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1. Introduction

The conformal Einstein field equations introduced by Friedrich [18, 19] —see
also [45]— provide a powerful tool for the study of the global properties of
spacetimes. They also provide a natural framework for the numerical construction
of global solutions to the Einstein field equations —see e.g. [32–34]. In this
context, of particular interest are solutions which can be described as Minkowski-
like —i.e. vacuum spacetimes admitting a conformal (Penrose) extension with
the same qualitative properties of the standard compactification of the Minkowski
spacetime, see e.g. [45] chapter 6. In particular, the numerical simulations reported
in [34] provide an illustration of the semi-global stability result of the Minkowski
spacetime from a hyperboloidal initial value problem —see [20,37]. The extension
of Friedrich’s semiglobal existence results to a true global stability result depends
on the resolution of the so-called problem of spatial infinity —i.e. the development
of analytical methods to deal with the singular behaviour of the conformal structure
of spacetime at spatial infinity. For a discussion of the background and context of
this see e.g. [45], chapter 20.

At the core of the conformal Einstein field equations lies the spin-2 equation
satisfied by the so-called rescaled Weyl tensor. The central role of this subsystem
is better brought to the foreground in a gauge based on the properties of certain
conformal invariants —the so-called conformal geodesics, see e.g. [22,23,45]. In the
following we will refer to this gauge as the F-gauge. In this gauge it is possible
to derive a system of evolution equations in which all the conformal fields, except
for the rescaled Weyl tensor satisfy transport equations (i.e. ordinary differential
equations) along the conformal geodesics. The only true partial differential
equations in this hyperbolic reduction arises from the Bianchi equations for the
Weyl tensor. From the above discussion it follows that a convenient model problem
to study the properties of the conformal field equations near spatial infinity is
the analysis of the propagation of massless spin-2 fields on a (fixed) Minkowski
background.

One of the central features of the F-gauge used in the seminal study of
the problem of spatial infinity in [22] is that it gives rise to a representation of
spatial infinity in which the point i0 is blown-up to a cylinder —the cylinder at
spatial infinity. This cylinder can be identified with the spatial infinity hyperboloid
discussed in studies of the conformal structure of spacetime in the 1970’s and 1980’s
—see e.g. [4–7]. Crucially, the cylinder at spatial infinity is a total characteristic
of the conformal evolution equations —that is, the whole evolution equations
reduce to a system of total characteristics at this part of the conformal boundary.
This remarkable interplay between the (conformal) geometry and the structural
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properties of the evolution equations allows us to resolve with great detail the
(generic) singular behaviour of the solutions of the conformal evolution equations
as one approaches the sets where the spatial infinity and null infinity intersect.

A systematic analytical discussion of the massless spin-2 equation propagating
in a neighbourhood of the spatial infinity of the Minkowski spacetime has been
given in [25, 44] —see also [27]. The properties of the solutions of the conformal
evolution equations constitute a symmetric hyperbolic system which degenerates
at the critical sets where spatial infinity and null infinity meet. More precisely the
matrix associated to the time derivatives of the fields, which normally should be
positive definite, looses rank. Accordingly, the standard analytic methods to control
the solutions of hyperbolic equations do not apply at these sets. This observation
dominates the properties of the solutions. In particular, generic solutions will
develop logarithmic singularities at the critical sets. These singular behaviour can
be avoided if the initial data is fine-tuned in a particular manner.

As a result of the degeneracy of the evolution equations at the critical
points, the numerical evaluation of the solutions to the massless spin-2 equations
near spatial infinity (and more generally, the full Einstein field equations) poses
particular challenges.

Numerical studies of the spin-2 equations in a neighbourhood of spatial infinity
were first presented in [9, 10] (first order formulation) and [13] (second order
formulation). While the focus was originally on the behaviour of the fields around
i0, global evolutions were discussed more recently in [14]. These studies provide
valuable insight and intuition into the advantages and difficulties of different
representations of the critical sets and null infinity. Moreover, they examine the
limitations to resolve those regions with mainstream numerical algorithms, such
as the explicit time integrator Runge Kutta 4 and suggest that a better way of
carrying out these numerical evaluations is by means of spectral methods.

Spectral methods are a well stablished tool to solve elliptic equations —see [11]
for a classical textbook and [29] for applications in General Relativity. Over the
last decade, M. Ansorg fostered the idea of extending the applicability of spectral
methods and include the time direction as well. In this respect, fully (pseudo-
)spectral methods — where the spectral decomposition is applied to both space and
time directions — have been adapted to the solution of hyperbolic equations [30,39].
In particular, fully spectral codes have been used for the study of scalar fields
around the spatial infinity either on the Minkowski background [15] or on the
Schwarzschild spacetime [16,17]. Further applications can be found in [2,3,31,41].

In this article we investigate the possibility of solving the massless spin-2
equations, written in terms of the F-gauge, in a neighbourhood of spatial infinity
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using spectral methods in both space and time. Moreover, we also address the
question of whether it is possible to resolve the regularity properties of the numerical
solutions by direct inspection of the numerical error convergence rates. As it will
be seen in the main text we answer this question in the positive. Spectral methods
in time are a robust implicit method allowing us to deal with the troublesome
critical sets in a straightforward way. Analytic (i.e. entire) solutions display an
exponential convergence rate of the numerical error. By contrast, solutions with
logarithmic singularities spoil the method’s fast convergence rate. Although in this
case the numerical error decays at a merely algebraic rate, we can use this feature
on our advantage to scrutinise the underlying regularity of the solution.

1.1. Outline of the paper

In section 2 we review a conformal representation of the Minkowski spacetime
which is suitable for studying the behaviour of fields near spatial infinity, while in
section 3 we perform the analysis of a spin-2 field propagating on this spacetime. In
section 4 the equations are adapted to the numerical implementation. In particular,
we discuss the numerical methods employed in the solution and show the results.
Finally, we present the discussion and conclusion in section 5.

1.2. Notations and Conventions

The signature convention for (Lorentzian) spacetime metrics will be (+,−,−,−).
In this article {a,b ,c , ...} denote abstract tensor indices and {a,b ,c , ...} will be used
as spacetime frame indices taking the values 0, ..., 3. In this way, given a basis
{ea} a generic tensor is denoted by Tab while its components in the given basis are
denoted by Tab ≡ Tabea

aeb
b. Part of the analysis will require the use of spinors. In

this respect, the notation and conventions of Penrose & Rindler [40] will be followed.
In particular, capital Latin indices {A,B ,C , ...} will denote abstract spinor indices
while boldface capital Latin indices {A,B ,C , ...} will denote frame spinorial indices
with respect to a specified spin dyad {δAA}. The conventions for the curvature
tensors are fixed by the relation

(∇a∇b −∇b∇a)vc = Rc
dabv

d.

