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Abstract

A promising approach to create new versions of existing music pieces automatically is
to cut out and rearrange sections so that transitions are minimally perceptible and con-
straints regarding duration or structure are fulfilled. We evaluate previous work and
improve on its limitations, particularly the disregard for loudness changes at cuts and
the unintuitive control over the musical structure of the output. Our software provides a
user-friendly interface, which we make more responsive by greatly accelerating the search
for an optimal output track using the A* algorithm. Listening experiments demonstrate
an improvement in perceived audio quality.
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1 Introduction

The dawn of the digital era rapidly increased the accessibility of music and also made
sharing music easier. Additionally, it allowed for computer-assisted editing of music,
which is more convenient and efficient. In this work, we will focus on the task of mu-
sic rearrangement as enabled by such digital music editing tools. One context of music
rearrangement is the creation of remixes based on existing music pieces that alter or rein-
terpret their musical ideas. Furthermore, instrumental versions of songs can be created by
cutting out the vocal sections. The adaptation of music pieces to video sequences is also
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an important application, because films, video games, and advertisements often require
music accompaniment of a given length and musical structure that supports the visual
content. However, music rearrangement is often performed manually by an expert using
professional audio software. It is often very time-intensive to achieve high quality results,
partly because manipulation occurs at the signal level, where musical abstractions such as
melody, instrumentation, and rhythm are not available to guide the process. Automatic
solutions for these tasks would not only save time, but also allow less experienced users
to perform them.

In this paper, we adopt the concept of rearranging music pieces based on musi-
cal structure segmentation (MSS) from previous work (Wenner, Bazin, Sorkine-
Hornung, Kim, & Gross, 2013). For the input music piece, automatic MSS produces a
song structure estimate which can optionally be refined by the user to form the in-
put song structure. Employing segmentation concepts from (Wenner et al., 2013), we
define a song structure as a set of segments each described by their starting time and
their associated cluster. Segments are grouped into different clusters according to their
musical function or similarity. A more complex approach to defining musical structure
such as (Kühn, 1987) could be used, but is beyond the scope of this article. Users can
specify a desired song structure of the output piece (target song structure) based on
the input song structure. The output track is assembled from different sections of these
segments, so that jumps between sections are least perceptible to the listener and its
output song structure aligns with the target song structure.

Examples of possible rearrangements are sketched in Figure 1. Figure 1 (a) describes
the segments of the input song structure. Depending on the desired target length, rear-
ranged pieces may be either shorter (b), (c) or longer (d), (e). While (b) and (d) do not
adhere to any target song structure and focus only on least perceptible jumps, in (c) and
(e) the target song structure was set to a scaled version of the original in (a) so that the
global musical structure of the original is preserved.

Based on this concept we have designed and implemented a system for rearranging
music incorporating the following main novel contributions:

• an intuitive and effective application of tolerance windows when enforcing musi-
cal structure that allows the user to make a trade-off between audio quality and
adherence to the desired musical structure,

• an efficient approach to calculating the rearrangement based on the A* algorithm to
find the optimal cuts, which typically needs significantly less time than the dynamic
programming applied in previous work (Wenner et al., 2013), thus allowing for a
more interactive user experience,

• avoiding and smoothing loudness changes at jumps, which results in music pieces
of higher quality as demonstrated by extensive listening experiments using a range
of music genres,

• a user interface which allows changing the duration and intuitively reordering sec-
tions of a music piece in an easy-to-use manner, enabling everyone without prior
experience to quickly create new music pieces.
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Section 2 provides an overview of the previous methods to music rearrangement and
a thorough evaluation of (Wenner et al., 2013) with a discussion of the drawbacks of
recent approaches. Section 3 outlines the functionality and the architecture of our music
arrangement system. Section 4 specifies the desired rearrangement as an optimisation
problem and proposes a solution based on the A* algorithm. Section 5 concerns the
improvement of jumps by post-processing of the audio signal. Section 6 compiles the
findings of an extensive evaluation. Finally, Section 7 draws conclusions and discusses
future work.

2 Related work

In the following, we provide an overview of existing music rearrangement systems and
a thorough evaluation of (Wenner et al., 2013) to identify the limitations of recent ap-
proaches.

2.1 Existing approaches

Methods applicable to music rearrangement differ in their basic properties and capabili-
ties. Additionally, only few have been developed specifically for this task.

When only a change in duration of a music piece is required, one solution is sim-
ply adjusting the playback rate, which simultaneously causes an undesired change in
pitch. Timescale-pitch modifications like WSOLA (Verhelst & Roelands, 1993) can be
employed to change tempo and pitch independently, so that the scaling of duration can
be performed without changing the pitch. Although yielding good results for small du-
ration changes, higher scaling factors produce sound artefacts and drastically change the
listening experience.

Synthesis-based methods (Parker & Behm, 2004), and specifically corpus-based con-
catenative synthesis (Schwarz, Cahen, & Britton, 2008; Einbond, Trapani, Agostini,
Ghisi, & Schwarz, 2014), present another approach. Here, music is created by com-
bining individual sound samples from a sound database according to user criteria. The
high granularity results in great control and creative freedom during composition. In our
rearrangement scenario however, where we aim for a new but faithful adaption of an ex-
isting piece, fitting samples from the database would need to be found, and then properly
reassembled. Due to the mismatch in sound quality between the database samples and
the original components of the piece, and the complex synthesis that needs to recreate
most of the original musical structure, the output would heavily differ in sound.

Consequently, research for music rearrangement in recent years focused on another
approach where parts of the original piece are selected and concatenated by searching
for sections with a similar hearing impression to minimise the perceptibility of cuts be-
tween the selected sections. In other words, the idea is to play back the original while
occasionally “jumping” from one position in the piece to another.

One such retargeting approach was devised by (Wenger & Magnor, 2011), developed
into a genetic algorithm (Wenger & Magnor, 2012) and later modified to reduce the search
space for cut positions to whole bars as identified by a beat tracker (Tauscher, Wenger,
& Magnor, 2013). While yielding good results for dance music with a strong, regular
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beat, the approach might not generalise to genres with changes in tempo or loudness.
Furthermore, the user is not assisted by automatic MSS to construct the desired input
song structure, but instead has to create it bar by bar.

Such an automatic MSS is instead employed by (Wenner et al., 2013), whose work is
similar, but not only targeted at dance music and also incorporates additional features
such as removing vocals or creating infinite music. Because it uses bixels (a contraction
of the words beat and pixel), i.e. the musical content between two consecutive beats, and
not whole bars for self-similarity calculation, irritating jumps from one count of a bar to a
different count can occur. A very similar technique is also used by (Sato, Hirai, Nakano,
Goto, & Morishima, 2016) to adapt soundtracks to video clips so that their climaxes
align.

With a user-defined target song structure, both approaches can suffer from a signifi-
cantly reduced quality of cuts, as many potentially less perceptible cuts do not lead to a
solution satisfying the song structure constraints.

2.2 Evaluation of previous work

Taking into account the considerations from Section 2.1, the two “jump-based” ap-
proaches (Wenger & Magnor, 2011; Wenner et al., 2013) appear as the most promising
future direction. Although the method in (Wenger & Magnor, 2011) often provides high
quality outputs for dance music, our goal is to build an all-purpose music rearrangement
system without such a genre restriction. In contrast, the algorithm developed by (Wenner
et al., 2013) has a similar scope and thus served as a starting point for our approach.

To identify its limitations, we reimplemented and intensively evaluated Wenner’s
method on our database “CC1” (see Appendix, Table 1) in a preliminary study. It
contains 42 Creative Commons songs sourced from the “Free Music Archive” (WFMU,
2009), selected to cover a range of musical genres. Because the output quality of the
method depends on the accuracy of the employed beat tracking system, ground truth
data for the beat positions was created manually by “tapping” to the beat to determine
the effect of beat accuracy on the system’s output quality.

The results of this study have revealed the following list of problems with Wenner’s
method even when using the correct beat positions from the ground truth. Some of the
problems will be tackled in this paper (indicated by references to the related sections).

