐴𝑃𝑖 which can be calculated as 

follows: 

𝑆𝐷𝑖 = √
1

𝑛−1
∑ (𝑅𝑆𝑆𝐼𝑖

𝑗
− 𝑅𝑆𝑆𝐼𝑖

̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑗=1                 (3) 

Then, sort these values of each AP’s SD in ascending 

order and select top-k APs with smallest SD as a lower SD value 

means the RSSI series from the AP is more stable. SD is a 

criterion to reflect the amount of variation of a set of data values 

relative to the mean value. However, each of the values in the 

set is included for the computation of SD, this makes SD not 

suitable for a situation where some outliers exist. 

B. Information Theory-Based Methods for AP selection 

In information theory and machine learning, information 

gain (IG) is often used as a criterion for feature selection. For 

fingerprint-based positioning, AP selection is also regarded as 

feature selection. Chen et al. [14] proposed an AP selection 

strategy based on IG. The idea of selecting AP using IG is as 

follows  
If 𝑁𝑡  is the number of APs (𝐴𝑃𝑗 , 1 ≤ 𝑗 ≤ 𝑁𝑡) that can be 

detected at each RP (𝑅𝑖 , 1 ≤ 𝑖 ≤ 𝑆) in an indoor space. The IG 
of 𝐴𝑃𝑗 can be described by 

𝐼𝐺(𝐴𝑃𝑗) = 𝐻(𝑅) − 𝐻(𝑅|𝐴𝑃𝑗)                    (4) 

where 𝐻(𝑅) is the entropy of a RP and can be demonstrated by 

𝐻(𝑅) = ∑ 𝑃(𝑅𝑖)𝑙𝑜𝑔𝑃(𝑅𝑖)
𝑆
𝑖=1                       (5) 

where 𝑃(𝑅𝑖) is the prior probability of 𝑅𝑖. There are S RPs in 
total, we set 𝑃(𝑅𝑖) = 1/𝑆 for each RP since the probability of 
each RP is viewed within a uniform distribution. 𝐻(𝑅|𝐴𝑃𝑗) is 

the conditional entropy of a RP given the RSSI of 𝐴𝑃𝑗. It can be 

calculated accordingly as follows 

𝐻(𝑅|𝐴𝑃𝑗) = − ∑ ∑ 𝑃(𝑅𝑖 , 𝐴𝑃𝑗 = 𝑣)𝑙𝑜𝑔𝑃(𝑅𝑖|𝐴𝑃𝑗 = 𝑣)𝑆
𝑖=1𝑉   (6) 

where v denotes one possible RSSI value from 𝐴𝑃𝑗 and V are 

all the possible values from 𝐴𝑃𝑗 . Then the conditional 

probability can be shown as follows 

𝑃(𝑅𝑖|𝐴𝑃𝑗 = 𝑣, 𝑣 ∈ 𝑉) =
𝑃(𝐴𝑃𝑗 = 𝑣|𝑅𝑖)𝑃(𝑅𝑖)

𝑃(𝐴𝑃𝑗=𝑣)
               (7) 

The discriminative ability means the ability that an AP can 

distinguish RPs from each other. For decision tree classifiers, 

the higher the IG value, the better the classification ability of 

this feature. Therefore, a higher IG value for the AP means a 

strong discriminative ability towards RPs. If IG values of all 

APs are sorted in descending order, the top k APs with highest 

IG values will be chosen. 

The main merits of IG are that IG makes good use of the 

diversity of the data samples and takes the discriminative ability 

of each AP into consideration. Nevertheless, IG is more likely 

to choose the AP having more variables than others, some of 

which are unstable and more physically environmentally 

sensitive, leading to the degradation of positioning accuracy. 
Another information theory-based method is mutual 

information (MI) which is used by Zou et al. [18] for selecting 
APs. The MI of two random variables is a measure of the 
mutual dependence between the two variables. The higher of 



 

MI, the more information these variables share which also 
means redundant information. Redundant information doesn’t 
bring any useful information but increases the amount of 
computation. Thus, the main target of this MI-based AP 
selection method is to pick out some APs with the least amount 
of redundant information.  

