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Abstract

This paper extends Whittle estimation to linear processes with a general sta-

tionary ergodic martingale difference noise. We show that such estimation is valid

for standard parametric time series models with smooth bounded spectral densities,

e.g. ARMA models. Furthermore, we clarify the impact of the hidden dependence

in the noise on such estimation. We show that although the asymptotic normality

of the Whittle estimates may still hold, the presence of dependence in the noise im-

pacts the limit variance. Hence, the standard errors and confidence intervals valid

under i.i.d. noise may not be applicable and thus require correction. The goal of

this paper is to raise awareness to the impact of a non i.i.d. noise in applied work.

AMS 2000 Subject classification 62E20, 60F05.

Keywords and phrases: Whittle estimation, Asymptotic normality, Quadratic form,

Martingale difference noise.

1 Introduction

A variety of stationary models known in statistical and econometric literature can be

expressed as a linear/moving average time series. Under minor restrictions a linear sta-

tionary time series can be represented, by the Wold decomposition, as a moving average
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of infinite order,

Xt =
∞∑
j=0

ajηt−j, t ∈ Z,(1.1)

where {ηt} is an uncorrelated noise with zero mean and weights {aj} satisfy
∑∞

j=0 a
2
j <∞.

We have aj = aj(θ) and Eη2
t = σ2. The goal is to estimate θ and σ2.

In applications, the noise {ηt} thus is often assumed to be i.i.d. or a stationary mar-

tingale differences (m.d.) sequence. The estimation of such models is mainly done under

the assumption of i.i.d. noise but this may be too restrictive in applications and hard to

verify in practice and it excludes ARCH type conditionally heteroskedastic noises {ηt}
which are stationary ergodic m.d. processes. A typical example of a linear process (1.1)

with m.d. noise is Xt = r2
t − Er2

t where rt is a GARCH(p, q) process. It is commonly

used for modeling squared returns of assets in financial econometrics, see e.g. the review

in Giraitis, Leipus and Surgailis (2007).

In empirical work, parameters of such time series are often estimated using techniques

suitable for i.i.d. noises {ηt} but without proper theoretical validation, see e.g. Wu and

Shieh (2007).

In this paper, we examine the validity of a standard Whittle estimation procedure for

a linear process (1.1) with a martingale difference noise {ηt} and we analyze how this

m.d. noise impacts the asymptotic behaviour of the estimates.

In his seminal work Hannan (1973) showed that parametric Whittle estimates (σ̂2
n, θ̂n)

given in (2.7) are consistent estimators of the true value of the parameter (σ2
0, θ0) for a

large class of ergodic time series {Xt}. He established the asymptotic normality of θ̂n for

linear processes with smooth bounded spectral densities fσ2,θ for a special class of m.d.

noises {ηt}. Hannan assumed that E[ηt|Ft−1] = σ2 is a constant a.s.

Fox and Taqqu (1986), Giraitis and Surgailis (1990), Giraitis, Hidalgo and Robinson

(2001) and others extended the parametric Whittle estimation technique to linear long

memory time series {Xt} with unbounded spectral densities and i.i.d. noise {ηt}; see

Chapter 8 in Giraitis, Koul and Surgailis (2012). Hosoya and Taniguchi (1982) showed

that Whittle estimation remains valid for linear processes with uncorrelated noise {ηt}
whose fourth-order cumulants are summable and whose conditional moments satisfy some

regularity conditions.

Our aim in this paper is to extend Whittle estimation to linear processes with a sta-

tionary ergodic m.d. noise {ηt}. We shall show that such estimation is valid for standard

parametric time series models with smooth bounded spectral densities, e.g. ARMA mod-

els. Furthermore, we shall clarify the impact of the dependence structure of the noise in

such estimation. The proof of the asymptotic normality relies on the normal approxima-

tion results for quadratic forms in stationary ergodic m.d. noise {ηt} obtained in Giraitis,
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Taniguchi and Taqqu (2016).

We show that differences in inference between modelling with i.i.d. noise and modelling

with m.d. noise cannot be ignored. The goal of this paper is thus to raise awareness, when

doing applied work, to the fact that although the asymptotic normality of the estimates

may still hold, the limit variance might be affected. Hence, the standard errors and

confidence intervals valid under i.i.d. noise may not be applicable and thus need to be

corrected.

The main results are Theorem 2.1 (consistency), Theorem 2.2 (asymptotic normality)

and Theorem 3.1 (asymptotic normality of quadratic forms). More generally, Section 2

examines the impact of m.d. noise on parametric Whittle estimation. We establish asymp-

totic normality for parametric Whittle estimator θ̂n under weak conditions on the noise.

This requires deriving the asymptotic normality of quadratic forms for linear processes

with m.d. noise and is done in Section 3. Section 4 contains auxiliary results. Section 5

deals with applications.

Throughout the paper, by →p and →D we denote convergence in probability and

distribution, respectively, while C denotes generic constants.

2 Parametric Whittle estimation

Denote by {ηt} a stationary ergodic martingale difference (m.d.) sequence with respect

to the natural filtration Ft defined below, namely E[ηt|Ft−1] = 0, with moments

Eηt = 0, Eη2
t = σ2 and Eη4

t <∞.(2.2)

By Ft we denote the σ-field generated by (ηt, ηt−1, ...) or, more generally, by some un-

derlying noise (εt, εt−1, ...) such that ηt = f(εt, εt−1, ...) is a measurable function of εt’s.

Clearly, Eηtηs = 0 for t 6= s. Indeed, if s < t, then Eηtηs = E[E[ηt|Ft−1]ηs] = 0.

In this section we study the parametric Whittle estimation for a linear process

Xt :=
∞∑
k=0

ak(θ)ηt−k, a0 = a0(θ) = 1, t ∈ Z,(2.3)

with

∞∑
k=0

a2
k(θ) <∞, θ ∈ Θ.

The real-valued coefficients ak(θ), k = 0, 1, · · · are parameterized by the parameter θ ∈ Θ

taking values in a compact set Θ ⊂ Rq. Throughout this paper, σ2
0, θ0 denote the true

parameter values of σ2, θ, respectively. In this paper, we prove asymptotic normality of
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the Whittle estimator of θ0 and consistency of the estimator of σ2.