Frequent repetition of short sections. When extending music, the algorithm some-
times generates pieces that repeat the same short excerpt of the original song several
times in direct succession. Although this often produces imperceptible cuts, a lot of rep-
etitions are detrimental to the listener experience. In Section 4.1.2, we will discuss how
to penalise the jumps responsible for this effect.

Bixel-based song structure enforcement. Wenner’s method features structure-aware
retargeting, where the user can set a target song structure that the output track should
have. It is enforced on a bixel-by-bixel basis: Each bixel in the output can be selected
only from input bixels from a specified cluster. This results in pieces with song struc-
tures that match the target song structure with a high precision of up to a bixel’s length.
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However, cuts tend to sound significantly worse than without structure-aware retarget-
ing, since the allowed outputs are severely restricted due to the limited choice of audio
material available for output at each point in time. In Section 4.2.4, we propose a method
to enforce a song structure with a user-defined level of tolerance, so that slight deviations
of the output from the target song structure are allowed and also exploited, if they lead
to a result of higher quality.

Inaccuracies caused by differently sized bixels. Pieces with changing tempo fea-
ture varying inter-beat intervals. This leads to problems with the bixel-based approach
from Wenner in two ways. Firstly, the length of a music piece comprised of a specific
number of bixels can vary depending on the bixel selection, making it inaccurate and
unintuitive to use the number of bixels as a user-defined target length. We allow users
to specify the desired duration in seconds instead using the approach presented in Sec-
tion 4.2.2. Secondly, enforcing a change in segment clusters after a specified number
of beats or bars can produce results with transition times that deviate from the user
specification. We tackle this problem in Section 4.2.4 with a dynamic song structure
enforcement based on absolute time.

Disregard of time signatures. The algorithm does not consider time signatures dur-
ing jump selection, so that sometimes the number of beats in a bar is changed. This
issue is especially noticeable for music genres with constant time signatures and a clear
indication of the current position in the bar, such as Pop.

Cutting off vocals. Another issue noted in (Tauscher et al., 2013) and (Wenner et al.,
2013) is jumping in the presence of vocal activity, which occurs often, can jumble up the
lyrics and is often perceived as especially jarring as humans tend to focus on the human
voice when listening. The original work by Wenner provided a work-around by manually
selecting the vocal parts to not jump in these sections, but an automatic solution would
be desirable.

Ignorance of melody. Melodies are often repeated throughout a music piece, creating
expectations which are sometimes violated by Wenner’s method, as the measure used for
computing the similarity of two bixels is based on Mel-Frequency Cepstral Coefficients
(MFCCs) describing timbral, but no melodic aspects, which could be added to alleviate
this problem.

Other issues. Rarely, sudden changes occur in the spatial location of instruments in
the stereo field. The analysis cannot account for these effects as it involves converting the
input signal to mono as the first step. Another issue affects songs featuring large tempo
changes, in which unpredictable and very noticeable jumps from slow to fast parts and
vice versa are common and significantly degrade the output quality.
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3 System overview

In the following, we will outline the functionality and the architecture of our music
rearrangement system.

3.1 Functionality

The system allows the automatic construction of a target music piece from the original
one with regard to user-defined constraints such as a desired duration. Based on an input
song structure, a target song structure can be defined so that the resulting music piece
follows the given musical structure. The output track is generated by determining and
then assembling a sequence of bixels so that the given user-constraints are fulfilled. Not
every original bixel has to appear in the output track, and one bixel may be used several
times.

The system features an interactive user interface shown in Figure 2. In the first stage,
the user is asked to create the input song structure for the original music piece and is
assisted by a method for automatic MSS presented in Section 4.1.1. The original audio
with the fixed input song structure is displayed at the top (1).

After confirming the current song structure, the user can edit the constraints to be
imposed on the output track. The desired start and end position tstart and tend can be
set by dragging the green and red bar in the input display (1). Directly below, points
in the black area (2) can be created and moved to model an importance curve that is
aligned in time to the original audio. For every bixel, the importance curve influences the
probability of including that bixel in the output. Further constraint parameters for the
output can be set on the left hand side of the interface (7). Those parameters concern
the duration with a tolerance, the influence of the importance curve, how much aspects
of loudness and repetition should be considered, and how strongly loudness differences
at cuts should be smoothed out by post-processing. This post-processing step can be
toggled on and off, along with time-stretching of the final output to exactly fit the de-
sired duration, and whether the target song structure should be imposed on the result.
Tolerances when imposing the target song structure on the output can be set, allowing
the segment boundaries to deviate from the target positions without or with less penalty.
The tolerances enable the user to control the trade-off between the accuracy of the pro-
duced result regarding its duration and the quality of the discovered path. The target
song structure (3) can be intuitively edited by adding, changing and removing segment
boundaries.

A new solution based on these constraints can be produced by pushing the button
“Generate Result” on the bottom left. The fourth horizontally aligned display (4) depicts
the waveform of the generated music piece along with its output song structure, with white
crosses indicating cuts.

The visualisation in the lower right (5) contains a white graph which plots the playback
position in the new track on the horizontal axis against the position in the original song
that is used in the result at this point. Finally, a list of measures to evaluate the output
quality is displayed at the bottom (6), of which some will be introduced in Section 6.
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3.2 System architecture

Our music rearrangement system can be represented as a pipeline comprised of individual
processing stages. Its general structure is shown in Figure 3 and can be broadly separated
into two phases. The analysis phase extracts relevant features from the input track, and
the synthesis phase takes these features to generate a new music piece according to the
user-defined parameters.

Following Wenner’s approach, we use bixels as building blocks to form new music
pieces by concatenating a carefully chosen series of bixels. Because bixels are defined as
the musical content between two consecutive beats, our system begins by identifying the
locations of the beats with a beat tracking system. Beat tracking as a problem in itself
is not the focus of this work, so we used the freely available beat tracker by (Davies &
Plumbley, 2007), but in principle any beat tracker can be integrated into the system.
Alternatively, beat positions can be manually imported from an external file.

The bixels obtained from beat tracking are then analysed with regards to their timbre
and loudness in the preprocessing stage described in Section 4.1. A method for auto-
matic MSS outlined in Section 4.1.1 provides a basis for the user to create a structural
annotation of the original piece.

After confirming the song structure, the synthesis phase begins with the path op-
timisation presented in Section 4.2, searching for the least costly path through the
original piece. The cost function for a path is designed to estimate the perceived quality
of the resulting cuts. Furthermore, the search is restricted to solutions fulfilling the user
constraints such as target length and song structure.

To further increase the final quality of cuts, the pairs of cut positions calculated
by the path optimisation are refined based on the local properties of the audio signal
at these positions. At first, the jump synchronisation described in Section 5.1 aims
to correct inaccuracies in the detected beat positions that cause sound artefacts and
irregular beat intervals after cutting. To improve the loudness continuity at cuts, the
loudness equalisation stage which is described in Section 5.2 appropriately amplifies
or attenuates the signal at the cut points. Finally, the music piece is assembled from
sections of the original piece according to the calculated jumps. To further remove any
remaining sound artefacts, crossfading over a duration of tcross = 0.04 s is applied to
the resulting cuts. After assembly, the output track can optionally be exactly time-scaled
to the target duration with a timescale-pitch modification method. We use the WSOLA
algorithm (Verhelst & Roelands, 1993) for this purpose, but it can be easily replaced by
an alternative method.

With the exception of the final assembly stage, the input signal is always processed
as a single-channel signal, unless otherwise noted.

The system is implemented in C++ and MATLAB. C++ was selected due to its
performance for quickly solving the optimisation problem in Section 4.2, while MATLAB
enables fast prototyping using statistical and audio processing tools. The user interface
is implemented using the cross-platform C++ framework JUCE (ROLI Ltd., 2004), as it
provides audio input and output functionality. Additionally, the dRowAudio (Rowland,
2010) module is utilised for its waveform display and audio player functions.

7



4 Rearrangement calculation

This section will show how finding the desired rearrangement can be viewed as solving
an optimisation problem that incorporates the user-defined constraints, and propose the
A* algorithm for multiple goals for finding this solution. The preprocessing stage of the
analysis phase and the path calculation stage of the synthesis phase will be presented,
following the order of execution shown in Figure 3.