If 𝑀𝐼(𝐴𝑃𝑎 , 𝐴𝑃𝑏) denotes the MI of 𝐴𝑃𝑎 and 𝐴𝑃𝑏 and it can 
be described by 

𝑀𝐼(𝐴𝑃𝑎 , 𝐴𝑃𝑏) = 𝐻(𝐴𝑃𝑎) + 𝐻(𝐴𝑃𝑏) − 𝐻(𝐴𝑃𝑎, 𝐴𝑃𝑏)   (8) 
where 𝐻(𝐴𝑃𝑎) and 𝐻(𝐴𝑃𝑏) are the information entropies of 
𝐴𝑃𝑎  and 𝐴𝑃𝑏  respectively. 𝐻(𝐴𝑃𝑎 , 𝐴𝑃𝑏)  expresses the joint 
entropy of 𝐴𝑃𝑎 and 𝐴𝑃𝑏.  

𝐻(𝐴𝑃𝑎 , 𝐴𝑃𝑏) = ∑ ∑ [𝑃(𝑅𝑆𝑆𝐼𝑎 = 𝑣1, 𝑅𝑆𝑆𝐼𝑏 = 𝑣2|𝑣1 ∈𝑉1𝑉2

𝑉1, 𝑣2 ∈ 𝑉2) × 𝑙𝑜𝑔𝑃(𝑅𝑆𝑆𝐼𝑎 = 𝑣1, 𝑅𝑆𝑆𝐼𝑏 = 𝑣2)]              (9) 
      The first step of this approach is to identify the AP pairs 
with the least MI. If  𝑁𝑡 is the number of APs in the space, 
there exists 𝑁𝑡(𝑁𝑡 − 1) AP pairs. Assume (𝐴𝑃𝑎 , 𝐴𝑃𝑏) is the 
choice, then add another 𝐴𝑃𝑐  to compute the MI of 𝐴𝑃𝑐  and 
(𝐴𝑃𝑎 , 𝐴𝑃𝑏). At this time, (𝐴𝑃𝑎 , 𝐴𝑃𝑏 , 𝐴𝑃𝑐) with the least MI 
will be chosen. The process can be described by: 

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐴𝑃𝑧

𝑀𝐼(𝐴𝑃𝑎, 𝐴𝑃𝑏 , … 𝐴𝑃𝑧)              (10) 

where 𝑀𝐼(𝐴𝑃𝑎, 𝐴𝑃𝑏 , … 𝐴𝑃𝑧) is calculated by 
𝑀𝐼(𝐴𝑃𝑎, 𝐴𝑃𝑏 , … 𝐴𝑃𝑧)   = 𝐻(𝐴𝑃𝑎, 𝐴𝑃𝑏 , … ) + 𝐻(𝐴𝑃𝑧) −

𝐻(𝐴𝑃𝑎, 𝐴𝑃𝑏 , … 𝐴𝑃𝑧)          (11) 
Following this procedure, a group including k APs with the 

smallest 𝑀𝐼(𝐴𝑃1, 𝐴𝑃2, … 𝐴𝑃𝑘) will be chosen. 
The MI approach focus on the information relevance 

between APs and can efficiently reduce the redundant 
information. However, one drawback is that MI method 
doesn’t tell the difference between APs. And another one is 
that it doesn’t evaluate each AP’s discriminative ability to RPs 
independently.  