The spectral density of the process {Xt} has a parametric form

f(u) ≡ fσ2,θ(u) =
σ2

2π
sθ(u),(2.4)

where

sθ(u) :=
∣∣∣ ∞∑
k=0

ak(θ)e
iku
∣∣∣2, u ∈ Π, θ ∈ Θ,

where Π = [−π, π). By Wold decomposition, the class of stationary processes having

linear representation (2.3) with an uncorrelated noise ηt is very large. In this paper the

class of possible noises is reduced by supposing that they form stationary ergodic m.d.

sequences.

Assume that observations X1, X2, · · · , Xn are from the linear process (2.3). Denote

the periodogram based on X1, X2, · · · , Xn by

In(u) :=
1

2πn

∣∣∣ n∑
j=1

Xje
iju
∣∣∣2.(2.5)

Parametric Whittle inference procedures involve the integrated weighted periodogram

Qn(θ) :=

∫
Π

In(u)

sθ(u)
du(2.6)

with weight function sθ(u). In view of (2.5), Qn(θ) equals the quadratic form

Qn(θ) =
1

n

n∑
j,k=1

bj−k(θ)XjXk,

where

bj(θ) :=
1

2π

∫
Π

eiju

sθ(u)
du, j ∈ Z.

Whittle estimates of σ0, θ0 based on X1, X2, · · · , Xn are defined as

σ̂2
n = Qn(θ̂n), θ̂n = argminθ∈ΘQn(θ).(2.7)

These estimators were introduced by Whittle (1953) and are obtained by minimizing the

approximate Gaussian log-likelihood. The approximate Gaussian log-likelihood is known

as ”the Whittle Gaussian log-likelihood”.

We shall first address the consistency. Consider the following assumption.

Assumption (a0)The parameter space Θ is compact, parameter (σ2, θ) determines the
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spectral density

fσ2,θ(u) = σ2s2
θ(u)/2π

uniquely. The function sθ(u) is continuous in (u, θ) ∈ Π×Θ and for some c1 > 0, c2 > 0,

0 < c1 ≤ sθ(u) ≤ c2 <∞, (u, θ) ∈ Π×Θ.

Thus the spectral density is bounded away from the origin and infinity.

Theorem 2.1 (Consistency of Whittle estimators). Suppose an observable linear process

{Xt} of (2.3) has the spectral density

f(u) =
σ2

0

2π
sθ0(u),

and suppose the functions sθ, θ ∈ Θ, satisfy Assumption (a0). Then, as n→∞,

θ̂n → θ0, σ̂2
n → σ2

0, a. s.(2.8)

Proof. By assumption, {ηt} is a stationary ergodic sequence. Thus, Theorem 3.5.8 in

Stout (1974) implies that the sequence {Xt} in (2.3) is also stationary ergodic. Hence (2.8)

follows from Theorem 1 in Hannan (1973). For more details of the proof, see Theorem

8.2.1 in Giraitis et al. (2012). 2

In general, the asymptotic normality of the Whittle estimates requires stronger mod-

elling assumptions on {Xt} in (2.3). We introduce the following conditions on the func-

tions sθ(u) and the weights ak(θ0) of {Xt}.
Denote by ∇θ the partial derivative operator with respect to a vector θ and by ′ the

transposition operator. Set

Wθ0 =
∫

Π
∇θ log sθ0(u)∇′θ log sθ0(u)du,(2.9)

Vθ0,η = 4E
[(∑∞

k=1 βk,θ0η−k
)(∑∞

k=1 βk,θ0η−k
)′
η2

0

]
,

βk,θ0 := (2π)−1
∫

Π
eiku∇θ log sθ0(u)du, k ∈ Z.

Noting that βk,θ0 = β−k,θ0 and β0,θ0 = 0, Parseval’s identity implies

Wθ0 = 2π
∑
k∈Z

βk,θ0β
′
k,θ0

= 4π
∞∑
k=1

βk,θ0β
′
k,θ0

.(2.10)

Assumption (a1) (i) The true value of parameter (σ2
0, θ0) lies in the interior (0,∞)×Θ.
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The weights ak(θ0) in (2.3) have property
∑∞

k=0 ka
2
k(θ0) <∞.

(ii) The partial derivatives ∇θsθ(u),∇usθ(u), ∇u∇θsθ(u), ∇θ∇′θsθ(u), exist and are

bounded and continuous functions of u ∈ Π and θ ∈ Θ.

(iii) The matrix Wθ0 is positive definite.

The following theorem establishes the asymptotic normality of the Whittle estimate θ̂n.

Remarkably, besides (2.2), no additional conditions on the stationary ergodic martingale

difference noise {ηt} are needed.

Hidden dependence of the noise variables ηt, however, will have an impact on the

asymptotic variance matrix of the Whittle estimate θ̂n in (2.11). By hidden dependence,

we mean for example, a situation where the ηt may be uncorrelated but their square η2
t

are correlated. The matrix has the form

Ωθ0,η = 4π2σ−4
0 W−1

θ0
Vθ0,ηW

−1
θ0
.

We show that for i.i.d. noise {ηj}, this matrix reverts to the standard asymptotic variance

matrix of the Whittle estimate Ωθ0 = 4πW−1
θ0

given in Theorem 2 in Hannan (1973),

which does not depend on {ηt}.

Theorem 2.2 (Asymptotic normality of Whittle estimators). Let {Xt} be a linear pro-

cess (2.3) having parametric spectral density f = σ2
0 sθ0/2π, with sθ satisfying Assumptions

(a0) and (a1). Then

n1/2(θ̂n − θ0)→D N (0,Ωθ0,η), Ωθ0,η = 4π2σ−4
0 W−1

θ0
Vθ0,ηW

−1
θ0
.(2.11)

Moreover,

(i) If {ηt} are i.i.d. random variables, then

Ωθ0,η = 4πW−1
θ0
, Vθ0,η = π−1σ4

0 Wθ0 ,(2.12)

and

n1/2(θ̂n − θ0)→D N (0,Ωθ0).

