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Abstract

We propose and construct a two-parameter expansion around a Friedmann-Lemâıtre-
Robertson-Walker geometry which uses both large-scale and small-scale perturba-
tions analogous to cosmological perturbation theory and post-Newtonian gravity.
We justify this observationally, derive a set of field equations valid on a fraction
of the horizon size and perform a detailed investigation of the associated gauge
problem. We find only the Newtonian gauge, out of the standard gauges used in
cosmological perturbation theory, is applicable to post-Newtonian perturbations; we
can identify a consistent set of perturbed quantities in the matter and gravity sec-
tors and construct corresponding gauge-invariant quantities. The field equations,
written in terms of these quantities, takes on a simpler form, and allows the effects
of small-scale structure on the large-scale properties of the Universe to be clearly
identified and discussed for different physical scenarios. With a definition of statis-
tical homogeneity, we find that the cosmological constant and the average energy
density, of radiation and dust, source the Friedmann equation, whereas only the
inhomogeneous part of the Newtonian energy density sources the Newton-Poisson
equation – even though both originate from the same equation. There exists field
equations at new orders in our formalism, such as a frame-dragging field equation
a hundred times larger than expected from using cosmological perturbation theory
alone. Moreover, we find non-linear gravity, mode-mixing and a mixing-of-scales
at orders one would not expect from intuition based on cosmological perturbation
theory. By recasting the field equations as an effective fluid we observe that these
non-linearities lead to, for example, a large-scale effective pressure and anisotropic
stress. We expect our formalism to be useful for accurately modelling our Universe,
and for investigating the effects of non-linear gravity in the era of ultra-large-scale
surveys.
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1. Introduction

“How is the cosmos, darling?”

— Annette Goldberg

Modern cosmology has the challenge of modelling a vast array of historical epochs

of the Universe whilst including the range of structure we observe on many differ-

ent scales. From the epochs of radiation domination, structure formation, to the

late-time accelerated expansion, and the gravitationally-bound structures of plan-

ets, stars, galaxies, clusters and superclusters that make up the cosmic web we see

today: modelling these crucial features of the observable Universe is a huge task

for theoretical cosmologists. If we wish to consider the Universe on distance scales

as large as the Hubble radius and structure with large density contrasts, we must

understand how gravitation works on the largest scales during the evolution of the

Universe. Indeed, answering this is exactly what is addressed in this thesis.

Furthermore, there are motivations for this observationally, as the next generation

of astronomical surveys [1–3], which will collect data on scales comparable to the

cosmological horizon, will have sufficient precision to provide a new testing ground

for non-linear relativistic gravity [11, 23, 111, 121]. This is a particularly exciting

prospect as, to date, non-linear gravitational effects have only been observed in

the solar system [44, 46, 89, 90], binary pulsar systems [158, 170], and the newly

discovered binary black hole mergers observed using LIGO [7–9]. The observation

of similar effects in cosmology would allow general relativity to be investigated on

unprecedented length and time scales, as well as in an entirely different physical

environment. This would give us a new insight into Einstein’s theory.

Gravitational physicists use Einstein’s general theory of relativity to model both

isolated astrophysical systems and cosmology, on many different scales in our Uni-

verse. Presented just over a hundred years ago at the Royal Prussian Academy of

Sciences [86], this revolutionary theory transformed our understanding of gravita-

tion. Gravity is not merely a force given by Newton’s law but is a manifestation of

space-time. Moreover, space-time itself is dynamical and dependent on its content.

Structure in the Universe is normally modelled with gravitation taken in two limits

9



1: Introduction 10

of Einstein’s field equations: on small scales Newtonian or post-Newtonian gravity

is used, whereas on horizon-sized scales cosmological perturbation theory is used.

We will now focus on these limits in turn.

The application of general relativity to isolated astrophysical objects, on scales much

less than the horizon, from high-precision observations of our solar system to ex-

traordinary exotic astrophysical systems such as binary pulsars, has furthered our

fundamental understanding of our Universe. Solving the full Einstein equations

is necessary when studying strong gravitational systems such as near binary black

holes, where non-perturbative methods break down. However, in the case of isolated

systems, which are weak-field and slowly varying, Newtonian gravity is a good ap-

proximation to the dynamics of the system. Indeed, it is one of the great successes

of general relativity that in the appropriate small-scale limit Newtonian gravity can

be derived from it. It can be used to model structures in our Solar System to a

precision of one part in 105. In fact, non-linear structure on scales up to of about

100Mpc, in the late Universe, are modelled using Newtonian gravity. With the in-

clusion of dark matter, baryons and dark energy realistic large-scale simulations of

the Universe can be used to model the dynamics of our Universe accurately [55].

These simulations exclude the existence of highly relativistic objects such as neutron

stars and black holes in their model of the Universe. Nevertheless, these large-scale

structure simulations have shown the formation of filaments, walls and voids, which

are very close to what we observe in the late Universe.

Relativistic corrections to such Newtonian systems are small, nevertheless, they

have been quantified accurately using the aptly named ‘post-Newtonian’ formalism.

The post-Newtonian book-keeping is a methodology for counting magnitudes of

perturbations to the geometry and strictly keeping track of the time derivatives on

such metric potentials in the dynamics of the field equations. Given a metric theory

of gravity the post-Newtonian formalism can be used to derive the slow-motion and

weak-field limit of it. Furthermore, one can parametrize the post-Newtonian limit

of a large class of metric theories of gravity, known as parametrized-post-Newtonian

gravity. This formalism has enabled gravitational physicists to test gravitation for

weak-field systems on the smallest scales, like in our Solar System, to high accuracy

[44, 46, 89]. These tests range from the classical tests of light-bending around the

Sun and Mercury’s perihilion precession [171], to the modern tests of frame-dragging

due to the gravito-magnetic potential of the Earth [90]. These small-scale tests of

gravity have confirmed the parameterized post-Newtonian parameters are consistent

with those derived from Einstein’s theory of general relativity. In other words, it
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is the small-scale tests of gravity, along with parametrized post-Newtonian gravity,

which has given us faith in general relativity. It has enabled gravitational physicists

to test gravity to successively higher and higher order in accuracy and indeed shown

us that gravity is consistent with general relativity. Nevertheless, arguably the most

fascinating application of general relativity has been to cosmology, in studying the

evolution of our entire Universe.

The concordance model of cosmology, ΛCDM, is a simple theory that has been very

successful in furthering our understanding the large-scale properties of the Universe.

It assumes the existence of the dark sector with dark energy, which is taken to

be a cosmological constant, Λ, and cold dark matter. Dark matter is necessary

for structure formation and the cosmological constant accounts for the accelerated

expansion in the late Universe. Moreover, it assumes that the large-scale evolution

of the Universe can be determined from a direct application of Einstein’s theory

of general relativity and that the cosmological principle holds. In this case space-

time is globally homogeneous and isotropic and therefore described by a Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric. This simplistic picture is arguably one

of the greatest successes of Einstein’s theory because, with the inclusion of baryonic

matter and radiation, it is consistent with a variety of high-precision observations

of our Universe. Such evidence is derived from observations that span vast epochs

and scales, and includes the Cosmic Microwave Background (CMB) [12], type Ia

supernovae [45, 118] and large-scale structure [10, 21, 25]. Furthermore, the Universe

is taken to be very close to spatially flat on large scales, justified from Planck’s CMB

anisotropy measurements [12, 78], and baryon acoustic oscillation (BAO) data [28].

Presently we believe that large-scale structure initially formed from the gravita-

tional instability of a Gaussian random field of super-horizon-size primordial den-

sity perturbations generated from quantum fluctuations, which were expanded to

the largest scales during inflation. These fluctuations were so small that the den-

sity contrast was of order 10−5 and is justified from precision observations of the

temperature of the CMB. It is these fluctuations that are believed to source the

formation of the large-scale structure we see today. Moreover, it is observations of

the CMB that tell us that at these very early times the Universe was homogeneous

and isotropic on horizon-sized scales and therefore we can model it by a uniformly

expanding FLRW metric. To model the evolution of small fluctuations in the early

Universe cosmological perturbation theory is used, this is a weak-field expansion

where perturbations vary on large scales, of order the horizon-size. This formalism

allows the dynamics of the background, and higher-order perturbed quantities, to
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be tractable and solved for too, order-by-order in perturbation theory. Furthermore,

high-precision cosmology in the early Universe has rigorously allowed us to precisely

constrain the cosmological parameters [20].

The standard model of cosmology has gone a long way in enabling us to under-

stand our Universe. However there are several open questions, probably the most

well known of which are related to the dark sector. Efforts from theoretical cosmolo-

gists have been undertaken to further understand these components of the Universe

[43, 76]. Experimentally, direct and indirect searches of dark matter have been un-

dertaken, which are searches for dark matter candidates through non-gravitational

interactions [35]. Additionally, observational cosmologists will use large-scale struc-

ture in upcoming high-precision observations to find a more precise measurement of

dark energy and matter through their gravitational interactions [11, 63, 121].

There are also fundamental questions about how we apply general relativity to struc-

ture on the largest scales. As discussed, the standard approach is to consider two

limits of the field equations, assume a global FLRW background, and seperately con-

sider cosmological perturbation theory above the homogeneity scale or Newtonian

gravity below 100Mpc in order to model the effects of weak gravitational fields, see

Refs. [55, 83, 128]. This looks very natural at linear order in the gravitational fields,

partly because the linear equations of Newtonian gravity can be recovered from the

quasi-static limit of cosmological perturbation theory, when the gravitational fields

slowly vary in time. Moreover, as we have discussed above, this approach works

extremely well for a wide variety of situations. However, it starts to become prob-

lematic when one tries to correctly consider non-linear relativistic gravity on scales

of order 100Mpc or in the late Universe, where we expect contributions to the field

equations from perturbations on small and large scales. The reason that standard

cosmological perturbation theory is not ideal for modelling structure on these scales

is that below this scale both density contrasts and velocities become large, in com-

parison to the background energy density and gravitational potentials, respectively.

Also, spatial gradients of gravitational potentials become large with respect to time

derivatives of gravitational potentials.

This implies perturbations to the metric can appear at the same order in the

field equations as the dynamical background [143]. Perturbing around a background

geometry which is much smaller than higher-order perturbations to it corresponds to

a breakdown of the perturbation theory itself. This has led to much study of the idea

that the formation of clumpy structure in the Universe could have a strong “back-

reaction” effect on the large-scale expansion, as the perturbative expansion may start
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to breakdown [60–62, 71, 74, 88, 165]. Back-reaction is generally calculated from

the difference between the large-scale expansion of an inhomogeneous cosmology and

a homogeneous and isotropic cosmology, both of which are solutions to Einstein’s

field equations. The homogeneous and isotropic cosmology is formed from a best-fit

to either the average of observables or dynamics in the inhomogeneous solution.

Although many authors believe the back-reaction on the FLRW background to be

small, this does not necessarily mean that the effect of small-scale structure on large-

scale perturbations must also be small. Therefore we require an approach that can

systematically and consistently track the effects of a realistic Universe with both non-

linear small-scale and linear large-scale structures order-by-order in perturbation

theory. This will enable us to write a hierarchical set of field equations which can

be solved systematically, which is exactly what our two-parameter expansion does.

In some respects our treatment of gravity on small scales (and post-Newtonian

gravity), can be viewed as a formalised version of the quasi-static (or slow-motion)

limit of cosmological perturbation theory. This approach has often been used in the

literature to describe small-scale structure [107], and, at lowest order, gives a set

of equations that look a lot like those of Newtonian gravity. The basic idea in this

approach is to neglect terms with time derivatives in the field equations, as these

are generally expected to be small in comparison to spatial derivatives. Studies with

this goal have already been performed using second-order cosmological perturbation

theory [38, 39, 48, 50, 51, 58, 161], and we expect it to be a matter of significant

interest to determine whether a framework that formalizes the quasi-static limit can

be used to simplify or extend them. Hints that this should be possible come from

studies of second-order gravitational fields that average to the size of first order fields

[14, 56, 72, 115, 143], and calculations that suggest the second-order vector potential

to be a hundred times larger than naively expected from second order cosmological

perturbation theory [26]. In fact, both of these turn out to be natural results of

the two-parameter formalism, which may therefore prove useful for gaining a full

understanding of the results from upcoming high-precision surveys [1–3].

In Refs. [36, 138] a quasi-static limit of second-order perturbation theory is used

to account for non-linear gravity on large scales in an effective field theory approach,

in spite of the relegation of terms with time derivatives not being systematic. Specif-

ically, this is because, when considering the quasi-static limit, the terms that have

been relegated to higher-order can no longer be entirely neglected; they can and

should be expected to appear in the next-to-leading-order gravitational field equa-

tions. This could be at second-order on small scales, but could in principle be at

what is usually thought of as first-order on large scales. What is unclear in the
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usual application of the quasi-static limit is how this approach can be extended to

non-linear gravity. Additionally, it may or may not be necessary to adjust the order-

of-smallness of velocities or vector potentials in order to make the entire system of

equations consistent with the results expected observationally. The question of how

to construct a perturbative expansion that can systematically perform the required

re-ordering, and produce a self-consistent and well-motivated set of field equations

on all scales, is the purpose of our two-parameter expansion.

We should note that Newtonian perturbation theory applied to cosmology, is

Newtonian theory linearly perturbed in an expanding space [137, 169], includes some,

but by no means all, of the relativistic corrections expected from a metric theory of

gravity – like general relativity – and derived from, for example, the quasi-static limit

of cosmological perturbation theory or post-Newtonian gravity. Note that whereas

Newtonian perturbation theory and the quasi-static limit require that perturbations

to a homogeneous background energy density remain small, this is not required from

post-Newtonian gravity. In spite of its successes, the application of post-Newtonian

gravity to our entire Universe, in cosmology, is somewhat limited as it only describes

isolated systems. This is due to the fact the expansion is an expansion around a

Minkowski space-time where velocities and time derivatives are small and there

exists asymptotic flatness. However, on large-scales, for example when we approach

the cosmological horizon, this is not the case for gravitational fields as the time scale

of cosmic evolution is not negligible and there are no asymptotically flat regions in

cosmology.

Furthermore, applying the standard post-Newtonian formalism to the entire evo-

lution of the Universe is not realistic. We need to add extra matter fields, which go

beyond the use of non-relativistic baryonic matter alone (which is all that is nor-

mally considered in post-Newtonian gravity). To apply post-Newtonian gravity to

cosmology we would require the inclusion of dark matter. We also require both radi-

ation and a cosmological constant to describe epochs of the Universe which are not

matter dominated. Therefore, such matter components would need to be included

formally. There has been research into addressing this problem [149] by adding ra-

diation and a cosmological constant to the post-Newtonian expansion book-keeping.

This is a practical way of allowing for these extra matter sources. However, as both

radiation and the cosmological constant are large-scale quantities associated with

the horizon-size they behave like perturbations that are ‘cosmological’ in our two-

parameter expansion. Hence, from our expansion we can derive that for non-linear

structure on very small scales the cosmological constant only affects the dynamics

at an order well beyond that of the leading-order relativistic effects. We find the
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two-parameter formalism developed in this thesis naturally incorporates extra mat-

ter sources (with barotropic equations of state and a cosmological constant) as well

as non-relativistic matter.

To develop a mathematical formalism for investigating the non-linear properties

of gravity in cosmology is a non-trivial task, but there is now a substantial literature

dedicated to developing different approaches to this. In summary, the most com-

mon approach is a direct implementation of second-order cosmological perturbation

theory [106, 127, 134], which allows relativistic gravitational perturbations around a

homogeneous and isotropic background to be modelled in the presence of linear den-

sity contrasts. Other approaches, however, have started to import techniques from

post-Newtonian gravity [15, 16, 130], where gravitational fields are assumed to be

slowly varying and where non-linear density contrasts can be consistently modelled.

However, if one wants to consider non-linear gravity in a universe that simulta-

neously contains linear structures on large scales and non-linear structures on small

scales, then one must adopt a more sophisticated approach. This is exactly what

our two-parameter expansion does. We note that two-parameter and N -parameter

expansions of tensorial quantities have previously been studied in Refs. [57, 154],

but not in the context of different types of perturbations which vary differently in

space-time, and which vary on different length scales, as we do here. From our two-

parameter formalism we derive that although non-linear structure does not affect

the scale factor, it does affect higher-order large-scale corrections to it. Moreover, by

writing our equations in terms of an effective fluid, they are much more tractible and

the relativistic effects of non-linear gravity on large-scales can be identified more eas-

ily. For example we can clearly see mode-mixing1, a mixing-of-scales, and small-scale

non-linear gravity sourcing an effective large scale pressure and anisotropic stress

at linear order in cosmological pertrubations (this is something normally observed

at second order in cosmological perturbations). These types of terms offer exciting

possibilities for testing non-linear gravity with upcoming surveys. This approach

can be compared to the effective fluid approach studied previously in Refs. [36, 64],

as well as the large and small wavelength split used in Refs. [99, 100]. Our approach

simultaneously expands the metric and energy-momentum tensor using both cos-

mological and post-Newtonian perturbation theories [141, 171]. The result of this

can formally be described as a perturbative expansion in two parameters, which is

a consistent and valid description of both non-linear structure on small scales and

1Note that we use “mode-mixing” to describe the coupling of scalar, vector and tensor pertur-
bations. We will use “mixing-of-scales” to refer to the coupling of large-scale and short-scale
perturbations due to quadratic terms.
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linear fluctuations on horizon-sized scales. Such a formalism therefore enables one to

model the effects of non-linear structure on the dynamics of large-scale cosmological

perturbations, as well as determine if non-linear structure affects the dynamics of

the cosmological background. It provides a more representative picture of the real

Universe than either cosmological perturbation theory or post-Newtonian theory

could by themselves, and may be of use for consistently modelling the relativistic

effects that future surveys will seek to detect.

Furthermore, the two-parameter formalism, in the case where long-wavelength

cosmological perturbations are neglected, successfully reduces to single parameter

post-Newtonian gravity on an expanding background. This is similar to the ex-

pansions in Refs. [15, 16, 130] which relegate terms in the field equations with

time derivatives, some more systematically than others. If the scale of the post-

Newtonian system is small enough, then the background expansion only influences

the local physics of that system at high orders in perturbation theory – our formalism

shows this assertion holds. This means we end up with a set of equations that are

consistent with post-Newtonian gravity up to the accuracy of current observations

but which differ from post-Newtonian gravity at higher-order. Our framework could

therefore be used to quantify the effects of cosmological expansion and cosmological

potentials on local weak-field systems, if it were required.

Additionally, our two-parameter expansion has the potential to allow us to test

gravity on the largest scales. This is a new paradigm for testing Einstein’s theory.

Whereas parametrized-post-Newtonian gravity allows gravitational physicists to test

non-linear gravity on the smallest scales, there has been much recent development

by theoretical physicists to derive a parametrization which allows non-linear gravity

to be tested on cosmological scales [110]. Metric theories of gravity [75] have been

parametrized for cosmology in parametrized post-Friedmann approaches [24, 30,

31, 105, 119, 153], parametrized post-Newtonian cosmology [150], and effective field

theories [29, 33, 34, 37, 47, 102, 119, 138]. These parametrizations vary from the very

general, which allow for exotic modified gravity theories to be tested, to the more

conservative, characterising small deviations from general relativity. Nevertheless,

to correctly test non-linear structure on the largest scales we must initially provide

a framework which allows us to consistently describe non-linear structures on such

scales. While employing general relativity, this is what our framework does.

Of course, the main application of constructing a two-parameter perturbation ex-

pansion is to determine the signatures of concordance cosmology, and even Einstein’s

theory, in cosmological data. Galaxy surveys are now aiming for 1% precision, the
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same as CMB measurements. For example, the detection of BAO by SDSS has

allowed the first 1% level cosmological constraint by a galaxy survey [25]. Moreover,

future surveys such as Euclid [2, 22, 121] and SKA [1, 108, 111, 152] and LSST [3]

will reach scales of order the horizon-size. It is crucial that our theories catch up

with the precision of our observations, this means developing a framework which

accounts for relativistic effects in observations. There has been much work on this

within the literature [40, 42, 52, 53, 65, 162]; this is also what our two-parameter

expansion achieves, with the additional beneficial features discussed above.

The effects of small-scale nonlinearities on cosmological observables may need

to be accounted for, such as in galaxy number counts [48, 85, 135]. These late-

time observations for lensing and redshift space distortions will allow the precise

measurement of the growth of clustering [136, 147]. Studies suggest that inhonmo-

geneities may also bias the dark-energy equation of state [93]. Additionally, it has

been found that the impact of small perturbations on distance measurements is not

negligible and can be a probe for cosmology [6, 54] or an additional effective noise in

measurements [38, 164] that may be relevent to observations from Planck [94, 129].

Furthermore, relativistic effects such as Doppler magnification, which causes the ob-

served size of galaxies to change, should also be detectable in current and upcoming

optical and radio surveys [49]. Other relativistic effects, such as lightcone projection

effects [109, 163], need to be accurately accounted for. Additionally, through simple

parameterizations of the Newton-Poisson equation, small deviations from general

relativity have been accounted for as a slip between the scalar gravitational poten-

tials via Eg(z). The impact of the lensing contribution to galaxy number counts on

the Eg(z) statistics has been studied in Ref. [81]. Such a parameterization could be

achieved at beyond leading-order using our two-parameter formalism.

On large scales the galaxy power spectrum contains signatures of local primor-

dial non-Gaussianity and horizon-scale general relativistic effects, calculating these

effects has been of much interest in the literature. For example, the authors in

Ref. [95] show a multi-tracer method (which benefits from large bias differences be-

tween two tracers of the underlying dark matter distribution) and the combination

of two surveys (a large neutral hydrogen intensity mapping survey in SKA Phase

1 and a Euclid-like photometric survey) would provide unprecedented constraints

on primordial non-Gaussianity and general relativistic effects. The authors forecast

that the error on local primordial non-Gaussianity will break the cosmic variance

limit on CMB surveys. In Ref. [96] they also calculate that the SKA precursor

(MeerKAT) and DES, can be combined using a multitracer technique to deliver an

accuracy on measurement of the non-Gaussianity parameter fNL up to three times
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better than Planck. It has been found that lightcone and mode-coupling contribu-

tions at second-order in cosmological perturbations mean that relativistic correc-

tions are non-negligible at smaller scales for the bispectrum than in the case of the

power spectrum [163]. There are also other works which calculated observed galaxy

number counts using standard perturbation theory and estimate the corresponding

non-Gaussianity parameter fNL [79, 123]. These relativistic effects, if ignored in the

analysis of observations, could be mistaken for primordial non-Gaussianity.

For predictions of future observations to be accurate to of order 1% it may be

necessary to go beyond the Newtonian approximation in N-body simulations. New-

tonian N-body computer simulations [55] have been crucial in modelling structure

formation, and have kept pace with the increasing data quality of cosmological sur-

veys due to technological advancements. The use of Newton’s law of gravitation, and

ignoring any general relativistic corrections, has spurred recent debate on whether

such an approximation is justified given the current era of high-precision cosmol-

ogy [17, 67, 91, 92, 101, 145]. It is therefore important to formalise and account

for relativistic effects on these scales. N-body simulations beyond ΛCDM, which

include modified gravity theories in quasi-static limits, have already been used in

modified Newtonian codes [122, 124, 142, 151] and relativistic corrections have been

accounted for in Refs. [16–19, 67, 69, 91, 92, 101, 145, 159]. These perturbative ap-

proaches have the benefit of accounting for relativistic effects without employing full

numerical relativity simulations, which solve the full Einstein equations. However,

the open question remains how exactly we account for relativistic effects in non-

linear gravity correctly. This may also prove useful for gaining a full understanding

of the results from upcoming high-precision surveys.

This is an exciting time for cosmology because we are living at an intersection where

there exists significant motivations from both theoretical and observational cosmol-

ogy to study gravitation on the largest scales. Not only are we answering funda-

mental questions about how gravity works, but the improved quality of observations

mean it is necessary we do so.

1.1. Notation

At this stage it is convenient to define some notation we use throughout this thesis.

We use Latin indices and Greek indices to denote space (e.g. xi, i ∈ {1, 2, 3}) and

space-time (e.g. xµ, µ ∈ {0, 1, 2, 3}) indices, respectively. Commas and dots denote

partial derivatives and derivatives with respect to coordinate time t, respectively,
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such that

f,µ ≡
∂f

∂xµ
, ḟ ≡ ∂f

∂t
,

where xµ are space-time coordinates and f is any function of space-time. Dashes

denote derivatives with respect to conformal time τ such that

f ′ ≡ ∂f

∂τ
,

single spatial derivatives are given by f,i ≡ ∇f , and ∇2 refers to the Laplacian

associated with spatial partial derivatives with respect to comoving coordinates.

Note that we use Einstein’s summation convention throughout: we sum over all

repeated indices. Additionally, we choose units such that c = G = 1, so that

Einstein’s field equations have dimensions length−2.

1.2. Overview

We first introduce general relativity in Chapter 2 before discussing the relevant

perturbative expansions for our formalism: cosmological perturbation theory and

post-Newtonian gravity, in Chapters 3 and 4, respectively. The first four chapters

contain introductory material. We construct our two-parameter formalism and jus-

tify it observationally in Chapter 5. In Chapter 6 we derive the two-parameter

perturbed Ricci and energy-momentum tensors generally and then the field equa-

tions for large-scale structure, on the order of a fraction of the horizon-size. In

Chapter 7 we define a two-parameter coordinate transformation that can be ap-

plied to the metric and energy-momentum tensor. This enables us to construct

gauge-invariant quantities which simplifies the field equations and allows us to de-

termine at which orders we expect perturbations to appear in our expansion. We

also find that most gauges studied in standard cosmological perturbation theory are

not applicable to post-Newtonian potentials. In Chapter 8 we write gauge-invariant

versions of the field equations, discuss the relativistic features of them, and con-

sider how to derive standard perturbation theory and post-Newtonian gravity from

our approach. We also discuss how our formalism can be applied to the smallest

and largest gravitationally-bound structures that exist in the Universe. We recast

terms that arise in our equations as an effective fluid in Chapter 9. We conclude in

Chapter 10. Finally, the Appendices contain calculations using our two-parameter

formalism for the case of dust only (as opposed to the case of dust, radiation and
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a cosmological constant – which is presented throughout this thesis), for simplicity

and use in applications to the late Universe.