C. Group Discrimination-Based Method for AP selection 

Unlike some AP selection strategies measuring the 

importance of each AP, Lin et al. [19] presented a group-

discrimination-based AP selection method, known as Group 

Discrimination or GD. The basis of this approach is in using 

Support Vector Machines (SVMs) to assess the group 

performance of selected APs instead of the individual 

importance. However, one big problem is the large amount of 

computation needed. When used for a large-scale AP scenario, 

with requires a high amount of data training, this will consume 

a lot of machine memory and require much computation, which 

is not suitable for resource limited devices. 
There are many limitations for the methods mentioned 

above. Statistical analysis-based methods only reflect a certain 
statistical index for RSSI samples. Information theory-based 
approaches retain the diversity of information well, but IG 
tends to choose APs with more variables which are unstable 
and more physically environmentally sensitive. MI has week 
ability to discriminate between APs and evaluate each AP’s 
discriminative ability to RPs. The group discrimination-based 
algorithm needs additional machine memory and a long 
computation time. Therefore, a novel method, called Interval 
Overlap Degree (IOD), is proposed to offer solution to these 
limitations. 

There are many features about this proposed approach. 
First, IOD uses numerical interval as a measure to analyze the 

characteristics of RSSI sample values from APs. Secondly, 
IOD preserves the original features of samples instead of 
extracting one statistical criterion for AP selection; at the same 
time, it inherits the rule of individual discriminative ability of 
APs for AP selection. Lastly, IOD achieves a higher accuracy 
while improving the computational efficiency. 

The concept of the overlap degree has been used for 

localization in [20]. It is used to represent the number of regions 

that cover the overlap point. The overlap points with maximum 

overlap degrees are to act the estimated location of the unknown 

node. In this paper, to the best of our knowledge, we firstly 

introduce numerical interval overlap degree of RSSI serial 

values, also called IOD, into WiFi indoor positioning paradigm 

to achieve the AP selection.  

 

III. METHODOLOGY 

A. The Principle of IOD for AP selection 

In the WiFi fingerprint positioning system, during the 
offline fingerprint collection stage, RSSI data samples from 
multiple APs will be collected at each RP as shown in Fig. 1. 
𝑈𝑗 = {𝐴𝑃1, 𝐴𝑃2, … , 𝐴𝑃n}  presents 𝑛  detected APs at 𝑅𝑃𝑗 . In 

real environment, the AP list at each RP may be different, here 
we just show the same AP set at each RP.   

 
The positioning stage is regarded as a process of pattern 

recognition. Each RP is divided into a class. The features, APs, 
have a key impact on the matching result. Thus, one aim of AP 
selection is to choose the most appropriate AP set to achieve a 
better positioning accuracy. To demonstrate the work principle 
of IOD for AP selection, we selected 𝐴𝑃𝑖  as an example as 
shown in Fig. 2.  

Fig. 1. The explanation for positioning process 

 
Fig. 2. The extraction of RSSI numerical interval of 𝐴𝑃𝑖 



 

Assume 𝑅𝑆𝑆𝐼1𝑖 = {𝑅𝑆𝑆𝐼1
1𝑖 , 𝑅𝑆𝑆𝐼2

1𝑖 , … , 𝑅𝑆𝑆𝐼𝑘
1𝑖}  denotes k 

possible RSSI values from the i-th AP at the first RP. The 
numerical interval of 𝑅𝑆𝑆𝐼1𝑖  can be shown as: 
[𝑚𝑖𝑛(𝑅𝑆𝑆𝐼1𝑖), 𝑚𝑎𝑥(𝑅𝑆𝑆𝐼1𝑖)] . Visualize this numerical 
interval using number axis (the blue stripes as shown in Fig. 2). 
The RSSI values of 𝐴𝑃𝑖  at each RP all can be displayed as 
numerical intervals. The question is how to discriminate RPs 
from each other using 𝐴𝑃𝑖.  In other words, what rule can be 
used to distinguish these four types of numerical intervals as 
shown in Fig. 2.  