4.1 Preprocessing

The preprocessing stage extracts musical information about the input track and its bixels
needed in the subsequent path optimisation stage. The first subsection is concerned with
a method for automatically creating a song structure estimate of the input track. The
following three subsections are devoted to developing a measure to estimate the perceptual
quality of bixel transitions. The measure assigns a transition cost to every pair of bixels
bi, bj estimating the transition quality in case bj will be played directly after bi in the
result. These bixel transition costs will be used in Section 4.2 to determine the optimal
sequence of bixels of the new track.

4.1.1 Automatic music structural segmentation

Our music rearrangement system allows users to control the musical structure of the
output track. Based on an input song structure of the original piece, a target song
structure can be set that constrains the usable bixels to those belonging to a particular
cluster ((3) in Figure 2). To support the user in creating an input song structure, we
employ a method for automatic MSS described in the following.

The method mostly follows (Wenner et al., 2013), in which a novelty curve is com-
puted for the input track based on timbral aspects. A high dissimilarity between the
previous and upcoming MFCC features together with a high homogenity within those
time spans results in a high novelty rating. Thus, maxima in the novelty curve are selected
as segment boundaries. The resulting segments are grouped into clusters according to
their timbral similarity with the goal of identifying groups of segments serving the same
musical function. Spectral clustering by normalised cuts (Shi & Malik, 2000) of the mean
MFCC vectors of each segment is used to obtain C clusters. The primary drawback of
this approach is that the number of clusters C has to be known in advance. Therefore,
we adapt the approach as follows. We automatically find the optimal number of clusters
within a user-specified range [Cmin, Cmax], so that the user does not have to find the most
suitable C manually. Clustering is performed for all C ∈ [Cmin, Cmax], and the best solu-
tion is chosen as the one with the highest average silhouette value (Rousseeuw, 1987)
serving as a simple evaluation metric. The motivation is that a cluster has a high silhou-
ette value if, in the MFCC space, its bixels are close by and bixels from other clusters are
far away. This allows us to avoid having to define a parametric model with a likelihood
function for the shape of the clusters, as is neccessary for using information-theoretic
measures such as the Bayesian information criterion (Celeux & Govaert, 1992).

The song structure estimate provided by the automatic MSS is designed to give the
user a reasonable starting point for constructing the desired song structure in most cases.
The segmentation accuracy of our method was not measured since segmentation is not
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the main focus of this paper and errors in estimation can be corrected by the user. In
addition, in some cases the estimate from the automatic MSS might not be useful when
the user wants to define the song structure in very unusual ways to perform special
rearrangement tasks, such as marking vocal and non-vocal segments for the creation of
instrumental pieces. While our method is not guaranteed to recover sections such as verses
and choruses consistently, it should give an initial guidance on the timbral development
of the music piece and to allow for easier navigation. If segmentation accuracy is very
important, a more sophisticated method can easily be integrated into our system due to
its modularity.

4.1.2 Unified transition costs

The bixel transition cost from an origin bi to a destination bj are represented by
entries Ti,j in the N ×N unified cost matrix T, where N is the number of bixels of the
input track. Low matrix entries indicate a high transition quality and vice versa. The
transition costs take into account four features: timbre, loudness, importance, and length
of backward jumps.

The timbre transition costs and the loudness transition costs are represented
by N ×N matrices D′ and L, respectively, which will be explained in detail in the next
two subsections.

Importance was introduced by (Wenner et al., 2013). It is provided by the user
(Figure 2 (2)) and is represented by a vector I, where each entry Ii ∈ [0, 1], i ∈ {1, . . . , N}
influences the probability of including bixel bi in the output.

The length of backward jumps is used to avoid highly repetitive results encoun-
tered during the evaluation of previous work (Wenner et al., 2013) in Section 2.2. Rep-
etitions are caused during the path optimisation stage by backward bixel jumps with a
short distance and a low cost, which are thus utilised very often in direct succession. To
reduce the problem, a jump penalty

crep(∆jump) =
wr

∆jump

(1)

is introduced, where ∆jump denotes the distance of a backward jump in number of bixels.
The variable wr ≥ 0 is a user-defined value controlling the strength of repetition avoidance
(Figure 2 (7)). The jump penalty has higher values for jumps with a short distance.

The timbre transition costs, the loudness transition costs, and importance are in-
tegrated by linearly weighting their individual terms into a single-objective function,
yielding a combined cost matrix T′ with entries

T ′i,j = wdD
′
i,j + wlLi,j + wpIi with

wd + wl + wp = 1 and

wd, wl, wp ∈ [0, 1].

(2)

The weight variables wd, wl, wp can be manipulated by the user to influence the balance
between the criteria for bixel jump selection (Figure 2 (7)).

The jump penalty is integrated into the combined cost matrix by adding it to the
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existing costs of backward bixel jumps, yielding the unified cost matrix

Ti,j =

{
T ′i,j if i < j

min{T ′i,j + crep(i− j + 1), 1} else.
(3)

An example of the matrix T for wr = 4 is depicted in Figure 4, exhibiting costs near
one along the diagonal and below, decreasing in the lower left direction, which is where
short backward jumps are represented.

The unified cost matrix T is used for the path optimisation process (Section 4.2.1),
and is recomputed only when the weights change.

4.1.3 Transition costs regarding timbre

The matrix D′ of timbre transition costs is based on a similarity matrix S from (Wenner
et al., 2013). The elements of the similarity matrix S are pairwise Spearman correlations
between 40-dimensional MFCC vectors of bixels. The temporally smoothed version S′ is
then used to build a matrix D with

Di,j = 1− S ′i+1,j. (4)

However, the authors do not define how to compute the row N + 1 in S′. We propose
padding the borders of S with m = 2 zeros before performing the smoothing operation,
leading to low values near the borders of S′. We use the N + 1-st row of S′ to compute
the last row of our improved transition matrix D′ to penalise jumping from the end of
the piece. In addition, we define a matrix S′′ built with only valid entries of S in the
temporal smoothing process, and use it to obtain all other rows in D′. Overall, the timbre
transition costs are given by

D′i,j =

{
1− S ′i+1+m,j+m if i = N

1− S ′′i+1,j else,
(5)

In contrast to (Wenner et al., 2013), we do not assign a cost of one to the diag-
onal elements representing small backward jumps, because the concept introduced in
Section 4.1.2 is a more general and flexible approach for avoiding such repetitions.

4.1.4 Transition costs regarding loudness

The loudness, only represented in the form of the 0-th coefficient of all 40 MFCCs, has
little influence on the timbre transition costs of the preceding subsection. As a result,
many jumps with extreme loudness differences occur, as mentioned in Section 2.2. There-
fore, we propose an additional cost matrix L specifically for loudness as a supplement to
D′.

Loudness modelling. In contrast to simply averaging energy for every bixel, a loud-
ness model reflects more closely the human perception of sound intensity. It takes into
account that the perceived loudness of a tone is dependent on its frequency (Olson, 1972),
that loud sounds can mask quieter sounds occurring shortly after (Fletcher & Munson,
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1937), and other effects. Two widely used models for time-varying sounds have been
developed by (Fastl & Zwicker, 2007) and by (Glasberg & Moore, 2002), which are both
openly available in the “Loudness Toolbox” for MATLAB (Genesis, 2009). In this paper,
we use the Zwicker model, because the Moore model was found to have infeasibly high
runtimes in the range of minutes for individual music pieces. Additionally, both models
yield highly similar results (Webster & Jiuicek, 2014). The resulting function l(t) rep-
resents the instantaneous loudness in sone over time and estimates how jarring a bixel
transition would be perceived in terms of loudness changes.

For every bixel i, we define an average loudness lstart
i at the beginning and lend

i at the
end of the bixel as the weighted mean of l(t) over the first or last 0.2 s of the bixel. The
weights add up to 1 and increase linearly towards the bixel boundaries. Hence, we deem
the loudness at bixel boundaries as more important due to their proximity to a potential
cut point.