2. The cylinder at spatial infinity and the F-Gauge

In this section we discuss a conformal representation of the Minkowski spacetime
adapted to a congruence of conformal geodesic. This conformal representation was
introduced in [22] and is particularly suited for the analysis of the behaviour of
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fields near spatial infinity. Roughly speaking, in this representation spatial infinity
i0, which corresponds to a point in the standard compactification of the Minkowski
spacetime, is blown up to a 2-sphere S2 —this representation is called the cylinder
at spatial infinity. The original discussion of the cylinder at spatial infinity as
presented in [22] is given in the language of fibre bundles. A presentation of this
construction which does not make use of this language was given in [27]. Here we
follow this presentation.

2.1. The cylinder at spatial infinity

To start, consider the Minkowski metric η̃ expressed in Cartesian coordinates
(x̃α) = (t̃, x̃i),

η̃ = ηµνdx̃µ ⊗ dx̃ν ,

where ηµν = diag(1,−1,−1,−1). By introducing polar coordinates defined by
ρ̃2 ≡ δijx̃

ix̃j where δij = diag(1,1,1), and an arbitrary choice of coordinates on S2,
the metric η̃ can be written as

η̃ = dt̃⊗ dt̃− dρ̃⊗ dρ̃− ρ̃2σ,

with t̃ ∈ (−∞,∞), ρ̃ ∈ [0,∞) and where σ denotes the standard metric on S2. A
strategy to construct a conformal representation of the Minkowski spacetime close
to i0 is to make use of inversion coordinates (xα) = (t, xi) defined by —see [42]—

xµ = −x̃µ/X̃2, X̃2 ≡ η̃µν x̃
µx̃ν .

The inverse transformation is given by

x̃µ = −xµ/X2, X2 = ηµνx
µxν .

Observe, in particular that X2 = 1/X̃2. Using these coordinates one identifies a
conformal representation of the Minkowski spacetime with unphysical metric given
by

g = Ξ2η̃,

where g = ηµνdxµ ⊗ dxν and Ξ = X2. Introducing an unphysical polar coordinate
via the relation ρ2 ≡ δijx

ixj, one finds that the metric g can be written as

g = dt⊗ dt− dρ⊗ dρ− ρ2σ, Ξ = t2 − ρ2,

with t ∈ (−∞,∞) and ρ ∈ (0,∞). In this conformal representation, spatial infinity
i0 corresponds to a point located at the origin — see Fig. 1. Observe that t̃ and ρ̃
are related to t and ρ via

t̃ = − t

t2 − ρ2 , ρ̃ = − ρ

t2 − ρ2 .
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Figure 1. Conformal map for the Minkowski spacetime via the inversion
coordinates. Left panel: polar coordinates (t̃, ρ̃) for the physical spacetime
with metric η̃. The red dotted lines correspond to the light cones given by
X̃ = 0. The surfaces t̃ = constant are drawn in black within the region X̃ < 0.
Dashed lines represent the region near the symmetry axis ρ̃ = 0, whereas straight
lines correspond to their prolongation towards ρ̃ → ∞. Right panel: polar
coordinates (t, ρ) for the unphysical conformal spacetime with metric g. The
surfaces t̃ = constant are represented in the new coordinates. The straight black
lines representing the asymptotic region ρ̃ → ∞ converge at the point (0, 0)
—i.e., at spacelike infinity i0.

Finally, introducing a time coordinate τ through the relation t = ρτ one finds
that the metric g can be written as

g = ρ2dτ ⊗ dτ − (1− τ 2)dρ⊗ dρ+ ρτdρ⊗ dτ + ρτdτ ⊗ dρ− ρ2σ.

The conformal representation containing the cylinder at spatial infinity is obtained
by considering the rescaled metric

ḡ ≡ 1
ρ2g.

Introducing the coordinate % ≡ − ln ρ the metric ḡ can be reexpressed as

ḡ = dτ ⊗ dτ − (1− τ 2)d%⊗ d%− τdτ ⊗ d%− τd%⊗ dτ − σ.

Observe that spatial infinity i0, which is at infinity respect to the metric ḡ,
corresponds to a set which has the topology of R × S2 —see [1, 22]. Following
the previous discussion, one considers the conformal extension (M, ḡ) where

ḡ = Θ2η̃, Θ = ρ(1− τ 2),
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and
M≡

{
p ∈ R4 | − 1 ≤ τ ≤ 1, ρ(p) ≥ 0

}
.

In this representation future and past null infinity are described by the sets

I + ≡
{
p ∈M | τ(p) = 1

}
, I − ≡

{
p ∈M | τ(p) = −1

}
,

while the physical Minkowski spacetime can be identified with the set

M̃ ≡
{
p ∈M | − 1 < τ(p) < 1, ρ(p) > 0

}
,

In addition, the following sets play a role in our discussion:

I ≡
{
p ∈M | |τ(p)| < 1, ρ(p) = 0

}
, I0 ≡

{
p ∈M | τ(p) = 0, ρ(p) = 0

}
,

and

I+ ≡
{
p ∈M | τ(p) = 1, ρ(p) = 0

}
, I− ≡

{
p ∈M | τ(p) = −1, ρ(p) = 0

}
.
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Figure 2. Cylinder at spatial infinity. Left panel: unphysical conformal
spacetime with metric g in polar coordinates (t, ρ). The straight blue lines
correspond to hypersurfaces with constant new time coordinate. Right panel:
unphysical conformal spacetime with metric ḡ in coordinates (τ, ρ). The cylinder
at space infinity is represented by the set I. The critical sets I± are the points
where spatial infinity intersects null infinities I ± while I0 corresponds to the
intersection of i0 with τ = 0.
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Remark 1. Observe in Fig. 2 that spatial infinity i0, a point in the
g−representation, is identified with the set I in the ḡ−representation. The
critical sets I+ and I− are the collection of points where spatial infinity intersects,
respectively, I + and I −. Similarly, I0 is the intersection of i0 and the initial
hypersurface S ≡ {τ = 0}. See [22, 26] and [1] for further discussion of the
framework of the cylinder at spatial in stationary spacetimes.