IOD can be employed as a criterion to discriminate 
numerical intervals effectively. As shown in Fig. 3, the red part 
in number axis denotes the overlap length (OI), and the gray 
part is the non-overlap length. Then  𝐼𝑂𝐷(𝑁𝐼1, 𝑁𝐼2)  can be 
calculated as follows: 

𝐼𝑂𝐷(𝑁𝐼1, 𝑁𝐼2) =
1

2
(

𝑂𝐼(𝑁𝐼1,𝑁𝐼2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝐼1)
+

𝑂𝐼(𝑁𝐼1,𝑁𝐼2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝐼2)
) 

Where 𝑁𝐼1 ,  𝑁𝐼2  represent different numerical intervals. 
𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝐼1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝐼2)  stand for the length of 𝑁𝐼1 , 𝑁𝐼2 , 
respectively. 𝑂𝐼(𝑁𝐼1 , 𝑁𝐼2) is the overlap length between 𝑁𝐼1 
and 𝑁𝐼2. The value range of IOD is [0,1].  

IOD is defined as the mean of proportion that the overlap 
length between two numerical intervals accounts in each of 
these two numerical intervals. The lower the IOD, the bigger 
difference between two numerical intervals, which means these 
are easier to differentiate. 

There are four overlap relationships between two numerical 
intervals. Fig. 4 shows how to compute the  𝑂𝐼(𝑁𝐼1, 𝑁𝐼2) in 
these four cases. We set the value of 𝑂𝐼(𝑁𝐼1 , 𝑁𝐼2) zero when 
there is no overlap.  

The difference between two numerical intervals can be 
measured by IOD as described above. Likewise, the RSSI serial 
values from 𝐴𝑃𝑖 at different RPs can be discriminated using the 

IOD method. The following steps are how to select optimal AP 
set. 

B. Process of AP Selection 

To achieve a high positioning accuracy, the RPs should have 
suitable features to distinguish them, then the Test point (TP) 
could match the nearest RPs more accurately. This is the reason 
we need to select APs with the strongest discriminative ability 
towards RPs.   

The RSSI samples from the same AP are different in 
different RPs. If 𝑅𝑆𝑆𝐼𝑖𝑎 = {𝑅𝑆𝑆𝐼1

i𝑎, 𝑅𝑆𝑆𝐼2
i𝑎, … , 𝑅𝑆𝑆𝐼𝑘

i𝑎}  denotes 
the RSSI sample values collected at i-th RP from  𝐴𝑃𝑎  and 

𝑅𝑆𝑆𝐼𝑗𝑎 = {𝑅𝑆𝑆𝐼1
j𝑎

, 𝑅𝑆𝑆𝐼2
j𝑎

, … , 𝑅𝑆𝑆𝐼𝑘
j𝑎

}  represents the RSSI 

samples collected at j-th RP from 𝐴𝑃𝑎 . 𝐼𝑂𝐷𝑖𝑗
𝑎  stands for the 

IOD between 𝑅𝑆𝑆𝐼𝑖𝑎  𝑎𝑛𝑑 𝑅𝑆𝑆𝐼𝑗𝑎 . The higher 𝐼𝑂𝐷𝑖𝑗
𝑎 is, the 

smaller the difference between 𝑅𝑆𝑆𝐼𝑖𝑎  𝑎𝑛𝑑 𝑅𝑆𝑆𝐼𝑗𝑎. This means 

it is more difficult to discriminate i-th RP and j-th RP using 
𝐴𝑃𝑎. So our target is to select APs with the lowest IOD. 

If 𝑁 is the total number of RPs, then there are 𝑁(𝑁 − 1) RP 
combinations in all. Let 𝐼𝑂𝐷𝑓−𝑎 represent the final IOD of 𝐴𝑃𝑎. 

It can be calculated as follows: 

𝐼𝑂𝐷𝑓−𝑎 = ∑ ∑ 𝐼𝑂𝐷𝑖𝑗
𝑎𝑁

𝑗=𝑖+1
𝑁−1
𝑖 

After figuring out final IOD of all APs, we rank them in 
ascending order and select the top-S APs with lowest IOD.

IV. EVALUATION 

A. Experiment Setup 

To validate the performance of the proposed AP selection 
method, experiments were conducted in an office-like indoor 
space at a Queen Mary computer science lab. Fig. 5 shows the 

plan of experiment scene. This room is around 450 ㎡(30m x 

15m). The RPs are in black, and the TPs are in green. There 
were twenty-four RPs and one hundred TPs in total. The 
horizontal and vertical distance between RPs is 3 meters. The 
horizontal and vertical distance between most TPs is 1 meter 
except for some locations without a TP.  During the experiment, 
as people were working and normally moving around during 
daily activities, we didn’t filter the effects of environmental 
factors e.g., signal reflection, temporal attenuation and noise. 