2. General Relativity

2.1. Introduction

Our standard model of gravitation is general relativity, created by Einstein more

than a hundred years ago. It holds up to high-precision observational scrutiny by

accurately describing gravitational phenomena on a range of scales, and in tests

devised long after its formulation. Moreover, general relativity has been a huge

success in the study of fundamental physics, through its elegant simplicity and by

resolving flaws in Newtonian gravity.

General relativity is the simplest ‘reasonable’ metric theory of gravity. Such ‘rea-

sonable’ metric theories are characterised by serveral key assumptions, listed by

Dicke [80] and with the additions of Will [171], which restrict the number of theo-

ries gravitational physicists wish to consider and we now state:

1. The theory has the correct Newtonian limit.

2. Space-time is a four-dimensional differentiable Lorentzian manifold.

3. General coordinate covariance manifests.

4. The theory is relativistic.

5. The field equations can be derived from an invariant action principle.

6. There does not exist a priori geometric structure in the theory.

7. The theory is simple.

The first condition states that, in the limit of weak fields and slow motions, the

given theory of gravity must reproduce Newton’s laws. This should be true for any

theory of gravity, no matter how exotic, with or without a metric. Clearly this

is supported observationally as there exists a huge amount of data supporting the

idea that Newtonian gravity dominates, at leading-order, for weak-field slow-motion

systems such as our Solar System.

21



2.1: Introduction 22

The second condition means we are only considering metric theories of gravity

where the metric and affine connection are not predefined but solved for through

the dynamics of the field equations. Moreover, each point in the space-time mani-

fold corresponds to a physical event and the manifold itself is four-dimensional and

Lorentzian, which means it possesses a metric and corresponding Levi-Civita con-

nection. The Lorentzian character of the space-time manifold is crucial as it implies

there exists causal structure, an important feature of reality.

The condition of general coordinate covariance means the equations of gravity and

the mathematical entities in them are to be expressed in a form that is independent

of the particular coordinates used. This means it is the position of the events in

space-time and its geometry that are of significance, not how we label them. This

implies gravitation should be formulated in terms of tensors.

The fourth condition is that we require that in the limit of zero gravity the non-

gravitational laws of physics must reduce to the laws of special relativity. The

evidence for this comes largely from high-energy physics and is true for most smooth

Lorentzian manifolds, where for all points on the manifold it is possible to make a

local coordinate transformation to normal coordinates that recover special relativity

at leading order. This is a manifestation of the weak equivalence principal, which

states that a freely falling frame in a gravitational field is the same as an inertial

frame in the absence of gravity (up to tidal forces).

The condition that the field equations can be derived from an invariant action

principle is justified by two ideas. Firstly, given the requirement of varying an ac-

tion in quantum mechanics it may be necessary to include this method in a theory

of gravity if we are to one day unify both quantum mechanics and gravitation.

Furthermore, it is through variational principles that allows us to find covariantly

conserved quantities and enables us to form conservation laws, such as the conser-

vation of energy and momentum, via Noether’s theorem.

The condition that there does not exist a priori geometric structure in the theory

means all gravitational fields can be solved for through the dynamics of the field

equations, i.e. there is no prior geometry. Finally, requiring a simple theory is a

condition justified through what might be attributed to Occam’s razor: that a theory

with minimal functions and greater simplicity is a better model. Nevertheless, this

has often been relaxed to study exotic alternative theories of gravity.

General relativity satisfies all the above conditions and several others [126]:

1. The strong equivalence principle.

2. Newton’s ‘constant’ is truly a constant in space and time.
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3. The action is linear in second derivatives of the metric.

4. The metric is the only dynamical gravitational degree of freedom.

The strong equivalence principle is the idea that massive, astronomical, bodies

with gravitational binding energy will follow geodesics of space-time. This is an

extension of the weak equivalence principle, which only holds for freely falling (test)

particles. The second condition means that not only should this theory give the

correct Newtonian limit in our Solar System, but the same over time and space.

This condition is violated in more complex theories of gravity with a varying New-

ton’s constant, e.g. Brans-Dicke theory. The third condition ensures that the field

equations in general relativity are of no higher than second order in derivatives of

the metric. If this does not hold then new degrees of freedom exist in the theory of

gravity. Often these new degrees of freedom have negative energy and the theory is

plagued by ghost instabilities. The final condition means we do not consider other

fields beyond (or rather than) the metric tensor. It is important to note that, given

these conditions, general relativity is the simplest theory of gravity that can be con-

ceived of, and any modification to it increases the complexity of the dynamics in

the field equations.

2.2. Differential geometry

The mathematics of general relativity is differential geometry. In this section we

outline the crucial features of differential geometry relevant for general relativity.

For further introduction see Refs. [131, 133, 168].

2.2.1. Metrics

Given a four-dimensional differentiable manifold,M, we can define space-time points

p ∈M with coordinates xµ(p). Furthermore, at all points we can associate vectors,

covectors and tensors with tangent and cotangent spaces. We can also define a

metric tensor, gµν , such that it is a symmetric (0,2) tensor field, gµν = gνµ, and

non-degenerate, gµνu
µvν = 0 for all vectors uµ if and only if vν = 0. Moreover,

in general relativity we require M to be a Lorentzian manifold; so throughout this

thesis we choose M to have signature (-,+,+,+).

Given that the metric is non-degenerate this implies it is invertible

gµαgαν = δµν , (2.1)
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where δµν is a Kronecker delta: δµν = 1 if µ = ν and δµν = 0 otherwise. The metric

provides an isomorphism between vectors and covectors, such that given a vector vµ

we can define a covector vν = vµgµν , and given a covector uµ we can define a vector

uν = uµg
µν . The metric allows us to raise and lower space-time indices.

We note that the metric allows us to encode geometric notions of “orthogonality”

and “norms” of vectors. The norm of a vector vµ is given by |v|2 = gµνv
µvν , and two

vectors, uµ and vν , are orthogonal if gµνu
µvν = 0. Note that this can be thought

of as the generalisation of the dot product of two vectors in Euclidean space. This

property makes the metric tensor essential in physics for the measuring of invariant

distances in manifolds.

2.2.2. Geodesics and Christoffel symbols

The geodesic equation can be derived from a variation of the action principle and

provides a definition of the Christoffel symbol. Given a metric we can define the

action for two timelike separated points λ0 and λ1 by

S =

∫ λ1

λ0

ds , (2.2)

where

ds =
√
−gµνdxµdxν (2.3)

is the line element. We can minimise this action, reparameterise it in terms of proper

time dτ 2 = −ds2, and use the Euler-Lagrange equation to find the geodesic equation

d2xβ

dτ 2
+ Γβαν

dxα

dτ

dxν

dτ
= 0 , (2.4)

where we have defined the Christoffel symbol as

Γµνλ =
1

2
gµρ (gρλ,ν + gνρ,λ − gνλ,ρ) . (2.5)

Note that Γµνλ is symmetric in lower indices and does not define a tensor.

Finally, a vector uµ is said to be timelike, null, or spacelike depending on whether

gµνu
µuν is negative, zero, or positive, respectively, given the metric gµν has signature

(-,+,+,+).
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2.2.3. Covariant derivatives and curvature

The covariant derivative provides the notion of a partial derivative with tensorial

properties. A metric gµν allows us to define the covariant derivative ∇µ of tensorial

quantities in M, in association with the Levi-Civita connection. Specifically, the

Levi-Civita connection is the unique connection that is defined as being torsion-free

and gives ∇µgµν = 0. In terms of the Christoffel symbol we define the covariant

derivative of a tensor T νλ as

∇µT
ν
λ = T νλ,µ + ΓνσµT

σ
λ − ΓσλµT

ν
σ . (2.6)

In the neighbourhood of a point p ∈ M there is a coordinate system, normal co-

ordinates, in which the components of the Christoffel symbols vanish and so the

covariant derivative is simply given by a partial derivative.

The notion of curvature arises from the commutator of covariant derivatives acting

on a vector vµ. More concretely, one has that

∇α∇βv
µ −∇β∇αv

µ = Rµ
δαβv

δ , (2.7)

where Rµ
δαβ is the Riemann curvature tensor. The Riemann tensor can be written

as

Rµ
νλρ = Γµνρ,λ − Γµνλ,ρ + ΓµλσΓσνρ − ΓµρσΓσνλ . (2.8)

Contracting the Riemann tensor gives the Ricci tensor, Rµν = Rα
µαν , and Ricci

scalar, R = gµνRµν . At this stage we will also define the Einstein tensor

Gµν = Rµν −
1

2
Rgµν . (2.9)

We observe that the Riemann tensor satisfies the following relations:

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ , and Rαβγδ +Rαγδβ +Rαδβγ = 0 , (2.10)

the former relations are known as skew and interchange symmetries; the latter re-

lation is known as the first Bianchi identity. The Riemann tensor also follows a

differential identity, known as the second Bianchi identity, given by

∇αRβγδε +∇βRγαδε +∇γRαβδε = 0 . (2.11)

Contracting the second Bianchi identity twice gives the well-known conservation of
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Gµν :

∇µGµν = ∇µ

(
Rµν −

1

2
Rgµν

)
= 0 . (2.12)

2.2.4. Lie derivatives

Another type of invariant derivative on a manifold is the Lie derivative, the infinites-

imal diffeomorphism. This measures the change of a tensor T µν as it is transported

along the direction given by a vector field ξα, and is denoted by Lξ such that

LξT µν = ξαT µν,α − ξµ,αTαν + ξα,νT
µ
α , (2.13)

and can be given on any differential manifold, with or without a metric. Moreover

Eq. (2.13) is itself a tensor.

If LξT = 0 for some tensor T then the diffeomorphism due to ξ is said to be

a symmetry transformation of the tensor T . For the metric tensor g, the diffeo-

morphisms that are symmetries of g are isometries and the vector fields satisfying

Lξg = 0 (which generate isometries) are defined as Killing vectors.

2.3. Einstein’s field equations

Space-time corresponds to the pair (M, gµν), where the metric satisfies Einstein’s

field equations [86]

Rµν −
1

2
Rgµν + Λgµν = 8πTµν . (2.14)

However, throughout this work we will consider the field equations in the equivalent

form:

Rµν = 8π
(
Tµν − 1

2
Tgµν

)
+ Λgµν , (2.15)

where T ≡ T µµ , and we have introduced the energy-momentum tensor, Tµν , and the

cosmological constant Λ. The energy-momentum tensor encodes information about

the matter in the space-time. The field equations can be derived by varying the

Einstein-Hilbert action together with the action for the matter fields.

Additionally, from the Eq. (2.12), and the field equations, Eq. (2.14), the conser-

vation of energy-momentum is implied

∇µTµν = 0 , (2.16)

because by definition ∇µgµν = 0. The energy-momentum conservation equation,
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above, implies that special relativity can be recovered in the neighbourhood of every

point in space-time, up to tidal forces.

Finally, we note that in general relativity test particles move along timelike

geodesics while rays of light move along null geodesics.

2.4. Exact solutions

There are many exact solutions of the field equations that are of physical interest in

our Universe, see Ref. [155]. These range from the Schwarzschild and Kerr solutions

for black holes to the Friedmann solutions for cosmology, and the Minkowski space-

time, useful for studies of weak gravitational systems. It is the latter two space-times

and their applications that we are concerned with here.

2.4.1. Minkowski solution

The simplest example of a solution to Eq. (2.14) is given by a line element

ds2 = ηµνdx
µdxν , (2.17)

with metric

ηµν = diag(−1, 1, 1, 1) , (2.18)

which implies Rµναβ = 0. Given the vacuum field equations, where Tµν = 0 and

Λ = 0, this implies Rµν = 0. Therefore, the Minkowski metric is a solution to the

vacuum field equations with no cosmological constant [155]. Moreover, any metric

related to the Minkowski metric, Eq. (2.18), by a coordinate transformation is also

a solution to the vacuum field equation with no cosmological constant.

The fact that the Minkowski space-time is a solution to the vacuum field equa-

tions, with no cosmological constant, has crucial physical significance in fundamental

physics. It means that, in the limit where there is no matter in the Universe there

is a space-time solution, the Minkowski solution, where the non-gravitational laws

of physics reduce exactly to the laws of special relativity.

Moreover, for an isolated system which is both weak-field and slowly-varying,

modelled by small metric perturbations of the Minkowski space-time and large den-

sity contrasts, the Newton-Poisson equation and Newton’s acceleration equation can

be derived from the field equations and geodesic equations, respectively. This is an

essential feature of a realistic gravitational theory and a key justification for gen-

eral relativity. Additionally, the relativistic corrections to Newtonian gravity are
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accounted for in the post-Newtonian limit of general relativity, see Chapter 4.

2.4.2. FLRW solution

The cosmological principle states that: there is no preferred point or direction in

space. In cosmology this is applied to the Universe after some coarse-graining, and

is justified by observations from the CMB. Geometrically, we take this to require

spatial homogeneity and isotropy, so no point or direction in space is special. For an

expanding space-time the unique homogeneous and isotropic space-time geometry

is the FLRW space-time given by the line-element [82, 169]

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

))
, (2.19)

where a(t) is the scale factor in terms of cosmic time, k is the spatial curvature and we

have written the above line-element in spherical polar coordinates. The terms in the

large parentheses, above, correspond to the metric on a homogeneous and isotropic

three-dimensional spatial geometry, for which there are three possibilities: a flat,

closed or open three-space corresponding k equal to 0 ,+1 and −1, respectively.

Note that k has dimensions length−2. For this work we will consider geometries

which are flat k = 0. We can write the above metric in terms of conformal time τ

via a conformal transformation a2(τ)dτ 2 = dt2. Minkowski space-time is equivalent

to the FLRW space-time in the case where a = 1, and k = 0.

The precise functional form of a(t) depends on the matter content of the space-

time and the value of the curvature constant k. The energy-momentum tensor for

standard cosmology is often taken to be a perfect fluid, given by

Tµν = (ρ+ p)uµuν + pgµν , (2.20)

where ρ and p are the energy density and pressure, respectively, measured by ob-

servers with four-velocity

uµ ≡ ∂xµ

∂tp
, (2.21)

where tp is the proper time comoving with the fluid. This implies the constraint

uµuµ = −1 . (2.22)

For comoving observers cosmic time is equal to proper time, such that t = tp.

For a homogeneous and isotropic perfect fluid and FLRW metric the field equa-
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tions imply that ρ(t) and p(t). Moreover, given the conservation equations, and for

an equation of state p = wρ, where the equation of state parameter is given by w,

and k = 0 we can write the well-known solutions for different cosmological epochs

in our Universe:

Radiation domination: w =
1

3
⇒ a(t) ∝ t1/2 (2.23)

Matter domination: w = 0⇒ a(t) ∝ t2/3 (2.24)

Λ domination: w = −1⇒ a(t) ∝ exp

(√
Λ

3
t

)
. (2.25)

At this stage we define the Hubble parameter H = ȧ
a
, and the conformal Hubble

parameter H = a′

a
.

2.5. Introduction to perturbative solutions

Perturbative expansions are used extensively in gravitational physics, as the full

Einstein equations, Eq. (2.15), can be very difficult to solve exactly for many im-

portant physcial scenarios. These expansions come in a variety of different forms,

and are usually constructed or adapted to be used in particular situations of phys-

ical interest [27, 141]. The two perturbation expansions we discuss in detail in the

following chapters are the post-Newtonian expansion and cosmological perturbation

theory. These are by no means the only perturbative constructions that can be

applied to understand relativistic gravity, but they are well suited to understanding

it in cosmology.

The post-Newtonian expansion is valid for systems of with large density contrasts,

on scales of order 100Mpc or less. Formally, it is a weak-field and slow-motion

expansion. On the other hand, cosmological perturbation theory is a weak-field

expansion that describes an entire universe. It is normally applied to the largest

scales of order the horizon-size down to the homogeneity scale, of order of 100Mpc,

where density contrasts are small. Moreover, spatial derivatives do not add largeness,

nor do time derivatives add smallness, to gravitational potentials or matter sources,

as is the case for post-Newtonian gravity.

It is important to note that for the rest of this chapter post-Newtonian gravity

and cosmological perturbation theory are perturbative expansions which in fact

correspond to two limiting regimes of the same equations, Einstein’s field equations,

Eq. (2.15), and are associated with the so-called near and wave zones, respectively
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(see Sections 3.2.1 and 4.3.1). Furthermore, we describe how to formally define

perturbations in the field equations, which can allow us to systematically write the

field equations in a hierarchical manner.

2.5.1. Limits of the field equations

The starting point for both the post-Newtonian and cosmological perturbation ex-

pansions is the realisation that the Einstein equations can be written non-perturbatively

as a set of wave equations, which take the form [120]

�ψ = −4πµ , (2.26)

where � is the D’Alembertian operator associated with the metric of space-time, ψ

represents the various gravitational potentials associated with the metric, and µ is

a source term (derived from the components of the energy-momentum tensor, and

the components of the metric with up to one derivative).

Equation (2.26) is a wave equation with null characteristics, so its retarded solu-

tion, assuming certain boundary conditions, is given by a time dependent Green’s

function solution, of the form [141]

ψ(t,x) =

∫
C−

µ(t− |x− x′|,x′)
|x− x′|

d3x′ , (2.27)

where C− the past light cone of the point x = (t,x). The retarded time t− |x− x′|
is the latest time at which a light signal emitted from position x′ would be received

at position x before time t. These solutions, in general, represent a set of waves,

with a characteristic wavelength and frequency that are determined by the source,

µ. We will refer to these as λc and ωc, respectively. Because Eq. (2.27) represents

a set of null waves, these quantities are related by λc = 2π/ωc = tc, where tc is the

characteristic time-scale of the source.

So far, we have not used perturbation theory at all. If we wish to use perturbation

theory to solve the field equations in Eq. (2.26) we need to understand how the

integral in Eq. (2.27) behaves under the relevant approximations. Specifically, we

need to know if the length scale under investigation is smaller or greater than λc.

These regimes are often referred to in the relativistic astrophysics literature as the

“near zone” and the “wave zone”, respectively [141]. We will use the same ideas,

but apply them to cosmology instead. We will then refer to these two regimes as the

“Newtonian”, or “post-Newtonian”, and the “cosmological”, regimes respectively.
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The relevant expansion for these regimes are, unsurprisingly, the post-Newtonian

expansion and cosmological perturbation theory, respectively.

More formally, it is now from the retarded solution to Eq. (2.27), in the limiting

regimes of the near-zone on length scales LN � λc, and wave-zone on length scales

of order LC ∼ λc, that we find the field equations are dominated by a Laplacian

equation and wave equation at leading-order, respectively. This is discussed in more

detail in Sections 3.2.1 and 4.3.1, respectively.

2.5.2. Defining perturbations

Perturbation theory applied to cosmology is often such that the Universe is modelled

by a manifold,M. In the perturbative formalisms of both cosmological perturbation

theory and post-Newtonian gravity the perturbed manifold includes inhomogeneous

structure whereas the background manifold is homogenous and isotropic1. We label

this fiducial background manifold M̄. A diffeomorphism exists between these two

manifolds. This means that there exists a function, with an inverse, both of which

are continuously differentiable, between them.

Diffeomorphisms, however, are relatively weak conditions, they do not mean the

physical properties are the same for these two manifolds (in spite of them having

the same physical laws for all points). After all, we do not want these manifolds to

be the same physically, we want one to include inhomogeneous structure and the

other not to in both cosmological perturbation theory and post-Newtonian gravity.

We illustrate this by writing the field equations in the background manifold, Gµν =

8πTµν , assuming Λ = 0 for simplicity. We then write the field equations in the

perturbed manifold as Gµν +δGµν = 8π(Tµν +δTµν), due to differences in the metric

and sources of energy-momentum. These two sets of equations do not have the same

physical properties, and they do not describe the same physical situations, due to

non-zero δGµν and δTµν .

Both the background and perturbed manifold are related by a corresponding

vector field, or gauge generator. Formally, we note that all tensorial quantities Q

can be split up into a background Q(0) and perturbed δQ part such that

Q ≡ Q(0) + δQ , (2.28)

where Q(0) and δQ are tensorial quantities in the tangent spaces of a point in the

1A covariant approach to cosmological perturbation theory has been developed by Ellis and Bruni
[87], and earlier work by [103].
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background and perturbed manifolds, respectively. Moreover, δQ itself can further

be split up as a power series such that

δQ =
∞∑
n=1

1

n!
Q(n) , (2.29)

where n denotes the order in perturbations, which we write in terms of a smallness

parameter E such that O
(
Q(n)

)
∼ O (En). This is a single parameter expansion.

Each of these perturbations Q(n) can be pulled-back to all manifolds {MEi}, where

n ≤ i. These manifolds are taken to approximate the physical manifold M with

increasing precision with higher i. All quantities Q in the field equations are per-

turbed, this includes the matter sources and the metric and allows us to derive a

hierarchical set of field equations, where solutions to the lower-order field equations

are sources to higher-order ones. Hence perturbation theory allows quantities in the

real Universe, Q, to be modelled to high precision.

Note that we relate points on these manifolds by writing them in terms of co-

ordinates xµ, originally defined on the background manifold M̄. Furthermore, by

studying small changes in these coordinates and ensuring background quantities re-

main unchanged, we are able to see how perturbations change under an infinitesimal

coordinate, or gauge, transformation. In doing this we are able to write the field

equations in terms of perturbed quantities which do not change under infinitesimal

gauge transformations and therefore represent physical degrees of freedom.

In the following two chapters we consider the book-keeping for both cosmological

perturbation theory and post-Newtonian gravity, before considering them simulta-

neously in our two-parameter expansion.



3. Cosmological Perturbation

Theory

3.1. Introduction

The standard model of cosmology assumes a spatially homogeneous and isotropic

FLRW background metric to describe the expansion of the Universe on large scales.

This successfully describes the large-scale expansion of the Universe from a hot and

dense initial state, dominated by radiation, to the cool and diffuse state dominated

by non-relativistic matter, and the cosmological constant dominated epoch of the

present day. This model only requires a handful of parameters such as the present

temperature of the CMB radiation and the density parameters.

However, this homogeneous model cannot describe the complexity of inhomo-

geneous structure we see in the late Universe where galaxies consist of stars and

galaxies make up clusters, groups and superclusters, over a huge range of scales.

For the study of structure we require inhomogeneity and anisotropy. For modelling

this cosmological perturbation theory is often used. This is a simple, systematic

approach which starts from the exact spatially homogeneous and isotropic FLRW

model as a background solution and adds inhomogeneous perturbations to it, and

allows for the introduction of increasing complexity order-by-order in perturbation

theory.

In this chapter we review the key features of cosmological perturbation theory.

3.2. The formalism

3.2.1. An expansion in the wave-zone

Cosmological perturbation theory is a weak-field, but not a slow-motion expansion.

Cosmological perturbation theory is valid in a limiting regime of Einstein’s field

equations, sometimes known as the wave-zone, on scales up to and beyond the

particle horizon of the observable Universe. Such length scales are, by definition,

33
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comparable to the characteristic wavelength, λc, defined in Section 2.5.1, such that

[120]

LC ∼ λC =
2π

ωc
= tc , (3.1)

where LC is the typical length scale associated with the regime of cosmological

perturbation theory. This means that characteristic velocities go like V ∼ LC/tc ∼ 1

(i.e. they are not small). Moreover, the variation in time of gravitational potentials

and matter fields cannot be considered small when compared to their variation in

space, which gives

ψ̇ ∼ |∇ψ| ∼ ψ

LC
, and µ̇ ∼ |∇µ| ∼ µ

LC
, (3.2)

respectively. These facts mean that, unlike the case of post-Newtonian gravity, we

cannot use V to track the smallness of gravitational potentials or matter fields.

Instead we have to hypothesize, or construct [73, 148], a background solution to

Einstein’s equations that can be used as a background to perturb around. In cosmo-

logical perturbation theory this is taken to be the Friedmann solutions, see Section

2.4.2.

3.2.2. Defining perturbations

Perturbations are defined such that tensorial quantities Q are perturbed around

Q(0), which exists in the background manifold, as seen in Eqs. (2.28) and (2.29) and

discussed in Section 2.5.2. Moreover, perturbations are associated with perturbed

manifolds as is Q. For cosmological perturbation theory the expansion parameter is

given by E ≡ ε. Note that throughout this chapter we will consider perturbations

up to second order in cosmological perturbation theory.

It is often convenient to slice the space-time manifolds, M̄ ,Mεn , into foliations

of spatial hypersurfaces of constant time, which is the standard 3 + 1 decomposition

of space-time [83, 128, 131]. In this chapter the foliation of space-time by spatial

hypersurfaces is given in terms of conformal time.