Loudness transition costs. The loudness transition costs result from two measures
of loudness continuity that estimate how smoothly the loudness change is perceived that
occurs between a pair of bixels i and j, i, j ∈ {1, . . . , N}:

Li,j = min{Lcomp
i,j , Ltrans

i,j }. (6)

Li,j are the entries of the final loudness matrix L, Lcomp
i,j the entries of a normalised

comparative loudness matrix Lcomp, and Ltrans
i,j the entries of a normalised transitional

loudness matrix Ltrans. This results in high costs for jumps that fulfil neither of both
requirements for loudness continuity. An example is given in Figure 5.

Transitional loudness is based on the idea that a transition from a bixel bi to a
bixel bj is continuous in loudness if the end loudness lend

i of bixel bi is approximately equal
to the start loudness lstart

j of bixel bj:

L′trans
i,j = |lend

i − lstart
j |. (7)

Comparative loudness assumes that a bixel transition from bixel bi to a bixel bj
does not produce an irritating loudness change if the musical content that was expected
after bixel bi, namely bixel bi+1, is approximately as loud at the beginning as the start of
the bixel bj which is played instead:

L′comp
i,j = |lstart

i+1 − lstart
j |. (8)

We set lstart
N+1 = 0 for the purpose of this calculation, because the listener expects silence

after the last bixel and thus a loudness of 0 sone.
Ltrans
i,j and Lcomp

i,j result from L′trans
i,j and L′comp

i,j , respectively, by normalising their range
of values to the [0, 1] interval.

4.2 Path optimisation

The goal of path optimisation is to find the best path from the start to the end bixel
through the original song, that fulfils the given set of user constraints. Each path is
assigned a cost equal to the sum of the costs of its jumps, designed to estimate the
perceived quality of the resulting transitions. After specifying the optimisation problem,
we will show an algorithm for finding its solution.
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4.2.1 Problem formulation

A bixel path can be formally defined as a vector containing the indices of the k bixels
visited along the path in their order of occurrence:

p = (p1, p2, . . . , pk). (9)

The task is to find a bixel path p of length of two or greater which minimises

cpath(p) =
k−1∑
i=1

Tpi,pi+1
, (10)

with T as the unified cost matrix defined by Equation (3) in Section 4.1.2, subject to

(C1) p1 = bistart , pk = biend , so that the desired start and end times tstart and tend fall
within the bixels p1 and pk respectively,

(C2) p has a duration within the target duration interval [∆ttarget − ∆ttol,∆ttarget +
∆ttol] = [∆tmin,∆tmax],

(C3) p is composed of segments according to a target song structure with tolerances,
based on an input song structure for example determined as in Section 4.1.

We tackle the optimisation problem using the A* algorithm for multiple goals on an
appropriately defined graph. The solution will be described in two parts. The first part
concerns the optimisation problem without constraint (C3), cf. Section 4.2.3. Afterwards
this approach is extended to the full version including (C3), cf. Section 4.2.4.

The algorithm can only consider bixel paths up to a certain maximum length. This
upper bound should be set depending on the maximum duration ∆tmax, which is equal
to the sum of durations of all bixels in a path. A difficulty arises out of the fact that the
bixels have variable duration. We will present a method for determining an upper bound
on the path length in the following subsection.

4.2.2 Estimating the path length a priori

In this section, we will estimate how many bixels are expected to lead to a solution within
the desired target duration with high probability, because the bixels are not all equally
long in duration. We represent the duration of the n-th randomly selected bixel with a
random, normally distributed variable Bn ∼ N (µb, σ

2
b) with the mean µb and variance

σ2
b determined by the mean and variance of bixel durations in the music piece. When

concatenating k randomly chosen bixels, the duration Lk of the resulting bixel path again
follows a normal distribution:

Lk ∼ N (k · µb, k · σ2
b). (11)

We then estimate the probability that a bixel path with k ≥ 2 bixels, which contains
k − 2 freely selectable bixels (the start and end bixels are determined by the user), has
a duration within the target duration range [∆tmax,∆tmin] specified by the user in the
interface (7) shown in Figure 2:

Plen(k) = P (∆tmin ≤ Lk−2 ≤ ∆tmax). (12)
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The probability Popt(k) of the optimal solution having a length of k is then obtained by
normalising Plen over the interval [2, d∆tmax−∆tb

mini bleni
e], where ∆tb is the combined duration

of the start and end bixels. The upper bound arises from the case in which only the
shortest bixel is used to cover at least ∆tmax seconds. To reduce computational costs,
we compute an interval [kmin, kmax] of minimum length while ensuring a given minimum
success probability psucc of finding the optimal solution within the interval, i.e.

kmax∑
k=kmin

Popt(k) ≥ psucc. (13)

We construct this interval iteratively, beginning at arg maxk Popt(k) and adding the
adjacent position with the highest function value until the sum of all included probabilities
exceeds the minimum success probability psucc, for which we will find a suitable default
value in Section 6.1.1.

4.2.3 Multiple goal A* algorithm

In the following, we shall obtain the optimal bixel path based on the definitions from
Section 4.2.1. (Wenner et al., 2013) employs dynamic programming based on a recursive
formulation for the cost of the minimum cost path from bixel bistart to any bixel bi with
k stops:

Cstart(i, k) = min
j∈{1,...,N}

{Cstart(j, k − 1) + Tj,i}. (14)

Because the runtime complexity Θ(N2 · kmax) is quadratic in the amount N of bixels
in the original piece, long input pieces cause prohibitively long waiting times. We will
show a more efficient algorithm that is often considerably faster in practice despite its
equivalent asymptotic complexity.

Formulation as a graph problem. The key idea behind our algorithm is that the
problem can be represented as a single-source shortest-paths problem in a directed,
weighted graph G = (V , E , ct) with sets of vertices V and edges E (Figure 6). A vertex
vi,k ∈ V represents the selection of bixel bi as the k-th bixel in the bixel path. There
is one vertex vi,k ∈ V for each i ∈ {1, . . . , N} and k ∈ {2, . . . , kmax}, and an additional
vertex vistart,1 for the start bixel. The set of edges E contains an edge e = (vi,k, vj,k+1)
from every node vi,k with k < kmax to all vj,k+1 with j ∈ {1, . . . , N}. They represent the
act of transitioning between bixels in such a bixel path, and the cost ct(e) is set to the
bixel transition cost Ti,j from the unified cost matrix T. In such a graph G the bixel
path optimal with respect to Equation (14) for a given k is equivalent to the bixel path
represented by the shortest path from the start node vistart,1 to any of the end nodes viend,k
with kmin ≤ k ≤ kmax.

The dynamic programming approach from (Wenner et al., 2013) is equivalent to the
calculation of the shortest path to every node in the graph G in a column-wise manner by
considering every one of its predecessor nodes. A shortest path search can accelerate the
process by exploring low-cost transitions first to get to the goal, avoiding to consider all
transitions. We use the A* algorithm (Hart, Nilsson, & Raphael, 1968) for this search, as
it visits the node v first that leads to the lowest total distance estimate, which is the sum
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of the distance from the start node to v and the estimated minimum remaining distance
h(v) from v to the goal as calculated by a heuristic. We adapt the algorithm to the
case of multiple goals by stopping the process as soon as any goal node is reached, as all
paths to other goals are at least as long.

We experimented with hand-crafted heuristics to accelerate path optimisation fur-
ther. However, the runtime on the standard test set used in the evaluation in Section 6
decreased by only 5.7%. Therefore, we only consider the A* algorithm with the trivial
heuristic h(v) = 0, i.e. Dijkstra’s shortest path algorithm, in the remainder of this paper.

4.2.4 Song structure enforcement with tolerances

We revisit the problem formulation from Section 4.2 and show how to include the song
structure constraint (C3) into the path optimisation. After setting up the input song
structure of the input track, the user can define a target song structure for the output
track ((3) in Figure 2). For any time point in the output, the target song structure
specifies which cluster usable segments have to be assigned to, and thus the allowed set
of bixels. This allows the user to enforce specific structural constraints on the output.