(ii) If m.d. noise {ηt} is such that E[η2
0ηkηs] = 0 for any s < k < 0, then

Ωθ0,η = 4πW−1
θ0

+ Ω∗θ0,η, Ω∗θ0,η := 4π2σ−4
0 W−1

θ0
∆ηW

−1
θ0
,(2.13)

Vθ0,η = π−1σ4
0 Wθ0 + ∆η, ∆η := 4

∞∑
k=1

βk,θ0β
′
k,θ0

cov(η2
0, η

2
−k).

Remark 2.1 Obviously (2.13) reduces to (2.12) if the ηt are i.i.d. Whittle estimation

is robust with respect to an i.i.d. noise ηt in the sense that its variance (2.12) does not

depend on ηt. In particular, Whittle estimation does not have pitfalls in the sense that
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(2.11) holds with (2.12) when the m.d. noise ηt is Gaussian since such ηt’s are i.i.d.

Theorem 2.2 shows that this property is not valid anymore for m.d. noises ηt which are

not i.i.d. Although asymptotic normality may still hold, the standard errors of the Whittle

estimates are affected by the presence of the hidden dependence in the noise.

Example 2.1 Consider, for example, the m.d. noise

ηt = εtεt−1(2.14)

where {εt} are i.i.d. Gaussian random variables with zero mean and variance Eε2
0 = σ2

ε .

Then {ηt} is a stationary ergodic m.d. sequence with respect to sigma field Ft generated

by variables εt, εt−1, ... with

ηt = 0, σ2
0 = Eη2

0 = (Eε2
0)2 and E[η2

0ηkηs] = 0

for s < k < 0. Moreover,

cov(η2
0, η

2
−1) = E[η2

0η
2
−1]− E[η2

0]E[η2
−1] = 2σ4

0

and

cov(η2
0, η

2
−k) = 0, for k ≥ 2.

Hence, (2.13) holds with ∆η := 8σ4
0 β1,θ0β

′
1,θ0
,

Ωθ0,η = 4πW−1
θ0

+ Ω∗θ0,η, Ω∗θ0,η := 32π2W−1
θ0
β1,θ0β

′
1,θ0

W−1
θ0
.

Here, the dependence in m.d. noise contributed an additional term Ω∗θ0,η to the variance

Ωθ0,η compared with an i.i.d. noise.

Example 2.2 The class of stationary ergodic m.d. processes {ηt} is very rich. It covers

conditional heteroscedastic ARCH models, stochastic volatility models and others. Such

processes can usually be written in the form

ηt = εtσt, σt = f(εt−1, εt−2, ....)

where {εt} is a sequence of i.i.d. random variables with Eεt = 0, Eε2
t < ∞ and f is

a measurable function of (εt, εt−1, ....). Clearly, such {ηt} process is a stationary m.d.

sequence. Since {εt} is an ergodic process, then by Theorem 3.5.8 in Stout (1974), {ηt}
is a stationary ergodic m.d. sequence. It satisfies (2.2) as long as Eε4

t <∞, Eσ4
t <∞.

Remark 2.2 Verification of the asymptotic normality for θ̂n is reduced in this paper to

the asymptotic normality of a quadratic form
∑n

j,k=1, j 6=k βj−kηjηk of an m.d. noise ηt with
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a zero diagonal. Normal approximation for σ̂2
n however would require establishing the

asymptotic normality of a quadratic form with a non-zero diagonal. Since {η2
t } is not a

m.d. noise, proof of the asymptotic normality for σ̂2
n and (θ̂n, σ̂

2
n) would require additional

assumptions on {ηt}.
Under additional assumptions, Hosoya and Taniguchi (1982) established asymptotic

normality of Gaussian maximum likelihood estimate for linear processes with uncorrelated

noise {ηt} and Taniguchi (1982) suggested consistent estimates for its asymptotic variance.

Proof of Theorem 2.2. By Theorem 2.1, θ̂n → θ0 a.s. Hence, ∇θQn(θ̂n) = 0 with

probability tending to 1. Thus, by the continuity and differentiability of function Qn(θ̂)

which is guaranteed by Assumption (a0), by the mean-value theorem there exists θ∗n ∈ Θ

such that ||θ∗n − θ0|| ≤ ||θ̂n − θ0|| and

0 = ∇θQn(θ̂n) = ∇θQn(θ0) +∇θ∇′θQn(θ∗n)(θ̂n − θ0).(2.15)

Since the components of ∇θs
−1
θ (u) are continuous functions in θ and u, by Lemma 8.2.2.

in Giraitis et al. (2012),

∇θ∇′θQn(θ)→ σ2
0

2π

∫
Π

sθ0(u)∇θ∇′θs−1
θ (u) du a.s.

uniformly in θ ∈ Θ. Together with the consistency of θ̂n this implies

∇θ∇′θQn(θ∗n)→p
σ2

0

2π

∫
Π

sθ0(u)∇θ∇′θs−1
θ0

(u) du =
σ2

0

2π
W (θ0).(2.16)

By Kolmogorov formula, the parameterization assumption a0 = 1 is equivalent to∫
Π

log sθ(u)du = 0, θ ∈ Θ.

The use of the latter yields the last equality in (2.16), see Hannan (1973) or, e.g., page

216 in Giraitis et al. (2012).

Because of (2.15) and (2.16), (2.11) will follow from the convergence

−n1/2∇θQn(θ0)→D N (0, Vθ0,η).(2.17)

Let c ∈ Rq. Denote

Sn,c := −nc′∇θQn(θ0).

By Cramér-Wold device, to prove (2.17) it suffices to verify that for any c,

n−1/2Sn,c → N (0, v2
c ), v2

c = c′Vθ0,ηc.(2.18)
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Express Sn,c as a quadratic form

(2.19) Sn,c =
n∑

t,s=1

gt−sXtXs, gt := (2π)−1

∫
Π

eituĝ(u)du, t ∈ Z,

where

ĝ(u) := −c′∇θs
−1
θ0

(u).

We prove (2.18) by showing that Sn,c satisfies assumptions of Theorem 3.1 below. By

Assumptions (a0) and (a1)(ii), the partial derivative ∇u∇θs
−1
θ0

is a bounded continuous

function which implies that the series
∑

j∈Z |gj| < ∞ converges. Clearly, gj = g−j. By

Assumption (a1)(i),
∑∞

k=1 ka
2
k(θ0) <∞. By (3.26) and (3.34) we obtain

βk,θ0 = (2π)−1

∫
Π

eikuĝ(u) sθ0(u)du = −(2π)−1

∫
Π

eikuc′∇θs
−1
θ0

(u) sθ0(u)du(2.20)

= (2π)−1

∫
Π

eikuc′∇θ log sθ0(u)du, k ∈ Z.