2.2. The F-gauge

In this section we provide a brief discussion of the so-called F-gauge —see [1, 26]
for a discussion of the F-gauge in the language of fibre bundles. One of the chief
motivations for the introduction of this gauge is that it is based on the properties
of conformal geodesics. Accordingly, one introduces a null frame whose timelike
leg corresponds to the tangent of a conformal geodesic starting from a fiduciary
spacelike hypersurface S = {τ = 0}. For a discussion of the properties of conformal
geodesics see e.g. [21,24,43,45].

Consider the conformal extension (M, ḡ) of the Minkowski spacetime and the
F-coordinate system introduced in Section 2.1. The induced metric on the 2-sphere
Q ≡ {τ = τ?, ρ = ρ?, }, with τ?, ρ? fixed, is the standard metric on S2. On these
2-spheres one can introduce a complex null frame {∂+,∂−} on Q. This frame is
propagated Q by requiring the conditions

[∂τ ,∂±] = 0, [∂ρ,∂±] = 0.

The above vector fields are used to define the spacetime frame

e00′ =
√

2
2
(
(1− τ)∂τ + ρ∂ρ

)
, e11′ =

√
2

2
(
(1 + τ)∂τ − ρ∂ρ

)
,

e01′ =
√

2
2 ∂+, e10′ =

√
2

2 ∂−.

The corresponding dual coframe is given by

ω00′ =
√

2
2

(
dτ − 1

ρ

(
1− τ

)
dρ
)
, ω11′ =

√
2

2

(
dτ + 1

ρ

(
1 + τ

)
dρ
)
,

ω01′ =
√

2ω+, ω10′ =
√

2ω−,

with ω± dual to ∂± —i.e. one has the pairings

〈ω+,∂+〉 = 1, 〈ω−,∂−〉 = 1, 〈ω+,∂−〉 = 0, 〈ω−,∂+〉 = 0.

In terms of some polar coordinates (θ, φ) on S2 one can write

∂± = 1√
2

(
∂θ ±

i
sin θ∂ϕ

)
ω± = 1√

2

(
dθ ∓ i sin θdθ

)
.



Spectral methods for the spin-2 equation near the cylinder at spatial infinity 9

It can readily be verified that in terms of the above covectors one can write

ḡ = εABεA′B′ωAA
′ ⊗ ωBB′

.

Moreover, let {εAA} denote the normalised spin dyad giving rise to the frame
{eAA′} via the correspondence εAAε̄A′A

′ 7→ eaAA′ . The above construction and
frame will be referred in the following discussion as the F-gauge. Defining the
spin connection coefficients in the usual manner as ΓAA′BC ≡ εBA∇AA′εC

A, a
computation involving the Cartan structure equations shows that the only non-
zero reduced connection coefficients are given by

Γ00′
1

1 = Γ11′
1

1 =
√

2
4 , Γ00′

0
0 = Γ11′

0
0 = −

√
2

4 ,

Γ10′
1

1 = −Γ10′
0

0 =
√

2
4 $, Γ01′

0
0 = −Γ01′

1
1 =
√

2
4 $,

were $ is a complex function encoding the connection of S2.

3. The massless spin-2 field equations in the F-gauge

In this section we formulate the initial value problem, in the F-gauge, for the
spin-2 field propagating on the Minkowski spacetime and discuss some of the basic
properties of the solutions to these equations. The derivatives on S2 in these
equations are expressed in terms of the ð and ð̄ operators.

3.1. The spin-2 equation

As discussed in [44], the linearised gravitational field over the Minkowski spacetime
can be described through the massless spin-2 field equation

∇A′
AφABCD = 0. (1)

Remark 2. In the case of non-flat backgrounds this equation is overdetermined and
the spinor φABCD is related to the Weyl curvature through the so-called Buchdahl
constraint. This feature makes the study of equation (1) on curved backgrounds
less relevant.

It is well-known that this equation is conformally invariant. It can be shown
that equation (1) implies the following evolution equations for the components of
the spinor φABCD

− (1− τ)∂τφ0 − ρ∂ρφ0 − ∂+φ1 + $̄φ1 = −2φ0, (2a)

− ∂τφ1 −
1
2∂+φ2 −

1
2∂−φ0 −$φ0 = −φ1, (2b)
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− ∂τφ2 −
1
2∂−φ1 −

1
2∂+φ3 −

1
2$φ1 −

1
2$̄φ3 = 0, (2c)

− ∂τφ3 −
1
2∂+φ4 −

1
2∂−φ2 − $̄φ4 = φ3, (2d)

− (1 + τ)∂τφ4 + ρ∂ρφ4 − ∂−φ3 +$φ3 = 2φ4, (2e)

and the constraint equations

τ∂τφ1 − ρ∂ρφ1 −
1
2∂+φ2 + 1

2∂−φ0 +$φ0 = 0, (3a)

τ∂τφ2 − ρ∂ρφ2 −
1
2∂+φ3 + 1

2∂−φ1 −
1
2$̄φ3 + 1

2$φ1 = 0, (3b)

τ∂τφ3 − ρ∂ρφ3 −
1
2∂+φ4 + 1

2∂−φ2 − $̄φ4 = 0, (3c)

where the five components φ0, φ1, φ2, φ3 and φ4, given by

φ0 ≡ φABCDo
AoBoCoD, φ1 ≡ φABCDo

AoBoCιD,

φ2 ≡ φABCDo
AoBιCιD, φ3 ≡ φABCDo

AιBιCιD,

φ4 ≡ φABCDι
AιBιCιD

have spin weight of 2, 1, 0,−1,−2 respectively. Here, {oA, ιA} denotes a spin dyad
satisfying

τAA
′ = oAōA

′ + ιAῑA
′

where τAA′ is the spinorial counterpart of the vector τa tangent to the conformal
geodesics used to construct the F-gauge. It satisfies the normalisation condition
τAA′τAA

′ = 2. The spin dyad {oA, ιA} is defined up to a SU(2,C) transformation.