 
Fig. 5. The plan of experiment scene 

 
Fig. 3. The sketch of interval overlap 

 
Fig. 4. The four cases of overlap length. 



 

We used the same smart phone device throughout as a RSSI 
collector. The size of RSSI samples at each RP is 120 and the 

sampling time span is 2 seconds. Over 90 APs were detected in 
this experiment.

B. K-Nearest Points Searching Algorithm 

In most cases, the Euclidean Distance (ED) is used for 
searching the nearest points which will be included in a 
Weighted K-Nearest Neighbor (WKNN) approach to obtain 
the location of TP. This method chooses the subset of RPs 
with shortest ED to the TP. Here, another algorithm, called 
RSSI ranking - Kendall Tau Correlation Coefficient (RR-
KTCC) proposed by Zixiang Ma et al. [2] which was used to 
address the issue about equipment difference in BLE 
positioning system, will be employed to search for the nearest 
points. 

{𝐴𝑃1 𝐴𝑃2 ⋯ 𝐴𝑃𝑘} is the received list of APs at one 
RP or TP. This AP list is sorted in descending order by 
comparing the mean of RSSI sample values from each AP. 
The AP lists collected at each RP and TP all comply with this 
rule. Then, we divide the AP set into subsets that only 
containing two APs of which positions are ordered, for 
example, {𝐴𝑃1, 𝐴𝑃2}  indicates the mean of RSSI sample 
values from 𝐴𝑃1 is bigger than the mean of 𝐴𝑃2.  

As for two AP sets, set 𝐴 and set 𝐴′, if the subset (e.g.  
{𝐴𝑃1, 𝐴𝑃2}) from set 𝐴 and subset (e.g.  {𝐴𝑃1, 𝐴𝑃2}) from set 
𝐴′ are the same, we can say these two subsets are concordant. 
Or they are discordant.  

Therefore, the KTCC displayed as τ between two AP sets 
can be shown as follows: 

τ =
𝑛𝑢𝑚 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑠𝑢𝑏𝑠𝑒𝑡𝑠−𝑛𝑢𝑚 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑠𝑢𝑏𝑠𝑒𝑡𝑠

𝐾∗(𝐾−1)/2


where K is the size of AP set. τ is used to measure the 
ordinal association between two rankings. And the range 
value is [-1,1]. 1 means a perfect agreement between two 
rankings; -1 means a perfect disagreement. τ can be regarded 
as a distance measure since the greater the value, the higher 
agreement between the two rankings, which means closer 
distance in signal distance space. We chose the top-K RPs 
with the greatest τ relative to TP.  

C. Performance Evaluation Index  

In this paper, the WKNN approach is employed to get the 
location of TP. The principle of this method can be shown as 
follows: 

(𝑥, 𝑦) = ∑
1

𝐷𝑖
⁄

∑ 1
𝐷𝑖

⁄
𝐾
𝑖

(𝑥𝑖 , 𝑦𝑖)𝐾
𝑖=1 

Where (𝑥, 𝑦)  infers the coordinate of TP, and (𝑥𝑖 , 𝑦𝑖) 
denotes coordinate of i-th RP. K is the total number of RPs 
which are the nearest RPs to TP. In this paper, K is 4 as 
advised by [18-21] when KNN is used. In general, if K equals 
3 or 4 will yield good results. 𝐷𝑖  represents the Euclidean 
distance between TP and i-th RP which can be described by 

𝐷𝑖 = √∑ (𝑓𝑗
�̅� − 𝑓�̅�)

2𝑛
𝑗=1 

Here 𝑓𝑗
�̅� is the mean value of RSSI samples from j-th AP 

collected at i-th RP. 𝑓�̅�  is the mean value of RSSI samples 

from j-th AP at the TP. And n is the number of APs selected. 
Therefore, the positioning error can be denoted as 

𝑃𝐸 = √(𝑥 − 𝑥0)(𝑦 − 𝑦0)2
 

where (𝑥0, 𝑦0) is the known coordinate of the TP.  