3.2.3. Perturbed metric

In cosmological perturbation theory the background space-time is often described

by a spatially flat (justified observationally [12, 78], and assumed throughout this

thesis) FLRW metric, g
(0)
µν (t). The FLRW metric is given by Eq. (2.19) in terms of
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cosmic time with curvature, and given here in terms of conformal time τ [83]

ds2 = g(0)
µν dx

µdxν = a2(τ)
(
−dτ 2 + δijdx

idxj
)
, (3.3)

where k = 0 and δij is defined as the comoving background spatial metric. Given

Eqs. (2.28) and (2.29) we can write perturbations to the metric to second order in

the following way [128]

gµν = g(0)
µν (τ) + g(1)

µν (xα) +
1

2
g(2)
µν (xα) + . . . , (3.4)

where g
(n)
µν (xα) such that n > 0, corresponds to perturbations. Nevertheless, contri-

butions to the metric at linear order have, to date, been the only ones required to

calculate cosmological gravitational phenomena. The ellipsis in this equation denote

terms that are smaller than g
(2)
µν ∼ O(ε2) (they should not be confused with quanti-

ties perturbed in the post-Newtonian expansion, as outlined in the next chapter).

We can write the perturbed components of the metric in the following way

g00 = −a2
(
1 + 2φ(1) + φ(2)

)
+ . . . (3.5)

g0i = a2

(
h

(1)
0i +

1

2
h

(2)
0i

)
+ . . . (3.6)

gij = a2
(
δij + 2C

(1)
ij + C

(2)
ij

)
+ . . . , (3.7)

where the perturbations to the space-time and space-space parts of the metric, h0i

and Cij, respectively, can be split into divergenceless vectors and transverse and

traceless tensors. This is given by

h0i = B,i − Si (3.8)

Cij = −ψδij + E,ij + F(i,j) + hij , (3.9)

the former is known as the shift and the latter are perturbations to the spatial

three-metric1. Also, we have omitted superscripts for simplicity. For the above per-

turbations φ, B,ψ and E are scalar perturbations, Si and Fi are vector perturbations

and hij is a tensor perturbation which we will now define.

Scalar perturbations are constructed such that they are necessarily curl-free, e.g.

B,[ij] = 0. Vector perturbations are divergenceless, e.g. F i
i, = 0. Note that here

1The g00 component of the metric is directly related to the lapse [131]
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divergence-free is defined with respect to the flat-space metric, rather than using

covariant derivatives, since perturbations are defined with respect to a spatially flat

background2. Raising and lowering spatial indices of vector and tensor perturbations

uses the comoving background spatial metric, δij, not the full metric, so for example

h j
i ≡ δjkhik. Tensor perturbations are transverse, h j

ij, = 0, and trace-free h i
i = 0,

using this we can also define the inverse perturbed metric in terms of these scalars,

vectors and tensors.

3.2.4. Perturbed matter sources

Given the four-velocity, defined in Eq. (2.21), the constraint equation (2.22), and the

above perturbed metric we can calculate the perturbed four-velocity up to second

order in ε

u0 = a−1

(
1− φ(1) − 1

2
φ(2) +

3

2
φ(1)2 +

1

2
v

(1)
k v(1)k + v(1)kh

(1)
k0

)
+ . . . (3.10)

ui = a−1

(
v(1)i +

1

2
v(2)i

)
+ . . . , (3.11)

where we have defined the spatial part of the four-velocity such that ui = a−1vi, in

terms of the three-velocity vi. This is due to the fact that proper time tp is cosmic

time t for comoving observers, and cosmic time and conformal time are related by

dt = adτ , therefore we can define the three-velocity

ui ≡ ∂xi

∂tp
=
∂xi

∂t
=

1

a

∂xi

∂τ
≡ 1

a
vi . (3.12)

Moreover, the three-velocity, at all orders in perturbation theory, can be decomposed

into scalar and divergenceless vector parts such that

vi ≡ δijv,j + v̂i . (3.13)

The remaining quantities to perturb are the energy density and pressure to second

order, given by

ρ = ρ(0) + ρ(1) +
1

2
ρ(2) + . . . (3.14)

p = p(0) + p(1) +
1

2
p(2) + . . . , (3.15)

2The decomposition of a four-vector into a curl-free and divergence-free part in Euclidean space
is known as Helmholtz’s theorem [113].
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where the quantities ρ(0) and p(0) are the energy density and pressure in the back-

ground FLRW geometry, respectively, and both have dimensions L−2
C . Allowing for

not only a perturbed energy density but also a perturbed pressure implies that the

field equations describe matter and radiation dominated epochs of the Universe.

In cosmological perturbation theory the energy-momentum tensor can be taken to

be a perfect fluid, with no anisotropic stress, this is given in Eq. (2.20). As in Ref.

[112], the proper energy density is the eigenvalue of the energy-momentum tensor

with eigenvector equal to the four-velocity

T µν u
ν = −ρuµ . (3.16)

Given the perturbed energy density, pressure, four-velocity and metric we can write

the fully perturbed energy-momentum tensor, T µν , to second order

T µν = T (0)µ
ν + T (1)µ

ν +
1

2
T (2)µ
ν + . . . , (3.17)

which includes the background, linear and second order parts. Explicitly to linear

order we have:

T00 = ρ(0) + ρ(1) − g(1)
00 ρ

(0) + . . . (3.18)

T0i = −ρ(0)(v
(1)
i + g

(1)
0i )− p(0)v

(1)
i + . . . (3.19)

Tij = p(0)(g
(0)
ij + g

(1)
ij ) + p(1)g

(0)
ij + . . . . (3.20)

Note that from the field equations, we require that the energy density and pressure

are homogeneous at lowest order – time dependent perturbations are allowed beyond

leading-order. The cosmological constant is unperturbed and background-order,

Λ ≡ Λ(0), but it has dimensions, [Λ] ∼ L−2
C . Additionally, note that we are able

to model a universe of multiple fluids by using the total energy-momentum tensor,

which is simply the sum of the energy-momentum tensors for each fluid.

3.2.5. Summary of book-keeping

We summarise the book-keeping of cosmological perturbation theory by noting that

all perturbations to the metric and matter fields are taken to have the same order-

of-smallness, ε, such that

ε ∼ |v(1)i| ∼ g(1)
µν ∼ L2

Cρ
(1) ∼ L2

Cp
(1) (3.21)



3.3: Gauges 38

(this is in contrast with post-Newtonian gravity as we will show in Section 4.3.4).

Cosmological perturbation theory is a simple perturbative expansion in a single

parameter ε around an exact solution to the field equations. Furthermore, the

book-keeping in cosmological perturbation theory is such that time derivatives are

not small with respect to spatial derivatives when acting on gravitational fields, see

Eq. (3.2), this is in contrast to what occurs in post-Newtonian gravity.

Additionally, the reader may notice we have included factors of L2
C above, the

characteristic length scale cosmological gravitational fields vary on. This allows us to

compare the dimensionless expansion parameter, peculiar velocity and gravitational

potentials to dimensional quantities like the perturbed energy density and pressure,

as above. This is necessary, strictly speaking, in order to establish that quantities

are of the same order of smallness. These additional factors are usually excluded in

the literature [128], but are crucial in understanding much of the work we present

in this thesis.

Substituting both the perturbed metric and matter sources into Einstein’s equa-

tion allows us to solve for each of the components of the metric. However, it is first

simpler to write the field equations in terms of gauge invariant quantities, this is

what is discussed in the following section. For further explanation of cosmological

perturbation theory the reader is referred to the review by Malik & Wands [128].

3.3. Gauges

General relativity is a diffeomorphism invariant, or covariant, theory meaning that

the form of the tensor equations that we use to describe it must be valid for any

set of coordinates. Diffeomorphisms obey a strict group structure, which guarantees

that we can transform any given solution into a new set of coordinates, and that the

result will still obey Einstein’s equations. However, splitting the field equations into

a background part and perturbations is not a covariant procedure, and therefore

introduces a coordinate or gauge dependence. By construction, under infinitesimal

gauge transformations the background remains the same and only perturbations are

affected. Given general perturbations about a fixed background, there is then a

freedom in coordinate re-parametrization of perturbations, and this is referred to as

a “gauge freedom”. This allows for the construction of gauge invariant variables,

and the field equations written in terms of these quantities appear greatly simplified.
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3.3.1. Gauge transformations

The gauge group of general relativity is the group of diffeomorphisms. The general

form of an infinitesimal diffeomorphism or gauge transformation can be written as

an infinitesimal change of coordinates [59, 132]

xµ 7→ x̃µ = eξ
α∂αxµ , (3.22)

where ξµ is known as the “gauge generator” and, for cosmological perturbation

theory, is a small quantity in the perturbation expansion, which to second order is

given by

ξµ ≡ ξ(1)µ +
1

2
ξ(2)µ + . . . . (3.23)

The expansion of the gauge generator, above, is necessary to ensure a closed system

of perturbations, so that no ‘new’ perturbations are generated in the field equations

under this transformation, for example at order O
(
ε3/2
)
. Note that the gauge

generator has dimensions of length LC because Eq. (3.22) refers to a change in

coordinates (which have dimensions of length). Moreover, these gauge generators,

at any order O (εn) can be decomposed into scalar and divergenceless vector parts

such that

ξ(n)0 ≡ δt(n) (3.24)

ξ(n)i ≡ δx(n),i + δx(n)i , (3.25)

where δxi,i = 0. The Stewart-Walker lemma states that linear perturbations of a

tensor field are gauge-invariant if the background of the tensor field is zero, constant

in time, or a linear combination of products of delta functions [156]. From this

lemma, a transformation of the above type leaves all background quantities and

constants invariant, but changes the form of the perturbations. In this expression

we have used the exponential map between coordinate systems, which guarantees

that the group structure of the manifold is preserved. We also note that ξµ is a four-

vector with indices which should be raised and lowered with the metric. However,

we use the convention set out in [128]; that ξi is lowered using the flat spatial metric

δij such that3 ξj ≡ δijξ
i.

Given a tensor field T , with coordinates xµ defined on a background manifold

3For completeness, with this notation, we write the inverse of ξj as ξ̄j = gjνξ
ν , rather than ξj .
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M̄, the Lie derivative tells us how the components of this tensor transform under

an infinitesimal transformation to coordinates x̃µ (see Eq. (3.22)). To arbitrarily

high-order the explicit form of the transformation applied to the tensor T , under

the coordinate transformation presented in Eq. (3.22), is given by the exponential

map [59, 128, 132]

T̃ = eLξT = T + LξT + 1
2
L2
ξT + . . . , (3.26)

where T̃ is the transformed tensor, Lξ is the Lie derivative along ξµ (see Eq. (2.13)).

So the Lie derivative can be used to compute the change in the tensors T and T̃ at

a point.

Given the above transformation rule we can now transform the entire metric,

and matter sources. All background quantities, like a(t), ρ(0), p(0) and Λ remain

invariant, and perturbations all transform. For the metric tensor, from Eq. (3.26),

at linear order we have

g̃(1)
µν = g(1)

µν + Lξg(0)
µν . (3.27)

Furthermore, at first order, we find all scalar, vector and tensor sources in the field

equations transform linearly and can all be split by taking derivatives, divergences

and traces of these transformations such that [128]

φ̃(1) = φ(1) +Hδt(1) + δt(1)′ (3.28)

ψ̃(1) = ψ(1) −Hδt(1) (3.29)

B̃(1) = B(1) − δt(1) + δx(1)′ (3.30)

Ẽ(1) = E(1) + δx(1) (3.31)

S̃(1)i = S(1)i − δx(1)i ′ (3.32)

F̃(1)i = F(1)i + δx(1)i (3.33)

h̃
(1)
ij = h

(1)
ij , (3.34)

where we can observe that, along with the background quantities, h
(1)
ij is gauge

invariant. For the matter perturbations we find

ρ̃(1) = ρ(1) + ρ(0)′δt(1) (3.35)

p̃(1) = p(1) + p(0)′δt(1) (3.36)
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ṽ(1) = v(1) − δx(1)′ (3.37)

˜̂v(1)i = v̂(1) − δx(1)i ′ . (3.38)

Note that p and ρ transform as four-scalars, whereas ψ, v, etc. transform as three-

scalars.

We could also consider the transformations of the metric and matter sources at

second order, which can be split into scalars, vectors and tensors by taking deriva-

tives and traces of these transformations, given explicitly in Ref. [128]. These

second-order transformations are highly non-linear and complex, for example the

second-order metric transforms according to:

g̃(2)
µν = g(2)

µν + g
(0)
µν,λξ

(2)λ + g
(0)
µλ ξ

(2)λ
,ν + g

(0)
λν ξ

(2)λ
,µ + 2

(
g

(1)
µν,λξ

(1)λ + g
(1)
µλ ξ

(1)λ
,ν + g

(1)
λν ξ

(1)λ
,µ

)
+g

(0)
µν,λαξ

(1)λξ(1)α + g
(0)
µν,λξ

(1)λ
,α ξ(1)α + g

(0)
µλ

(
ξ(1)λ
,να ξ

(1)α + ξ(1)λ
,α ξ(1)α

ν

)
+2
(
g

(0)
µλ,αξ

(1)αξ(1)λ
,ν + g

(0)
λν,αξ

(1)αξ(1)λ
,µ + g

(0)
λαξ

(1)λ
,µ ξ(1)α

,ν

)
+g

(0)
λν

(
ξ(1)λ
,µα ξ

(1)α + ξ(1)λ
,α ξ(1)α

,µ

)
. (3.39)

3.3.2. Gauge invariant quantities

Having performed infinitesimal coordinate transformations of the metric and sources

of energy-momentum, we are now in a position to isolate and remove the superfluous

degrees of freedom associated with infinitesimal diffeomorphisms. This is normally

undertaken in cosmological perturbation theory to represent the physical degrees

of freedom in the problem only, and will remove the possibility of any interference

from spurious gauge modes. These problems were circumvented by Bardeen, who

was the first to construct combinations of perturbations that remained invariant

under general gauge transformations [32]. There are, in fact, an infinite number of

such quantities. This removes all ambiguity, and allowed perturbed field equations

to be written down that were guaranteed to be free from all gauge freedoms.

The methodology for calculating such quantities was pioneered by Bardeen and

developed for use in second-order cosmological perturbation theory [128]. We will

use the example of calculating gauge invariant quantities that correspond to the

longitudinal gauge. These gauge invariant quantities reduce to the metric perturba-

tions in longitudinal gauge when E = B = 0 and Fi = 0 (we omit superscript labels

here for simplicity, but the methodology is true for all orders in perturbation).

We start by choosing gauge generators, δx, δxi and δt, such that Ẽ = B̃ = F̃i = 0,
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this fixes four degrees of freedom. We will then substitute these quantities back into

the expressions for all of the transformed perturbations in the metric and matter

fields. The results will be gauge invariant, as the original gauge transformations

were written down in a completely arbitrary coordinate system. This means that

newly constructed quantities cannot depend on any choice of gauge, and hence must

be gauge invariant.

Bardeen’s potentials are gauge-invariant quantities calculated from Ẽ = B̃ = 0,

and are given by

φ(1) ≡ φ(1) +H
(
B(1) − E(1)′)+

(
B(1) − E(1)′)′ (3.40)

ψ(1) ≡ ψ(1) −H
(
B(1) − E(1)′) . (3.41)

When the field equations are written in terms of these gauge invariant quantities

they correspond to the field equations in the longitudinal gauge. Moreover, gauge

invariant quantities can be calculated for metric potentials Si or Fi and matter

sources ρ(1), p(1), v(1) and v̂(1)i in the longitudinal gauge. For the matter sources we

find:

ρ(1) ≡ ρ(1) + ρ(0)′ (B(1) − E(1)′) (3.42)

p(1) ≡ p(1) + p(0)′ (B(1) − E(1)′) (3.43)

v(1) ≡ v(1) + E(1)′ (3.44)

v(1)i ≡ v̂(1) + F (1)i ′ (3.45)

h
(1)
ij is trivially gauge-invariant.

3.3.3. Choice of gauge

As discussed in Section 3.3.2 the field equations contain not only the essential degrees

of freedom required to describe the physical situation at hand, but also four super-

fluous degrees of freedom from the gauge generator, and so can simplify greatly by

choosing a gauge. There are, in fact, an infinite number of gauges we can take, but

there are several which are normally chosen, one of which is the longitudinal gauge,

discussed in Section 3.3.2. The field equations in terms of a particular gauge are of

the same form as the field equations written in terms of gauge invariant quantities

(which in fact contain all metric potentials). There are several that are traditionally

chosen in cosmological perturbation theory, we will list them and their conditions
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[128]:

Longitudinal or Newtonian gauge: B = E = 0 and usually Fi = 0, or Si = 0.

Spatially flat gauge: ψ = E = 0 and Fi = 0.

Synchronous gauge: φ = B = 0 and Si = 0.

Comoving orthogonal gauge: v = B = 0 and v̂i = 0.

Total matter gauge: v +B = 0,E = 0 and Fi = 0.

Uniform density gauge: ρ(1) = 0, and sometimes E = 0 and Fi = 0.

3.4. Dynamics

3.4.1. The field equations

By substituting the perturbed metric and energy-momentum tensor into the field

equations (2.14), we can write the field equations to lowest order. This gives the

Friedmann equations

H2 =
8π

3
a2ρ(0) +

1

3
a2Λ (3.46)

H′ = −4π

3
a2
(
ρ(0) + 3p(0)

)
+

1

3
a2Λ , (3.47)

and solutions discussed in Section 2.4.2.

At first order, in terms of Bardeen’s variables and the gauge invariant quantities

corresponding to the matter sector, see Section 3.3.2, the scalar field equations give

3H(ψ(1)′ +Hφ(1))−∇2ψ(1) = −4πa2ρ(1) (3.48)

ψ(1)′ +Hφ(1) = −4πa2
(
ρ(0) + p(0)

)
v(1) . (3.49)

Furthermore, we can write the vector and tensor field equations

∇2S
(1)
i = −16πa2

(
ρ(0) + p(0)

) (
v

(1)
i − S

(1)
i

)
(3.50)

h
(1)′′
ij + 2Hh

(1)′
ij ∇2h

(1)
ij = 0 , (3.51)

where Si = Si + F(1)i′ is a gauge invariant quantity in terms of F(1)i. All the above

field equations are now in terms of gauge invariant quantities (all background quan-
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tities are gauge invariant). These equations are therefore valid in any gauge but

when the longitudinal gauge is fixed then these equations look the same as field

equations in the longitudinal gauge (e.g. Si and φ are simply replaced by Si and φ,

respectively). Moreover, we have split the equations into scalar, vector and tensor

parts via derivatives and traces of the field equations. In cosmological perturbation

theory scalar, vector and tensor perturbations decouple with each other at first or-

der in perturbations, and so the equations that govern each of them can be solved

independently of the other two sectors. We refer the reader to Ref. [128] for the

field equations at second order.

3.4.2. Conservation equations

At lowest order, the temporal part of the conservation equation (2.16), gives us the

continuity equation

ρ(0)′ = −3H(ρ(0) + p(0)) , (3.52)

and at linear order

ρ(1)′ = −3H
(
ρ(1) + p(1)

)
+ 3ψ′

(
ρ(0) + p(0)

)
−
((
ρ(0) + p(0)

)
vi
)
,i
, (3.53)

which is not gauge-fixed. The spatial part of the conservation equation at leading-

order is linear and gives us the Euler equation

v(1)i′ +Hv(1)i − 3Hp
(0)′

ρ(0)′v
(1)i = −

p
(1)
,i

ρ(0) + p(0)
− φ(0)

,i , (3.54)

which again is not gauge fixed. The conservation equations can also be derived

beyond linear order [128].

These equations can be used to help solve Einstein’s field equations for the grav-

itational potentials and matter sources. It can also be noted that we require each

of the components of the metric only up to first order in perturbations, in order to

consistently write the equations of motion of a time-like particle to first order. This

is a departure from the more complicated situation that arises in post-Newtonian

gravity.

Cosmological perturbation theory can be applied, given a fluid with known equa-

tion of state, and one can derive both the background and perturbed equations.

This allows the theory to be applied to both the radiation-dominated and matter-

dominated stages of the Universe’s evolution, as well as to the current cosmological-
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constant-dominated epoch. This is a versatility that is absent from the standard

approach in post-Newtonian gravity, as radiation and Λ are almost completely neg-

ligible for the study of gravity in the Solar System, binary pulsars, and other such

small-scale astrophysical environments. If one wants to apply such expansions to

super-clusters in a cosmological context, however, then more care may be required.

For further explanation of cosmological perturbation theory, the reader is referred

to the review by Malik and Wands [128].



4. Post-Newtonian gravity

4.1. Introduction

The standard model of gravitation assumes general relativity, which fulfils the as-

sumptions stated in Section 2.1 and is justified observationally by local tests of

gravity. From general relativity in the appropriate weak-field slow-motion limit we

can derive Newtonian gravity. Moreover, we can derive small relativistic corrections

to Newtonian gravity using post-Newtonian gravity. It is the post-Newtonian for-

malism, applied to general relativity, that we discuss in this section [66, 141, 171].

This approximation is sufficiently accurate to encompass all solar system tests that

have been performed, tests which occur on scales greater than the Schwarzschild

radius of the constituent objects but much less than the Hubble radius.

Post-Newtonian gravity is designed to describe large density contrasts and isolated

systems, such that peculiar velocities remain small, this is known as the near-zone.

For peculiar velocities to remain small we require that the velocity due to the Hubble

flow, HLN , must be smaller than or equal to the peculiar velocities of the constituent

objects, this is true for lengths scales less than ∼ 100Mpc. Traditionally, for post-

Newtonian gravity to hold, we require that far from the source of gravitational

potentials we expect the metric to be described by the flat Minkowski metric [66,

171]. Note, however, that the post-Newtonian expansion has also been constructed

around a time dependent background metric, g
(0)
µν (t), the FLRW metric. Indeed, a

small enough region of perturbed FLRW can be shown to be entirely equivalent to

perturbed Minkowski space at both Newtonian [73] and post-Newtonian orders [148].

We consider the post-Newtonian expansion on an FLRW background throughout

this chapter.

The post-Newtonian formalism is not adequate, however, for studies of systems

which include compact objects where variations in time are comparable to variations

in space for constituent objects, such as near binary pulsars, or for gravitational

radiation and Horizon-sized scales, such as in cosmology, where the slow motion

assumption no longer holds. In these systems the gravitational potentials vary on

46
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similar length and time scales, a regime that is sometimes known as the wave-zone.

In some respects, post-Newtonian gravity resembles the quasi-static (or slow-motion)

limit of cosmological perturbation theory. We will comment on this link, and its

limitations, in later sections.

In this chapter we review the key features of Newtonian gravity and the post-

Newtonian formalism. For further details on the post-Newtonian expansion we refer

the reader to [141, 171].

4.2. Newtonian gravity

4.2.1. Newton’s laws

In the Solar System gravitation is weak enough that Newtonian theory is adequate

to describe all but small relativistic effects. To an accuracy of 10−5 light rays travel

in straight lines and test particles move according to Newton’s acceleration equation

[131]

v̇i = U,i , (4.1)

where vi is the peculiar velocity and U is the Newtonian gravitational potential

produced by a rest-mass energy density according to

∇2U = −4πρ . (4.2)

This is known as Newton’s law of gravitation. For reasonable relativistic theories of

gravity, in the slow-motion and weak-field limit, we expect to derive the accelera-

tion equation, (4.1), from the geodesic equation, (2.4), and Newtonian gravitation

equation, (4.2), from the field equations for the theory of gravity in question.

A perfect fluid obeys the Eulerian equations of hydrodynamics given by [131]

∂tρ+ (ρvi),i = 0 (4.3)

(∂t + vj∂
j)vi = ρU,i − p,i , (4.4)

which are known as the continuity (or mass conservation) equation and momentum

conservation (or Euler) equation, respectively. Here p is pressure. From a metric

theory of gravity we expect this equation to be derived from the Bianchi identity or

the derived conservation of stress-energy, see Eq. (2.16).
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Newtonian perturbation theory is formulated from perturbing each term in the

dynamical equations for Newtonian gravity, above. This produces dynamics that

are a subset of those derived from the post-Newtonian limit of Einstein’s field equa-

tions, (2.15), the geodesic equation, (2.4), and the conservation equations, (2.16).

However, the dynamics from the post-Newtonian limit are more complex because

Einstein’s field equations, (2.15), and the geodesic equation, (2.4), are non-linear,

whereas Newton’s law of gravity, Eq. (4.2), and Newton’s acceleration equation,

(4.1), are linear. Moreover, the conservation of energy-momentum, field equations

and geodesic equations derived using post-Newtonian gravity allow for all pertur-

bations from the space-time metric to be solved for, this includes non-scalar gravi-

tational potentials and scalar gravitational fields other than U . As the concept of a

space-time metric does not exist in Newtonian gravity such gravitational potentials

do not appear in Newtonian perturbation theory.

For the post-Newtonian book-keeping, outlined in the next section, Eqs. (4.1)-

(4.4) are all derived at leading-order from the Newtonian limit of general relativity

via the geodesic equation, field equations and conservation of energy-momentum.

Beyond-leading-order post-Newtonian corrections can also be derived.

4.2.2. Newtonian N-body simulations

N-body simulations have been crucial in our understanding of physical cosmology,

in the evolution of large-scale structure and the justification of ΛCDM cosmology.

The Millenium simulation, which uses a Newtonian approximation in an expanding

background, enables cosmologists to study the processes which lead to the forma-

tion of structure with large density contrasts on the largest scales, such as galaxy

halos and filaments, due to dark matter [55]. The latest simulation, the Millennium

XXL simulation, used a cube of length 3000Mpc h−1 with periodic boundary con-

ditions, and 67203 particles, each of mass ∼ 109M�. The motion of each particle

is determined from Newton’s law of gravitation and the acceleration equation for

each particle. It also requires and solves the Eulerian equations of hydrodynamics.