Now, one can rewrite (2a)-(3c) in terms of the Newman-Penrose ð and ð̄
operators —see e.g. [40, 42]; in particular, we make use of the conventions used in
the latter reference. A direct computation allows to rewrite the evolution equations
as

− (1− τ)∂τφ0 − ρ∂ρφ0 + ðφ1 = −2φ0, (4a)

− ∂τφ1 + 1
2 ð̄φ0 + 1

2ðφ2 = −φ1, (4b)

− ∂τφ2 + 1
2 ð̄φ1 + 1

2ðφ3 = 0, (4c)

− ∂τφ3 + 1
2 ð̄φ2 + 1

2ðφ4 = φ3, (4d)

− (1 + τ)∂τφ4 + ρ∂ρφ4 + ð̄φ3 = 2φ4, (4e)

and the constraint equations in the form

τ∂τφ1 − ρ∂ρφ1 + 1
2ðφ2 −

1
2 ð̄φ0 = 0, (5a)
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τ∂τφ2 − ρ∂ρφ2 + 1
2ðφ3 −

1
2 ð̄φ1 = 0, (5b)

τ∂τφ3 − ρ∂ρφ3 + 1
2ðφ4 −

1
2 ð̄φ2 = 0. (5c)

Taking into account the spin-weight of the various components φn, in the
following we assume that these components admit and expansion of the form

φn =
∞∑

`=|2−n|

∑̀
m=−`

φn;`,m(τ, ρ)Y2−n;`,m, (6)

where Ys;`,m denotes the spin-weighted spherical harmonics —see e.g. [42].
Substituting the above Ansatz into equations (4a)-(4e) one obtains for ` ≥ 2,
−` ≤ m ≤ ` the equations

− (1− τ)∂τφ0;`,m − ρ∂ρφ0;`,m + λ1φ1;`,m + 2φ0;`,m = 0, (7a)

− ∂τφ1;`,m −
1
2λ1φ0;`,m + 1

2λ0φ2;`,m + φ1;`,m = 0, (7b)

− ∂τφ2;`,m −
1
2λ0φ1;`,m + 1

2λ0φ3;`,m = 0, (7c)

− ∂τφ3;`,m −
1
2λ0φ2;`,m + 1

2λ1φ4;`,m − φ3;`,m = 0, (7d)

− (1 + τ)∂τφ4;`,m + ρ∂ρφ4;`,m − λ1φ3;`,m − 2φ4;`,m = 0, (7e)

while from (5a)-(5c) one obtains

τ∂τφ1;`,m − ρ∂ρφ1;`,m + 1
2λ0φ2;`,m + 1

2λ1φ0;`,m = 0, (8a)

τ∂τφ2;`,m − ρ∂ρφ2;`,m + 1
2λ0φ3;`,m + 1

2λ0φ1;`,m = 0, (8b)

τ∂τφ3;`,m − ρ∂ρ;`,mφ3 + 1
2λ1φ4;`,m + 1

2λ0φ2;`,m = 0. (8c)

where
λ0 ≡

√
`(`+ 1), λ1 ≡

√
(`− 1)(`+ 2).

3.2. General properties of the solutions

In this section we provide a brief discussion of the general properties of the solutions
to the modal equations (7a)-(7e) and (8a)-(8c). The basic assumption behind the
discussion in this section is:

Assumption 1. In the following we assume that the initial data satisfies in the
hypersurface S? ≡ {τ = 0} the constraint equations

ρ∂ρφ1 −
1
2ðφ2 + 1

2 ð̄φ0 = 0,
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ρ∂ρφ2 −
1
2ðφ3 + 1

2 ð̄φ1 = 0,

ρ∂ρφ3 −
1
2ðφ4 + 1

2 ð̄φ2 = 0.,

and admit the expansion

φn =
∞∑

p=|n−2|

p∑
`=|n−2|

∑̀
m=−`

a?n,p;`,mY2−n;`,mρ
p.

Remark 3. Initial data with the above properties can be constructed using the
methods of [12].

We are interested in solutions which are consistent with the form of the initial
data. Thus, we consider the Ansatz:

φn =
∞∑

p=|n−2|

p∑
`=|n−2|

∑̀
m=−`

an,p;`,m(τ)Y2−n;`,mρ
p. (9)

In [44] it has shown the following:
Proposition 1. The coefficients of the expansion (9) satisfy:
(i) For ` = 0, 1, and all admissible p and m the coefficients an,p;`,m(τ) are

polynomials on τ .
(ii) For p ≥ 2, 2 ≤ ` ≤ p−1 and all admissible m, the coefficients an,p;`,m(τ) have,

again, polynomial dependence on τ .
(iii) For p ≥ 2, ` = p and all admissible m, the coefficients an,p;p,m(τ) have

logarithmic singularities at τ = ±1. More precisely, the coefficients split into
a part with polynomial (and thus smooth) dependence of τ and a singular part
of the form

(1 + τ)p+2−n(1− τ)p−2+n
(
cn,m ln(1− τ) + dn,m ln(1 + τ)

)
,

with cn,m and dn,m some constant coefficients. The coefficients an,p;p,m(τ) are
polynomial if and only if

a?0,p;p,m = a?4,p;p,m.

Finally, we notice the following result providing the link between the formal
expansions of Ansatz (9) and actual solutions to the spin-2 equations —see [25] for
a proof:
Proposition 2. In a neighbourhood of I (including I±) the solutions to equations
(4a)-(4e) and (8a)-(8c) are of the form

φn =
∞∑

`=|n−2|

∑̀
m=−`

N∑
p=|n−2|

an,p;`,m(τ)Y2−n;`,mρ
p +Rn,

where the remainder Rn is of class CN−5.
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Remark 4. The sums in the finite expansion in the previous expression can
be reordered at will without concerns about convergence given the presence of
a remainder of prescribed (finite) differentiability. This observation justifies the
formal computations carried out in the formulation of our numerical scheme.

Remark 5. Observe that the regularity of the remainder increases as one includes
more explicit terms in the expansion. The regularity of the explicit expansion terms
is known by inspection and depends on the particular form of the initial data.

4. Numerical solution of the spin-2 equation near spatial infinity

In this section we exploit the general theory of the spin-2 equations previously
discussed and rewrite the equations to obtain a formulation which is suitable for a
stable and accurate numerical evolution.

We first note that the Ansatz (9) is equivalent to

φn =
∞∑

`=|n−2|

∑̀
m=−`

( ∞∑
p=`

an,p;`,m(τ)ρp
)
Y2−n;`,m, (10)

i.e., we rewrite the fields φn:l,m in terms of the spin-weighted spherical harmonics
—see eq. (6). Moreover, we observe that

φn:l,m(τ, ρ) =
∞∑
p=`

an,p;`,m(τ)ρp = ρ`
∞∑
i=0

an,`−i;`,m(τ)ρi,

which motivates the substitution

φn:l,m(τ, ρ) = ρ`Cn;`,m(τ, ρ).