Moreover, property
∫

Π
log sθ(u)du = 0 implies that∫

Π

∇θ log sθ(u)du = 0, β0,θ0 = (2π)−1

∫
Π

c′∇θ log sθ0(u)du = 0.(2.21)

Hence, Theorem 3.1 implies (2.18) with Vθ0,η as in (2.9).

Proof of (2.12). Recall that βk,θ0 = β−k,θ0 and by (2.21),

β0,θ0 = (2π)−1

∫
Π

∇θ log sθ0(u)du = 0.

Therefore, for i.i.d. random variables {ηt}, Vθ0,η in (2.11) takes the form

Vθ0,η = 4σ4
0

∞∑
k=1

βk,θ0β
′
k,θ0

= 2σ4
0

∞∑
k=−∞

βk,θ0β
′
k,θ0

.(2.22)

Hence, using definition (2.9) of βk,θ0 , by Parseval’s identity, we obtain (2.12):

Vθ0,η = π−1σ4
0

∫
Π

∇θ log sθ0(u)∇′θ log sθ0(u)du = π−1σ4
0 Wθ0 .(2.23)

Finally, under assumption E[η2
0ηkηs] = 0 for any s < k < 0, (2.13) follows straightfor-

wardly from the definition of Vθ0,η in (2.9) noting that E[η2
−kη

2
0] = (E[η2

−k])
2 +cov(η2

0, η
2
−k)

and using (2.22) and (2.23). This completes the proof of the theorem. 2
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3 Quadratic forms of m.d. noise

We study here the quadratic form

Sn =
n∑

t,s=1

gt−sXtXs(3.24)

with symmetric real weights gk = g−k, k ∈ Z. We assume that

Xt =
∞∑
j=0

ajηt−j,

∞∑
j=0

|aj| <∞,(3.25)

is a linear process and {ηt} is a stationary ergodic m.d. sequence satisfying (2.2). Such a

quadratic form appeared in (2.19).

Quadratic forms appear in numerous statistical applications. Asymptotic normality

for quadratic forms of linear processes was widely investigated in the statistical and prob-

abilistic literature, see e.g. Hannan (1973), Fox and Taqqu (1987), Giraitis and Surgailis

(1990), Robinson (1995), Bhansali, Giraitis and Kokoszka (2007) and others. Sufficient

general conditions for asymptotic normality of quadratic forms in i.i.d. random variables

were established in Rotar (1973), De Jong (1987) and Guttorp and Lockhart (1988).

For quadratic forms in m.d. random variables such conditions were derived in Giraitis,

Tanuguchi and Taqqu (2016).

For simplicity set aj = 0 for j ≤ 0. Denote

γk =
∑
j∈Z

ajaj+k, βk =
∑
j∈Z

gjγj+k, k ∈ Z.(3.26)

The following theorem establishes the asymptotic normality of a quadratic form Sn. Its

proof is based on the results of the paper by Giraitis, Tanuguchi and Taqqu (2016), whose

application requires additional technical effort.

Theorem 3.1 Suppose that the gk’s and ak’s are such that

a)
∑
k∈Z

|gk| <∞, b)
∞∑
k=1

ka2
k <∞, c) β0 = 0.(3.27)

Then the quadratic form Sn in (3.24) satisfies

n−1/2(Sn − ESn)→D N (0, v2), v2 := 4E
[( ∞∑

k=1

βkη−k
)2
η2

0

]
,(3.28)

n−1/2ESn → 0.(3.29)

10



Moreover, v2 has the following properties.

a) If in addition, {ηt} is a sequence of i.i.d. random variables, then

v2 = 4(Eη2
0)2

∞∑
k=1

β2
k .(3.30)

b) If in addition, E[η2
0ηsηk] = 0 for any s < k < 0, then

v2 = 4
∞∑
k=1

β2
kE[η2

0η
2
−k] = 4(Eη2

0)2

∞∑
k=1

β2
k + 4

∞∑
k=1

β2
k cov(η2

0, η
2
−k).(3.31)

c) If in addition, {ηt} satisfies assumption that there exists a positive constant c > 0 such

that

E[η2
k|Fk−1] ≥ c > 0, k ∈ Z, a.s.,(3.32)

then there exists c0 > 0 such that

v2 ≥ c0

∞∑
k=1

β2
k > 0.(3.33)

Remark 3.1 Suppose that gk = (2π)−1
∫

Π
eikxĝ(x)dx, k ∈ Z where ĝ(x), x ∈ Π is a

even continuous bounded function. Notice that γk in (3.26) can be expressed as γk =

(2π)−1
∫

Π
eikxs(x)dx with s(x) = |

∑∞
j=0 e

ijxaj|2, x ∈ Π. Then, by Parseval’s identity,

βk =
∑
j∈Z

gjγj+k = (2π)−1

∫
Π

eikxĝ(x) s(x)dx, k ∈ Z(3.34)

and the condition β0 = 0 is equivalent to∫
Π

ĝ(x) s(x)dx = 0.(3.35)

Furthermore, for an i.i.d. noise ηj, by Parseval’s identity, v2 in (3.30) can be written as

v2 = 2(Eη2
0)2

∞∑
k∈Z

β2
k = (Eη2

0)2π−1

∫
Π

ĝ2(x) s2(x)dx.(3.36)

Example 3.1 Consider the m.d. noise ηt = εtεt−1 where {εt} are independent Gaus-

sian random variables with zero mean and variance Eε2
0 = σ2

ε , see Example 2.1. Then

11



cov(η2
0, η

2
−1) = 2σ4

0 and cov(η2
0, η

2
−k) = 0 for k ≥ 2. Thus, (3.31) becomes

v2 = 4σ4
0

∞∑
k=1

β2
k + 8σ4

0β
2
1 > 4σ4

0

∞∑
k=1

β2
k .

Hence, compared to an i.i.d. noise, dependence in the noise ηj increased the variance v2.