Additionally, the Friedmann equations are solved for given specified cosmological

parameters. The initial conditions obey constraints from the CMB and the evo-

lution is taken to the present day. Cosmologists use this simulation to study the

distribution of dark matter halos and galaxies, as the resolution is taken to be valid

from ∼ 10Gpc down to ∼ 10kpc. Indeed, the Millenium simulation has shown that

our models can produce the voids and filaments that form the cosmic web we observe

today, and which remains crucial for our understanding of cosmology [45]. Finally,
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note that N-body simulations, beyond Newtonian ΛCDM, which include relativistic

effects, have been studied in Refs. [16–19, 67, 69, 91, 92, 101, 145, 159].

4.3. Post-Newtonian formalism

4.3.1. A slow-motion expansion

There are two key features of the post-Newtonian expansion: it is both a slow-motion

expansion, valid on small-scales, and a weak-field expansion.

Firstly, the post-Newtonian formalism is valid in a regime where distance scales

are small compared to the characteristic wavelength, λc, such that [120, 141]

LN � λc =
2π

ωc
= tc , (4.5)

where we have introduced the typical length scale associated with the Newtonian

regime, LN . This is analogous to how the near-zone is treated for isolated systems.

Another way of stating this condition would be to say that the velocities of the

sources are, in some sense, slow. This follows from the fact that characteristic

dimensionless velocities are of the order v ∼ LN/tc � 1. In this sense, small scales

tend to correspond to slow motions. Post-Newtonian gravity is therefore appropriate

for modelling isolated astrophysical systems, but (by itself) is not appropriate for

modelling an entire universe. This is in contrast to cosmological perturbation theory,

valid in the opposite extreme (a regime analogous to the wave-zone).

Now consider the consequences of the assumption of small scales for derivatives

of the source term, µ, derived from Eqs. (2.26) and (2.27). Spatial derivatives are of

the order |∇µ| ∼ µ/LN , while time derivatives are of order µ̇ ∼ µ/tc. We therefore

have

µ̇� |∇µ| . (4.6)

In words, the typical variation of the sources in time is small compared to their

variation in space. It is also apparent that the order-of-smallness should be expected

to be of the same size as the dimensionless velocity, v.

Let us now consider the size of the gravitational potentials that are represented

by ψ, and how they vary in space and time. It is apparent from Eq. (2.27) that

if LN ∼ |x − x′| � t ∼ λC , and we Taylor expand the time-dependent part of the
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integrand, then the leading-order part of ψ is given by

ψ =

∫
V

µ(t,x′)

|x− x′|
d3x′ , (4.7)

where V denotes a space-like volume of constant time. Note that this can also be

derived straight from the wave equation (2.26) given the assumption that LN ∼
|x − x′| � t ∼ λC . This wave equation then becomes a Laplacian equation

∇2ψ = −4πµ, because our assumption implies quantities in Eq. (2.26) are ap-

proximately constant in time, and so variations in time are approximately zero. To

solve this Laplacian equation, one requires the time-independent (rather than the

time-dependent) Green’s function solution, which is given by Eq. (4.7).

We can see from Eqs. (4.6) and (4.7) that when |x − x′| � tc the derivatives of

ψ satisfy [141]

ψ̇ � |∇ψ| . (4.8)

Again, the order of smallness of the time derivative, compared to the space deriva-

tives, is found to be of the order of v. It can also be seen that ψ ∼ µL2
N .

4.3.2. Defining perturbations

The second requirement of the post-Newtonian expansion is that the magnitudes of

the gravitational potentials are small. Defining this smallness is complicated by the

fact that there exists a number of gravitational potentials, the time-time, time-space

and space-space gravitational potentials, in Einstein’s theory (represented schemat-

ically by one potential given in Eq. (2.26)). These potentials may all be small,

but they may also be different in magnitude. The magnitude of these potentials is

determined through the geodesic equations for freely falling time-like particles and

the field equations, via the sources of energy-momentum. This is quite different

to cosmological perturbation theory where metric potentials and sources of energy-

momentum are perturbed from the onset in terms of ε , ε2, and so on1, as discussed

in detail in Chapter 3.

The magnitude of any given potential can also be linked to the velocity of the

matter fields in the space-time through the equations of motion of those fields. In

1Another comparison is that cosmological perturbation theory is an expansion around an exact
solution that is a good approximation to the perturbed solution. Whereas the post-Newtonian
expansion is closer to an asymptotic expansion, it allows for small perturbations in the geometry
and large perturbations in the energy-density. So when these perturbations are set to zero we
derive the vacuum solution, which is not close in magnitude to the perturbed solution, when
considering, for example, curvature scalars.
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order to do this, it is convenient to define the smallness-parameter

η ∼ v ∼ |∂/∂t|
|∂/∂x|

, (4.9)

where the spatial part of the four-velocity is of order the three-velocity such that

v ≡ |v(1)i| ∼ |u(1)i| ∼ η, see the relation in Eq. (3.12). This book-keeping is used to

keep track of the order-of-smallness of a quantity within this expansion and implies

the smallness parameter is η for post-Newtonian gravity. Post-Newtonian gravity,

unlike cosmological perturbation theory, is not only a weak-field, but also a slow mo-

tion expansion, (it has been observed that this corresponds to a two or potentially

three parameter expansion, in the context of the quasi-static limit of cosmologi-

cal perturbation theory in [143]). Nevertheless, post-Newtonian gravity relates the

smallness of time derivatives with the small magnitude of weak gravitational fields,

so both are related by a single perturbation parameter η.

In post-Newtonian gravity, perturbations are also defined such that tensorial quan-

tities are perturbed around a background value, which exists in the background

manifold. Perturbations, Q(n) ∼ O (ηn) where n > 0, are associated with perturbed

manifolds, and space-time is foliated into spatial hypersurfaces of constant time.

The superscript in parentheses now denote the order of smallness of a term in η,

and should not be confused with the perturbed quantities in the previous chapter

(which were perturbed in ε).

4.3.3. Perturbed metric and matter sources

Let us now consider how the post-Newtonian book-keeping works for the leading-

order parts of each of the components of the metric. At leading order, the space-

components of the geodesic equation, (2.4), the equations of motion for freely falling

time-like particles, tells us that v̇ ∼ |∇g00|. Furthermore as velocities and time

derivatives each have smallness η (v ≡ |v(1)i| and ∂/∂t ∼ η/LN) this implies the

metric is strictly perturbed in the following way [141, 171]

g00 = g
(0)
00 (t) + g

(2)
00 (t,x) + . . . , (4.10)

where ellipsis denote terms that are smaller than η2. There can be no such metric

potentials that depend on spatial position which are larger than order η2, as this

would be incompatible with the leading-order part of the geodesic equation, Eq.

(4.1) (and in post-Newtonian book-keeping v̇i ∼ η2).
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Meanwhile, the leading-order part of the time-time component of the field equa-

tions, (2.15), gives

∇2g00 ∼ ρ , (4.11)

where the energy-momentum tensor is taken to be a perfect fluid, Eq. (2.20), and

ρ is the leading-order part of the energy density of the matter fields. The relation

in Eq. (4.11) tells us that ρ, which actually corresponds to the mass density in

Newtonian and post-Newtonian gravity, can be no larger than η2L−2
N , so

ρ ≡ ρ(2) + . . . . (4.12)

The similarity between Eq. (4.11) and the Newton-Poisson equation, (4.2), justifies

associating g
(2)
00 (t,x) with the Newtonian gravitational potential, U . Furthermore,

for freely falling time-like particles the we find

U ∼ v2 , (4.13)

from the virial theorem. This was traditionally justified observationally because

nowhere in the Solar System is the gravitational potential larger than U ∼ v2 ∼ 10−5.

To go to higher-order in g00, and to find the other leading-order components

of the metric, we need to consider the higher-order components of the energy-

momentum tensor. To do this we first expand the energy density and pressure

as ρ = ρ(2) + ρ(4) + . . . and p = p(4) + . . ., respectively. These high-order perturba-

tions are traditionally justified observationally [171] as other forms of energy density

(other than the rest-mass energy density at leading-order), such as compressional

energy, radiation, thermal energy etc., which are small (no larger than η4L−2
N in the

Solar System). Also, astrophysical bodies such as the Sun are gravitationally stable,

so we expect p ∼ ρU and this implies p ∼ η4L−2
N at leading order. Note that p and

ρ have the same dimensions because we set c = G = 1, so that the field equations

have dimensions length−2, see Section 1.1.

We can now derive the components of the energy-momentum tensor given in Eq.

(2.20), up to O(η5L−2
N ), which are then

T
(2)
00 = −g(0)

00 ρ
(2) (4.14)

T
(4)
00 = −g(0)

00 ρ
(4) − ρ(2)

(
g

(0)
00 u

(1)iu
(1)
i + g

(2)
00

)
(4.15)

T
(3)
0i = −

√
−g(0)

00 ρ
(2)u

(1)
i (4.16)
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T
(4)
ij = ρ(2)u

(1)
i u

(1)
j + p(4)g

(0)
ij , (4.17)

where we assume g
(0)
0i = 0, this is the case for the Minkowski and FLRW space-times.

In each of these expressions we have continued the practice of using superscripts in

brackets to denote the order-of-smallness of a quantity. However, when a quantity

is dimensional, such as p(4), then the reader should take this to mean, for example,

p(4) ∼ η4L−2
N .

Through the geodesic equations, (2.4), for freely falling time-like particles and the

field equations, (2.15), the gravitational fields that result from Eqs. (4.14)-(4.17)

are given by

g00 = g
(0)
00 (t) + g

(2)
00 (t,x) + 1

2
g

(4)
00 (t,x) . . . (4.18)

gij = g
(0)
ij (t) + g

(2)
ij (t,x) + . . . (4.19)

g0i = g
(3)
0i (t,x) + . . . , (4.20)

where we have assumed a background time-dependent metric g
(0)
µν (t). This back-

ground is useful for the studies of post-Newtonian perturbed Minkowski and FLRW

space-times. The metric components g
(4)
00 , g

(2)
ij , and g

(3)
0i are usually referred to as

“post-Newtonian potentials”.

One may note that the first spatially dependent term in g0i occurs at O(v3). This is

because the first non-zero source term for this potential is of order O
(
ρ(2)v

(1)
i

)
, from

Einstein’s field equations. It can also be noted that the orders of the gravitational

potentials required for them to be labelled “post-Newtonian” are different in different

parts of the metric [171]. This is because time derivatives add an order-of-smallness,

compared to space derivatives, and because these two types of derivatives on the

different components of the metric in the equations of motion of time-like particles

and field equations.

One may also note that there are a number of missing terms in both the energy-

momentum tensor and the metric, see Eqs (4.14)-(4.17) and (4.18)-(4.20), respec-

tively. For example, there are no terms in T00 of O
(
η3L−2

N

)
, and no terms in g00 of

O(η3). As far as the energy-momentum tensor is concerned, this can be considered

a choice of the type of matter that one wishes to model. For example, matter with

a pressure term at O(η2L−2
N ) is traditionally excluded from the expansion. This is

no accident, however, as if such a term were to be included then energy-momentum

conservation equations would imply that it would need to be spatially homogeneous

(as found in [149], and in our two-parameter expansion in Section 5.2.4). This means
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that barotropic fluids with p = wρ and w 6= 0 do not fit into post-Newtonian gravity

in a natural way at leading-order, unless they are diffuse enough to be considered

post-Newtonian in order (i.e. occur at only O(η4) or above). This is because post-

Newtonian gravity was formulated to include dust [66, 171], but not radiation or a

cosmological constant. This is very different to cosmological perturbation theory,

reviewed in the previous chapter, which was formulated to describe all epochs of

the Universe (radiation, dust, and cosmological dominated epochs) on horizon-sized

scales. Such versatility is absent from the standard approach in post-Newtonian

gravity, as radiation and Λ are almost completely negligible for the study of gravity

in the Solar System, binary pulsars, and other such very-small-scale astrophysical

environments. If one wants to apply the post-Newtonian expansion to super-clusters

in a cosmological context, therefore, then more care may be required2. The situation

with the metric, however, is quite different.

The required order-of-smallness of the different components of the metric is not

specified from the outset. It is determined by solving the field equations, and by

using the equations of motion of the matter fields [171]. We end up with a metric

and an energy-momentum tensor that are expanded at even orders in η in their

time-time and space-space components, and at odd orders in η in their time-space

components (a trend that continues until gravitational waves are generated), and

the lowest-order gravitational potentials are at either O(η2) or O(η3). One could,

for example, have tried to include a g
(3)
00 term in the time-time component of the

metric. However, there would be no matter fields to source such a term, and so

it would end up satisfying a homogeneous version of the equation satisfied by g
(2)
00 .

This means that the hypothesized g
(3)
00 term describes no new physics, and can be

absorbed into g
(2)
00 without loss of generality, and it is not necessary or helpful to

consider such a term independently. We will return to this point later on.

4.3.4. Summary of book-keeping

We summarise the book-keeping of post-Newtonian gravity by noting that all pertur-

bations to the metric and matter fields are given in terms of the order-of-smallness

parameter η, such that

η2 ∼ |v(1)i|2 ∼ g
(2)
00 ∼ L2

Nρ
(2) ∼ L2

N

p(4)

|v(1)i|2
∼
(
∂t
∂i

)
. (4.21)

2Additionally, one could consider the inclusion of heat flow or anisotropic pressure, traditionally
excluded from the post-Newtonian expansion.
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Time derivatives are small (by a factor of η) with respect to spatial derivatives, which

is in stark contrast with cosmological perturbation theory, Eq. (3.21). Cosmologi-

cal perturbation theory is a simple perturbative expansion in a single parameter ε

around a known solution to the field equations.

The reader may notice we have included factors of L2
N above, the characteristic

length scale over which gravitational fields vary in for post-Newtonian systems,

as this is necessary to compare the dimensionless expansion parameter, peculiar

velocity and gravitational potentials to dimensional quantities like the perturbed

energy density and pressure. This is necessary, strictly speaking, in order to establish

that quantities are of the same order of smallness. These additional factors are

usually excluded in the literature [141, 171], but are crucial in understanding much

of the work we present in this thesis.

Substituting both the perturbed metric and matter sources into Einstein’s equa-

tion and the geodesic equation allows us to solve for each of the components of

the metric. However, it is first simpler to write the field equations in terms of a

gauge, this is what is discussed in the following section. For further details about

post-Newtonian expansions the reader is referred to the textbooks by Will [171] and

Poisson & Will [141].

4.4. Post-Newtonian equations

4.4.1. Field equations and standard post-Newtonian gauge

The post-Newtonian equations for general relativity are normally derived for given

a Minkowski background metric [141, 171], therefore this is how we preceded. The

field equations are usually written in terms of the Ricci tensor, not the Einstein

tensor, on the left-hand side, (with no cosmological constant) in the form of Eq.

(2.15). Therefore, the leading-order components of the Ricci tensor are given by

[141, 171]

R
(2)
00 = −1

2
∇2g

(2)
00 (4.22)

R
(3)
0i = −1

2

(
−ġ(2)

ik,k + ġ
(2)
kk,i +∇2g

(3)
0i − g

(3)
0k,ki

)
(4.23)

R
(2)
ij =

1

2

(
g

(2)
ik,jk + g

(2)
jk,ik −∇

2g
(2)
ij − g

(2)
kk,ij + g

(2)
00,ij

)
. (4.24)
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At post-Newtonian order, the only other component of the Ricci tensor required is

the 00-component to order η4

R
(4)
00 = 2g3

0k,0k −
1

2

(
∇g(2)

00

)2

− 1

2
g

(4)
00 − g̈

(2)
kk + g

(2)
00,i

(
g

(2)
ik,k −

1

2
g

(2)
kk,i

)
(4.25)

+
1

2
g

(2)
ik g

(2)
00,ik .

The above perturbed Ricci tensor can be compared directly to the Ricci tensor

derived in our two-parameter expansion, see Section 6.1.1.

To write the field equations it is often convenient to make a gauge choice in

order to eliminate superfluous degrees of freedom. Unlike in cosmological pertur-

bation theory, the choice of gauge traditionally taken in post-Newtonian gravity,

the standard post-Newtonian gauge, was done by setting the solutions to part of

the field equations to zero, rather than setting metric potentials to zero (as is done

in cosmological perturbation theory). Then once solving the field equations, if the

gauge conditions hold, then they are valid gauge conditions. The standard post-

Newtonian gauge was popularised by Chandrasekhar [66], and has been widely used

by researchers in the post-Newtonian community3. The standard post-Newtonian

gauge assumes [171]

1

2
g

(2)
00,i + g

(2)
ik,k −

1

2
g

(2)
kk,i = 0 (4.26)

g
(3)
0i,i −

1

2
ġ

(2)
kk = 0 . (4.27)

One should note that the transformation into the gauge where the above equations

hold, is such that the Newtonian rest-mass energy density, ρ(2), is invariant because

it is the rest-mass energy density measured in the local Lorentz frame. Through the

field equations at lowest order, that is Newtonian gravity, we can see this directly

implies g
(2)
00 is invariant too.

If one were to calculate the field equations beyond post-Newtonian order, anal-

ogous constraints to those above would need to be defined for higher-order poten-

tials. These gauge conditions can then be substituted into the field equations for

simplification. Similarly, this gauge condition can be used to simplify the geodesic

equation and conservation equations. Moreover, traditionally the introduction of

3Current researchers in the field, however, often prefer to use the harmonic gauge, this is where

for a potential at order O(ηn) we have g
(n)µν
,µ = 0 [141, 171]. This differs from traditional

gauge choices in cosmological perturbation theory, see Section 3.3.3, where perturbations to
the metric (rather than derivatives of perturbations to the metric) are chosen to be zero.
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certain “post-Newtonian potentials” is used to simplify the field equations further

and is discussed in the next section.

4.4.2. Parameterised post-Newtonian gravity

The success of post-Newtonian gravity has been in establishing parametrized-post-

Newtonian gravity (PPN gravity) [170]. This enables us to parametrize the post-

Newtonian limits of many alternative theories of gravity with the use of “post-

Newtonian potentials” and ten parameters with fixed values which can be deter-

mined for a given metric theory of gravity. PPN gravity allows experimental grav-

itational physicists, from local tests of gravitation, to determine these parameters.

Tests have shown these parameters are consistent with those derived from general

relativity and rule out large classes of exotic theories of gravity. In the standard post-

Newtonian gauge the metric in terms of the PPN potentials is given by [141, 171]

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1 (4.28)

+2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A

g0i =
1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi (4.29)

gij = (1 + 2γU)δij , (4.30)

where all gravitational potentials above are defined to obey specific differential equa-

tions [171], similar to the Poisson equation used in Newtonian gravity. Here, the

ten PPN parameters are given by γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3 and ζ4. The Newtonian

potential is given by U ∼ η2, from the 00-component of the metric. From the 0i-

component of the field equations we have post-Newtonian potentials Vi and Wi at

order η3. Finally, at order η4 we have post-Newtonian potentials ΦW ,Φ1,Φ2,Φ3,Φ4

and A.

The PPN parameters are defined for their physical significance, such that these pa-

rameters can be determined directly from observations. For example, γ corresponds

to the space-time curvature per unit rest-mass (and is measured from time delay and

light deflection) and β is related to the degree of nonlinearity in the gravitational

laws (and is measured from Mercury’s perihelion shift and the Nordtvedt effect4),

4The Nordtvedt effect is determined from the difference in acceleration between the Earth and
the Moon falling towards the Sun because of the small difference in their internal gravitational
binding energy per unit mass [170].
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both are used in the classical tests of gravity. The parameter ξ is non-zero for a

theory of gravity which predicts preferred-location effects, such as a galaxy-induced

anisotropy in the local gravitational constant.

The values of the PPN parameters allow theorists to easily identify some of the key

features of a given metric theory of gravity. For general relativity these parameters

are given by γ = β = 1 and ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0. This

means that general relativity is a fully conservative theory of gravity (αi = ζi = 0)

with no preferred-frame effects (αi = 0). Scalar-tensor theories also have only γ

and β non-zero. Fully conservative theories can have, at most, three non-zero PPN

parameters, γ, β and ξ [171].



5. Two-parameter formalism

5.1. Introduction

In the previous chapters we considered the post-Newtonian and cosmological per-

turbation expansions separately. These expansions give different field equations

at leading-order and so describe different physics. We therefore cannot use post-

Newtonian gravity to describe the CMB, nor cosmological perturbation theory to

describe Newtonian systems (such as the Solar System). These expansions are nor-

mally considered separately but in reality, both types of perturbations are expected

to be present in any realistic model of the Universe [140], which should contain

structure from galaxies all the way through to super-horizon fluctuations. So it

is necessary to understand the relativistic contributions from both small-scale non-

linearities and large-scale linear structure as they are both important for future high

precision observations. We therefore want to construct a two-parameter framework,

which we expand around an FLRW geometry and that incorporates them both. By

considering these two expansions simultaneously we aim to shed light on the link

between the gravitational fields of highly non-linear virialized objects, and the large-

scale properties of the Universe. We expect this interplay will become increasingly

important as we move to higher orders in perturbation theory.

In this chapter we begin by defining two-parameter perturbations formally. We

then summarise the two-parameter book-keeping before detailing its derivation care-

fully, discussing how the perturbations of the matter sector, metric and derivatives

were constructed. We then justify our expansion observationally.

5.2. Formalism

5.2.1. Defining perturbations

To introduce the idea of a two-parameter expansion, let us start by considering a

dimensionless function, or tensorial quantity, F(xµ), that exists in a manifold, M.

By expanding in both ε and η, the smallness parameters associated with our two

59
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expansions, we can write this function as

F(xµ) =
∑
n,m

1

n′!m′!
F(n,m)(xµ) , (5.1)

where F(n,m)(xµ) is an order O(εnηm) quantity: all such perturbations exist on

perturbed manifolds diffeomorphic to M and the background manifold, M̄. The

superscripts n and m on these quantities label their order-of-smallness in ε and

η, respectively. The quantities n′ and m′, on the other hand, are set by whether

the term in question is leading-order in ε or η, or next-to-leading-order, etc1. Of

course, such an expansion only converges if both ε and η � 1. In the limit where

one of the parameters vanishes, ε or η → 0, the expansion in Eq. (5.1) reduces to

the expansion of a tensorial quantity for a single parameter, set out earlier in the

introductory chapters in Eqs. (2.28) and (2.29).

Expansions of this kind have already been considered in the literature [57, 154],

but have been studied in the context of studies of time-dependent perturbations

of isolated stationary axisymmetric rotating stars [114, 125, 146] using a spherical

background, rather than in the context of cosmology. Reference [154] explains that

the advantage of a multiparameter expansion is that “it allows us to make distinc-

tions between different types of perturbations corresponding to different parameters,

so that we can study their coupling and some non-linear effects without having to

compute the whole set of higher-order perturbations”. We consider two parameters

where η corresponds to small-scale perturbations and ε corresponds to horizon-size

perturbations analogous to the near-zone and wave-zone, respectively, for isolated

systems. Space-time derivatives act differently, i.e. add smallness or do not add

smallness, when operated on different types of perturbations2.

The geometry of our set-up is illustrated in Fig. 5.1. The reader should note

that perturbed tensors, such as F(n,m), are pulled-back to the background manifold,

M̄, and can therefore be written in terms of the background coordinates, xµ. This

then enables us to compare perturbed tensors with unperturbed tensors, just as in

single-parameter perturbation theories. Physically, F(xµ) corresponds to a quantity

that is close to F(0,0)(xµ) in magnitude, but is perturbed in two different ways. This

1We turn to the case where ε→ 0, to observe that m does not necessarily equal m′. In this case
we expect Eq. (5.1) to recover an expansion in η alone. Given that η corresponds to post-
Newtonian perturbations, we now consider when F is the metric. The leading-order component
of the 0i-metric perturbation has m = 3, see the previous chapter. In this case m′ = 1, so m
does not necessarily equal m′.

2Whereas the work in [57, 154] assumes smallness is not associated derivatives acting on different
types of perturbations and perturbations vary on the same characteristic length scales.
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is the picture we have in mind when we perturb both the FLRW metric, and the

matter fields.

Figure 5.1.: An illustration of the maps between the background manifold M̄, and
the manifold of the perturbed space-time, M. The manifolds Mε and
Mη correspond to perturbations in ε and η only. The two different
routes between points on M̄ and M must be identical if the overall
map is invertible.

As a simple illustrative example of the scenario we envisage, we could consider

a one-dimensional function F(x) that satisfies a given differential equation. If we

imagine that F(x) is close to being a sinusoidal wave, then we could write F(0,0)(x) =

sin(2πx/λ). However, if F(x) is not exactly sinusoidal then we may want to calculate

the corrections that are required in order to accurately model this function. One

way of doing this would be to transform these corrections into a Fourier series, and

to split the Fourier modes into those that have a wavelength shorter than λ, and

those that have a wavelength greater than λ. We can then associate the smallness

of the former of these fluctuations with η, and the latter with ε. Specifically, these

perturbations vary on characteristic length scales LN and LC , respectively. As

long as both η and ε are small, we can then use perturbation theory in order to
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determine the coefficients F(n,m), order by order in smallness. The benefit of using

two parameters in this situation is that we are able to consider scenarios in which

the small-scale corrections behave differently to those that occur on large-scales, as

happens in cosmology. It also allows us to investigate the way in which small-scale

perturbations affect their large-scale counterparts, and vice versa.

Let us now return to considering cosmology, and continue by expanding both

the metric and the matter fields in terms of both ε and η. These two parameters

need not necessarily be of the same size, and, for now, we will keep our expansion

general by not assuming anything about the relationship between them. This means,

specifically, that we will not assume a relationship of the form ε = ε(η), and we will

not assume anything about the relationship between the scales LN and LC (later

on we will restrict ourselves to particular situations of more direct physical interest,

in order to write down the field equations, and perform calculations, in a sensible

way).