The evolution equations imply that 3

− (1− τ)∂τC0 − ρ∂ρC0 + λ1C1 + (2− `)C0 = 0, (11a)

− ∂τC1 −
1
2λ1C0 + 1

2λ0C2 + C1 = 0, (11b)

− ∂τC2 −
1
2λ0C1 + 1

2λ0C3 = 0, (11c)

− ∂τC3 −
1
2λ0C2 + 1

2λ1C4 − C3 = 0, (11d)

− (1 + τ)∂τC4 + ρ∂ρC4 − λ1C3 − (2− `)C4 = 0, , (11e)

while the constraint equations give

τ∂τC1 − ρ∂ρC1 − `C1 + 1
2λ0C2 + 1

2λ1C0 = 0, (12a)

3 For simplicity in the notation, we are going to ignore the indices `,m from now on.
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τ∂τC2 − ρ∂ρC2 − `C2 + 1
2λ0C3 + 1

2λ0C1 = 0, (12b)

τ∂τC3 − ρ∂ρC3 − `C3 + 1
2λ1C4 + 1

2λ0C2 = 0. (12c)

Remark 6. According to Proposition 1, singular terms should occur for ` ≥ 2.
Moreover, the logarithmic terms are present only in the term an,`;`,m from the
expansion (10). This property indicates that we can decompose the fields Cn
further as

Cn(τ, ρ) = αn(τ) + ρβn(τ, ρ), (13)

with α(t) accounting for possible singular behaviours at τ = 1 and β(τ, ρ) regular.

4.1. Singular terms α(τ)

As a consequence of the linearity of the field equations, the dynamics for the
coefficients αn and βn decouples from each other and the relevant evolution
equations are obtained by substituting the Ansatz (13) into the equations (11a)-
(12c). In particular, at ρ = 0 we have that

− (1− τ)∂τα0 + λ1α1 + (2− `)α0 = 0, (14a)

− ∂τα1 −
1
2λ1α0 + 1

2λ0α2 + α1 = 0, (14b)

− ∂τα2 −
1
2λ0α1 + 1

2λ0α3 = 0, (14c)

− ∂τα3 −
1
2λ0α2 + 1

2λ1α4 − α3 = 0, (14d)

− (1 + τ)∂τα4 − λ1α3 − (2− `)α4 = 0. (14e)

Similarly, the constraint equations imply the system

τ∂τα1 − `α1 + 1
2(λ1α0 + λ0α2) = 0, (15a)

τ∂τα1 − `α2 + λ0

2 (α1 + α3) = 0, (15b)

τ∂τα1 − `α3 + 1
2(λ1α4 + λ0α2) = 0, (15c)

Remark 7. It is likely that this decoupling of regular and singular parts is a
property which is lost when analysing more complicated backgrounds or the full
non-linear equations. This is a question that can only be addressed in a case-by-
case basis.

At τ = 0, setting α?n ≡ αn(0), equations (14a)-(14e) and (15a)-(15c) reduce to
an algebraic system, whose solution is given by

α?1 = λ1

4`(`− 1) (α?0 (3`− 1) + α?4 (`+ 1)) , (16a)
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α?2 = λ1λ0

2`(`− 1) (α?0 + α?4) , (16b)

α?1 = λ1

4`(`− 1) (α?0 (`+ 1) + α?4 (3`− 1)) . (16c)

The free data in the above equations is given by α?0 and α?4 and, according to
Proposition 1 (iii), the solution to equations (14a)-(14e) should have polynomial
dependence in τ whenever α?0 = α?4. Otherwise, one obtains a logarithmic
dependence of the form

αn(τ) ∼ (1− τ)`−2+n ln(1− τ),

with the most severe singular behaviour when ` = 2, n = 0.

Remark 8. To evaluate the evolution equations numerically at τ = 1, we need
to calculate the fields and their first time derivatives at this surface. Thus, we
must ensure that the functions are at least of class C1 at future null infinity. An
inspection of equations (14a)-(14e) around (1− τ) reveals the behaviour

α0 ∼ K2

(
1− 1

2λ
2
1(1− τ)

)
ln(1− τ),

α1 ∼
1
2K2λ1(1− τ) ln(1− τ)

 (` = 2),

α0 ∼ K3(1− τ) ln(1− τ) (` = 3),

with K2 and K3 constants fixed once a global solution is obtained.

For convenience in the numerical calculations, we introduce the auxiliary fields

α̃0(τ) ≡ α0(τ)−Kδ`,2
(

1− 1
2λ

2
1(1− τ)

)
ln(1− τ)

−Kδ`,3(1− τ) ln(1− τ), (17a)

α̃1(τ) ≡ α1(τ)− 1
2Kδ`,2λ1(1− τ) ln(1− τ), (17b)

α̃n(τ), ≡ αn(τ) for n ≥ 2, (17c)

with δ`,`′ a Kronecker delta. In this way, K picks up the contribution of the terms
proportional to the constants K2 (respectively K3) when ` = 2 (respectively ` = 3).
For ` ≥ 4, we have K = 0.

The initial data for the the auxiliary fields α̃n, coincides with that of αn —that
is, it is given by (16a)-(16c). Moreover, analogue of the left hand side of equations
(14a)-(14e) can be readily obtained by replacing αn with α̃n. However, each one of
the equations (14a)-(14c) has, respectively, a source term in their right hand side
in the form

S0 ≡ −Kδ`,2
(

1− 1
2λ

2
1(1− τ)

)
− δ`,3K(1− τ),
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S1 ≡ −
1
2Kδ`,2λ1

(
1 +

(
1 + λ1

2

)
(1− τ) ln(1− τ)

)
− 1

2Kδ`,3λ1(1− τ) ln(1− τ),

S2 ≡
1
4Kδ`,2λ0λ1(1− τ) ln(1− τ).

Finally, we observe that we can straightforwardly evaluate both equation (14a)
and its time derivative at τ = 1 to obtain

λ1α̃1 + (2− `)α̃0 = −Kδ`,2, (18a)

λ1∂τ α̃1 + (3− `)∂τ α̃0 = −K
(1

2δ`,2λ
2
1 − δ`,3

)
. (18b)

4.1.1. Numerical scheme We are now in the position of using spectral methods
to solve the equations numerically and inspect their analytical behaviour.

In the following we fix a numerical resolution N and discretise the time
coordinate τ ∈ [0, 1] in terms the Chebyshev-Lobatto grid points

τk ≡
1
2

(
1 + cos

(
k
π

N

))
, k = 0, . . . , N. (19)

The unknowns α̃n will be approximated by Chebyshev polynomials of the first kind

Tj(x) = cos
(
j arccos (x)

)
,

so that
α̃n(τ) =

N∑
j=0

cn,jTj(2τ − 1) +RN(τ).