Apart from the positioning error (PE), mean positioning 
error (MPE), max error (MaxE), the standard deviation of 
error (STDE), root mean square of error (RMSE) and 
cumulative distribution function (CDF) are also used to assess 
the performance of the proposed method [22]. 

D. Indoor Positioning Performance 

Three approaches are employed to act as baseline 
algorithms to make a comparison with our proposed method, 
IOD. Fig. 6 shows the overall mean positioning error (MPE) 
of four approaches. IOD in the red color shows a best 
performance compared to the other methods when the 
number of APs is 7 or less. Moreover, a MPE trough of 2.46m 
for the IOD appears when using 6 APs. It is worth noting that 
a 2.87m level of accuracy is achieved when just one or two 
APs are used. The location accuracy remains below 3m no 
matter how many APs are used. Starting at 8 APs, the MPE 
lines of all methods tend to be stable, and the gap between 
them is reduced. 

Table I lists the details of MPE of four methods when the 
number of APs are 6,7,8,9 and 10 respectively. When the 

                                               
Fig. 6.  The overall mean positioning error (MPE) of four approaches. 

 



 

number of APs equals 6, the MPE of IOD is 2.46m. Only 
when 8 or 10 APs are used, the MPE of MI can surpass this 
accuracy level, with 2.43m and 2.44m respectively. However, 
the accuracy only increases by 0.03m using 8 APs and 0.02m 
using 10 APs. There seems to be little gain in accuracy at the 
cost of adding 2 or 4 APs’ with their increase computation 
and energy cost, especially for devices with limited resources. 
Thus, using a six-AP subset can help improve computation 
efficiency while preserving an acceptable location accuracy.  

TABLE I. THE MPE OF FOUR METHODS WHEN THE 

NUMBER OF AP IS 6,7,8,9 AND 10 RESPECTIVELY 

Number of 
APs 

MPE 

IOD IG MI SD 

6 2.46 2.82 3.21 2.77 

7 2.49 2.77 3.18 2.71 

8 2.48 2.66 2.43 2.74 

9 2.55 2.68 2.49 2.64 

10 2.57 2.71 2.44 2.58 

Fig. 7 demonstrates the cumulative density function 
(CDF) of four approaches when 6 APs are being used.  
Moreover, the detailed numerical results of CDF are listed in 
Table II. 

TABLE II. THE DETAILS OF CDF 

Accuracy 
Methods 

IOD IG MI SD 

within 1m 10.61% 1.52% 7.58% 7.58% 

within 2m 34.85% 25.76% 30.30% 36.36% 

within 3m 72.73% 59.09% 54.55% 65.15% 

Red triangle line represents the cumulative probability of 
IOD method. Within a 1-m accuracy, the IOD outperforms 
the other three methods. The cumulative probability of IOD 
is over 9% higher than IG’s and over 3% higher than the 
cumulative probability of MI and SD. Within a 2m accuracy, 
IOD performs a little weaker than SD but still better than IG 
and MI. Besides, the cumulative probability of accuracy 
within 3m, IOD is 13.64%, 18.18%, and 7.58% better than 
IG, MI, and SD.  

 

TABLE III. THE COMPREHENSIVE EVALUATION OF 

PERFORMANCE OF FOUR APPROACHES 

Indexes 
Methods 

IOD IG MI SD 

MPE 2.46  2.82  3.21 2.77 

MaxE 5.37  5.84  11.17  8.32  

STDE 1.23 1.11  1.95  1.57  

RMSE 2.74  3.03  3.75  3.18  

Four error analysis indexes are reported, including MPE, 
MaxE, STDE, and RMSE, as shown in Table III. For MPE, 
MaxE, and RMSE, IOD shows a better performance than any 
other methods. The STDE of IOD is 0.12 higher than STDE 
of IG but over 0.7 and 0.3 lower than the STDE of MI and 
SD. From the comparison of these evaluation indexes, IOD 
is superior to the other baseline algorithms. 