5.2.2. Summary of book-keeping

In this section we summarise the two-parameter frameworks developed in Refs. [97,

98] that simultaneously performs a perturbation expansion in two-parameters and

includes dust, radiation and a cosmological constant, in subsequent sections we

justify this expansion carefully.

The first step is to expand the total energy density and pressure in both ε and η:

ρ = ρ(0,0) + ρ(0,2) + ρ(1,0) + ρ(1,1) + ρ(1,2) + 1
2
ρ(0,4) + . . . (5.2)

p = p(0,0) + p(1,0) + p(1,2) + 1
2
p(0,4) + . . . . (5.3)

The terms ρ(0,0) and p(0,0) correspond to what would normally be considered as the

background energy density and pressure in cosmological perturbation theory, as they

are not perturbed in either ε or η. All other terms correspond to perturbations at the

order indicated by the superscript. To be even more precise, the orders-of-magnitude

of these perturbed quantities are given by

ρ(0,0) ∼ 1

L2
C

, ρ(n,0) ∼ εn

L2
C

, ρ(0,m) ∼ ηm

L2
N

and ρ(n,m) ∼ εnηm

L2
N

, (5.4)

where {m,n} ∈ N+, and again LC and LN are the characteristic length scales of

the cosmological and post-Newtonian systems, respectively. A similar expression

holds for the expansion of p. The length scales are necessary in the denominators
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of these expressions, as ρ is a quantity with dimensions inverse length squared, and

because it only makes sense to compare the magnitude of quantities with the same

dimensions. Note that we have included a background energy density and pressure,

this will be useful for the inclusion of radiation and the justification for such an

expansion is provided in subsequent sections.

We expand the metric in both ε and η, which we do as follows:

g00 = g
(0,0)
00 + g

(0,2)
00 + g

(1,0)
00 + g

(1,1)
00 + g

(1,2)
00 + 1

2
g

(0,4)
00 + . . . (5.5)

= −1 + h
(0,2)
00 + h

(1,0)
00 + h

(1,1)
00 + h

(1,2)
00 + 1

2
h

(0,4)
00 + . . .

gij = g
(0,0)
ij + g

(0,2)
ij + g

(1,0)
ij + g

(1,1)
ij + g

(1,2)
ij + 1

2
g

(0,4)
ij + . . . (5.6)

= a2
(
δij + h

(0,2)
ij + h

(1,0)
ij + h

(1,1)
ij + h

(1,2)
ij + 1

2
h

(0,4)
ij

)
+ . . .

g0i = g
(1,0)
0i + g

(0,3)
0i + g

(1,2)
0i + . . . (5.7)

= a
(
h

(1,0)
0i + h

(0,3)
0i + h

(1,2)
0i

)
+ . . . ,

where in the second line of each of these equations we have chosen our background

metric g
(0,0)
µν to be the flat3 FLRW metric from Eq. (2.19), and simultaneously defined

the perturbations hµν . The orders of magnitude of each of the perturbations to each

of the components of this metric are the minimal set required to self-consistently

account for the gravitational fields of the two-parameter perturbed perfect fluid

discussed above, in any arbitrary coordinate system. We can compare the above

expansion of the metric to the expansion of the metric in cosmological perturbation

theory, Eq. (3.4), and post-Newtonian gravity, Eqs. (4.18)-(4.20): we find the

two-parameter perturbed metric includes perturbations new at mixed-orders.

The final ingredient of the field equations that must be perturbed is the peculiar

velocity, vi. This is split into post-Newtonian and cosmological parts such that

vi = v(0,1)i + v(1,0)i + . . . , (5.8)

which leads to the following components of the reference four-velocity uµ:

u0 = 1 +
1

2

(
h

(0,2)
00 + h

(1,0)
00

)
+

1

2
v(0,1)iv

(0,1)
i + . . . (5.9)

3Note it would be of interest to extend this two-parameter framework to include some positive
or negative curvature. This has been undertaken in a perturbative manner in the context of
post-Newtonian gravity in Ref. [149].
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ui =
1

a

(
v(0,1)i + v(1,0)i

)
+ . . . (5.10)

u0 = −1 +
1

2

(
h

(0,2)
00 + h

(1,0)
00

)
− 1

2
v(0,1)iv

(0,1)
i + . . . (5.11)

ui = a
(
v

(0,1)
i + v

(1,0)
i + h

(1,0)
0i

)
+ . . . , (5.12)

derived from the constraint Eq. (2.22), the first perturbations to the metric, Eqs.

(5.5)-(5.7), and the expansion of the three-velocity, Eq. (5.8). Note that we have

defined the spatial components of uµ to leading order such that u(1,0)i = a−1v(1,0)i

and u(0,1)i = a−1v(0,1)i, as is done in cosmological perturbation theory, see Eqs. (3.11)

and (3.12). The ellipses correspond to terms O (η3), O (εη), O (ε2) and smaller –

none of these perturbations are necessary up to the order we wish to consider the

field equations to. The components of the total two-parameter perturbed energy-

momentum tensor that arises from these equations is given in Section 6.1.2 and the

components of the Ricci tensor are given in Section 6.1.1.

Within the context of the two-parameter formalism, time derivatives are taken to

add an extra order-of-smallness, η, compared to spatial derivatives whenever they

act on an object that contains any non-zero perturbation in its post-Newtonian

sector. So, for example, we take

ρ̇(0,2) ∼ η |∇ρ(0,2)| ∼ η3

L3
N

and ρ̇(1,1) ∼ η |∇ρ(1,1)| ∼ εη2

L3
N

, (5.13)

whilst

ρ̇(1,0) ∼ |∇ρ(1,0)| ∼ ε

L3
C

. (5.14)

As in Eq. (5.4), the purpose of this is to reflect the expectation that quantities per-

turbed in the post-Newtonian sector should be slowly varying in time and change

over spatial length scales LN , while quantities that are perturbed only in the cosmo-

logical sector should vary equally over both time and length scales LC . Note that no

higher-order perturbations are necessary to the order we wish to consider the field

equations to. In this section we summarised the two-parameter framework, we now

justify this book-keeping carefully in the following sections.
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5.2.3. Matter perturbations

Let us start by expanding the energy-momentum tensor for non-relativistic matter,

given in Eq. (2.20), in both ε and η using Eq. (5.1). This gives

ρM = ρ
(0,2)
M + ρ

(1,0)
M + ρ

(1,1)
M + ρ

(1,2)
M + 1

2
ρ

(0,4)
M + . . . , (5.15)

in the single stream case (the multi-stream generalization should follow straightfor-

wardly), where ρ
(n,0)
M , ρ

(0,m)
M and ρ

(n,m)
M are the cosmological, post-Newtonian and

mixed perturbations of the matter energy density, respectively, and n ≥ 0 and

m > 0. Subscripts M differentiates the matter energy-density from the radiation

energy-density (given by subscripts R). Equation (5.15) is the non-relativistic mat-

ter component of the total energy density, Eq. (5.2). The quantities ρ
(0,2)
M and

ρ
(0,4)
M are the post-Newtonian contributions to the energy density which correspond

to the energy density in the rest mass of the matter fields (the Newtonian energy

density) and their internal energy density, respectively [171]. Meanwhile, ρ
(1,0)
M is a

large-scale cosmological fluctuation in the energy density, and both ρ
(1,1)
M and ρ

(1,2)
M

are small-scale perturbations on top of large-scale fluctuations (or vice versa). In

Fig. 5.2 some of these different contributions to the perturbed energy density are

represented visually.

The reader may note that we have omitted a time-dependent background-level

contribution to the matter energy density, which would otherwise have occurred as

ρ
(0,0)
M (t) ∼ L−2

C . This is intentional, and indeed necessary, if we are to construct a

sensible two-parameter expansion in both ε and η. The reason for this is that such a

term, while being usual in single-parameter cosmological perturbation theory, would

be highly unusual in post-Newtonian gravity. It would correspond to a contribution

to the energy density that is much larger than the rest mass of the matter fields

within the space-time, there is no discernible homogeneous fluid of non-relativistic

matter with this magnitude in the real Universe and the existence of such a com-

ponent corresponds to a breakdown of standard perturbation theory [143]. This is

because the leading-order contribution to ρM is in fact dominated by the (inhomoge-

neous) rest mass of galaxies, dust etc., which is exactly what ρ
(0,2)
M (xµ) corresponds

to. We therefore set ρ
(0,0)
M = 0, and find out that it is instead the spatial average

of ρ
(0,2)
M that plays the role of (what would otherwise be) the background energy

density in the Friedmann equations, (3.46) and (3.47). This will be explained in

more detail in Chapter 8.2.

We derived the expansion of the matter energy density, given in Eq. (5.15),
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Figure 5.2.: A sketch of the different contributions to the total energy density of
matter (top), where ρ ≡ ρM . These contributions include the Newto-
nian (middle left), first cosmological perturbation (middle right), first
mixed-order perturbation (bottom left), and higher-order contributions
to internal energy density (bottom right). Other, high-order contribu-
tions to the energy density are denoted by the ellipsis.

so that it contains the minimum number of perturbations necessary to describe a

two-parameter system. To do this we wrote an initial ansatz for the perturbed

energy density that was given by the sum of the post-Newtonian perturbed energy

density, the cosmological inhomogeneous perturbed energy density and mixed-order

perturbations which are products of the leading-order Newtonian and cosmological

perturbations. However, after performing a gauge transformation our initial ansatz

energy-momentum tensor, via the transformations given in Chapter 7, we produced

a term of the form ρ
(0,2)
M,i ξ

(1,0)i (where ξ(1,0)i is a part of the gauge generator – see

Chapter 7), a matter source of energy density of O(εηL−2
N ), see Eq. (7.62)4. This

4This source is of this order because we chose LN ∼ ηLC . Note that for other relationships

between the two length scales there should not be a term ρ
(1,1)
M of O(εηL−2N ) in the expansion

of the matter energy density.
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implies there must in general exist a term ρ
(1,1)
M in the expansion of ρM , because even

if we artificially exclude it in one coordinate system, it will be generated in another5.

This means that mixed-order terms do not always appear at the same order as the

product of post-Newtonian and cosmological terms (i.e. we have included ρ(1,1), even

though there is no O(η) term in the post-Newtonian expansion). Our procedure

gives the perturbed energy density in Eq. (5.15). This perturbed energy density

after gauge transformation is consistent with the original energy density, i.e. there

are no new potentials generated at new orders, and therefore have the minimal

number of perturbations necessary to describe a two-parameter system.

The remaining contributions to the energy-momentum tensor of dust come from

the isotropic pressure, pM , and the peculiar velocity, viM . These are expanded in ε

and η such that they are the sum of the peculiar velocities and pressures used in post-

Newtonian gravity and cosmological perturbation theory. No other perturbations

are necessary up to the order we wish to consider. Therefore we write

viM = v
(0,1)i
M + v

(1,0)i
M + . . . , (5.16)

and

pM = p
(1,0)
M + p

(1,2)
M +

1

2
p

(0,4)
M + . . . , (5.17)

where the peculiar velocity, defined as the spatial part of of the four-velocity uµM ,

corresponds to the deviation of the paths of matter fields from the background

Hubble flow. If it is zero, then the matter moves only with the expansion of the

Universe. If η > ε the post-Newtonian velocity v(0,1)i is greater than the velocity

allowed by cosmological perturbation theory alone, v(1,0)i (this is the case for the

field equations we derive in the following sections). Both Eqs. (5.16) and (5.17) are

the non-relativistic matter components of the total peculiar velocity and pressure,

see Eqs. (5.8) and (5.3).

There are a couple of points that the reader may want to note about these ex-

pansions. Firstly, the usual velocity in post-Newtonian gravity does not exactly

correspond to the small-scale peculiar velocity v
(0,1)i
M . In fact, it is the sum of the

small-scale peculiar velocity v
(0,1)i
M and the Hubble flow. This is because velocities

in normal post-Newtonian gravity are relative to a Minkowski background, whereas

in our formalism velocities are peculiar velocities relative to an expanding FLRW

5This is analogous to what would happen in cosmological perturbation theory: if one were to
start naively perturbing the metric in terms of ε, ε3 and so on, and then infinitesimally gauge
transform the perturbed metric, one would find that terms in the metric of order ε2 are generated
in general. Therefore, it is necessary to have a metric perturbation of order ε2 to begin with –
otherwise, this term will always be generated under a gauge transformation.
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space-time. This is an important difference.

Secondly, we have not included a contribution to the pressure of the form p
(0,2)
M ∼

η2L−2
N because for non-relativistic matter we require pM � ρM . The term p

(0,2)
M

corresponds to a barotropic fluid with an energy density comparable to that of dark

matter and baryonic matter. Such a fluid could be used to model the effects of

radiation in the early Universe, because for radiation the pressure is proportional

to the energy density: ρR ∝ pR for all orders. This was done in Ref. [149], and

is discussed in the following section, where we add radiation. We instead allow for

some small cosmological, post-Newtonian and mixed-order pressure p
(1,0)
M , p

(0,4)
M and

p
(1,2)
M , respectively. This completes our discussion of the perturbations necessary for

the dust-dominated stage of the Universe’s evolution.

5.2.4. Including radiation and a cosmological constant

Non-relativistic matter is all that is normally considered in post-Newtonian gravity

and cosmological perturbation theory applied to the dust-dominated epoch. We

now wish to include radiation and a cosmological constant Λ, to our two-parameter

expansion, as these are important in cosmological modelling. For radiation this can

be achieved by writing the total energy-momentum tensor6

Tµν = TMµν + TRµν , (5.18)

where TMµν and TRµν are the energy-momentum tensors for the non-relativistic

matter and radiation, respectively, and are taken to be perfect fluids7. This provides

a definition for the total energy density and pressure

ρ = ρM + ρR , p = pM + pR , (5.19)

where ρR and pR are the energy density and pressure of radiation. Given the peculiar

velocity for radiation, viR, we define the total peculiar velocity as vi ≡ viI , where

I ∈ {M,R}. The total peculiar velocity can be expanded for, see Eq. (5.8), and

6Note that the definition of the total energy-momentum tensor does not include the cosmological
constant because Λ appears in addition to Tµν on the right hand side of the field equations
(2.15).

7A theoretical extension of this two-parameter framework could include applications to non-
perfect fluids, for example viscus fluids, and fluids with non-barotropic equations of state.
However, the book-keeping of these new terms would require care, as the book-keeping of
stress-energy terms are physically motivated, as seen in this chapter.
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allows us to use a shorthand notation8:

X(vi)n ≡
∑
∀I

XI(v
i
I)
n (5.20)

= XM(viM)n +XR(viR)n ,

throughout this thesis, where X ∈ {p, ρ} and n ∈ N+. This shorthand notation is

useful for writing the total energy-momentum tensor and field equations.

We now need to explicitly expand the energy density, pressure and peculiar ve-

locities, in ε and η, which we do according to

ρR = ρ
(0,0)
R + ρ

(1,0)
R + ρ

(1,2)
R + 1

2
ρ

(0,4)
R + . . . (5.21)

pR = p
(0,0)
R + p

(1,0)
R + p

(1,2)
R + 1

2
p

(0,4)
R + . . . . (5.22)

For the peculiar velocity for radiation we have

viR = v
(0,1)i
R + v

(1,0)i
R + . . . . (5.23)

These equations, (5.19)-(5.23), and the perturbations for non-relativistic matter,

Eqs. (5.15)-(5.17), can be compared to Eqs. (5.2), (5.3) and (5.8) to read off values

for the perturbations to the total energy density, pressure and peculiar velocity. Note

that we include the mixed-order term p
(1,2)
M so the expansion of pM is comparible

to the radiation fluid’s pressure9. We have expanded the radiation contribution to

the peculiar velocity in the same way for radiation as matter. We will discuss, in

detail, the above expansions of the energy density and pressure for radiation in what

follows.

The expansion of the matter and radiation contributions to the energy density

and pressure have been performed in the same way. So all energy-momentum quan-

tities relating to radiation have the minimum number of perturbations necessary

to describe a two-parameter system such that under an infinitesimal gauge trans-

formation, no terms of new orders are generated. Nevertheless, the expansions of

the matter and radiation contributions to the energy density are not equivalent: we

have omitted (i) a time-dependent background-level contribution to the matter en-

ergy density and pressure, and (ii) a Newtonian-level contribution to the radiation

energy density and pressure, the former is justified in Section 5.2.3. The latter is

8So for n ∈ N+, X(vi)n 6= (XM +XR)(vi)n, and n = 0 recovers X = XM +XR, Eq. (5.19).
9We also include a factor of 1/2 in front of p

(0,4)
M , this is a notational change from [97], but here

is necessary to make pM directly comparable to the expansion of the radiation pressure.
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such that

ρ
(0,2)
R = p

(0,2)
R = 0 .

Radiation pressure and energy-density perturbations all occur at the same order

because, for radiation, the pressure is proportional to the energy density: ρR ∝ pR

for all orders, see Section 2.4.2. So given that there is a low-order contribution to the

energy density ρ
(0,0)
R this implies there also exists p

(0,0)
R in the expansion of pressure;

this is different to the expansion of pM where pM � pR, see Section 2.4.2.

Let us now consider the expansion of ρR and pR given in Eqs. (5.21) and (5.22).

For this purpose we consider the conservation of the total energy-momentum tensor

Tµν , defined in Eq. (5.18), such that:

∇µTµν = ∇µ(TMµν + TRµν) = 0 , (5.24)

where TMµν and TRµν are the matter and radiation contributions to the total energy-

momentum tensor, respectively. This implies ∇µTMµν = Qν and ∇µTRµν = −Qν ,

where Qν 6= 0 for interacting fluids and Qν = 0 for non-interacting fluids. In either

case, the lowest-order part of Eq. (5.24) is given by

∇p(0,0)
R = 0 , (5.25)

from Eqs. (5.2), (5.3) and (5.8). Equation (5.25) corresponds to the lowest-order

part of the Euler equation for a barotropic fluid and implies that the lowest-order

pressure is time dependent only, p
(0,0)
R (t). If we now take pR = 1

3
ρR, then this

result implies that the leading-order part of the energy density in radiation must

also be spatially homogeneous, such that ρ
(0,0)
R = ρ

(0,0)
R (t). This is, in fact, exactly

what is required for a background-level contribution to the energy density in an

FLRW model10. We therefore find that the lowest order at which inhomogeneous

perturbations to radiation exist is at orderO(p
(1,0)
R ) ∼ O(εL−2

C ) in our two-parameter

expansion, which corresponds to a cosmological-scale perturbation.

A similar argument can now be used to understand why it would be inappropriate

to include a term ρ
(0,2)
R in Eq. (5.21). Such a term would imply the existence of p

(0,2)
R

which, again through the conservation equations, can be shown to be necessarily

spatially homogeneous. Such a term would therefore be functionally degenerate

10A similar result is found in Ref. [149]. They found this results from the lowest-order post-

Newtonian radiation contribution to the pressure (analogous to a term p
(0,2)
R (t) in our two-

parameter expansion), whereas our result corresponds to the large-scale cosmological radiation
pressure – something that only exists when considering cosmological perturbation theory or a
two-parameter perturbed universe.
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with ρ
(0,0)
R . As they are both functions of time only they would show up in every

conceivable set of equations in exactly the same way. We can therefore neglect

both ρ
(0,2)
R and p

(0,2)
R without any loss of generality. Moreover, the term ρ

(0,2)
R (t)

would be Newtonian in size, and such a term would be highly unusual in normal

post-Newtonian gravity which is normally associated with small-scale fluctuations

whereas radiation is associated with horizon-size fluctuations in the early Universe.

Radiation therefore fits naturally into our two-parameter expansion at lowest-order

as a cosmologically perturbed quantity.

The reader may also note that there is no term ρ
(1,1)
R in Eq. (5.21), whereas there

is a term ρ
(1,1)
M in Eq. (5.15). This is because if we omit ρ

(1,1)
M then a term of that

order is always generated under an infinitesimal coordinate transformation, therefore

we include it for generality. However, a similar argument does not apply to ρ
(1,1)
R ,

because the gauge transformation of ρ
(0,0)
R does not generate any terms of the same

order as ρ
(1,1)
R . This can be seen to be true because ρ

(0,0)
R is a function of time only,

such that ρ
(0,0)
R,i ξ

(1,0)i = 0. The same argument would apply to the term ρ
(0,2)
R , if it

had been included, as this term would also be time dependent. This means that we

can set ρ
(1,1)
R = p

(1,1)
R = 0 in any coordinate system, and the same result will hold in

any other coordinate system related by an infinitesimal gauge transformation.

Finally, let us consider the cosmological constant Λ. We assign an order of mag-

nitude and dimensions to the cosmological constant in the following way:

Λ = Λ(0,0) ∼ 1

L2
C

. (5.26)

This choice is motivated by the fact that the cosmological constant in the standard

model of cosmology must be of background order in order for it to be influential in

the Friedmann equations at late times. There is also no point in perturbing it in

either ε or η, as it is a constant, the Taylor expansion is trivial. The cosmological

constant therefore fits naturally into our two-parameter expansion at lowest-order as

a cosmological background quantity of magnitude L−2
C , because it is a horizon-scale

phenomenon affecting scales which correspond to lengths of order LC . A very nice

feature of our book-keeping is that the contribution of the cosmological constant in

the field equations is something implied directly from our book-keeping (specifically,

the relationship between the two length scales LN and LC), it is not something put

in by hand. Normally, for non-linear structure on large-scales LN we have to set

Λ ∼ η2L−2
N [149] so Λ appears in the leading-order field equations, and on small

scales LN we have to set Λ = 0 so Λ does not contribute to the leading-order field

equations. With our two-parameter expansion, on the other hand, the cosmological
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constant has dimensions Λ ∼ L−2
C whereas for non-linear structure on the smallest

scales LN , like in the Solar System, we automatically find η2L−2
N � L−2

C , so Λ does

not appear in the lowest-order field equations. Likewise, for non-linear structure on

the largest scales LN our two parameter expansion automatically implies Λ appears

in the lowest order field equations because η2L−2
N ∼ L−2

C . This is a product of our

two-parameter expansion which allows for small-scale and large-scale phenomena on

lengths LN and LC , respectively.

5.2.5. Derivatives

Let us now consider what happens when derivatives act on the perturbed quantities

defined above. We start with the assumption that the rate at which an object

changes in space and time can be determined from its order of smallness in ε and

η. If an object is perturbed in η only, we will say that it is post-Newtonian. We

denote all such objects by N , so that N ∼ ηm. Similarly, all objects perturbed in ε

only will be called cosmological, and are denoted by C ∼ εn. The remaining objects,

perturbed in both ε and η, will be called mixed, and are denoted by M ∼ εnηm.

Following the discussion in Chapter 4, we will assume that derivatives act on all

Newtonian quantities such that

N,i ∼
N

LN
and Ṅ ∼ ηN

LN
. (5.27)

Similarly, following the discussion in Chapter 3, we take derivatives to act on all

cosmological quantities (and background quantities, such as the scale factor a(t))

such that

C,i ∼
C

LC
and Ċ ∼ C

LC
. (5.28)

It now remains to decide the order of smallness of the derivatives of mixed terms.

This is more complicated.

We start our consideration of the derivatives of mixed terms by noting that they

vary in space and time on both Newtonian and cosmological length scales, as illus-

trated in Fig. 5.2. In order to determine which of these contributions dominate the

derivative on a mixed-order quantity we need to relate LN and LC . In order to do

this it is useful to define a new quantity, l, such that

l ≡ LN
LC

, (5.29)

this enables us to compare the sizes of derivatives on different types of potentials.
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Also, we observe that we want to consider post-Newtonian perturbed structure, on

scales LN , such that the post-Newtonian expansion (around Minkowski space) still

holds. For this to be true we need the velocity due to the Hubble flow, HLN , to

be smaller than or equal to the peculiar velocities of the constituent objects, η,

hence HLN 6 η. Otherwise, such systems would have velocities larger than η with

respect to a Minkowski background, and so post-Newtonian gravity would break

down. Given that H ∼ L−1
C , and using the definition from Eq. (5.29), we then have

the requirement that

l 6 η , (5.30)

which implies that two parameter perturbed systems which saturate this limit are

such that l ∼ η, and implies LN ∼ ηLC , which corresponds to non-linear structure

up to the homogeneity scale of order 100Mpc and linear structure beyond that.

Furthermore, Eq. (5.30) implies two things: (i) spatial derivatives acting on cos-

mological terms are strictly smaller than spatial derivatives acting on Newtonian

terms, and (ii) time derivatives acting on cosmological terms are strictly less than

or equal to time derivative acting on Newtonian terms. Therefore, post-Newtonian

spatial and temporal derivatives dominate over or are equal to cosmological ones.

Hence we can write

M,i ∼
M

LN
and Ṁ ∼ ηM

LN
, (5.31)

because, at most, derivatives of mix-ordered terms go like derivatives of post-Newtonian

perturbed quantities.

At this point we can make two more comments related to Eqs. (5.29) and (5.30).

The first arises because we can write

ρ(1,0) ∼ ε

L2
C

∼ εl2

L2
N

, (5.32)

from Eqs. (5.4) and (5.29). Equation (5.32), together with Eq. (5.30), means

that ρ(1,0) � ρ(0,2). In other words, the total energy density is always such that

the small-scale rest mass dominates over the large-scale “cosmological” fluctuations

to the energy density, independent of the relative magnitude of the gravitational

potentials on small and large scales (i.e. independent of the relationship between ε

and η). This will be important when it comes to writing the field equations order

by order in Chapter 6.

The second point is that the above book-keeping of derivatives on Newtonian,

cosmological and mixed-order terms can be considered in units of either LN or LC .