The Chebyshev coefficients cn,j are fixed by imposing that the residualRN vanishes
at the grid points τk given by (19) —i.e. one requires RN(τk) = 0. The derivatives
of α̃n are then calculated with the usual spectral derivatives matrices —see e.g. [11].

The unknowns of this problem consist of the 5 coefficients α̃n (n = 0, . . . , 4)
evaluated at the grid points α̃n(τk) together with one auxiliar constant K, leading
to a total of ntotal = 5(N + 1) + 1 variables. The unique solution is found once we
impose the following equations at the grid points:
(i) Initial data at τ = 0. We provide the values α̃?0 and α̃?4 and impose the

solution to the constraint equations (16a)-(16b).
(ii) Time evolution 0 < τ ≤ 1. We impose the evolution field equations (14a)-

(14e) written in terms of the fields α̃n. In particular, for n = 0, the equation
assumes the form (18a).

(iii) Future null infinity τ = 1. We impose the extra condition given by the
equation (18b) if ` = 2, 3. Otherwise, we just impose K = 0.
This procedure leads to a linear algebraic system of ntotal equations, which we

solve by means of a LU decomposition.
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Figure 3. Time evolution of fields α̃n(τ). According to proposition (iii), initial
data with α?

0 = α?
4 (left panel) leads to a regular evolution, whereas initial data

with α?
0 6= α?

4 give rise to logarithmic singularities at τ = 1 (right panel). The
singular behaviour is best appreciated in fig. 5.

4.1.2. Results The equations are solved for two representatives sets of initial data:

(i) α̃?0 = α̃?4 = 1;
(ii) α̃?0 = −α̃?4/2 = 1.

Following the general theory described in Section 3.2, the former should lead
to a polynomial dependence in time, whereas the latter gives rise to logarithmic
singularities. In Figure 3 we provide the time evolution for this two sets. A regular
evolution resulting from initial data (i) with ` = 3 is depicted in the left panel,
whereas the right panel shows the evolution of (ii) for ` = 5.

The behaviour of the functions α̃(τ) is best appreciated by studying the
Chebyshev coefficients of our spectral method. Analytic (i.e. entire) solutions
display an exponencial decay of the coefficients in the form cj ∼ σ−j. In particular,
polynomial solutions of order P are represented exactly —in the sense that,
formally, cj = 0 for j > P . By contrast, singularities within the domain spoil
the fast decay rate of the Chebyshev coefficients —and, therefore, the convergence
of the numerical error — see [11, 29] and references therein. In particular, the
Chebyschev coeffcients of a function which is merely Ck at the domain boundary
shows the behaviour cj ∼ j−κ, with κ = 2k + 3.

Solutions of data of type (i). In Figure 4, we display the Chebyshev coefficients
for solutions arising from initial data satisfying (i). As expected, whenever α̃?0 = α̃?4,
we identify the polynomial behaviour —i.e. the value of the coefficients values
drop to zero (within the machine precision ∼ 10−15-10−16) after a finite number of
elements. The left panel gives the coefficients for the fields αn corresponding to the
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evolution displayed in Figure 3 (` = 3). For a fixed value of `, the polynomial order
P of the solution does not change for the different values of n. Then, we compare
P for different values of the parameter `. The right panel shows the results for
` = 2 · · · 10 and we observe that P = 2`.

Solutions of data of type (ii). Figure 5 shows the Chebyshev coefficients for
the cases ` = 2 (upper-left panel) and ` = 3 (upper-right panel). The coefficients
of the fields α̃0 and α̃1 for the case ` = 2 as well α0 with ` = 3 present the same
algebraic decay ∼ j−5, which agrees with the expected rate for a C1-function. This
order of regularity was obtained by the introduction of the constant K accounting
for the leading logarithmic term. Its value is fixed by the algorithm as part of
the global solution of the system. Indeed, we obtain the values K = 2.25 (` = 2)
and K = 7.5 (` = 3). In addition, we present in Figure 5 the results for ` ≥ 4.
In the lower-left panel we fix the angular mode to ` = 4 and compare the decay
rate for the different n values. In the lower-right panel we concentrate on the field
n = 0 and study the decay dependence with `. The decay rate obeys the relation
cn,j ∼ j−κ with κ = 2(` − 2 + n) + 1, in agreement with the general theory of
Section 3.2.

4.1.3. Improving the accuracy of the calculations The loss of exponential
convergence due to the presence of logarithmic terms can be amended with the
introduction of the coordinate transformation

τ = 1− exp
(

χ

χ− 1

)
. (20)
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Figure 4. Chebyshev coefficients for the polynomial time evolution of the fields
α̃n(τ) from Figure 3 (` = 3). Left panel: the polynomial order P does not depend
on the parameter n. Right panel: polynomial order dependence with respect to
angular parameter `. We identify P = 2`.
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Note that χ ∈ [0, 1] with the initial time surface still given by τ = χ = 0 and
future null infinity by τ = χ = 1. This change of coordinates maps the Ck

functions α̃(τ) into the C∞ functions ᾱ(χ) ≡ α̃(τ(χ)). This strategy has already
been implemented on spatial coordinates in stationary problems (typically elliptic
equations) —see [2, 35, 36]. Recently, it has been successfully employed along the
time direction in problems dealing with hyperbolic equations as well [17].

After rewriting equations (14a)-(14e) in terms of the new coordinate χ, the
algorithm for the numerical construction is the same as the one outlined in Section
4.1.1. In particular, at χ = 1 equation(18a) is still valid and we have ∂χᾱn = 0
(n = 1, . . . , 4) as well. Moreover, the extra condition (18b) (for ` = 2, 3, otherwise
K = 0) must also be taken into account. However, it is important to first eliminate
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Figure 5. Chebyshev coefficients for initial data with α̃?
0 6= α̃?

4. The algebraic
decay cn,j ∼ j−κ indicates the presence of singularities. Upper panel: the
introduction of the extra variable K for ` = 2 (left) and ` = 3 (right) enforces
the solution to be at least of class C1 —the decay rate is κ ≥ 5. Lower panel:
dependence of the regularity on n and ` —fixed ` = 4 (left) and fixed n = 0
(right). The decay rate κ = 2(`−2+n)+1 agrees with the theoretical discussion
in Section 3.2.
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the term ∂τ α̃ in (18b) with the help of the evolution equation for α̃1.
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Figure 6. Left panel: Chebyshev coefficients c̄n,j of the C∞ functions ᾱ resulting
from the mapping (20). The decay rate is faster than algebraic and the saturation
due to round off error occurs at a resolution ∼ 100 − 120. With moderate
resolution, the new coordinate enhances the accuracy of fields with an original
decay rate cn,j ∼ j−κ , κ . 9. Right panel: evolution of constraint violation
(N = 100). With the original coordinates, the constraint equations are satisfied
to order . 10−6 due to the logarithmic singularities. The coordinate map reduces
to error to ∼ 10−13.