In (Wenner et al., 2013), not only the input song structure is defined on a bixel-wise
basis, but the target song structure also defines the cluster to which each bixel in a bixel
path p has to belong in order to yield a valid solution. This is enforced by manipulating
the cost matrix to only allow for transitions to bixels belonging to the current cluster,
but severely limits the number of valid paths, which often increases the minimum cost
of the optimal solution and leads to more perceptible transitions. Additionally, assigning
the desired cluster to each bixel manually is time-intensive and unintuitive.

Instead, we allow the user to set segment boundaries at time points and the values of
tolerance variables ((1) and (7) in Figure 2). The tolerance variables ∆tlow,∆thigh ∈ R≥0

with ∆tlow ≤ ∆thigh allow the segment transitions of the resulting song to deviate from
the target positions by up to ∆tlow seconds without and ∆thigh seconds with additional
penalty.

The song structure enforcement is achieved by extending the initial problem definition
from Section 4.2.1. We define a function T (i, j,∆t) = f(Ti,j,∆t) that modifies transition
costs Ti,j between bixels bi and bj depending on the current duration ∆t of all bixels
in the shortest bixel path found so far. In particular, transitions to bixels belonging to
currently undesired clusters are given a very high cost cinf, which we set to 100 to ensure
they are not used unless absolutely required by some other user constraint. Transition
phases at segment boundaries are implemented by allowing the segment transition with-
out penalty if the segment boundary is closer than ∆tlow seconds. Transitions ∆tlow to
∆thigh seconds before and after the segment boundary incur a linearly decreasing and
increasing penalty interpolating between zero and cinf, respectively. Setting both ∆tlow

and ∆thigh to zero makes the algorithm equivalent to the method proposed by (Wenner
et al., 2013). Evaluating the function T (i, j,∆t) at each calculation of a transition cost
leads to paths which fulfil the given song structure constraints up to the given tolerance,
if possible. An application example is shown in Figure 7.
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5 Jump optimisation

This section concerns the improvement of jumps calculated in Section 4.2 by the jump
synchronisation stage and the loudness equalisation stage of the system (Figure 3).

5.1 Jump synchronisation

Jump synchonisation aims to correct inaccuracies in the detected beat positions to prevent
sound artefacts at the cuts, especially short transient sounds like snare drum hits that
are not smoothed out by crossfading and would be heard twice or not at all.

We hypothesise that the jump times do not have to be aligned perfectly to the actual
beat positions, but only need to have the same position relative to the beat. For every
given jump (t1, t2) from an origin t1 to a destination t2, we extract ∆tsync seconds of
audio before and after t1 and t2 respectively. We set ∆tsync = 0.5 s, so that even for slow
songs with 60 beats per minute both audio excerpts cover at least two consecutive beats
in duration for a musically meaningful comparison. Assuming that the signals near the
jump origin and destination are similar and only delayed relative to each other, we use the
cross-correlation function (Bracewell & Bracewell, 1986) r(∆l) to find the alignment
with most similarity. The cross-correlation is computed directly at the level of the audio
signal. The amount of time by which the jump times are corrected is

∆lmax = arg max
∆l

rw(∆l), (15)

where
rw(∆l) = P (S = ∆l) · r(∆l). (16)

In case of ∆lmax < 0, jumping earlier is preferred to not interrupt music events at the
beat positions with an earlier jump origin. For ∆lmax > 0, an earlier jump destination
is set for the analogous reason. S is a random variable modeling the synchronisation
error for a cut produced by a jump from any beat position to any other beat position,
and is used as a weight in Equation (16) to avoid unrealistically large changes to the jump
times. For a pair (bpos

i , bpos
j ) of beat positions, the synchronisation error S of a jump is

caused by the difference of delays Di and Dj at each beat position, which in turn result
from the deviation of the detected and the unknown actual beat position:

P (S = x) = P (Di −Dj = x). (17)

Unfortunately, Di is difficult to determine empirically with a sufficient precision by
comparing the detected beat positions with the ground truth beat data, due to the slight
timing inaccuracies of human annotators. We model each Di as a normally distributed
random variable with a mean of µe = 0 s, assuming that beats are not detected too early
or too late on average. Furthermore, we set the standard deviation to σe = 0.1 s as it
was found to prevent most of the problematic cuts during the evaluation in Section 2.2.
The influence of σe on the behaviour of this synchronisation method will be explained in
detail below. Then, Equation (17) yields

S ∼ N (0, 2σ2
e ). (18)
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Positive values can be interpreted as the amount of seconds that are unnecessarily
included into the final music piece around the cut position. Negative values indicate
missing audio material, resulting in a slight perceived “jump”, as the next beat starts
earlier than expected.

5.2 Loudness equalisation

Loudness equalisation aims to smooth out sudden loudness changes during transitions
over a longer duration. The maximum duration is influenced by a parameter ∆tlim, but
the actual duration is also dependent on the loudness ratio between the quieter and the
louder signal, creating longer transitions for large loudness changes and vice versa.

Loudness equalisation is applied to every jump (t1, t2) with origin t1 and destination
t2 belonging to the solution from the previous jump synchronisation step in Section 5.1.
Parts of the loudness function l(t) from Section 4.1.4 in the neighbourhood of the jump
origin and destination, respectively, of equal duration are extracted and aligned with
respect to the jump times:

l1(t) = l(t1 + t), l2(t) = l(t2 + t), t ∈ [−tlim, tlim]. (19)

We found tlim = 3 s to be a suitable value high enough to give the impression of
a smooth loudness change even for jumps with large loudness differences. Firstly, we
determine intersections between l1 and l2, where the loudness is equal for both excerpts.
Loudness equalisation for the current jump is aborted if a time of equal loudness is closer
than ∆tthresh to the cut position, because then no significant loudness difference exists
when jumping. Determining a well-suited value for ∆tthresh is critical, as it represents
how sensitive the correction is to short-term loudness changes. It should be considered
how many seconds into the past the hearing impression is “integrated” by the human ear
when perceiving loudness. (Everest & Pohlmann, 2009, Chapter 4) states this time to be
100 ms, thus we set ∆tthresh to 0.1 s, ensuring the average loudness before and after the
jump can be reliably computed with an average over a sufficiently large time frame.

If loudness equalisation is not aborted, the loudness functions are used to derive two
loudness change functions

lc,before(t), t ∈ [tbefore, t1], lc,after(t), t ∈ [t2, tafter],

where tbefore < t1 and tafter > t2 are chosen in a suitable manner which will be described
later, cf. Equation (23). The loudness change functions are transformed into amplitude
change functions by

ac,before(t) = 100.5·log2 lc,before(t), t ∈ [tbefore, t1], (20)

ac,after(t) = 100.5·log2 lc,after(t), t ∈ [t2, tafter], (21)

according to an approximative rule (Sengpiel, 2018). The values of the amplitude change
functions are used as factors by which the amplitude of the original signal before t1 and
after t2, respectively, is multiplied, thus yielding the desired loudness equalisation.