If we consider the field equations in units of LN then we relegate certain terms to
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higher orders, by adding orders of smallness in η and l. If we consider the field

equations in units of LC we move terms to lower orders, by adding largeness via η−1

and l−1. The former book-keeping is often referred to as a slow-motion expansion,

whereas the latter is known as a gradient (or large gradient) expansion. Either

is perfectly acceptable, as they provide the same resulting field equations, but we

choose to employ the former. This is because it is easier to omit terms which become

higher order under a derivative, rather than to go through all possible higher-order

terms in order to see which terms might be larger under a derivative.

5.2.6. Metric

To complete the description, let us now expand the metric in both ε and η. As stated

previously, we assume a background geometry, g
(0,0)
µν , which is taken to be the flat

FLRW space-time, see Eq. (2.19), with k = 0. Such a background is quite standard

for cosmological perturbation theory, but little used for post-Newtonian gravity (see

however Refs. [15, 130]). Nevertheless, it is entirely compatible with the discussion

in Section 4 [73, 148], which we kept general, i.e. time dependent in order to allow

for this possibility. Our two parameter perturbed metric is given in Section 5.2.2, see

Eqs. (5.5)-(5.7). The orders of magnitude of each of the components of this metric

are derived using the method outlined in Chapter 4 for post-Newtonian gravity.

That is, they are derived from the orders-of-smallness of each of the components of

the total energy-momentum tensor Tµν , cosmological constant, and the orders-of-

smallness and dimensions of space-time derivatives, along with the field equations.

We also require the relationship between the two length scales LN and LC (we

consider the case where l ∼ η, discussed Section 5.3). Importantly, the perturbed

metric, Eqs. (5.5)-(5.7), is the same for radiation, dust and a cosmological constant,

as for dust alone [97]11. In other words, the perturbed metric does not require the

introduction of any new metric potentials at any new orders with the inclusion of

radiation or a cosmological constant, compared to dust alone [98].

Alternatively, we also derived the two-parameter expansion of the metric in the

same way as the energy density, discussed earlier in Section 5.2.3. i.e. the metric con-

tains the minimum number of perturbations necessary to describe a two-parameter

system. We write an initial ansatz for the perturbed metric given by the sum of

the FLRW metric, the usual post-Newtonian metric, the cosmologically perturbed

11This also implies that the perturbed Ricci tensor, presented fully in Section 6.1.1, is the same
with the inclusion of not only matter but also radiation and a cosmological constant [98] as the
perturbed Ricci tensor for matter only [97].
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metric and mixed-order perturbations which are products of the leading order New-

tonian and cosmological perturbations. However, after a gauge transformation (see

Chapter 7) we produced metric potentials in the 00, 0i and ij parts of the metric at

O(εη), O(εη2) and O(εη), from Eqs. (7.6), (7.16) and (7.13), respectively (this was

under the choice l ∼ η)12. Therefore, we include metric potentials of order g
(1,1)
00 ,

g
(1,1)
ij and g

(1,2)
0i in our new ansatz, giving the perturbed metric, Eqs. (5.5)-(5.7).

Now, the new perturbed metric after gauge transformation is consistent with the

original metric, and therefore has the minimal number of perturbations necessary

to describe a two-parameter system.

Note that the full expressions for the perturbed total energy-momentum and Ricci

tensors, along with the two-parameter perturbed field equations, are given in the

next chapter. Next, we justify this two-parameter expansion observationally.

5.3. Observational justifications

Here we address what is the observational justification of using a two-parameter

expansion in cosmology. After all, this is the key motivation for constructing such

an expansion. In the previous chapters we considered the different ways that per-

turbation theory can be applied to gravitational fields on both horizon-sized and

sub-horizon-sized regions of space-time. This resulted in a derivation of both the

post-Newtonian and cosmological perturbation theories, using little more than the

fact that Einstein’s equations can be written as null wave equations. We then

considered how these two different expansions could be formally combined into a

two-parameter expansion that could be used to describe the Universe on both large

and small scales. Throughout all of this we tried to keep the discussion as general as

possible, without specifying any specific relationship between either the expansion

parameters ε and η, or the length scales LC and LN .

We now consider observations of the specific astrophysical systems that exist on

different scales in the Universe. The aim of this is to see which types of systems are

best described by post-Newtonian expansions, and which are best described using

cosmological perturbation theory. This allows us to consider the physical scenarios

that could potentially be described using our two-parameter expansion, as well as

the particular values of ε and η that are appropriate in each case. Of course, each

pair of systems also comes with its own values of LC and LN , which can also be

12Note that for other relationships between the two length scales LN and LC there should not be

terms g
(1,1)
00 and g

(1,1)
ij at order O(εη). However, for all relationships between LN and LC there

would exist a metric potential at order g
(1,2)
0i , after gauge transformation.
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related to the expansion parameters. This is necessary in order to write down the

field equations of our two-parameter expansion perturbatively, order-by-order in

perturbations. On the scales relevant to large-scale structure in cosmology (of order

a fraction of the horizon-size) we find the conditions that ε ∼ η2 and LN ∼ ηLC .

This is then used in Chapter 6 to write a hierarchical set of field equations.

5.3.1. Post-Newtonian gravity

The post-Newtonian expansion is usually applied to describe the gravitational physics

of astrophysical bodies that range in size: from binary pulsar systems (about a mil-

lion kilometres), to the size of the orbits of the planets in our solar system (a few

hundred million kilometres). Let us begin by considering these systems, before mov-

ing on to the larger astrophysical systems that are of more interest for cosmology.

To do this, we will quote estimates for the largest velocities that occur within them,

and compare these to estimates of the largest gravitational potentials that we can

find. We do this using the order-of-magnitude estimator

U =
GMN

c2LN
, (5.33)

where MN and LN are observational estimates of the mass and length scale of the

system, and are in units of kilograms and meters, respectively.This implies here,

in this section, we require dimensional constants G, c 6= 1. Equation (5.33) will

allow us to estimate η, as well as establish whether or not a given system is indeed

suitably described using a post-Newtonian perturbative expansion. The results are

summarized in Table 5.1.

The largest velocities in the Solar System correspond to coronal mass ejections,

which can erupt at up to 450km s−1 (see p. 375 of Ref. [77]). This corresponds

to v ∼ 10−3, in units where c = 1. As well as this, the mass of the Sun is about

M� ∼ 2×1030kg, and its radius is approximately LN ∼ L� ∼ 7×108m. This means

that Eq. (5.33) implies U ∼ 10−6. This means that the post-Newtonian expansion

is indeed applicable, because v2 ∼ U , as expected from Eq. (4.13). It also means

that the value of the expansion parameter in this system is given by η ∼ 10−3, this

can be seen from Eq. (4.21) and is how η is estimated in what follows.

There are a number of systems that one could consider above the scale of the Sun,

but to speed the discussion let us move directly up to the scale of spiral galaxies.

These systems are typically made up of billions of stars, and typically have a bulge,

a disk, and a dark matter halo. The observed velocities of stars can be as high
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System v LN/Mpc MN/M� U

Sun 10−3 2× 10−14 1 10−6

Galaxy 10−3 10−2 1012 10−6

Group 10−3 0.8 1013 10−6

Cluster 10−2.5 2 1015 10−5

Supercluster 10−2.5 100 1016 10−5

Table 5.1.: Summary of the magnitude of v and U in a variety of gravitationally
bound systems, covering a wide range of scales.

as 300km s−1 (see p. 571, 578 & 580 of Ref. [77]). This again corresponds to

v ∼ 10−3. If we consider a bulge of radius LN ∼ 10kpc, and mass MN ∼ 1011M�,

then this gives U ∼ 10−6. We again have v2 ∼ U , meaning that a post-Newtonian

perturbative expansion seems appropriate to describe the gravitational field, and we

again have η ∼ 10−3.

Typical galaxy groups contain 3-30 galaxies that are gravitationally bound, and

it is estimated that ∼ 55% of galaxies exist within groups. The maximum radial

dispersion in groups of galaxies is observed to be about 500km s−1 (see p. 614 of

Ref. [77]), again implying v ∼ 10−3. We estimate the mass of a typical group,

including dark matter, is MN ∼ 1013M�, and that the radius of a typical group is

LN ∼ 0.8Mpc (this is an average of the range given in p. 614 [77]). This implies that

U ∼ 10−6 in galaxy groups, and that the post-Newtonian perturbative expansion

seems to apply here as well. We even have η ∼ 10−3, as above.

Moving up in scale still further, we have clusters of galaxies. Typical galaxy

clusters contain 30-300 gravitationally bound galaxies. The dispersion velocities of

galaxies within clusters can be as large as 1400km s−1, or v ∼ 10−2.5 in units where

c = 1. We take the mass of a typical cluster to be about MN ∼ 1015M�, and the

average radius to be around LN ∼ 2Mpc (averages of quantities given on p. 614

of Ref. [77]). Similarly we average to find the typical radius of a cluster which is

around LN ∼ Lcluster ∼ 2Mpc. The maximum gravitational potentials expected in

clusters are therefore U ∼ 10−5. We again have v2 ∼ U , but now with η ∼ 10−2.5.

Super-clusters are the largest virialized objects we currently observe in the Uni-

verse. They make up the filaments and walls that form the cosmic web, and are

made from clusters, groups and other smaller gravitationally bound systems. Ob-

servations show that peculiar velocities within of our own local supercluster are

around 1000km s−1 [68, 160], which corresponds to v ∼ 10−2.5. There are typically

2-15 clusters per supercluster, which implies the mass of a supercluster is at least
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1016M� (see p. 635 of Ref. [77]). They have typical scales of LN ∼ 100Mpc. This

gives U ∼ 10−5. Even on these extraordinarily large scales, we have v2 ∼ U and

η ∼ 10−2.5.

It is interesting to note the maximum amplitude of the gravitational potential

is roughly ∼ 10−5 for all of the systems considered above. This ranges over just

about all astrophysical objects, from the Sun to our local supercluster. We therefore

have an expansion parameter η ∼ 10−3 for all of these systems. The similarity in

the size of the gravitational potential, no matter what system is being considered,

indicates that the mass of the system under consideration increases approximately in

proportion to its length scale. This type of self-similarity will break down whenever

a system’s mass is much larger than about 10−5 of its length scale, at which point

we expect the post-Newtonian expansion should start to break down. This happens,

for example, in the case of neutron stars.

Although post-Newtonian perturbation theory appears to be applicable to super-

clusters, we do not expect it to be valid on scales that are much larger. This is

because the square of the velocity due to the Hubble flow starts to become compa-

rable to the order of the Newtonian potentials, i.e. H2L2
N ∼ 10−5. Going to even

larger scales would therefore mean that the square of the Hubble flow velocity would

start to exceed the magnitude of the gravitational potentials. If this is the case then

post-Newtonian expansions are no longer applicable, refer to the discussion leading

to the limit in Eq. (5.30), and cosmological perturbation theory must be used. It is

expected that the next generation of surveys, such as Euclid, LSST and SKA, will

start to probe this new regime [1–3].

5.3.2. Cosmological perturbation theory

Let us now consider the largest of all scales in the observable Universe; those com-

parable to the size of the horizon. In terms of the CMB, this corresponds to about

one degree at decoupling [83]. In the late Universe this distance translates to scales

of around 30Gpc. In this case we expect the cosmological perturbation theory

expansion outlined in Chapter 3 to be applicable. The principle distinction be-

tween the size of the perturbed quantities in this expansion, when compared to the

post-Newtonian expansion, is that time derivatives do not add any extra orders of

smallness. This means that velocity cannot be used as an expansion parameter.

The separation of objects is instead dominated by the Hubble flow, with only small

peculiar velocities (of the order of gravitational potentials) being allowed in addition.

The discussion of superclusters, in the previous section, should already have made
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it clear that cosmological perturbation theory is not the appropriate framework for

discussing the dynamics of astrophysical systems that exist below ∼ 100Mpc. This

is essentially because the time variation of both gravitational and matter fields are

slow compared to their variation in space, meaning that U ∼ v2. On larger scales,

however, we expect to find U ∼ v. There do not currently exist any galaxy surveys

that probe these scales directly, but we can use the CMB to justify the application

of cosmological perturbation theory on horizon-sized length scales and above.

The temperature fluctuations in the CMB, after the dipole has been subtracted,

are all at the level of about 10−5 [41]. The main contribution to these fluctuations, on

large scales, is expected to come from the Sachs-Wolfe effect [83]. This is essentially

a redshifting of the CMB radiation as it escapes the gravitational potentials that

existed at the surface of last scattering, and the redshift is related to the temperature

in a well-known way [131]. We therefore expect

δT

T
∼ U , (5.34)

where U should be understood as a typical gravitational potential at last scattering.

The observations of the temperature fluctuations at the level of one part in 105

therefore very directly imply that gravitational potentials at last scattering were of

the size U ∼ 10−5.

If we now consider the polarization of the CMB, then we can gain information

about the magnitude of peculiar velocities at last scattering. This is because polar-

ization of the CMB radiation, E , is primarily due to quadrupole anisotropy in the

velocity field of the plasma at last scattering [144]. We expect the mean-free path

of photons at last scattering to be of the order of the inverse Hubble rate (so that

1/neσt ∼ LC , where ne is the number density of electrons, and σt is the Thomson

cross section). The polarisation is therefore given by

E ∼ ∆v , (5.35)

where ∆v is the difference in peculiar velocity of matter, in orthogonal directions on

the sky (for details see Ref. [144]). Observations of CMB polarization now measure

E ∼ 10−6 [116], which means that peculiar velocities at last scattering are order

v ∼ 10−6.

Taken together, these observations therefore suggest that v ∼ U on horizon-sized

scales, as expected. These results clearly indicate that a post-Newtonian expansion

is not the appropriate framework to be describing gravity on these scales, and that
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cosmological perturbation theory should be used instead. What is more, it can be

seen that the expansion parameter for cosmological perturbation theory should be

of magnitude ε ∼ 10−5. Although it has not yet been directly observed, we very

strongly expect similar results to hold at and above ∼ 1Gpc in the late Universe.

5.3.3. A realistic universe

In previous chapters we have outlined the key features of both cosmological pertur-

bation theory and post-Newtonian gravity, they provide formalisms with different

equations at leading-order (and subsequent order) and so describe different physics.

Exactly which physical systems are best described by which formalism is the sub-

ject of the preceding sections. We found that planetary systems, galaxies, groups,

clusters and superclusters are all well described by post-Newtonian gravity. That is,

their observed velocities and inferred gravitational potentials satisfy v2 ∼ U ∼ 10−5.

Additionally, we find that observed fluctuations on the scale of the horizon are well

described by cosmological perturbation theory, as v ∼ U ∼ 10−5. Moreover, time

derivatives are order v smaller than spatial derivatives for post-Newtonian gravity,

this is not the case for cosmological perturbation theory. This very strongly indicates

that post-Newtonian gravity cannot be used to describe structure on the scale of

the horizon, and that cosmological perturbation theory cannot be used to describe

non-linear structure on the scale of 100Mpc or less.

In order to model a realistic Universe, that has non-linear structure on small scales,

as well as linear structure on large scales, we therefore need to expand in both ε

and η. This is exactly the type of two-parameter expansion that we formulate in

this thesis. In what follows, we will take ε ∼ η2 ∼ 10−5, this excludes very dense

compact objects, but fits almost all large astrophysical structures that exist in the

Universe (see Table 5.1), and that we wish to describe with our formalism.

We will also consider cosmologically perturbed structure on scales of order the

horizon LC ∼ 30Gpc (the horizon size at present time) down to the homogeneity

scale 100Mpc. These are the scales on which cosmological perturbation theory

can be applied. We also consider post-Newtonian structure on scales of order13

LN ∼ 100Mpc down to 100kpc, the scales on which structures such as superclusters

down to clusters and groups exist. These length scales imply l ∼ η, this corresponds

to the saturation of the bound in Eq. (5.30), and describes a two-parameter system

for large-scale structure. In fact the restriction l ∼ η implies that the field equations

13This length scale roughly corresponds to that of the largest gravitationally bound objects that
have so far been observed to exist in the Universe [68].
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derived are valid for all systems where the post-Newtonian structure varies on length

scales 100-1000 times smaller than the cosmologically perturbed structure.

For the system where ε ∼ η2 ∼ 10−5 and LN ∼ ηLC , in what follows, we will write

the field equations order by order in a two-parameter expansion.



6. Einstein’s field equations with a

two-parameter expansion

Here we provide the energy-momentum and Ricci tensors derived using our two-

parameter expansion. They are derived generally, for no specified physical system.

So the relationships between ε and η, and length scales LN and LC , have not been

specified. We provide these quantities for the derivation of the field equations, but

also for use in future applications. The field equations provided are for a specific

cosmological scenario, valid on a fraction of the horizon size, where ε ∼ η2 and

LN ∼ ηLC . Throughout this chapter we do not fix a gauge, to allow for the most

general expressions. We hope this will be useful, in particular, for future studies

requiring different gauges other than the Newtonian gauge, which we discuss in the

following chapter. Finally, the tensor algebra packages xAct and xPand [4, 5, 139],

were used to derive some of the equations presented in this work.

6.1. Ricci and total energy-momentum tensors

6.1.1. Ricci tensor

We now provide detailed expressions for the perturbed Ricci tensor and the per-

turbed energy-momentum tensor. We make no assumptions about the relative mag-

nitude of ε and η in this section, nor do we assume anything about the relationships

between length scales LC and LN . We begin by expanding the components of the

Ricci tensor in our two parameters. We find that the non-vanishing contributions

to each component are given by the following equations:

R00 = R
(0,0)
00 +R

(0,2)
00 +R

(0,3)
00 + 1

2
R

(0,4)
00 +R

(1,0)
00 +R

(1,1)
00 +R

(1,2)
00 + . . . (6.1)

R0i = R
(0,2)
0i +R

(0,3)
0i +R

(1,0)
0i +R

(1,2)
0i + . . . (6.2)

Rij = R
(0,0)
ij +R

(0,2)
ij +R

(0,3)
ij + 1

2
R

(0,4)
ij +R

(1,0)
ij +R

(1,1)
ij +R

(1,2)
ij + . . . , (6.3)
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where ellipses denote higher-order terms which we will not require in this thesis.

Any term in each of these equations has an order of smallness in ε and η, as

indicated by the superscript in brackets. They also have a length scale associated

with them, given by L−2
N , L−2

C or L−1
C L−1

N as the Ricci tensor contains two derivatives

of the dimensionless metric. We have not indicated this directly on each of the terms

in the expansion above, but it is important when using the perturbed Ricci tensor

to determine the field equations presented later in this chapter. We will therefore

be careful to keep track of these length scales in the expressions that follow.

The terms on the right-hand side of Eq. (6.1) are given explicitly by

R
(0,0)
00 = −3

ä

a
∼ 1

L2
C

(6.4)

R
(0,2)
00 = − 1

2a2
h

(0,2)
00,ii ∼

η2

L2
N

(6.5)

R
(0,3)
00 =

ȧ

a2
h

(0,3)
0i,i −

ȧ

a
h

(0,2)
ii,0 −

3ȧ

2a
h

(0,2)
00,0 ∼

η3

LCLN
(6.6)

R
(0,4)
00 = − 1

2a2

(
h

(0,2)
00,i

)2

− 1

2a2
h

(0,4)
00,ii − h

(0,2)
ii,00 +

2

a
h

(0,3)
0i,0i +

1

a2
h

(0,2)
00,ijh

(0,2)
ij

+
1

2a2
h

(0,2)
00,i

(
2h

(0,2)
ij,j − h

(0,2)
jj,i

)
(6.7)

∼ η4

L2
N

R
(1,0)
00 = − 1

2a2
h

(1,0)
00,ii −

1

2
h

(1,0)
ii,00 +

ȧ

a2
h

(1,0)
0i,i −

ȧ

a
h

(1,0)
ii,0 +

1

a
h

(1,0)
0i,0i −

3ȧ

2a
h

(1,0)
00,0 ∼

ε

L2
C

(6.8)

R
(1,1)
00 = − 1

2a2
h

(1,1)
00,ii ∼

εη

L2
N

(6.9)

R
(1,2)
00 = − 1

2a2
h

(1,2)
00,ii +

1

2a2
h

(0,2)
00,ijh

(1,0)
ij + terms of size

[
εη2

LNLC

]
(6.10)

∼ εη2

L2
N

+
εη2

LNLC
.

The terms in Eq. (6.2) are given by

R
(0,2)
0i = − ȧ

a
h

(0,2)
00,i ∼

η2

LCLN
(6.11)

R
(0,3)
0i =

1

2a

(
h

(0,3)
0j,ij − h

(0,3)
0i,jj + ah

(0,2)
ij,0j − ah

(0,2)
jj,0i

)
+ terms of size

[
εη3

L2
C

]
(6.12)
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∼ η3

L2
N

+
η3

L2
C

R
(1,0)
0i =

1

2a

(
h

(1,0)
0j,ij − h

(1,0)
0i,jj + ah

(1,0)
ij,0j − ah

(1,0)
jj,0i − 2ȧh

(1,0)
00,i + 4ȧ2h

(1,0)
0i + 2aäh

(1,0)
0i

)
∼ ε

L2
C

(6.13)

R
(1,1)
0i = −2ȧh

(1,1)
00,i ∼

εη

LNLC
(6.14)

R
(1,2)
0i =

1

2a

(
h

(1,2)
0j,ij − h

(1,2)
0i,jj + ah

(1,1)
ij,0j − ah

(1,1)
jj,0i

)
+

1

2a
h

(1,0)
0j h

(0,2)
00,ij (6.15)

+ terms of size

[
εη2

L2
C

+
εη2

LNLC

]
∼ εη2

L2
N

+
εη2

L2
C

+
εη2

LNLC
.

Finally, the terms in Eq. (6.3) are given by

R
(0,0)
ij =

(
2ȧ2 + aä

)
δij ∼

1

L2
C

(6.16)

R
(0,2)
ij =

1

2

(
h

(0,2)
00,ij + 2h

(0,2)
k(i,j)k − h

(0,2)
kk,ij − h

(0,2)
ij,kk

)
+
(
2ȧ2 + aä

) (
h

(0,2)
ij + h

(0,2)
00 δij

)
∼ η2

L2
N

+
η2

L2
C

(6.17)

R
(0,3)
ij =

1

2
aȧh

(0,2)
00,0 δij − 2ȧh

(0,3)
0(i,j) − ȧh

(0,3)
0k,k δij +

3

2
aȧh

(0,2)
ij,0 +

1

2
aȧh

(0,2)
kk,0 δij (6.18)

∼ η3

LCLN

R
(0,4)
ij =

1

2

(
h

(0,4)
00,ij − h

(0,4)
ij,kk − h

(0,4)
kk,ij

)
+ a2h

(0,2)
ij,00 +

1

2
h

(0,2)
00,k

(
h

(0,2)
ij,k − 2h

(0,2)
k(i,j)

)
+h

(0,2)
kl,ijh

(0,2)
kl + h

(0,2)
ij,kl h

(0,2)
kl − 2h

(0,2)
k(i,j)lh

(0,2)
kl + h

(0,2)
kl,l

(
h

(0,2)
ij,k − 2h

(0,2)
k(i,j)

)
+h

(0,2)
ik,l

(
h

(0,2)
jk,l − h

(0,2)
jl,k

)
+ h

(0,4)
k(i,j)k + h

(0,2)
00,ijh

(0,2)
00 + h

(0,2)
kk,l

(
2h

(0,2)
l(i,j) − h

(0,2)
ij,l

)
+

1

2
h

(0,2)
00,i h

(0,2)
00,j +

1

2
h

(0,2)
kl,i h

(0,2)
kl,j − 2ah

(0,3)
0(i,j)0 + terms of size

[
η4

L2
C

]
(6.19)

∼ η4

L2
N

+
η4

L2
C

R
(1,0)
ij =

1

2

(
h

(1,0)
00,ij − h

(1,0)
ij,kk − h

(1,0)
kk,ij

)
+ h

(1,0)
k(i,j)k + aäh

(1,0)
ij + aäh

(1,0)
00 δij
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+
1

2
aȧh

(1,0)
00,0 δij − 2ȧh

(1,0)
0(i,j) − ȧh

(1,0)
0k,k δij +

3

2
aȧh

(1,0)
ij,0 +

1

2
aȧh

(1,0)
kk,0 δij

+
1

2
a2h

(1,0)
ij,00 + 2ȧ2h

(1,0)
00 δij + 2ȧ2h

(1,0)
ij − ah(1,0)

0(i,j)0 (6.20)

∼ ε

L2
C

R
(1,1)
ij =

1

2
(h

(1,1)
00,ij − h

(1,1)
ij,kk − h

(1,1)
kk,ij) + h

(1,1)
k(i,j)k + terms of size

[
εη

L2
C

]
(6.21)

∼ εη

L2
N

+
εη

L2
C

R
(1,2)
ij =

1

2

(
h

(1,2)
00,ij − h

(1,2)
ij,kk − h

(1,2)
kk,ij

)
+ h

(1,2)
k(i,j)k +

1

2
h

(0,2)
00,ijh

(1,0)
00 +

1

2
h

(0,2)
kl,ijh

(1,0)
kl

+
1

2
h

(0,2)
ij,kl h

(1,0)
kl − h

(0,2)
k(i,j)lh

(1,0)
kl + terms of size

[
εη2

L2
C

+
εη2

LNLC

]
(6.22)

∼ εη2

L2
N

+
εη2

L2
C

+
εη2

LNLC
.

We note that in Eq. (6.17) the two orders or magnitude after the ∼ indicate the

term in the first parentheses and the subsequent terms, respectively.