In the left panel of Figure 6 we compare the Chebyshev coefficients4 c̄n,j of
the new functions ᾱn(χ) against the coefficients cn,j of the original α̃n(τ). The
convergence rate for C∞-functions is still not exponential, but they decay faster
than the algebraic rate originally obtained with the Ck-functions. At a moderate
number of grid points, the coordinate map (20) is favourable for fields whose
Chebyshev coefficients decay sufficiently slow. More precisely, for a resolution
of N ∼ 80 − 120, the coordinate map improves the accuracy of the original Ck-
functions if k . 3 —the Chebyshev coefficients of these solutions have an algebraic
decay rate cj ∼ j−κ, with κ . 9. However, for sufficiently smooth solutions (i.e.
k & 4), this approach makes not much difference in practice.

Finally, we stress that the accuracy of the overall system is always limited by
the less accurate field. Nevertheless, in Figure 6, we depict in the right panel the
evolution of the constraint equation (15a). Although the constraint equations are
solved exactly at τ = 0, along the free evolution they are only satisfied up to order
. 10−6 (N = 100) in the original coordinates. With the change of coordinates (20)
this error is reduced to ∼ 10−13. The same behaviour is observed for the other
constraint equations.

4 In Figure 6 we show only c̄0,j , but the behaviour is qualitatively the same for all n.
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4.2. Regular terms β(τ, ρ)

Having analysed the behaviour of the singular terms αn in the Ansatz (13), we now
proceed to discuss the regular terms βn. The evolution equations for the coefficients
βn can be readily found to be given by

− (1− τ)∂τβ0 − ρ∂ρβ0 + λ1β1 + (1− `)β0 = 0, (21a)

− ∂τβ1 −
1
2λ1β0 + 1

2λ0β2 + β1 = 0, (21b)

− ∂τβ2 −
1
2λ0β1 + 1

2λ0β3 = 0, (21c)

− ∂τβ3 −
1
2λ0β2 + 1

2λ1β4 − β3 = 0, (21d)

− (1 + τ)∂τβ4 + ρ∂ρβ4 − λ1β3 − (1− `)β4 = 0. (21e)

The associated constraint equations read

τ∂τβ1 − ρ∂ρβ1 − (`+ 1)β1 + 1
2 (λ0β2 + λ1β0) = 0, (22a)

τ∂τβ2 − ρ∂ρβ2 − (`+ 1)β2 + 1
2λ0 (β3 + β1) = 0, (22b)

τ∂τβ3 − ρ∂ρβ3 − (`+ 1)β3 + 1
2 (λ1β4 + λ0β2) = 0. (22c)

Remark 9. The initial data β?n(ρ) ≡ βn(0, ρ) for the evolution equations (21a)-
(21e) must be consistent with the constraint equations at τ = 0. The procedure to
construct initial data consists of specifying arbitrary functions β?0(ρ) and β?4(ρ) and
solving equations (22a)-(22c) for the remaining coefficients β?1(ρ), β?2(ρ) and β?3(ρ)
in the domain ρ ∈ [0, ρ0] for some convenient cut-off value ρ0. The equations form
a system of first order ordinary differential equations that degenerate at ρ = 0.
Accordingly, we impose the natural regularity conditions at this boundary. No
other information is needed at ρ = ρ0.

The time integration of the coefficients βn is restricted to equations (21a)-(21e).
It can be shown that these equations form a hyperbolic system with characteristics
satisfying

τ±(ρ) = ±
(

1− ρ̄

ρ

)
, ρ̄ ∈ [0, ρ0].

As expected, if ρ̄ = 0 the characteristics degenerate to future (respectively, past)
null infinity τ = ±1. Nevertheless, following Proposition 1, the system of equations
should yield a regular evolution along the cylinder ρ = 0. In particular, at I+, i.e.,
at the intersection of future null infinity (τ = 1) and the cylinder at spatial infinity
(ρ = 0), one can eliminate all time derivatives (except for ∂τβ4) by combining the
evolution equations with the constraint equations. This procedure leads to the
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following conditions at I+:

β0 = β4, β1 = β3 =
√
`− 1
`+ 2β4 β2 =

√√√√ `(`− 1)
(`+ 1)(`+ 2)β4. (23)

All in all, the initial data fixes the time evolution within its future causal domain{
(τ, ρ) ∈ [0, 1]× [0, ρH(τ)], ρH(τ) = ρ0

1 + τ

}
. (24)

Remark 10. If one were to look for solutions within the rectangular domain{
(τ, ρ) ∈ [0, 1]× [0, ρ0]

}

one would need to impose extra boundary conditions at the regular boundary
ρ = ρ0. Since we are most interested in the behaviour of the solution around
ρ = 0, we adapt our coordinate system to the causal domain (24) and avoid, in this
way, the need of imposing extra conditions at ρ0. In the next section, we present
this coordinate system and discuss the numerical scheme employed to solve the
problem.

4.2.1. Numerical scheme We introduce coordinates (T, s) ∈ [0, 1]2 adapted to the
integration domain (24) via the conditions

τ = T, ρ = ρ0

1 + T
s.

The constraint and evolution equations are easily re-written in terms of (T, s) and
both system of equations are solved with spectral methods. For the former, we
provide a resolution Ns in the radial direction and discretise the coordinate s in
terms of the Chebyshev-Lobatto grid points

si = 1
2

(
1 + cos

(
i
π

Ns

))
, i = 0 · · ·Ns. (25)

As in Section 4.1.1, the unknowns are approximated by

β̃?n(s) =
Ns∑
i=0

c?n,iTi(2s− 1) +RNs(s), (26)

with coefficients c?n,i fixed by the conditionRNs(si) = 0. Then, we impose equations
(22a)-(22c) at all grid points si and the resulting linear algebraic system is solved
via a LU decomposition.
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The time evolution is performed with the fully spectral code introduced in [39].
In addition to the radial grid (26), we introduce the Chebyshev-Radau points along
the time direction5

Tk = 1
2

[
1 + cos

(
k

2π
2NT + 1

)]
, k = 0 · · ·NT ,

with NT the time resolution. The initial data is built into the unknowns via the
Ansatz

βn(τ, s) = β?n(s) + τ β̃n(τ, s).