Proof of Theorem 3.1. We shall start with the proof of (3.28). Set Sη,n =
∑n

j,k=1 βj−kηjηk.

We shall show that

Sn − ESn = Sη,n + op(n
1/2),(3.37)

n−1/2Sη,n →D N (0, v2),(3.38)

which implies (3.28).

First we verify (3.37). Write Sn as

Sn =
n∑

j,k=−∞

cn,jkηjηk with cn,jk =
n∑

t,s=1

gt−sat−jas−k.(3.39)

Then we split Sn into two sums

Sn = S∆
n + Son, S∆

n :=
n∑

j=−∞

cn,jjη
2
j , Son :=

n∑
j,k=−∞: j 6=k

cn,jkηjηk,

where S∆
n is a sum of diagonal term and Son a sum of quadratic term with zero diagonal.

To verify (3.37), it suffices to show that

E|S∆
n | = o(n1/2),(3.40)

E(Son − Sη,n)2 = o(n).(3.41)

We have E|S∆
n | ≤ Eη2

1

∑n
j=−∞ |cn,jj| = o(n1/2) by (4.48) which proves (3.40) and (3.29).

To show (3.41), write

Son − Sη,n =
n∑

j,k=−∞: j 6=k

an,jkηjηk, an,jk := cn,jk − βj−kI(1 ≤ j, k ≤ n).

12



Then by Lemma 3.1(ii) below,

E(Son − Sη,n)2 ≤ C

n∑
j,k=−∞: j 6=k

a2
n,jk = C

n∑
j,k=−∞: j 6=k

(
cn,jk − βj−kI(1 ≤ j, k ≤ n)

)2

≤ C{
n∑

j,k=1 j 6=k

(
cn,jk − βj−k

)2
+

0∑
j=−∞

n∑
k=−∞

c2
n,jk} = o(n)

by (4.50) and (4.49) of Lemma 4.1 below.

It remains to show (3.38). Observe that ESη,n = 0 and

∑
k∈Z

|βk| ≤
∑
j∈Z

|gj|
∑
k∈Z

|γk| ≤
∑
j∈Z

|gj|(
∞∑
k=0

|ak|)2 <∞.

Therefore, under the additional assumption (3.32) on the m.d. noise ηt, Corrolary 1.1 (i)

in Giraitis, Taniguchi and Taqqu (2016) implies that

var(Sη,n)−1/2Sη,n →D N (0, 1).(3.42)

Assumption (3.32) is required only to show that var(Sη,n) has property

var(Sη,n) ≥ cB2
n, n→∞, B2

n :=
n∑

j,k=1

β2
j−k(3.43)

for some c > 0 where Bn is the Euclidean norm of the (symmetric) matrix (βj−k, j, k =

1, ...n). Since B2
n ∼ n

∑
j∈Z β

2
j , condition (3.43) is equivalent to

var(Sη,n) ≥ cn, n→∞ (∃c > 0).(3.44)

Therefore, assumption (3.32) can be replaced by (3.44).

To verify (3.44), we will show that under the assumptions of our theorem,

n−1var(Sη,n)→ v2, v2 = 4E
[( ∞∑

k=1

βkη−k
)2
η2

0

]
.(3.45)

If v2 > 0, then (3.44) is valid and (3.42) holds which in turn implies (3.38).

Finally, if v2 = 0, then the normal approximation n−1/2Sη,n → 0 = N (0, 0) in (3.38)

holds with a degenerate limit.
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Proof of (3.45). Since ηt is a stationary m.d. sequence, Eη4
t <∞, and β0 = 0, then

ES2
η,n = E

(
2

n∑
j=1

ηj

j−1∑
k=1

βj−kηk
)2

= 4
n∑
j=1

E
[
η2
j

( j−1∑
k=1

βj−kηk
)2]

= 4
n∑
j=1

E
[
η2
j

( j−1∑
l=1

βlηj−l
)2]

= 4
n∑
j=1

E
[
η2

0

( j−1∑
l=1

βlη−l
)2]

= 4
n∑
j=1

(
v2

4
+ rj),

where

rj := E
[
η2

0[
( j−1∑
l=1

βlη−l
)2 −

( ∞∑
l=1

βlη−l
)2

]
]
.

Hence, n−1ES2
η,n = v2 + 4Rn, where Rn = n−1

∑n
j=1 rj. To verify (3.45), it suffices to

show that

Rn = o(1).

Indeed, using equality a2−b2 = (a−b)2+2(a−b)b with a =
∑j−1

l=1 βlη−l and b =
∑∞

l=1 βlη−l,

we obtain

|rj| ≤ E
[
η2

0 {(
∞∑
l=j

βlη−l)
2 + 2|

∞∑
l=j

βlη−l||
∞∑
l=1

βlη−l|}
]

≤ (Eη4
0)1/2{(E(

∞∑
l=j

βlη−l)
4)1/2 + 2(E(

∞∑
l=j

βlη−l)
4)1/4(E(

∞∑
l=1

βlη−l)
4)1/4}.

Denote Pj =
∑∞

l=j β
2
l , j ≥ 1. By (3.46),

E(
∞∑
l=j

βlη−l)
4 ≤ CP 2

j , E(
∞∑
l=1

βlη−l)
4 ≤ CP 2

1 .

Hence, |rj| ≤ C{Pj + P
1/2
j } for j ≥ 1. Since Pj ≤ C

∑∞
l=j |βl| → 0 as j →∞, then

|Rn| ≤ n−1

n∑
j=1

|rj| ≤ Cn−1

n∑
j=1

{Pj + P
1/2
j } = o(1).

This proves (3.45) and completes the proof of (3.28).

The claim (3.30) is obvious. Equality (3.31) follows straightforwardly noting that

E[η2
0η

2
−k] = (Eη2

0)2 + cov(η2
0, η

2
−k).
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To verify (3.33), notice that under (3.32),

E
[
η2

0 (
∞∑
l=1

βlη−l)
2] = E

[
E[η2

0|F−1] (
∞∑
l=1

βlη−l)
2] ≥ cE

[
(
∞∑
l=1

βlη−l)
2] = cEη2

1

∞∑
l=1

β2
l

which implies (3.33). This completes the proof of the theorem. 2

The following lemma was used in the proof of Theorem 3.1 to show (3.41).