6.1.2. Total energy-momentum tensor

We provide detailed expressions for the total perturbed energy-momentum tensor,

which will be used to derive the field equations presented later. We make no as-

sumptions about the relative magnitude of ε and η here, nor do we assume anything

about the relationships between length scales LC and LN . We substitute the total

perturbed energy-density, (5.2), pressure, (5.3), and four-velocity, (5.9)-(5.12), into

the perturbed total energy-momentum tensor, (2.20). This total energy-momentum

tensor includes two fluids, radiation and matter, see Eq. (5.18).

Expanding the total energy-momentum tensor in both ε and η the non-vanishing

components of the energy-momentum tensor are given by

T00 = T
(0,0)
00 + T

(0,2)
00 + T

(1,0)
00 + T

(1,1)
00 + T

(1,2)
00 +

1

2
T

(0,4)
00 + . . . (6.23)

T0i = T
(0,1)
0i + T

(0,3)
0i + T

(1,0)
0i + T

(1,2)
0i + . . . (6.24)

Tij = T
(0,0)
ij + T

(0,2)
ij + T

(1,0)
ij + T

(1,1)
ij + T

(1,2)
ij +

1

2
T

(0,4)
ij + . . . , (6.25)

where ellipses again indicate higher-order terms that we will not consider in this



6.1: Ricci and total energy-momentum tensors 86

thesis. There are significant differences between the above expansion of the total-

stress energy tensor for matter and radiation compared to matter only (for the latter,

refer to Appendix A) which are all due to the inclusion of the terms ρ(0,0), p(0,0) and

p(1,2).

The terms on the right-hand side of Eq. (6.23) are given by

T
(0,0)
00 = ρ(0,0) ∼ 1

L2
C

(6.26)

T
(0,2)
00 = ρ(0,2) − ρ(0,0)h

(0,2)
00 + (ρ(0,0) + p(0,0))v(0,1)iv

(0,1)
i ∼ η2

L2
N

+
η2

L2
C

(6.27)

T
(0,4)
00 = ρ(0,4) − 2h

(0,2)
00 ρ(0,2) + 2ρ(0,2)v(0,1)iv

(0,1)
i + terms of size

[
η4

L2
C

]
(6.28)

∼ η4

L2
N

+
η4

L2
C

T
(1,0)
00 = ρ(1,0) − ρ(0,0)h

(1,0)
00 ∼ ε

L2
C

(6.29)

T
(1,1)
00 = ρ(1,1) + terms of size

[
εη

L2
C

]
∼ εη

L2
N

+
εη

L2
C

T
(1,2)
00 = ρ(1,2) − h(1,0)

00 ρ(0,2) + terms of size

[
εη2

L2
C

]
∼ εη2

L2
N

+
εη2

L2
C

,

while the terms in Eq. (6.24) are given by

T
(0,1)
0i = −a(ρ(0,0) + p(0,0))v

(0,1)
i ∼ η

L2
C

(6.30)

T
(0,3)
0i = −aρ(0,2)v

(0,1)
i + terms of size

[
η3

L2
C

]
∼ η3

L2
N

+
η3

L2
C

T
(1,0)
0i = −aρ(0,0)(v

(1,0)
i + h

(1,0)
0i )− ap(0,0)v

(1,0)
i ∼ ε

L2
C

(6.31)

T
(1,2)
0i = −aρ(0,2)

(
v

(1,0)
i + h

(1,0)
0i

)
− aρ(1,1)v

(0,1)
i + terms of size

[
εη2

L2
C

]
(6.32)

∼ εη2

L2
N

+
εη2

L2
C

,

and the terms in Eq. (6.25) are given by

T
(0,0)
ij = a2p(0,0)δij ∼

1

L2
C

(6.33)
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T
(0,2)
ij = a2

(
ρ(0,0) + p(0,0)

)
v

(0,1)
i v

(0,1)
j + a2p(0,0)h

(0,2)
ij ∼ η2

L2
C

(6.34)

T
(1,0)
ij = a2p(1,0)δij + a2h

(1,0)
ij p(0,0) ∼ ε

L2
C

(6.35)

T
(1,1)
ij = terms of size

[
εη

L2
C

]
∼ εη

L2
C

(6.36)

T
(1,2)
ij = a2p(1,2)δij + terms of size

[
εη2

L2
C

]
∼ εη2

L2
N

+
εη2

L2
C

(6.37)

T
(0,4)
ij = 2a2ρ(0,2)v

(0,1)
i v

(0,1)
j + a2p(0,4)δij + terms of size

[
η4

L2
C

]
(6.38)

∼ η4

L2
N

+
η4

L2
C

.

This completes the list of expanded tensor components that are required to derive

the field equations in the next section. We also provide the energy-momentum tensor

for dust only in Appendix A.

6.2. The field equations

It is straightforward to expand the field equations (2.15) in both ε and η, but the

results are somewhat lengthy. This is partly due to the fact that we are using two

parameters in our perturbative expansion, but is also a result of the freedom in

choosing coordinates that exists within general relativity. Nevertheless, we want to

present our results in the most general form possible at this stage. We therefore

wrote the full versions of the two-parameter perturbed Ricci tensor and energy-

momentum tensor above. The form of these equations is particularly complicated

not only because of gauge freedoms and that each component of every tensor contains

a large number of terms, but because each term is itself associated with a different

length scale (or set of scales) and two parameters.

In practise, we want to apply our formalism to specific examples of physical inter-

est. That is we need a relationship l between LN and LC and a given relationship

between η and ε. Once such an example scenario has been chosen, then the ex-

pansion parameters and length scales can be written in terms of one another. This

reduces the complexity, and allows the field equations to be written out explicitly,

order-by-order, and without ambiguity.

In Section 5.3 we carefully analysed different astrophysical systems that exist on

different scales in the Universe to see which are best described by the post-Newtonian
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expansion or cosmological perturbation theory. In this section we will present results

for the choice

ε ∼ η2 ∼ L2
N

L2
C

∼ 10−5 , (6.39)

because, as described at the end of Section 5.3, ε ∼ η2 ∼ 10−5 fits almost all

non-linear astrophysical structures that exist in the Universe and the length scales

LN ∼ ηLC imply models where the non-linear structure exists on scales η smaller

than the linear cosmological perturbations. Our field equations therefore correspond

to dynamics on a fraction of the horizon-size. These results will be presented without

fixing coordinates to any particular gauge, and are therefore still quite lengthy. In

the following chapters we will exploit the gauge freedom associated with coordinate

re-parametrization, and use this to present the same field equations in a much more

compact form in Chapter 8.

At this stage it is useful to define some new notation, so that we can present the

trace-free part of various quantities in the most efficient way possible. We define

angular brackets on a pair of indices to mean that they are symmetric and trace-free,

such that

T〈ij〉 ≡ T(ij) −
1

3
δijTkk , (6.40)

where T is a rank-2 tensor, and where indices are now being raised and lowered with

the Kronecker delta, δij. The round brackets in this expression denote symmetriza-

tion, and repeated indices are summed over, as usual. We will also use vertical

lines around indices if they are to be excluded from a symmetrization or trace-free

operation.

Additionally, we define a symmetric and trace-free second derivative operator by

the following equation:

Dijϕ ≡ ϕ,(ij) −
1

3
δij∇2ϕ , (6.41)

where ϕ is any tensorial quantity (not necessarily a scalar), and where, here, ∇
represents the Laplacian on Euclidean space. For a tensor T , of any rank, we

observe the equivalence T,〈ij〉 = DijT . We will use this notation to write out the

trace and trace-free parts of the field equations, order by order in perturbations.

6.2.1. Background-order potentials

The two-parameter book-keeping implies the leading-order field equations, in our

formalism, are not just at zeroth order in perturbations, but also include leading-
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order Newtonian perturbations. They come in at order O(L−2
C ) ∼ O(η2L−2

N ) given

the conditions in Eq. (6.39). The leading-order part of the 00-field equation is

therefore given by

3
ä

a
+

1

2a2
∇2h

(0,2)
00 = −4π

(
ρ(0,0) + ρ(0,2) + 3p(0,0)

)
+ Λ(0,0) . (6.42)

This equation results from Eqs. (6.4), (6.5), (6.26) and (6.27), and is a combination

of the Raychaudhuri equation from Friedmann cosmology, and the Newton-Poisson

equation from post-Newtonian gravity. It is interesting to see that the rest mass

density, ρ(0,2), is the source of both the Newtonian gravitational field and the large-

scale acceleration equation1. This is compatible with the usual understanding of how

these phenomena are generated, but usually we do not see these terms in the same

equation, at the same order in perturbations, they are normally derived initially as

separate equations. Here we see that a ∼ 1 and ä ∼ 1/L2
C , as the time variation of

a(t) is over cosmological scales.

At the same order of accuracy, we find that the leading-order contribution to the

trace of the ij-field equations is at O(η2L−2
N ) and given by(

ȧ

a

)2

− 1

6a2

(
∇2h

(0,2)
ii − h(0,2)

ij,ij

)
=

8π

3

(
ρ(0,2) + ρ(0,0)

)
+

1

3
Λ(0,0) . (6.43)

This equation is derived from Eqs. (6.16), (6.17), (6.33), (6.27) and simplified with

the field equation (6.42). This derived equation is a combination of the Friedmann

equation and the Newton-Poisson equation for the trace of the post-Newtonian

potential h
(0,2)
ii . Again, we expect to see the Friedmann equation sourced by ra-

diation ρ(0,0) and a cosmological constant at lowest order, as they are considered

background-order quantities. However, it is unusual to see them with a mixture

of first-order Newtonian perturbations to the metric and energy density, if one was

using single-parameter cosmological perturbation theory. Finally, the trace-free part

of the ij-field equations is also at O(η2L−2
N ), and is given by

Dij

(
h

(0,2)
00 − h(0,2)

kk

)
+ 2h

(0,2)
k〈i,j〉k −∇

2h
(0,2)
〈ij〉 = 0 , (6.44)

where we have made use of the notation introduced in Eqs. (6.40) and (6.41).

This equation is the same for dust only and radiation, dust and a cosmological

1We find later, with a definition of the homogeneity scale, that the inhomogeneous part of the
Newtonian rest mass does not affect the expansion rate, only the average of it does, see Section
8.2.1.
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constant because neither the cosmological constant nor radiation contribute trace-

free components. This equation looks like the quasi-static limit of a first-order

equation from cosmological perturbation theory, see for example [36, 138].

6.2.2. Vector potentials

Now let us consider the 0i-field equations, which usually result in the governing

equations for the vector gravitational potentials. The leading-order contribution to

these equations are O(η3L−2
N ), and is given by

∇2h
(0,3)
0i − h(0,3)

0j,ij − aḣ
(0,2)
ij,j + aḣ

(0,2)
jj,i + 2ȧh

(0,2)
00,i (6.45)

= 16πa2
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
i .

This equation is the result of using Eqs. (6.11), (6.12), (6.30) and (6.31). This

is the equation for the small-scale post-Newtonian vector potential, responsible for

phenomena such as the Lense-Thirring effect, and is the one studied in Ref. [130].

However, it is unusual in post-Newtonian gravity to see contributions from the ra-

diation energy density and pressure in this equation too because post-Newtonian

gravity normally considers dust only. Interestingly, this field equation implies the

gravitomagnetic (0i-metric) potential is ∼ 100 times larger than second-order per-

turbation theory predicts. This is because the first non-decaying 0i-metric potential

is of order ε2 in second-order cosmological perturbation theory. This metric poten-

tial is 100 times smaller than the post-Newtonian metric potential in Eq. (6.45), of

size η3, because ε ∼ η2 ∼ 10−5. A similar result was found in the calculation of the

vector potential in Ref. [26].

At next-to-leading-order in the 0i-field equation, at O(η4L−2
N ), from Eqs. (6.13)-

(6.15), (6.31) and (6.32), we find that

∇2
(
h

(1,0)
0i + h

(1,2)
0i

)
−
(
h

(1,0)
0j + h

(1,2)
0j

)
,ij
− h(1,0)

0j h
(0,2)
00,ij − a

(
h

(1,0)
ij + h

(1,1)
ij

)·
,j

(6.46)

+a
(
h

(1,0)
jj + h

(1,1)
jj

)·
,i

+ 2ȧ
(
h

(1,0)
00 + h

(1,1)
00

)
,i
− 2h

(1,0)
0i

(
2ȧ2 + aä

)
= 8πa2

(
2
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(1,0)
i +

(
ρ(0,0) + ρ(0,2) + 3p(0,0)

)
h

(1,0)
0i

+2ρ(1,1)v
(0,1)
i

)
− 2a2Λ(0,0)h

(1,0)
0i .

This equation is the governing equation for the large-scale vector potentials. It is

more complicated than Eq. (6.45), and shows that non-linear gravitational effects
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could potentially source the growth of large-scale vector potentials at late times.

This equation can also be seen to have contributions from the cosmological constant,

unlike Eq. (6.45).

6.2.3. Higher-order scalar potentials

The next-to-leading-order 00-field equation occurs at O(η3L−2
N ), and is given by

∇2h
(1,1)
00 = −8πa2ρ(1,1) . (6.47)

This is a Newton-Poisson equation, derived from Eqs. (6.9) and (6.30). It is sourced

only by a mixed order matter energy density ρ(1,1) = ρ
(1,1)
M . This is not usual in

post-Newtonian gravity because the Newton-Poisson equation is normally only at

leading order and, of course, is not normally associated with a mixed-order perturbed

quantity. Also, for radiation or cosmological constant domination, using our two-

parameter expansion, we find ∇2h
(1,1)
00 = 0 which implies h

(1,1)
00 = 0 for these epochs,

given boundary conditions.

The governing equations for the cosmological potentials h
(1,0)
00 and h

(1,0)
ii occur

along with post-Newtonian and mixed order potentials at O(η4L−2
N ) – this was also

the case for the vector potentials considered above. From the 00-field equation at

this order (once multiplied by a factor of −2a2), we find that

∇2

(
h

(1,0)
00 + h

(1,2)
00 +

1

2
h

(0,4)
00

)
+

1

2

(
∇h(0,2)

00

)2

+ a2
(
h

(0,2)
ii + h

(1,0)
ii

)··
(6.48)

−2

[
a
(
h

(0,3)
0i + h

(1,0)
0i

)
,i

]·
+ 2aȧ

(
h

(0,2)
ii + h

(1,0)
ii

)·
− 1

2
h

(0,2)
00,i

(
2h

(0,2)
ij,j − h

(0,2)
jj,i

)
−h(0,2)

00,ij

(
h

(1,0)
ij + h

(0,2)
ij

)
+ 3aȧ

(
h

(0,2)
00 + h

(1,0)
00

)·
= −8πa2

[
ρ(1,0) + ρ(1,2) +

1

2
ρ(0,4) −

(
ρ(0,0) + ρ(0,2) + 3p(0,0)

) (
h

(1,0)
00 + h

(0,2)
00

)
+3

(
p(1,0) + p(1,2) +

1

2
p(0,4)

)]
− 16πa2

(
v

(0,1)
i

)2 (
ρ(0,0) + ρ(0,2) + p(0,0)

)
−2a2Λ(0,0)

(
h

(0,2)
00 + h

(1,0)
00

)
.

There are a number of interesting things to note about this equation. These include

the fact that the cosmological scalar h
(1,0)
00 is sourced by terms that are quadratic in

the small-scale Newtonian potential, h
(0,2)
00 , as well as terms that are linear in the

vector potential, h
(0,3)
0i , and post-Newtonian potential h

(0,4)
00 . This kind of mixing in
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scales and modes is a product of the approach we have used in our two-parameter

perturbative expansion and could explain why studies of second-order gravitational

fields using cosmological perturbation theory average to the size of first order grav-

itational fields [14, 56, 72, 115, 143]. It suggests that interesting relativistic phe-

nomenology in the late Universe could result at linear order in large-scale potentials.

This equation can be seen to have additional sources due to the presence of radi-

ation and a cosmological constant, compared to the corresponding equation in the

presence of dust only (see Appendix B).

The ij-field equation, at O(η3L−2
N ), can be split into its trace and trace-free parts.

The trace-free part will be presented in the next section. The trace gives

∇2h
(1,1)
ii − h(1,1)

ij,ij = −16πa2ρ(1,1) . (6.49)

This equation is derived from Eqs. (6.21) and (6.30), and is a Poisson equation

for the trace of the mixed order potential h
(1,1)
ii , and has only a dust source as

ρ(1,1) = ρ
(1,1)
M . Again, this is not usual because such an equation is normally at

post-Newtonian order and is normally not associated with a mixed-order quantity.

Similarly the ij-field equation at O(η4L−2
N ) can also be split into its trace and

trace-free parts. The trace of this equation gives

(
δij∇2 − ∂i∂j

)(
h

(1,0)
ij + h

(1,2)
ij +

1

2
h

(0,4)
ij

)
+ 4ȧ

(
h

(1,0)
0i + h

(0,3)
0i

)
,i

−2aȧ
(
h

(1,0)
ii + h

(0,2)
ii

)
˙−
(
2ȧ2 + aä

) (
h

(1,0)
ii + h

(0,2)
ii + 3h

(1,0)
00 + 3h

(0,2)
00

)
= −16πa2

[
ρ(1,0) +

1

2
ρ(0,4) + ρ(1,2) +

(
ρ(0,0) + ρ(0,2) + p(0,0)

) (
v

(0,1)
i

)2
]

−4πa2
[(
ρ(0,0) + ρ(0,2) − p(0,0)

) (
h

(0,2)
ii + h

(1,0)
ii

)
−
(
ρ(0,0) + ρ(0,2) + 3p(0,0)

) (
h

(0,2)
00 + h

(1,0)
00

)]
−a2Λ(0,0)

[
h

(0,2)
00 + h

(1,0)
00 + h

(0,2)
ii + h

(1,0)
ii

]
+A , (6.50)

where we have simplified this expression using Eq. (6.48) multiplied by a factor

of a2. The A in Eq. (6.50) represents the sum of all terms that are quadratic in

lower-order potentials, and is given by

A ≡ 3

4

(
h

(0,2)
ij,k

)2

+ h
(0,2)
ij,j

(
h

(0,2)
kk,i − h

(0,2)
ik,k

)
− 1

2
h

(0,2)
ij,k h

(0,2)
ik,j −

1

4
h

(0,2)
ii,j h

(0,2)
kk,j (6.51)
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+
1

2
∇2h

(0,2)
00

(
h

(1,0)
00 + h

(0,2)
00

)
+

1

2

(
h

(0,2)
00,ij +∇2h

(0,2)
ij

)(
h

(1,0)
ij + h

(0,2)
ij

)
+

(
1

2
h

(0,2)
ii,jk − h

(0,2)
ij,ik

)(
h

(0,2)
jk + h

(1,0)
jk

)
.

If A is non-zero, then this indicates that non-linear relativistic effects could be

important in the determination of scalar gravitational fields on large scales – this

is what we expect generally. One may also note that small-scale peculiar velocities

are now a source for linear cosmological scalar gravitational fields – these terms are

highly non-linear. Furthermore, as ρ(0,2) is inhomogeneous, the term ρ(0,2)
(
v

(0,1)
i

)2

would normally appear at third order in cosmological perturbation theory. This

equation includes additional source terms due to the inclusion of matter, radiation

and cosmological constant when compared to matter alone. The trace-free part of

this equation is presented below.

6.2.4. Tensor potentials

The next-to-leading-order trace-free ij-field equation occurs at O(η3L−2
N ), and is

given by

Dij

(
h

(1,1)
00 − h(1,1)

kk

)
+ 2h

(1,1)
k〈i,j〉k −∇

2h
(1,1)
〈ij〉 = 0 . (6.52)

where we have used Eqs. (6.21) and (6.30). We note that this equation has the

same form as the lowest order trace-free ij-field equation, given in Eq. (6.44), and

for dust only (as the cosmological constant and radiation are isotropic).

The remaining part of the field equations that we wish to consider is the trace-free

part of the ij-component. At O(η4L−2
N ) we find that this equation is given by

∇2

(
h

(1,0)
〈ij〉 + h

(1,2)
〈ij〉 +

1

2
h

(0,4)
〈ij〉

)
− 2

(
h

(1,0)
k〈i + h

(1,2)
k〈i +

1

2
h

(0,4)
k〈i

)
,j〉k

(6.53)

−Dij

(
h

(1,0)
00 + h

(1,2)
00 +

1

2
h

(0,4)
00 − h(1,0)

kk − h
(1,2)
kk −

1

2
h

(0,4)
kk

)
−2
(
2ȧ2 + aä

) (
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉

)
+

2

a

[
a2
(
h

(1,0)
0〈i + h

(0,3)
0〈i

)]·
,j〉

−a2
(
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉

)··
− 3aȧ

(
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉

)·
= −2a2Λ(0,0)

(
h

(0,2)
〈ij〉 + h

(1,0)
〈ij〉

)
− 8πa2

[(
ρ(0,0) + ρ(0,2) − p(0,0)

) (
h

(0,2)
〈ij〉 + h

(1,0)
〈ij〉

)
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+2
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
〈i v

(0,1)
j〉

]
+ Bij ,

where we used Bij to denote the summation of all terms that are quadratic in lower-

order potentials

Bij ≡
1

2
h

(0,2)
00,〈i|h

(0,2)
00,|j〉 +

1

2
h

(0,2)
kl,〈i|h

(0,2)
kl,|j〉 +Dijh

(0,2)
00

(
h

(1,0)
00 + h

(0,2)
00

)
(6.54)

+
1

2

(
h

(0,2)
00,k + 2h

(0,2)
kl,l − h

(0,2)
ll,k

)(
h

(0,2)
〈ij〉,k − 2h

(0,2)
k〈i,j〉

)
+
(
Dijh

(0,2)
kl + h

(0,2)
〈ij〉,kl − 2h

(0,2)
k〈i,j〉l

)(
h

(1,0)
kl + h

(0,2)
kl

)
+ h

(0,2)
〈i|k,l

(
h

(0,2)
|j〉k,l − h

(0,2)
|j〉l,k

)
.

These expressions show that trace-free large-scale tensor potentials are, in this for-

malism, sourced by small-scale peculiar velocities, as well as by terms that are

quadratic in lower-order potentials; effects only found at second order or third order

in standard perturbation theory. This again indicates the possibility of mode-mixing

between scales, a mixing of different fluids, and the sourcing of gravitational phenom-

ena in ways that are impossible at first order in standard cosmological perturbation

theory. This completes the full set of field equations, to the order at which we

require them.

The two-parameter perturbed field equations for a Universe with non-relativistic

matter only are given in Appendix B. In the next chapter we will consider how

gauge transformations affect the perturbations that we have been considering. This

information will then be used to simplify the field equations that are given above,

as well as to present them in a gauge-invariant form.



7. Two-parameter gauge

transformations

As discussed in Section 3.3, general relativity is a covariant theory. This means

that the form of the tensor equations that we use to describe general relativity

must be valid for any set of coordinates. Diffeomorphisms obey a strict group

structure, which guarantee that we can transform any given solution into a new

set of coordinates, and that the result will still obey Einstein’s equations. When

considering general perturbations about a fixed background, this freedom in coor-

dinate re-parametrization is referred to as infinitesimal diffeomorphisms or “gauge

freedoms”, and are given by the Lie derivative at leading-order or the exponential

map at beyond-leading-order, see Eq. (3.26). When it comes to solving Einstein’s

equations, coordinate re-parametrization invariance and gauge freedom are both a

blessing and a curse. In general, they mean that perturbations, such as perturba-

tions to the metric, contain not only the essential degrees of freedom required to

describe the physical situation at hand, but also a number of superfluous degrees of

freedom that relate only to the arbitrary coordinates used to describe the problem.

However, while it takes some care to remove these extra degrees of freedom, the

process of doing so, where we calculate gauge invariant variables, can be used to

simplify the equations that result, which are ultimately the same form as the field

equations in terms of the longitudinal gauge. This is especially welcome in our case,

as the equations presented in Chapter 6 are particularly unwieldy.

In this chapter we will outline how gauge transformations are performed in a

two-parameter perturbation expansion – this is non-trivial because our expansion

requires perturbations which vary on two different length scales. These transforma-

tions differ significantly from gauge transformations in single parameter cosmological

perturbation theory1, discussed in Section 3.3. The form of these transformations

will then be used to construct a set of variables that have the superfluous gauge

1Gauge transformations are also necessary to form a complete set of two-parameter perturbations

of metric and matter sources, for example see the transformations of h
(1,1)
00 and ρ(1,1), Eqs. (7.6)

and (7.73), respectively.
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freedoms removed. We also assert which gauge choices, out of those traditionally

used in cosmological perturbation theory, are allowed in post-Newtonian gravity

and therefore in our two-parameter expansion. The gauge invariant quantities we

construct will allow us not only to write the field equations in a more compact form,

but also to present a set of equations that represents only the degrees of freedom

required to characterise the physical problem itself. Additionally, a full understand-

ing of the gauge transformations of the matter fluids and metric fields also allows

us to identify certain terms in our two-parameter expansion summarised in Section

5.2.2.

7.1. Two-parameter gauge transformations

Two-parameter gauge transformations have much the same form as those con-

structed in cosmological perturbation theory, Section (3.3.1). To be precise, the

general form of the infinitesimal gauge transformation still holds, see Eq. (3.22),

where ξµ is gauge generator (small in the perturbative expansion). For our two-

parameter expansion this implies the gauge generator is expanded in two-parameters

simultaneously, ε and η. A transformation of this type leaves all background quan-

tities invariant, but changes the form of the perturbations, it uses the exponential

map between coordinates systems, given in Eq. (3.26), which guarantees that the

group structure of the manifold is preserved, and the Lie derivative is defined in Eq.

(2.13). Now with Eqs. (3.22) and (3.26), and a two-parameter perturbed tensor

T in hand, we can specify how the gauge generator ξµ should be expanded in two-

parameters. We then calculate the transformation of tensor T order-by-order in the

perturbations.