The loudness change functions are defined so that similar values lc,before(t1) and lc,after(t2)
are achieved at the transition time point and the original values are maintained at tbefore

and tafter. The values in between are obtained by an adaptive linear interpolation:

lc,before(t) = sbefore(t) · lc,before(t1) + (1− sbefore(t)), t ∈ [tbefore, t1],
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lc,after(t) = safter(t) · lc,after(t2) + (1− safter(t)), t ∈ [t2, tafter],

with

sc,before(t) =

∫ t

tbefore
ldiff(t′ − t1)dt′∫ t1

tbefore
ldiff(t′ − t1)dt′

, t ∈ [tbefore, t1],

sc,after(t) =

∫ tafter+t2−t
t2

ldiff(t′ − t2)dt′∫ tafter
t2

ldiff(t′ − t2)dt′
, t ∈ [t2, tafter].

and (cf. Equation (19))

ldiff(t) = |l1(t)− l2(t))|, t ∈ [tbefore − t1, tafter − t2].

lc,before(t1) and lc,after(t2) are defined by

lc,before(t1) =
lconv

l′before

, lc,after(t2) =
lconv

l′after

.

l′before and l′after are determined by

l′before = ffactor · lbefore + (1− ffactor) · lmean,

l′after = ffactor · lafter + (1− ffactor) · lmean,

with lmean = (lbefore + lafter)/2. lbefore and lafter are the mean of the values in the loudness
function over ∆tthresh seconds before and after the cut position, respectively. The reason
for the mean is that a single point on the loudness function only represents the instan-
taneous loudness at a specific moment. ffactor ∈ [0, 1] offers the possibility to the user to
correct only a portion of the detected loudness difference ((7) in Figure 2).

lconv denotes the loudness to which both signals should converge at the cut position
and is defined by

lconv = min{lmean,min{l′before, l
′
after} · fmax}. (22)

The reason for this definition is that the loudness change should not necessarily be per-
formed both before and after the jump to an equal degree due to potential clipping (Davis
& Jones, 1989, Chapter 12, pp. 201–203) when amplifying the quieter signal. Instead,
the loudness lmean that is desired at the cut position is adjusted to incorporate more of
the louder signal and less of the quieter signal, in case more attenuation can be applied
than amplification. The possible amplification is controlled by a factor fmax ≥ 1 which is
the inverse of the maximum amplitude around t1 and t2, i.e. is small for high amplitudes,
and also limits the amplification to a constant factor for silent parts to avoid creating
noise.

The still missing definitions of tbefore and tafter are

tbefore = t1 + ∆t′corr −∆t′trans, tafter = t2 + ∆t′corr + ∆t′trans. (23)

∆t′trans is the duration of the gradual loudness change. It is made dependent on the
relative loudness change

frel =
min{l′before, l

′
after}

max{l′before, l
′
after}
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from the louder to the quieter signal in such a way that the duration ∆t′trans of the
loudness change in both directions is proportional to the relative loudness change:

∆t′trans = (1− frel) ·∆ttrans.

Through subjective listening tests we found ∆ttrans = 3 seconds to be a suitable setting
providing loudness transitions smooth enough to not be irritating, but also not unneces-
sarily long.

To ensure the loudness is changed more or less equally fast across the whole transition,
its position is moved ∆t′corr away from the cut position in the direction of the louder
signal, in case less than the required ideal amount of amplification can be realised, i.e. if
lconv < lmean:

∆t′corr = sign(l′after − l′before) ·
lmean − lconv

lmean −min{l′before, l
′
after}

·∆t′trans.

6 Evaluation

This section is devoted to an extensive evaluation and consists of two parts. The first
part concerns the performance of the algorithmic concepts. The second part evaluates
the quality of the generated rearrangements with a listening study.

6.1 Performance of the algorithmic concepts

In the following, we will investigate the path length estimation from Section 4.2.2, the
performance of the path optimisation algorithm from Section 4.2.3, and the behaviour of
the novel song structure enforcement from Section 4.2.4.

Database and setup. We extended the database CC1, which has an average track
duration of 215 s, by including particularly long tracks from the Free Music Archive
to evaluate the runtimes of the path optimisation algorithms more extensively in Sec-
tion 6.1.2. The resulting database CC2 has 59 tracks listed in Appendix, Table 2 with
an average track duration of 496 s.

In the upcoming sections, we perform a rearrangement for a list of configurations
called the standard configuration set. It involves retargeting every song in CC2 to
the durations ttarget ∈ {60, 120, . . . , 1200}. No tolerance is used (∆ttol = 0) to ensure the
original length is not within the target range ∆trange. For each duration, rearrangement
is performed with enabled and disabled song structure enforcement for each duration,
where the input song structure used is the song structure estimate from the automatic
MSS with the default range of clusters Crange = [3, 5]. The target song structure is created
by scaling boundary positions in the input song structure proportionally to the target
duration ttarget. The remaining user constraints are set to their default values.

6.1.1 Estimating the path length a priori

The estimated range of possible lengths for the optimal bixel path krange is important
for the path optimisation process, as its runtime is linearly dependent on the maximum
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number of bixels kmax. We employ the path length estimation of Section 4.2.2 multiple
times using different minimum success probabilities psucc and determine whether the best
solution found in the estimated range krange is the optimal one. On this basis, we measure
empirical success probability pe as the ratio between the successes and total trials.
The results in Table 4 show that, as intended by our design, pe is always at least as high as
psucc. Additionally, pe is high even for low settings of psucc, perhaps because of modelling
the bixel length Bn as a normal distribution. However, few long bixels commonly present
at the start or end of a track act as outliers that heavily increase the estimated variance,
so the variation in bixel lengths is overestimated.

We set a default value of psucc = 0.6 for our music rearrangement system, as it offers a
satisfying trade-off between accuracy and runtime with an empirical success probability
of over 95% despite a relatively low number of 246 goal nodes that have to be evaluated.
Future work should explore more suitable distributions to model bixel lengths, especially
accounting for outlier bixels at the start and end of songs.

6.1.2 Path optimisation algorithms

In this section, we compare the original approach using dynamic programming (DP) from
(Wenner et al., 2013) and the multiple goal A* algorithm (A*) proposed in Section 4.2.3.

All experiments were performed on a computer equipped with an Intel i7 3.4 GHz
quad-core processor and 16 GB of RAM.

For the standard configuration set, the multiple goal A* algorithm with an average
runtime of 2.63 s successfully improves on the dynamic programming approach with 4.68 s.
Referring to the estimation of krange in Section 6.1.1, Figure 8 illustrates the relationship
between the minimum success probability psucc and the average runtime of all test cases
with a certain setting for psucc. Because the set of goal nodes grows in size with increasing
values for psucc, as shown in Table 4, both tested algorithms tend to require increasingly
more time.

In the following, we analyse the runtime as a function of the length of the original
piece as well as the target duration ttarget both with and without using song structure
enforcement. Due to the variation in performance for different tracks, we approximated
each function using locally weighted regression with the loess function (R Core Team,
2017). Figure 9 contains plots of the resulting runtimes. As expected from the asymp-
totical theoretical complexity, the runtimes of both algorithms seem to be quadratic in
the duration of the original track and linear in the target duration ∆trange.

For input tracks of approximately three minutes or less, the algorithms have a sim-
ilarly low runtime, with DP sometimes being slightly faster due to less data structure
overhead. For longer tracks however, the A* algorithm is faster than DP, and this ad-
vantage increases with the duration of the input as well as the output track.

Interestingly, enabling the song structure enforcement does not change the runtimes
of the A* algorithm to a large extent, while DP becomes faster. This could be due to
optimized processor instructions exploiting the structure induced in the problem graph
by the song structure enforcement, but further investigation is needed.

While all algorithms share the asymptotic complexity of O(N2 kmax), the A* algorithm
has lower scaling factors associated with N and kmax than DP. Overall, the multiple goal
A* algorithm appears to be clearly superior to DP for longer tracks, and on par or only
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insignificantly slower for short tracks.

6.1.3 Segment boundary tolerance

In this section, we will use the standard configuration set with the tolerance parameters
∆tlow ≤ ∆thigh, cf. Section 4.2.4, set to values in P = {0, 2, 4, 6, 8, 10} (in seconds)
to investigate whether they offer the desired trade-off between transition quality and
segmentation accuracy. Note that the configuration with ∆tlow = 0 and ∆thigh = 0
represents the song structure enforcement without any tolerance employed in (Wenner et
al., 2013).

We define segmentation accuracy as the amount of time the output song structure
aligns with the target song structure, divided by the total duration of the output track.
Alignment is achieved at any point in time at which the bixel currently used for the output
belongs to the same segment cluster as the one defined in the target song structure. The
overall audio quality of the output track is estimated with the total cost cpath(p) of the
optimal bixel path and the number of jumps in the solution, assuming that the perceived
transition quality correlates sufficiently with the costs in the transition cost matrix T and
output tracks with less jumps tend to have better quality. The extent of this correlation
will be investigated in Section 6.2.1.

The results are shown in Figure 10 and visualise the average values of the above
metrics for the different ∆tlow and ∆thigh using heatmaps.