Lemma 3.1 (i) If the m.d. sequence ηt satisfies maxtE|ηt|p <∞, for some p ≥ 2, then

E
∣∣∑

j∈Z djηj
∣∣p ≤ C

(∑
j∈Z d

2
j

)p/2
,(3.46)

for any dj’s such that
∑

j∈Z d
2
j <∞, where C <∞.

(ii) If in addition, p ≥ 4, then

E
( ∞∑
j,k=−∞: j 6=k

ajkηjηk
)2 ≤ C

∞∑
j,k=−∞

a2
jk(3.47)

for any ajk’s such that
∑

j,k∈Z: j 6=k a
2
jk <∞, where C <∞.

Proof of Lemma 3.1. (i) The bound (3.46) is known, see e.g. Lemma 2.5.2 in Giraitis

et al. (2012). (ii) Since ηt is a m.d. sequence, then by (3.46),

E
( ∞∑
j,k=−∞: j 6=k

ajkηjηk
)2 ≤ E

( ∞∑
j=−∞

ηj

j−1∑
k=−∞

(ajk + akj)ηk

)2

≤
∞∑

j=−∞

E
[
η2
j

( j−1∑
k=−∞

(ajk + akj)ηk
)2
]
≤

∞∑
j=−∞

(Eη4
j )

1/2
(
E(

j−1∑
k=−∞

(ajk + akj)ηk)
4
)1/2

≤ C
∞∑

j=−∞

j−1∑
k=−∞

(ajk + akj)
2 ≤ C

∞∑
j,k=−∞

a2
jk.

This completes the proof of the lemma. 2

4 Properties of the weights

In this section we derive auxiliary results of properties of the weights cn,jk and βk given

in (3.39) and (3.26). We used them in the proof of Theorem 3.1.
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Lemma 4.1 Let the gk’s and ak’s satisfy (3.27) a)-c). Then,

n∑
j=−∞

|cn,jj| = o(n1/2),(4.48)

0∑
j=−∞

n∑
k=−∞

c2
n,jk = o(n),(4.49)

n∑
j,k=1

(cn,jk − βj−k)2 = o(n).(4.50)

Proof. To prove (4.48), write

n∑
j=−∞

|cn,jj| =
n∑
j=1

|cn,jj|+
0∑

j=−∞

|cn,jj| =: sn,1 + sn,2.

It remains to show that as n→∞,

sn,k = o(n1/2), k = 1, 2.(4.51)

First we consider sn,1. To evaluate cn,jj for 1 ≤ j ≤ n, recall that aj = 0, j ≤ 0. After

the change of summation variables u = t− j, v = s− j, we obtain

cn,jj =
n∑

t,s=1

gt−sat−jas−j =

n−j∑
u,v=0

gu−vauav.

Observe that
∞∑

u,v=0

gu−vauav =
∞∑
s∈Z

gsγs = β0 = 0,

where the last equality holds by assumption (3.27) c). Hence,

|cn,jj| = |cn,jj − β0|

= |(
n−j∑
u,v=0

−
∞∑

u,v=0

)gu−vauav|

≤ (
∞∑

u=n−j+1

∞∑
v=0

+
∞∑
u=0

∞∑
v=n−j+1

)|gu−vauav|.
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This, together with the change of the summation order

n∑
j=1

∞∑
u=n−j+1

=
∞∑
u=1

n∑
j=max(n−u+1,1)

yields

sn,1 =
n∑
j=1

|cn,jj| ≤ 2
n∑
j=1

∞∑
u=n−j+1

∞∑
v=0

|gu−vauav| ≤ 2
∞∑
u=1

∞∑
v=0

|gu−v(u ∧ n)auav|.

where u ∧ n = min(u, n). Recall the inequality∑
u,v∈Z

|fu−vhuνv| ≤ (
∑
u∈Z

|fu|)(
∑
s∈Z

h2
s

∑
v∈Z

ν2
v)1/2(4.52)

which holds for any sequences (ft), (ht) and (νt) of real numbers such that the right hand

side r.h.s. of (4.52) is finite. Applying (4.52) with fu−v = gu−v, hu = (u ∧ n)|au| and

νv = |av|, we obtain

sn,1 ≤ (
∑
u∈Z

|gu|)(
∞∑
s=0

(s ∧ n)2a2
s)

1/2(
∞∑
v=0

a2
v)

1/2 ≤ C
( ∞∑
s=1

(s ∧ n)2a2
s

)1/2

since by (3.27) a)-b),
∑

u∈Z |gu| < ∞ and
∑∞

v=0 a
2
v < ∞. Set L = log n. We shall bound

(s ∧ n)2 ≤ ns for s ≥ L; (s ∧ n)2 ≤ Ls for 1 ≤ s < L. Then,

sn,1 ≤ C(L
L−1∑
s=1

sa2
s)

1/2 + C(n
∞∑
s=L

sa2
s)

1/2 = o(n1/2)

since
∑∞

s=L sa
2
s = o(1) as L→∞ by (3.27) b).

Next we consider sn,2. To evaluate cn,jj for j ≤ 0, we apply inequality (4.52) with

fu = gu, ht = at−jI(1 ≤ t ≤ n) and νs = as−jI(1 ≤ s ≤ n) which yields

|cn,jj| = |
n∑

t,s=1

gt−sat−jas−j| ≤ (
∑
u∈Z

|gu|)(
n∑
t=1

a2
t−j)

1/2(
n∑
s=1

a2
s−j)

1/2 ≤ C(
n∑
t=1

a2
t−j).
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Observe that a2
t−j ≤ a2

t−j(t− j)/(1− j) for j ≤ 0. Hence,

sn,2 =
0∑

j=−∞

|cn,jj| ≤ C

0∑
j=−∞

n∑
t=1

a2
t−j ≤ C

0∑
j=−∞

1

1− j

n∑
t=1

a2
t−j(t− j)

≤
−n∑

j=−∞

n−1

n∑
t=1

a2
t−j(t− j) + (

0∑
j=−n

1

1− j
)(
∑
t∈Z

a2
t |t|)

≤ Cn−1

n∑
t=1

(
∑
j∈Z

a2
j |j|) + C log n ≤ C(1 + log n) = o(n1/2).