E. Boundary Analysis of Accuracy 

Positioning accuracy can be affected by many factors in a 
fingerprint-based WiFi indoor positioning system, e.g., AP 
selection strategies, AP topology construction, nearest RPs 
searching algorithm. This paper mainly focuses on the AP 
selection method. This experiment was conducted in an office 
space using all APs which can be detected by a mobile phone. 
So it is hard to consider the topology of APs, e.g., height, 
distribution, etc., which will be tackled in future work. The 
nearest RPs searching algorithm is implemented by using the 
Euclidean distance (ED). The major factor affecting accuracy 
in this experiment setup is matching a TP to the nearest RPs.  

To test the limits of location accuracy, we divided our 
whole scene into sub-grids as shown in Fig. 5. Within each 
sub-grid, the four RPs in black color is used for determining 
the TPs’ location in yellow color. Then each TP use four 
physically close RPs to skip the process of nearest RPs 
searching.  

Fig. 8 shows the overall MPE using a different number of 
APs of four methods. Red color line with squares expresses 
the MPE of IOD. When the number of APs is more than 3, 
IOD outperforms the other methods. After the number of APs 
surpass 9, the accuracy of IOD is stable and the least value is 
1.37m which is the upper bound of accuracy for our 
experiment.    

 
Fig. 7. CDF of four approaches. 

 
Fig. 8. The MPE of sub-grids of four approaches. 



 

Besides, as shown in the Fig. 8., IOD shows the best 
performance compared to other methods and it means, to 
some extent, IOD has a better scalability and signal stability 
(less fluctuations). 

F. Performance Comparison of ED and RR-KTCC for 
Nearest Points Searching 

Two nearest points searching algorithms were employed 
to search for the nearest RPs for positioning in the large-scale 
scene as shown in Fig. 9. The red color line is the MPE using 
ED and green one belongs to RR-KTCC. The MPE of RR-
KTCC has a lower speed than IOD to be stable as the number 
of APs increases. When the number of AP is less than 14. ED 
outperforms RR-KTCC. When 14 or 15 APs being used, RR-
KTCC has better performance than ED. While the number of 
APs is more than 15, ED goes back to the leading position, 
and the gap between them tends to be stable. 

One reason for this phenomenon is that KTCC is used to 
get the discrepancy between two sets. One evident 
characteristic of KTCC approach is that the size of AP set 
requires much big enough. Alternatively, when used for 
indicating the distance, the distance error will be much 
higher. What needs to be said is that RR-KTCC is designed 
for addressing the bias caused by heterogeneous devices. 
Therefore, using different devices to testify the validation of 
this algorithm is our next work.  

V. CONCLUSIONS AND FURTHER WORK 

This paper presents an RSSI Interval Overlap Degree 
(IOD) algorithm for AP selection used as part of a WiFi 
fingerprint location determination. A comparison between 
IOD and ED and RR-KTCC was made to determine the 
position. Our experiments demonstrate that: the proposed AP 
selection strategy, IOD, outperforms some other AP selection 
approaches like IG, MI, and SD when less APs are used. IOD 
demonstrates not only a clearly better accuracy but a higher 
RF signal stability, with less fluctuations. At the same time, 
this experiment results show that the nearest points searching 
approach based on ED is better than RR-KTCC when the 
number of AP is small and when the same mobile device is 
used both the offline phrase and online phrase to determine 
the location.   

 Our focus in further research includes calibration of 
systematic deviation of heterogeneous devices, topology 
condition and an extension for online AP selection using the 

proposed method. Another topic is to determine the energy 
cost of different location determination algorithms and the 
effect in the ways they select APs for local area networks 
similar to work that has been done for wide area networks 
[23]. 
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