Figure 10 (a) shows that using no tolerance in the lower left leads to almost perfect
segmentation accuracy, but it also does not fall below 90% even for the largest tolerance
setting. In exchange for lower segmentation accuracy, the average cost cpath(okopt) of
the optimal bixel path okopt was considerably lower with only a small tolerance ∆tlow =
∆thigh = 2 than without any tolerance, as Figure 10 (b) demonstrates. However, further
increasing the tolerances yields diminishing returns. Assuming the bixel path costs reflect
the perceived output quality, even a small segmentation boundary tolerance leads to a
significant quality increase. Furthermore, the number of jumps shown in Figure 10 (c)
and the number of “wrong jumps” that extend the output piece in case shortening is
required and vice versa both decrease on average with increasing tolerances.

Considering the above results, we set ∆tlow = 2 and ∆thigh = 4 as the default for our
music rearrangement system.

In conclusion, the concept of segment boundary tolerance was successful in providing a
trade-off between segmentation accuracy and output quality, assuming the cost of a bixel
path and the number of jumps provide an indication of the subjective output quality.

6.2 Listening study

To evaluate the perceived sound quality offered by our music rearrangement system, we
determine the quality of the produced cuts as the critical factor for the overall output
quality. Consequently, we conducted a listening study that presented a series of music
excerpts with cuts generated by the system and asked the participants to rate their quality
according to different aspects. We collected the required data from participants through
two online surveys each with a different set of music tracks, where audio snippets could
be played as often as desired. In total, we obtained 28 responses for the first and 45
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responses for the second survey.

Used database. To determine whether knowing a music piece influences the listener
responses, we selected four popular tracks as well as four music pieces from the Free Music
Archive (WFMU, 2009) that were unfamiliar to all of the participants. The database
EVAL presented in Appendix, Table 3 lists these 8 tracks, where the first four entries
represent the popular pieces. Furthermore, the pieces were selected so that a large range
of genres is covered. To limit the study duration to about 15 minutes, only the tracks
from the database EVAL were used and also split across two different online surveys,
each including two popular and two unfamiliar tracks.

Data generation. To generate the examples for the survey, we define the reduced
configuration set as the set of configurations. It involves doubling and halving the
length of every song in database EVAL, without any tolerance ∆ttol, with and without
song structure enforcement. Although considerably smaller than the standard config-
uration set, the reduced configuration set was designed to cover the main application
scenarios. Like in the standard configuration set, the target song structure is a scaled
version of the input song structure and all other parameters take their default values.

Additional questions. Complementing the main questions presented in the following
sections, we explore potential effects of the musical education of listeners and their knowl-
edge of the tracks on their responses. In both online surveys, participants were asked to
categorise their level of musical education by choosing one of the options “No musical
education”, “Amateur musician”, “Semi-professional”, and “Professional musician”. The
online surveys were structured according to the four original music pieces from the EVAL
database. At first, the listeners were able to listen to a preview of the original track and
to indicate whether they know the track. Afterwards, a set of audio snippets generated
with this track as input was presented before proceeding with the next original track.

6.2.1 Transition quality

Arguably the most important criterion for evaluating a music rearrangement system is
the quality of the produced tracks. In our cut-based approach, this is mostly dependent
on the quality of the transitions, which will thus be examined here.

Data generation. Song structure enforcement was disabled due to the high number of
produced jumps. We disabled postprocessing, as it is evaluated separately in Section 6.2.2.
For every remaining configuration in the reduced configuration set, we use different values
{0, 0.1, . . . , 0.4} for the weight wl of the loudness matrix L, setting wd = 1−wl. Finally,
a random configuration from this configuration set was chosen for each track from EVAL
to generate the cuts.

Study design. The audio excerpts were presented to each participant, who was asked
to give three ratings on a scale from one to five, with higher numbers indicating a higher
perceived quality. The three aspects to be rated were loudness continuity, all other
factors required for an imperceptible transition, such as timbre, rhythm, and meter, and
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the overall quality of the audio snippet as a combination of the former two ratings. We
deliberately separated the loudness continuity from all other factors to focus on evaluating
the usefulness of the proposed loudness matrix L.

Results. The average ratings over all cuts for loudness continuity, all other musical
aspects, and the transition quality were 3.56, 3.35, and 3.27, respectively. Surprisingly,
the average overall rating is lower than both of the individual ratings that it is comprised
of. A reason could be a misunderstanding of the category “Other”, because some of the
corresponding aspects like timbre were perhaps unknown.

The average ratings as a function of the loudness weight for the loudness matrix L are
plotted in Figure 11. The red curve demonstrates that the loudness matrix successfully
captures the perception of loudness continuity, as cuts with higher perceived loudness
continuity are selected with increasing wl. The ratings concerning all other musical as-
pects (“Other”) first decreased in the process as expected, but suddenly increased slightly
for wl > 0.2. Possibly, the loudness matrix L unintentionally encodes some information
about these aspects in addition to loudness continuity.

Next, we directly investigate to what extent the costs for a bixel transition from
bixel bi to bj defined by the transition cost matrices reflect their perceived transition
quality – ideally, there should be a perfectly linear relationship. However, we found
no significant correlation between the bixel transition costs Dij concerning timbre and
the corresponding rating in the “Other” category, average over users. Although metrical
aspects are a confounding factor as they are dependent on the beat tracking accuracy, the
complete absence of a relation is still surprising and calls for a revision of the transition
costs in D. On the other hand, a Spearman rank correlation test showed a significant
correlation (p < 0.05) with a correlation coefficient ρ ≈ −0.35 between the cost Li,j of
a bixel jump and its average loudness rating. This proves the ability of our proposed
loudness matrix L to at least partially reflect the actual transition quality regarding
loudness.

No significant relationships were found between the musical education of the listener
and the ratings (p > 0.05). Interestingly, familiarity with the track increased the overall
ratings by 0.2 to 0.48 points on average (paired Wilcoxon signed-rank test, p < 0.05).

6.2.2 Jump optimisation

In this section we evaluate the influence of the jump optimisation stage on the perceived
transition quality of jumps.

Data generation. Again, the reduced configuration set was used to generate the out-
put, this time once with and once without jump optimisation to analyse the differences.
For every cut, two audio snippets each containing six seconds of audio centered around
the cut position were extracted, of which one was additionally processed with jump op-
timisation.

Two pairs were randomly selected for every track in the database EVAL with the
condition that they were significantly altered by the jump optimisation stage, to focus
on examples where the jump optimisation had a noticeable effect. We define a bixel jump
to be significantly altered if it exhibits an absolute loudness difference |lafter− lbefore| of at
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least 5 sone and/or an absolute detected synchronisation error |∆lmax| of at least 0.05 s
(cf. Section 5.2). From all 556 generated pairs, 511 were significantly altered, implying
that the jump optimisation procedure noticeably affects most cuts and is thus important
to evaluate.

Study design. For each pair of audio snippets, we asked the participants to select
the more pleasing audio snippet, also allowing a third choice to indicate no noticeable
difference. No further information was given, forcing participants to make their choice
based on the audio alone.

Results. Figure 12 illustrates the distribution of the responses averaged over all exam-
ples, grouped by the level of musical education.

Overall, the quality of the cuts was improved or left unchanged by the jump optimi-
sation procedure in most cases (73%). Particularly interesting is that the percentage of
responses indicating the preference of the unedited audio snippet (“Preferred unedited”)
tended to decrease with increasing reported levels of musical education. However, this
effect is not necessarily significant, especially because only four of the 73 participants
identified themselves as professional musicians (level of musical education: 4) and conse-
quently, the corresponding results are subject to deviations caused by outliers due to the
low sample size.

We investigated the cases in which jump optimisation worsened the audio quality by
analysing how the activity of loudness equalisation and jump optimisation respectively
affects the response scores. Larger loudness adjustments |lafter − lbefore|, correlated with
more positive responses, while a higher corrected absolute delay |∆lmax| during jump
optimisation correlated with more negative responses. These correlations were significant
and imply that jump optimisation could incorrectly change the jump timings, leading to
irritating rhythmic inconsistencies.