This completes the proof of (4.51) and (4.48).

Proof of (4.49). Recall notation γk =
∑

j∈Z ajaj+k, and set θt,u =
∑0

j=−∞ at−jau−j. Notice

that
∑

j∈Z at−jau−j = γt−u. Then,

in :=
0∑

j=−∞

∞∑
k=0

c2
n,jk =

0∑
j=−∞

∞∑
k=0

( n∑
t,s=1

gt−sat−jas−k
)2 ≤

n∑
t,s,u,v=1

gt−sgu−vθt,uγs−v.

Applying inequality (4.52), we get, for any 1 ≤ t, u ≤ n,

n∑
s,v=1

|γs−vgt−sgu−v| ≤ (
∑
u∈Z

|γu|)(
∑
s∈Z

g2
s)

1/2(
∑
v∈Z

g2
v)

1/2

where the r.h.s. does not depend on t, u and n. Observe that
∑

u∈Z g
2
u <∞ by (3.27) a),

while A :=
∑

j∈Z |aj| <∞ holds by (3.27) b) and implies
∑

v∈Z |γv| <∞. Hence,

in ≤ C
n∑

t,u=1

|θt,u| = C
n∑

t,u=1

|
0∑

j=−∞

at−jau−j|.(4.53)

Set L = log n. Then,

in ≤
n∑

t,u=1

{
0∑

j=−L+1

|at−jau−j|+
−L∑

j=−∞

|at−jau−j|}

≤
0∑

j=−L+1

(
∑
t∈Z

|at−j|)(
∑
u∈Z

|au−j|) +
n∑
t=1

[ −L∑
j=−∞

|at−j|(
∑
u∈Z

|au−j|)
]

≤ LA2 +
n∑
t=1

(
∞∑
s=L

|as|)A = o(n)
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since
∑∞

s=L |as| → 0 as n→∞. This proves (4.49).

Proof of (4.50). Observe that∑
t,s∈Z

gt−sat−jas−k =
∑
u∈Z

guγu+k−j =
∑
u∈Z

guγu+j−l = βj−k.

Since al = 0 for l ≤ 0, βj−k =
∑∞

t,s=1 gt−sat−jas−k for 1 ≤ j, k ≤ n. Hence,

i′n :=
n∑

j,k=1

(cn,jk − βj−k)2 =
n∑

j,k=1

(
(

n∑
t,s=1

−
∞∑

t,s=1

)gt−sat−jas−k
)2

≤
n∑
j=1

∑
k∈Z

(
2
∞∑

t=n+1

∞∑
s=1

|gt−sat−jas−k|
)2
.

Denote γ∗k =
∑

j∈Z |ajaj+k| and θ∗n,t,u =
∑n

j=1 |at−jau−j|. Then,

i′n ≤ 4
∞∑

t,u=n+1

∞∑
s,v=1

|gt−sgu−v|θ∗n,t,uγ∗s−v.

Clearly, as above in estimation of in, applying inequality (4.52) we obtain

∞∑
s,v=1

|γ∗s−vgt−sgu−v| ≤ (
∑
u∈Z

γ∗u)(
∑
s∈Z

g2
s) ≤ C <∞

uniformly in t, u and n. Hence,

i′n ≤ C
∞∑

t,u=n+1

θ∗n,t,u = C
∞∑

t,u=n+1

n∑
j=1

|at−jau−j|.(4.54)

Similarly as in estimation in above, setting L = log n we obtain,

i′n ≤
n+L∑
t=n+1

(
∑
j∈Z

|at−j|)(
∑
u∈Z

|au−j|) +
n∑
j=1

[ ∞∑
t=n+L+1

|at−j|(
∑
u∈Z

|au−j|)
]

≤ LA2 +
n∑
j=1

(
∞∑
s=L

|as|)A = o(n)

which proves (4.50). This completes the proof of the lemma. 2
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5 Applications

We shall demonstrate the impact of the m.d. noise ηt on Whittle estimation using examples

of AR(1) and MA(1) processes.

First we consider an AR(1) process

Xt = φXt−1 + ηt,(5.55)

where |φ| < 1 and ηt is a stationary ergodic m.d. noise satisfying (2.2). {Xt} can be

written as a stationary linear process

Xt =
∞∑
j=0

φjηt−j.(5.56)

It has the spectral density

fσ2
0 ,φ

(u) =
σ2

0

2π
sφ(u), sφ(u) = |

∞∑
j=0

φjeiju|2 = (1− 2φ cosu+ φ2)−1(5.57)

parametrized by the parameter φ. Since

(d/dφ)s−1
φ (u) = −2 cosu+ 2φ, (d2/d2φ)s−1

φ (u) = 2,

solving the equation (d/dφ)Qn(φ) = 0 implies that Whittle estimate

φ̂ =

∫
Π

cos(u)In(u)du∫
Π
In(u)du

=

∑n
k=2XkXk−1∑n

k=1 X
2
k

(5.58)

is the sample correlation of {Xt} at the lag 1.

Let Θ = [−a, a] where 0 < a < 1. Clearly, the family of functions sφ(u), φ ∈ Θ, u ∈ Π

satisfies Assumptions (a0) and (a1).

Theorem 2.2 implies the following result.

Corollary 5.1 The Whittle estimator φ̂ given by (5.58) has the following properties:

n1/2(φ̂− φ0)→ N (0, v2
φ0,η

),(5.59)

v2
φ0,η

:=
E[X2

−1 η
2
0]

var2(X0)
= (1− φ2

0) +
cov(X2

−1, η
2
0)

var2(X0)
.

(i) If the m.d. noise {ηt} is an i.i.d. sequence, then

v2
φ0,η

= 1− φ2
0.(5.60)
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(ii) If the m.d. noise {ηt = εtεt−1} is as in (2.14), then

v2
φ0,η

= (1− φ2
0) + 2(1− φ2

0)2.(5.61)

Remark 5.1 Relations (5.59) and (5.61) show that m.d. noise {ηt} may have strong

impact on the variance v2
φ0,η

of the estimate φ̂ and thus on the confidence intervals for φ0.