Moreover, we approximate the functions β̃n(τ, s) via

β̃n(τ, s) =
Ns∑
i=0

NT∑
k=0

c̃n,ijTi(2s− 1)Tj(2T − 1) +RNs,NT (τ, s).

As usual, the coefficients are fixed by requiring RNs,NT (τk, si) = 0. Equations
(21a)-(21e) are finally imposed at all grid points and the system is solved with
the BiConjugate Gradient Stabilised method, with a pre-conditioner provided by
a Singly Diagonally Implicit Runge-Kutta method [39].

4.2.2. Results In this section, for concreteness, we discuss the properties of the
numerical solution for the field βn(τ, ρ) obtained with the resolution NT = 2Ns =
50. As a particular example, we chose the free data

β?0(ρ) = cos(2πρ), β?4(ρ) = e1−ρ

and we fix the angular parameter to ` = 2. Nevertheless, the qualitative properties
of the solutions are independent of this choice. The left panel of Figure 7 shows
the evolution in time of the field β0(τ, ρ) in the original coordinates {τ, ρ} —this
choice of coordinates makes the identification of the future causal domain of the
initial data more transparent. The right panel focuses on the time evolution along
the cylinder at ρ = 0. As expected, at I+, i.e. at (τ = 1, ρ = 0), we observe β0 = β4

and β1 = β3. More specifically, the values obtained coincide with the conditions in
(23). They are a strong indication that the constraint equations are satisfied along
all the evolution. Indeed, after checking the constraint equations we observe that
they remain within the order . 10−12 over the whole domain of integration.

As discussed previously, we are interested in the regularity properties of this
solution. This information is obtained from the behaviour of the Chebyshev

5 While Chebyshev-Lobatto grid includes the the boundary points s = 0, 1, the Chebyshev-
Radau grid incorporates only the final time slice τ = 1. As stated in [39], this leads to a more
stable time integration in case the time direction is not compact.
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Figure 7. Time evolution of βn(τ, ρ) for ` = 2. Left panel: Initial data at τ = 0
fixes the evolution within its future causal domain (24). Here n = 0. Right panel:
regular evolution along the cylinder at future null infinity (ρ = 0). In particular,
at I+ we have β0(1, 0) = β4(1, 0) and β1(1, 0) = β3(1, 0), as one would expect
from the constraint equations.

coefficients. Particularly, we study the analyticity of the solution with respect to
both the radial and time directions. First, we fix the time coordinate to a particular
value T and study the Chebyshev coefficients cn,i along the s-direction. We find
an exponential decay for all times, indicating that the functions are analytic with
respect to the coordinate s along all the time evolution. In the left panel of Figure
8 we present the results for the final time T = 1 (future null infinity). Then, we
repeat the analysis, but this time concentrating on the Chebyshev coefficients cn,j
along the T−direction for different values of the spatial coordinate s. Again, we
obtain an exponential decay, in agreement with the statements in Proposition 1.
The right panel of Figure 8 depicts the result along s = 0.

5. Discussion and conclusion

In this article we have presented the construction of highly accurate numerical
solutions for the spin-2 equation near the cylinder at spatial infinity of the
Minkowski spacetime. The relevant field equation can be cast as a linear system
of symmetric hyperbolic equations subject to constraint. After decomposing the
spin-2 fields in terms of spin-weighted spherical harmonics, the equations reduce to
a system in 1 + 1 dimensions, which were numerically solved with a fully spectral
code. The spectral decomposition in both the spatial and time directions, allows
to study the regularity properties of the solutions.

Previous analytic studies provided the necessary information to identify the
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Figure 8. Left panel: Chebyshev coefficients along the spatial direction at
T = 1. Right panel: Chebyshev coefficients along the time direction at s = 0.
In both cases we find an exponential decay, confirming the solution is regular in
the integration domain.

terms in the initial data whose evolution leads to logarithm singularities. In
particular, the spin-2 field was decomposed using the Ansatz

φn;l,m(τ, ρ) = ρ` (αn;l,m(τ) + ρβn;l,m(τ, ρ)) , ` ≥ 2.

Thanks to the linearity of the equations, we were able to isolate each term in order
to obtain a stable and accurate numerical evolution within the integration domain.

The time evolution of αn,`(τ) is either polynomial or has logarithmic
singularities, depending on whether the initial data satisfies (i) α0;`,m(0) = α4;`,m(0)
or (ii) α0;`,m(0) 6= α4;`,m(0), respectively. From our numerical results it is possible
to read the order P for the polynomial time evolution of initial data (i) as P = 2`.
The logarithmic singularities present in the evolution of the initial data of the form
(ii) spoils the fast converge rate of our numerical scheme. However, this feature
allows us to study the regularity properties of the solution. From our numerical
solutions, we can identify the presence of terms∼ (1−τ)n−2+` ln(1−τ), in agreement
with the theoretical prediction. Moreover, consistent with [17], we showed that
the coordinate mapping to deal with logarithmic terms, initially introduced to
boundary value problems, is also suitable to dynamical evolutions.

Finally, we obtain a regular (both in space and in time) solution for the
unknowns βn:`,m(τ, ρ). Note that we performed a free evolution of the constraint
system —i.e., the constraint equations were imposed only at the initial data surface
τ = 0. However, the highly accurate solution provided by the spectral methods
ensure that constraint deviations are restricted to the machine round-off error along
all the evolution.
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In future work, we plan to extending the fully spectral code to solve the spin-
2 equations globally. A first natural step in this direction is to follow [14] an
modify the conformal compactification of the spacetime in order to include the
axis of symmetry (here, ρ → ∞). The spectral time evolution should overcome
the limitations found in previous works. Eventually, one can exploit the use of
an appropriated basis functions adapted to the topology of the conformal time
slices —see e.g. [8]— and reduce the evolution equations to a coupled system of
ordinary differential equations in the time coordinate, which is then solved with
spectral methods. The ultimate aim of this strategy is to depart from the linear
equations and solve the full non-linear system of Einstein conformal field equations.
As the present framework depends crucially on the existence of a non-singular
congruence of conformal geodesics on the spacetime, the extension to the full non-
linear Einstein equations is, for the time being, restricted to situations which are
close (i.e. suitable perturbations) to background spacetimes which can be covered
by this type of curves. Examples suitable congruences in spherically symmetric
spacetimes have been studied in e.g. [24, 28, 38]. For more complicated spacetimes
(e.g. the Kerr solution) the formation of caustics is a possibility.
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