We found no significant differences in the average response score when only considering
the responses made with knowledge of the respective track used to generate the audio
snippets.

7 Conclusions

We have proposed a novel music rearrangement system with an intuitive graphical user
interface. Given an existing piece of music, a target length, and a set of user constraints,
it allows the production of a new music piece fulfilling these constraints by piece-wise
concatenation of sections of the original piece. The rearrangement task is formulated as
shortest path finding problem in a graph which represents transitions between bixels and
is optimised using a multiple goal A* algorithm, where the jumps between audio sections
are smoothed with respect to loudness and timbre of related bixels.

The system was thoroughly evaluated with the help of performance tests and two
listening surveys. The results show a decrease of computational complexity compared to
the previous approach and an increase in perceived transition quality for different genres
in general, especially regarding loudness continuity.
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As a further contribution, previous work in the field was intensively evaluated with a
self-built database containing a wide variety of music pieces. The results revealed various
problems occurring at the cut positions in the produced pieces.

Some of the issues remain for future work, such as cutting off vocals which is especially
important as it occurs frequently and listeners tend to focus on vocal sounds. But also
other relevant high-level semantic entities of music like harmonic progressions, melodic
contours, repeated motifs, etc. may be preserved after the rearrangement. For that goal,
a more comprehensive metric of transition quality could be developed. It could also be
viable to combine such further musical aspects that influence the transition quality using
weights optimised with the help of listening studies to yield a transition cost metric that
more accurately reflects human perception. Furthermore, the consideration of semantic
music properties may lead to extensions in the user interface, for instance marking of
phrases and segments which are not allowed to contain cuts.
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Appendix

Table 1: Database CC1

Genre Subgenre Artist Title
Blues Arne Bang Huseby Stormy Blues
Blues Julia Haltigan All I Can Think Of Is You
Country Randy Travis and Brandon Amazing Grace
Electronic Ambient LASERS Amsterdam
Electronic Chip an0va The First Noel / O Come All Ye Faithful
Electronic Dance Broke For Free Calm The Fuck Down
Electronic Downtempo Tours Enthusiast
Electronic Dubstep LittleLight Illumination
Electronic Glitch Oribque Simple
Electronic IDM Pierlo Barbarian
Electronic Techno Foniqz Spectrum (Subdiffusion Mix)
Electronic Trip-Hop ghost Lullaby
Experimental Avantgarde Jared C. Balogh Equal Value (Ode To A Squirrel)
Experimental Drone The Upsidedown E-Love
Experimental Electroacoustic Origamibiro Flicker
Experimental Field Recording Aaron Ximm Spring Rain
Experimental Musique Concrete Computer Truck Euritmix Sux My Dix
Folk Gaby Cardoso Mujerzuela
Folk Psych The New Mystikal Troubadours Tonight: A Lonely Century
Folk Singer-Songwriter Great Lake Swimmers Gonna Make It Through This Year
Hip-Hop Blackwell I Neva
Instrumental David Lohstana Petit talible (instrumental version)
Instrumental The Kyoto Connection Hachiko The Faithful Dog (short)
International Los Amparito El barzón
Jazz Kevin MacLeod AcidJazz
Classical Mozart by CSU Symphony No. 40 IV
Classical Beethoven Moonlight Sonata (short)
Classical Beethoven Für Elise
Pop Fresh Body Shop Fireballs
Pop Lilly Wolf Jealousy
Pop On returning Paris (energy of life)
Rock Alternative Blind Violet Deep
Rock Garage Artistes d’Origine in Contrôlée Reveille toi - Dewey
Rock Indie Dumbo Gets Mad Plumy Tale
Rock Industrial Nine Inch Nails 7 Ghosts I
Rock LoFi Tyrannic Toy Blackroad
Rock Metal Insane Ride Wrong or Right
Rock Noise Lately Kind Of Yeah Where Is My Jaw?
Rock Postpunk Mules Teenage Freakout
Rock Postrock et Kopeika
Rock Progressive Convey Campaign Speech
Rock Psych Flowerheads 06
Rock Punk Angstbreaker Dead Elements
Soul/RnB Juanitos Hey

Table 2: Database CC2. Contains database CC1

Genre Subgenre Artist Title
Folk Labib Saleh Bey
Folk Singer-Songwriter Cian Nugent Double Horse
International Caligine Me Piánoune Zaládes
Jazz Quantum Jazz If I Can’t Dance It’s Not My Revolution
Rock Psych Noi Everything Is Changing
Experimental Avantgarde Ellen Fullman Never Gets Out Of Me
Classical Gio Micheletti Happy Sinners
Classical Massimo Mastrangeli Bagliori di tempesta
Classical Maya Filipič Anthos
Classical Rob Costlow Bliss
Electronic Techno Adrian Sanchez Adrian Sanchez G Pal Ophra
Electronic Techno Dj Rostej Light Rays
Electronic Techno -mystery- Decadence
Electronic Techno Saelynh Summer in Paradise
Electronic Techno Synthager The Way of Atlant

Table 3: Database EVAL

Genre Subgenre Artist Title
Rock Beatles Hey Jude
Pop Leann Rimes How Do I Live
Rock Hard Rock Motörhead Ace Of Spades
Classical Columbia State Univ. Orchestra Mozart’s Symphony No. 40 IV
Hip-Hop Blackwell I Neva
International Los Amparito El barzón
Folk Singer-Songwriter Great Lake Swimmers Gonna Make It Through This Year
Electronic Ambient LASERS Amsterdam
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Figure 1: Segments of the original (a) and rearranged music piece (b)-(e). I: intro; B1:
bridge 1; V: verse; B2: bridge 2; C: chorus; O: outro.
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Figure 2: Screenshot of the user interface for the music rearrangement system in the
rearrangement stage, enabling the user to generate a new music piece from the original
piece based on the different constraints.
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Figure 3: Overview of the proposed music rearrangement system.
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Figure 4: Unified cost matrix T for the song “El barzón” from “Los Amparito” with a
repetition avoidance setting of wr = 4.
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Figure 5: Loudness matrix L computed according to Equation (6) for the example song
“El barzón” from “Los Amparito”.
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Figure 6: The graph G representing the problem space with the current position in the
considered bixel path k on the horizontal and the bixel number i of the included bixel on
the vertical axis. The start node vistart,1 is coloured in green, while the set of goal nodes
Gend is shown in red.
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Figure 7: Rearranging “El barzón” from “Los Amparito” with song structure enforcement
to 120 s without tolerance. From top to bottom: Ground truth segmentation with seven
different clusters, target song structure with desired order of clusters, resulting song with
∆tlow = ∆thigh = 0, and resulting song with ∆tlow = 3 and ∆thigh = 5. White crosses
indicate cuts with bixel jumps.
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Figure 8: Average runtimes in seconds for the dynamic programming and the A* algo-
rithm presented in section 4.2.3, for different minimum success probabilities psucc.
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Figure 9: Average runtimes for the path optimisation algorithms. Song structure en-
forcement is disabled for the plots in (a) and (c) and enabled for the plots in (b) and (d).
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Figure 10: Heatmaps visualising the average (a) segmentation accuracy, (b) cost of the
bixel path, (c) number of jumps in the bixel path and (d) number of wrong jumps in
the bixel path for various configurations of the segment boundary tolerances ∆tlow and
∆thigh. Brighter colour is better.
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Figure 11: Average ratings of the loudness continuity (“Loudness”), all other musical
aspects (“Other”) and of the transition quality as a whole (“Overall”) for different values
of the loudness weight wl.
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Figure 12: Distributions of responses as an average over all pairs of audio snippets, for
different levels of musical education of the participants.
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psucc 0.50 0.60 0.70 0.80 0.90 0.95 0.99

pe 0.9267 0.9560 0.9820 0.9904 0.9988 0.9992 0.9996
kgoal 201 246 311 389 485 579 664

Table 4: Averages of the empirical success probabilities pe and the number of goal
nodes kgoal = kmax − kmin + 1 for different minimum success probabilities psucc, cf. Sec-
tion 4.2.2.
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