The unknown variance v2
φ0,η

in (5.59) can be estimated as follows. Recall that EXt = 0.

Since {η2
tX

2
t−1} and {X2

t−1} are stationary ergodic sequences, then

n−1
∑n

k=2 η
2
kX

2
k−1(

n−1
∑n

k=1 X
2
k

)2 →p

E[η2
0X

2
−1]

(E[X2
0 ])2

= v2
φ0,η

.

Hence, v2
φ0,η

can be estimated by

v̂2
φ0,η

:=
n−1

∑n
k=2 η̂

2
kX

2
k−1(

n−1
∑n

k=1X
2
k

)2 →p v
2
φ0,η

, η̂k := Xk − φ̂Xk−1(5.62)

which implies

n1/2√
v̂2
φ0,η

(φ̂− φ0)→ N (0, 1).

Proof of Corollary 5.1. Recall that

γk,φ := (2π)−1

∫
Π

eikusφ(u)du = φkγ0,φ, k ≥ 1; γ0,φ = (1− φ2)−1.

Thus, βk,φ’s in (2.9) can be written as

βk,φ = −(2π)−1

∫
Π

eiku∇φs
−1
φ (u)sφ(u)du

= (2π)−1

∫
Π

eiku(2 cosu− 2φ)sφ(u)du

= (2π)−1

∫
Π

eiku(eiu + e−iu − 2φ)sφ(u)du

= γ0(φk+1 + φk−1 − 2φk+1)

= φk−1, k ≥ 1.(5.63)
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So,
∑∞

j=1 β
2
j,φ0

= (1− φ2
0)−1 =: Bφ0 , and by (2.9) and (2.10), we obtain

Wφ0 = 4πBφ0 ,

Vφ0,η = 4E
[( ∞∑

k=1

βk,φ0η−k
)2
η2

0

]
= 4E

[( ∞∑
k=0

φk0η−k−1

)2
η2

0

]
= 4E

[
X2
−1η

2
0

]
,

Ωφ0,η = σ−4
0 B−2

φ0
E
[
X2
−1η

2
0

]
= B−1

φ0
+ σ−4

0 B−2
φ0

cov(X2
−1, η

2
0).

Notice that σ2
0Bφ0 = var(X0). This together with (2.11) of Theorem 2.2 proves (5.59).

Clearly, (5.59) implies (i) and (ii). 2

Next we consider the example of MA(1) process

Xt = ηt − θηt−1(5.64)

where |θ| < 1 and ηt is as in (5.55). This process has the spectral density

fσ2
0 ,θ

(u) =
σ2

0

2π
sθ(u), sθ(u) = |1− θeiu|2 = 1− 2θ cosu+ θ2(5.65)

parametrized by the parameter θ.

Let Θ = [−a, a] where 0 < a < 1. Since (d/dθ)sθ(u) = −2 cosu + 2θ, (d2/d2θ)sθ = 2,

functions sθ(u), θ ∈ Θ, u ∈ Π satisfy Assumptions (a0) and (a1). Moreover, (5.63) implies

that the weights βk,θ0 in (2.9) satisfy

βk,θ0 := (2π)−1

∫
Π

eiku∇θ log sθ0(u)du = −(2π)−1

∫
Π

eiku∇θ log s−1
θ0

(u)du = −θk−1, k ≥ 1.

Hence, by (2.9) and (2.10), setting Zt =
∑∞

k=0 θ
k
0ηt−k, we obtain

Wθ0 = 4π
∞∑
j=1

β2
j,θ0

= 4π(1− θ2
0)−1 =: 4πBθ0 ,

Vθ0,η = 4E
[( ∞∑

k=1

βk,θ0η−k
)2
η2

0

]
= 4E

[( ∞∑
k=0

θk0η−k−1

)2
η2

0

]
= 4E

[
Z2
−1η

2
0

]
,

Ωθ0,η = σ−4
0 B−2

θ0
E
[
Z2
−1η

2
0

]
= B−1

θ0
+ σ−4

0 B−2
θ0

cov(Z2
−1, η

2
0).

Since σ2
0Bθ0 = var(Z0), (2.11) of Theorem 2.2 implies the following result.

Corollary 5.2 The Whittle estimator θ̂ for MA(1) process (5.64) has the following
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properties:

n1/2(θ̂ − θ0)→ N (0, v2
θ0,η

),(5.66)

v2
θ0,η

:=
E[Z2

−1 η
2
0]

var2(Z0)
= (1− θ2

0) +
cov(Z2

−1, η
2
0)

var2(Z0)
.

(i) If the m.d. noise {ηt} is an i.i.d. sequence, then v2
θ0,η

= 1− θ2
0.

(ii) If the m.d. noise {ηt = εtεt−1} is as in (2.14), then v2
θ0,η

= (1− θ2
0) + 2(1− θ2

0)2.

Remark 5.2 Expressions of asymptotic variances v2
φ0,η

in (5.59) and v2
θ0,η

in (5.66) for

parametric Whittle estimators of AR(1) and MA(1) models are remarkably similar. For

AR(1) model, v2
φ0,η

can be estimated by (5.62).

For MA(1) model, a consistent estimate of v2
θ0,η

can be constructed as follows. By

inverting MA(1) process (5.64) we obtain ηt = (1 − θL)−1Xt =
∑∞

j=0 θ
jXt−j, where L is

the backshift operator. Similarly,

Zt = (1− θL)−1ηt = (1− θL)−2Xt = (
∞∑
s=0

(s+ 1)θsLs)Xt =
∞∑
s=0

(s+ 1)θsXt−s.

Since {Z2
t−1η

2
t } and {Z2

t } are stationary ergodic processes, then

n−1
∑n

j=2 Z
2
j−1η

2
j(

n−1
∑n

j=1 Z
2
j

)2 →p

E[Z2
−1η

2
0]

(E[Z2
0 ])2

= v2
θ0,η

.

Setting Ẑt =
∑t

s=0(s+ 1)θ̂sXt−s, η̂t =
∑t

s=0 θ̂
sXt−s we obtain the required estimate:

v̂2
θ0,η

=
n−1

∑n
j=2 Ẑ

2
j−1η̂

2
j(

n−1
∑n

j=1 Ẑ
2
j

)2 →p v
2
θ0,η

.
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