In principle, when expanding the gauge generator ξµ one could include terms at

any order possible in the parameters ε and η, given in the general two-parameter

expansion of a tensorial quantity in Eq. (5.1). This, however, is not strictly neces-

sary, as some orders will serve to produce new terms in the tensor T̃ that are of no

physical interest. This is the same type of problem that occurred when we expanded

the sources in the field equations, for example see the discussion in Section 5.2.3.

The terms we wish to retain in ξµ, and their orders of magnitude, are given by the

following expressions:

ξ0 = ξ(1,0)0 + ξ(0,3)0 + ξ(1,2)0 + . . . (7.1)

∼ εLC + η3LN + εη3LN + . . .
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ξi = ξ(1,0)i + ξ(0,2)i + ξ(1,1)i + ξ(1,2)i + 1
2
ξ(0,4)i + . . . (7.2)

∼ εLC + η2LN + εη2LN + η4LN + . . . ,

where in the limit where post-Newtonian perturbations go to zero, η → 0, we re-

cover the perturbed gauge generator for single-parameter cosmological perturbation

theory, given in Eqs. (3.24) and (3.25).

We now make several comments on the above two-parameter expansion of the

gauge generator. Firstly, as stated previously, each of the terms ξ(m,n) has dimensions

of length. This is because the gauge generator ξµ corresponds to a change in space-

time coordinates xµ and coordinates have dimensions of length. The particular

length scale assigned to each term is done in the same way as described in Chapter

5, such that cosmological perturbations vary on the length scales LC whereas post-

Newtonian or mixed-order perturbations vary on length scales LN . Secondly, one

may also note that while terms of O(εLC) appear similarly in both ξ0 and ξi, the

order of terms perturbed in the parameter η appear at different orders in ξ0 and ξi,

see Eqs. (7.1) and (7.2). This is, once again, because time and space derivatives

on cosmologically perturbed quantities add the same order of smallness whereas

they add different orders of smallness in post-Newtonian perturbation theory. The

ellipses in Eqs. (7.1) and (7.2) correspond to terms that are smaller than those

required to transform the field equations presented in Chapter 6.

The lowest-order-cosmological gauge generators, ξ(1,0)µ, are of exactly the same

order as the ones used in normal cosmological perturbation theory at linear order,

see Eq. (3.23). These are the parts of the gauge generator that will generate metric

perturbations at order g
(1,0)
µν , in the usual way. This is just what we expect, as

our cosmological metric perturbations are, for all intents and purposes, exactly the

same as those used in standard cosmological perturbation theory (i.e. they have

the same size, and vary in the same way in space and time). Additionally, the post-

Newtonian gauge generators ξ(0,3)0, ξ(0,2)i and ξ(0,4)i are of exactly the same order

in perturbations as those that occur in usual post-Newtonian perturbation theory

[141, 171]. All mixed order gauge generators are unique to our two parameter

expansion, and have no counterpart in either standard cosmological perturbation

theory or standard post-Newtonian theory.

We formed the above gauge generators, Eq. (7.1) and (7.2), in the same way as

the perturbed sources of energy-momentum and metric, in Chapter 5, such that the

gauge generator contains the minimum number of perturbations necessary for a two-

parameter system. We wrote an initial ansatz gauge generator with care because
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of the different length scales involved. The initial ansatz was given by the sum

of the gauge generators used in cosmological perturbation theory, post-Newtonian

gravity and mixed order gauge generators (that are products of the lowest-order

gauge generators in both the cosmological and the post-Newtonian sectors) this

gives ξ(1,3)0 and ξ(1,2)i. However, the terms in the final ansatz metric, given in Section

5.2.2, strictly imply we require gauge generators of order ξ(1,1)i and ξ(1,2)0 because

we want to find and transform along all possible degrees of freedom2. Therefore, we

also include gauge generators ξ(1,1)i and ξ(1,2)0 in our new ansatz gauge generator,

given in Eqs. (7.1) and (7.2). Now this gauge generator has the minimal number of

perturbations necessary to create all necessary transformations to the metric, and

energy-momentum tensor.

In order to present our results in a form that can be used for cosmology we choose

to take LN/LC ∼ η. This means that we are restricting the post-Newtonian sector

of our expansion to apply on scales below about 100Mpc, which is coincidently also

about the size of the homogeneity scale. This is ideal for considering the influence of

galaxies, clusters and super-clusters on large-scale linear cosmological perturbations.

We also choose, without loss of generality, to express our results in terms of LN . It

is necessary to relate these length scales LN and LC , otherwise we cannot separate

the gauge transformations at different post-Newtonian, mixed and cosmologically

perturbed orders, because the gauge generators are not only small in ε or η but vary

on characteristic length scales LC or LN . Throughout the following chapter we will

assume LN/LC ∼ η, as is assumed in Chapter 6, but not ε ∼ η2 (as this is not

necessary).

To summarise, considering transformations of non-linear gravity with a two-

parameter expansion, where potentials vary on different length scales and behave

differently under space-time derivatives, makes this study more complex than (even)

second order cosmological perturbation theory. By substitution of Eqs. (7.1) and

(7.2), into Eqs. (3.22) and (3.26), we can calculate how the metric and energy-

momentum tensors transform under these infinitesimal coordinate transformations,

order-by-order in perturbations, we now present these results in detail.

2To be explicit the ij and 0i parts of our initial metric ansatz produced new potentials of O(εη)
and O(εη2), respectively. As explained in Section 5.2.6, we therefore included the extra metric

components g
(1,1)
ij and g

(1,2)
0i in our new ansatz metric. The existence of these potentials then

implies that we should have gauge generators of order ξ(1,1)i and ξ(1,2)0, as we we want to find
and transform along all possible degrees of freedom.
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7.2. Transformation of the metric

We begin by transforming the different components of the perturbed metric, Eqs.

(5.5)-(5.7), using

g̃µν = gµν + Lξgµν + 1
2
L2
ξgµν + . . . , (7.3)

which is given from the exponential map, Eq. (3.26), and where the expansion of

the gauge generator ξµ is given by Eqs. (7.1) and (7.2). Note that the last term

in Eq. (7.3), in the transformation of the metric, is quadratic in ξ. Such terms

are given explicitly in the transformation of the second-order perturbation to the

metric in single-parameter cosmological perturbation theory in Eq. (3.39). All

such quadratic terms are needed in order to explicitly calculate non-linear gauge

transformations3, undertaken in this chapter. These non-linear transformations are

necessary to calculate the transformation of post-Newtonian potentials and had not

been calculated before Refs. [97, 98].

7.2.1. Transformation of metric components

The time-time component: the perturbations of the time-time component of the

metric, up to the order we wish to consider here, transform under Eq. (7.3) in the

following way:

h
(0,2)
00 7→ h̃

(0,2)
00 = h

(0,2)
00 (7.4)

h
(1,0)
00 7→ h̃

(1,0)
00 = h

(1,0)
00 − 2ξ̇(1,0)0 (7.5)

h
(1,1)
00 7→ h̃

(1,1)
00 = h

(1,1)
00 + h

(0,2)
00,i ξ

(1,0)i (7.6)

h
(1,2)
00 7→ h̃

(1,2)
00 = h

(1,2)
00 + ḣ

(0,2)
00 ξ(1,0)0 + 2h

(0,2)
00 ξ̇(1,0)0 (7.7)

h
(0,4)
00 7→ h̃

(0,4)
00 = h

(0,4)
00 − 4ξ̇(0,3)0 + 2h

(0,2)
00,i ξ

(0,2)i . (7.8)

We note that in addition to these transformations, each of which contains terms

with the same order-of-magnitude, there is also a term generated from Eq. (7.3) in

this component of the metric that is

1
2
h

(0,2)
00,ijξ

(1,0)iξ(1,0)j , (7.9)

3Non-linear gauge transformations are necessary for transforming the dynamics of non-linearities
Einstein’s field equations.
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which is of the O(ε2) when the length scales are taken into account appropriately.

However, this term appears in the O(η4L−2
N ) 00-field equation, Eq. (6.48), in the

form of R
(2,0)
µν ∼ 1

2
∇2(h

(0,2)
00,ijξ

(1,0)iξ(1,0)j) ∼ 1
2
∇2h

(0,2)
00,ijξ

(1,0)iξ(1,0)j ∼ ε2L−2
N ∼ η4L−2

N ,

when ε ∼ η2. We discuss how such a term cancels with another term in the field

equations in Section 8.

The time-space components: the perturbations of the time-space parts of the

metric transform, according to Eq. (7.3), in the following way:

h
(0,3)
0i 7→ h̃

(0,3)
0i = h

(0,3)
0i −

1

a
ξ

(0,3)0
,i + aξ̇

(0,2)
i (7.10)

h
(1,0)
0i 7→ h̃

(1,0)
0i = h

(1,0)
0i −

1

a
ξ

(1,0)0
,i + aξ̇

(1,0)
i (7.11)

h
(1,2)
0i 7→ h̃

(1,2)
0i = h

(1,2)
0i −

1

a
ξ̇

(1,2)0
,i + aξ̇

(1,1)
i + χ

(1,2)
i , (7.12)

where in the latter equation we define quadratic terms such that

χ
(1,2)
i ≡ 1

a
h

(0,2)
00 ξ

(1,0)0
,i + a

(
h

(0,2)
ij + ξ

(0,2)
(i,j)

)
ξ̇(1,0)j (7.13)

+

(
h

(0,3)
0i − 1

2a
ξ

(0,3)0
,i +

1

2
aξ̇

(0,2)
i

)
,j

ξ(1,0)j

+

(
h

(1,0)
0j − 1

2a
ξ

(1,0)0
,j +

1

2
aξ̇

(1,0)
j

)
ξ

(0,2)j
,i .

The space-space components: the transformations of the perturbations in the

space-space part of the metric are more lengthy than the previous cases. They

transform under the exponential map in Eq. (7.3) in the following way:

h
(0,2)
ij 7→ h̃

(0,2)
ij = h

(0,2)
ij + 2ξ

(0,2)
(i,j) (7.14)

h
(1,0)
ij 7→ h̃

(1,0)
ij = h

(1,0)
ij + 2

ȧ

a
ξ(1,0)0δij + 2ξ

(1,0)
(i,j) (7.15)

h
(1,1)
ij 7→ h̃

(1,1)
ij = h

(1,1)
ij + 2ξ

(1,1)
(i,j) + χ

(1,1)
ij (7.16)

h
(1,2)
ij 7→ h̃

(1,2)
ij = h

(1,2)
ij + 2ξ

(1,2)
(i,j) + χ

(1,2)
ij (7.17)

h
(0,4)
ij 7→ h̃

(0,4)
ij = h

(0,4)
ij + 4

ȧ

a
ξ(0,3)0δij + 2ξ

(0,4)
(i,j) + χ

(0,4)
ij , (7.18)
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where χ
(1,1)
ij , χ

(1,2)
ij and χ

(0,4)
ij are quadratic terms defined as

χ
(1,1)
ij ≡

(
h

(0,2)
ij + 2ξ

(0,2)
(i,j)

)
,k
ξ(1,0)k (7.19)

χ
(1,2)
ij ≡

(
h

(0,2)
ij + ξ

(0,2)
(i,j)

)
˙ ξ(1,0)0 + 2

ȧ

a

(
h

(0,2)
ij + 2ξ

(0,2)
(i,j)

)
ξ(1,0)0 (7.20)

+
(
h

(0,2)
ik + ξ

(0,2)
(i,k)

)
ξ

(1,0)k
,j +

(
h

(0,2)
jk + ξ

(0,2)
(j,k)

)
ξ

(1,0)k
,i

+
(
h

(1,0)
ik + ξ

(1,0)
(i,k)

)
ξ

(0,2)k
,j +

(
h

(1,0)
jk + ξ

(1,0)
(j,k)

)
ξ

(0,2)k
,i

χ
(0,4)
ij ≡ 2

(
h

(0,2)
ij + ξ

(0,2)
(i,j)

)
,k
ξ(0,2)k + 2

(
h

(0,2)
ik + ξ

(0,2)
(i,k)

)
ξ

(0,2)k
,j (7.21)

+2
(
h

(0,2)
jk + ξ

(0,2)
(j,k)

)
ξ

(0,2)k
,i .

Throughout this chapter we have defined χ, omitting indices, in the same way as

in Ref. [128], such that it accounts for quadratic terms in the transformation of the

metric.

From these transformations we comment on the original expansion of the metric,

Eqs. (5.5)-(5.7). We began with an initial ansatz by adding perturbations at or-

ders expected from post-Newtonian gravity and cosmological perturbation theory,

then we added mixed-ordered perturbations at orders which were products of per-

turbations in the post-Newtonian and cosmological sector of the theory. However,

through the gauge transformations in Eqs. (7.6) and (7.16) we see it is necessary to

also include a metric potentials h
(1,1)
00 and h

(1,1)
ij , at order O(εη), because if they were

excluded, then they would be generated automatically via a general infinitesimal

coordinate transformation.

Before finishing this section, let us comment on the dependence of some of these

terms, in the above transformations, on the condition LN ∼ ηLC . In the time-

time transformation the only terms that depend on this relation are h
(0,2)
00,i ξ

(1,0)i and

ḣ
(0,2)
00 ξ(1,0)0 (see Eqs. (7.6) and (7.7)), which, once length scales are taken into ac-

count properly, appear at O(εη) and O(εη2), respectively. If a different relationship

between LN and LC had been chosen then these terms would have appeared at a

different order, and could appear in any equation of order greater than or equal to

εη and εη2, respectively, before violating the bound in Eq. (5.30). Similarly, in the

transformation of the time-space and space-space components of the metric some

of the terms in χ
(1,2)
i and χ

(1,2)
ij (see Eqs. (7.13) and (7.20)), and terms 4 ȧ

a
ξ(0,3)0δij

and χ
(1,1)
ij (see Eqs. (7.18) and (7.19)), all depend on the relationship between LN

and LC , and would appear at different orders if a different choice had been made
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for these length scales.

7.2.2. Transformation of irreducibly-decomposed potentials

Having performed the gauge transformation of our metric components, in the previ-

ous section, we will proceed to perform an invariant decomposition of these results,

as was done in Section 3.3.1. This will be useful for constructing gauge invariant

quantities and writing down simplified field equations.

We split the metric into scalar, divergenceless vector (V i
,i = 0), and transverse

and trace-free tensor (ĥii = 0 and ĥij,j = 0) parts. These are the quantities that

are most often considered in cosmological perturbation theory, and that usually

decouple from each other at first-order in the field equations. We decompose our

metric potentials into these variables in the following way, omitting superscripts for

simplicity4:

h00 ≡ φ , h0i ≡ B,i +Bi and hij ≡ −ψδij + E,ij + F(i,j) + 1
2
ĥij , (7.22)

the former is related to the lapse, the 0i-metric potential is known as the shift and

the latter corresponds to perturbations to the spatial three-metric [131]. Similarly,

our two-parameter perturbed gauge generators, omitting indices, are decomposed

such that

ξ0 ≡ δt and ξi ≡ δx,i + δxi , (7.23)

in the same way as the gauge generator in single-parameter cosmological pertur-

bation theory, see Eqs. (3.24) and (3.25). We will now present the result of gauge

transformations on each of the irreducibly decomposed objects, in each of the sectors

of our perturbation theory.

Cosmological scalar, vector and tensor potentials: the gauge transformations

given in Eqs. (7.5), (7.11), and (7.15) now allow us to write down the transformation

of the decomposed metric components in the cosmological sector of our theory. For

the scalar potentials these transformations are given by

φ̃(1,0) = φ(1,0) − 2δ̇t
(1,0) ∼ ε (7.24)

ψ̃(1,0) = ψ(1,0) − 2
ȧ

a
δt(1,0) ∼ ε (7.25)

4Note that the scalar, vector and tensor decomposition of the two-parameter perturbed metric
is similar to that done for single parameter cosmological perturbation theory, in Eqs. (3.5) -
(3.9), but we use a change of notation and our perturbations are defined using coordinate time.
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B̃(1,0) = B(1,0) + a ˙δx
(1,0) − 1

a
δt(1,0) ∼ εη−1LN (7.26)

Ẽ(1,0) = E(1,0) + 2δx(1,0) ∼ εη−2L2
N , (7.27)

for the vector potentials they are

B̃
(1,0)
i = B

(1,0)
i + a ˙δxi

(1,0) ∼ ε (7.28)

F̃
(1,0)
i = F

(1,0)
i + 2δx

(1,0)
i ∼ εη−1LN , (7.29)

and for the tensor potential this transformation is

˜̂
h

(1,0)
ij = ĥ

(1,0)
ij ∼ ε . (7.30)

As in previous sections, the quantity after the ∼ sign gives the order of each of

these potentials in terms of ε, η and any relevant length scales. We observe that

the transformations of the above cosmological scalar, vector and tensor potentials in

our two-parameter formalism are the same as those derived from linear cosmological

perturbation theory, perturbed in a single parameter, see Eqs. (3.28)-(3.34) and

Ref. [128].

Post-Newtonian scalar, vector and tensor potentials: The results given in

Eqs. (7.4), (7.8), (7.10), (7.14), and (7.18) allow us to write the transformation of

the decomposed post-Newtonian potentials. The scalar parts of the post-Newtonian

potentials transform as

φ̃(0,2) = φ(0,2) ∼ η2 (7.31)

φ̃(0,4) = φ(0,4) − 4δ̇t
(0,3)

+ 2φ
(0,2)
,i

(
δx(0,2),i + δx(0,2)i

)
∼ η4 (7.32)

ψ̃(0,2) = ψ(0,2) ∼ η2 (7.33)

ψ̃(0,4) = ψ(0,4) − 4
ȧ

a
δt(0,3) +

1

2

(
∇−2χ

(0,4),ij
ij − χ(0,4)

)
∼ η4 (7.34)

B̃(0,3) = B(0,3) + a ˙δx
(0,2) − 1

a
δt(0,3) ∼ η3LN (7.35)

Ẽ(0,2) = E(0,2) + 2δx(0,2) ∼ η2L2
N (7.36)

Ẽ(0,4) = E(0,4) + 2δx(0,4) +
1

2
∇−2

(
3∇−2χ

(0,4),ij
ij − χ(0,4)

)
∼ η4L2

N , (7.37)
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the vector potentials transform as

B̃
(0,3)
i = B

(0,3)
i + a ˙δxi

(0,2) ∼ η3 (7.38)

F̃
(0,2)
i = F

(0,2)
i + 2δx

(0,2)
i ∼ η2LN (7.39)

F̃
(0,4)
i = F

(0,4)
i + 2δx

(0,4)
i + 2∇−2

(
χ

(0,4),k
ik −∇−2χ

(0,4),kj
kj,i

)
∼ η4LN , (7.40)

and the tensor potentials transform as

˜̂
h

(0,2)
ij = ĥ

(0,2)
ij ∼ η2 (7.41)

˜̂
h

(0,4)
ij = ĥ

(0,4)
ij + 2χ

(0,4)
ij − 4∇−2χ

(0,4),k
k(i,j) +

(
∇−2χ

(0,4),kl
kl − χ(0,4)

)
δij (7.42)

+∇−2
(
∇−2χ

(0,4),kl
kl + χ(0,4)

)
,ij

∼ η4 .

The quantity χ
(0,4)
ij , defined in Eq. (7.21), in terms of irreducibly decomposed po-

tentials, can be written as

χ
(0,4)
ij = (7.43)

2

(
−ψ(0,2)

,k δij + E
(0,2)
,ijk + F

(0,2)
(i,j)k +

1

2
ĥ

(0,2)
ij,k + δx

(0,2)
,ijk + δx

(0,2)
(i,j)k

)(
δx(0,2),k + δx(0,2)k

)
+2

(
−ψ(0,2)δik + E

(0,2)
,ik + F

(0,2)
(i,k) +

1

2
ĥ

(0,2)
ik + δx

(0,2)
,ik + δx

(0,2)
(i,k)

)(
δx

(0,2),k
,j + δx

(0,2)k
,j

)
+2

(
−ψ(0,2)δjk + E

(0,2)
,jk + F

(0,2)
(j,k) +

1

2
ĥ

(0,2)
jk + δx

(0,2)
,jk + δx

(0,2)
(j,k)

)(
δx

(0,2),k
,i + δx

(0,2)k
,i

)
.

We have also written that χ(n,m) ≡ δijχ
(n,m)
ij .

This completes the full set of transformations in the post-Newtonian sector. We

note that the lowest order post-Newtonian metric potentials φ(0,2) (from h
(0,2)
00 ) and

ψ(0,2) do not transform. This is expected from post-Newtonian gravity [171] be-

cause the Newtonian potential, associated with φ(0,2), is expected to not transform,

and both scalar potentials (φ(0,2) and ψ(0,2)) are related by an equivalence relation,

φ(0,2) = −ψ(0,2) (which is expected as γ = 1 in Eq. (4.30) for the post-Newtonian

limit of general relativity). Moreover, if φ(0,2) were to transform (from the back-

ground field equations in Section 6.2.1), we clearly see this would also transform

the background scale factor a, which is precisely not what an infinitesimal gauge

transformation is designed to do, a priori it transforms perturbations (and enables
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us to find degeneracies in the choice of such perturbations).

As far as we are aware, the transformation of scalar, vector and tensor post-

Newtonian potentials has not been calculated before. The above transformations

are derived from our two-parameter formalism, but because there are only post-

Newtonian (not cosmological or mixed-order) potentials, and gauge generators, in

these transformations they also hold for one-parameter post-Newtonian gravity.

Mixed-order scalar, vector and tensor potentials: the scalar parts of the

mixed-order potentials, up to the order considered in the field equations presented

in Chapter 6, O(εη2), transform in the following way:

φ̃(1,1) = φ(1,1) + φ
(0,2)
,i

(
δx(1,0),i + δx(1,0)i

)
∼ εη (7.44)

φ̃(1,2) = φ(1,2) + φ̇(0,2)δt(1,0) + 2φ(0,2)δ̇t
(1,0) ∼ εη2 (7.45)

ψ̃(1,1) = ψ(1,1) +
1

2

(
∇−2χ

(1,1),ij
ij − χ(1,1)

)
∼ εη (7.46)

ψ̃(1,2) = ψ(1,2) +∇−2
(
χ

(1,2),k]l
k[l + 2C,|k]

k[l|,mI
m,l
)
∼ εη2 (7.47)

B̃(1,2) = B(1,2) + a ˙δx
(1,1) − 1

a
δt(1,2) +∇−2χ

(1,2),i
i ∼ εη2LN (7.48)

Ẽ(1,1) = E(1,1) + 2δx(1,1) +
1

2
∇−2(3∇−2χ

(1,1),ij
ij − χ(1,1)) ∼ εηL2

N (7.49)

Ẽ(1,2) = E(1,2) + 2δx(1,2) (7.50)

+
1

2
∇−2

(
∇−2

(
3χ

(1,2),kl
kl + 6C,kkl,mI

m,l − 2Ckk,lIm,l
)
− χ(1,2)

)
∼ εη2L2

N ,

where we have used anti-symmetric square brackets that are defined by 2T[ij] ≡
Tij − Tji. The vector parts transform as

B̃
(1,2)
i = B

(1,2)
i + a ˙δx

(1,1)

i + χ
(1,2)
i −∇−2χ

(1,2),j
j,i ∼ εη2 (7.51)

F̃
(1,1)
i = F

(1,1)
i + 2δx

(1,1)
i + 2∇−2

(
χ

(1,1),k
ik −∇−2χ

(1,1),kj
kj,i

)
∼ εηLN (7.52)

F̃
(1,2)
i = F

(1,2)
i + 2δx

(1,2)
i (7.53)

−2∇−2∇−2
(

2χ
(1,2),kl
k[i,l] − 4C,kk[i,l]mI

m,l −∇2Cki,mIm,k + C,klkl,mI
m
,i

)
∼ εη2LN ,
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and the tensor parts transform as

˜̂
h

(1,1)
ij = ĥ

(1,1)
ij + 2χ

(1,1)
ij − 4∇−2χ

(1,1),k
k(i,j) +∇−2χ

(1,1),kl
kl δij − χ(1,1)δij (7.54)

+∇−2∇−2χ
(1,1),kl
kl,ij +∇−2χ

(1,1)
,ij

∼ εη

˜̂
h

(1,2)
ij = ĥ

(1,2)
ij + 2χ

(1,2)
ij − 4∇−2χ

(1,2),k
k(i,j) +∇−2χ

(1,2),kl
kl δij − χ(1,2)δij (7.55)

+∇−2∇−2χ
(1,2),kl
kl,ij +∇−2χ

(1,2)
,ij + 4∇−2∇−2

(
∇2Cij,mkIm,k

−∇2Ck(i,j)mIm,k − 2Ck(i,j)klmIm,l −∇2C,kk(i|,mI
m
,|j) + C,k(l|

kl,mnI
m,|n)δij

)
+∇−2∇−2

(
−∇2Ckk,mlIm,lδij + 2C,kkl,mijI

m,l + 2C,klkl,m(iI
m
,j) + 2Cij,mkIm,k

)
∼ εη2 .

Note that in the above equations we define ∇−2f(χ(n,m)) such that ∇2[∇−2f(χ(n,m))]

is the leading order part of f(χ(n,m)) and no smaller, which strictly excludes higher

order terms in f(χ(n,m)). In the above equations we have written χ
(1,2)
i , χ

(1,2)
ij and

χ
(1,1)
ij in terms of scalar, vector and tensor potentials and χ

(1,1)
ij in terms of Cij,m and

Im in the following way, firstly we have

χ
(1,2)
i = (7.56)

+a

(
−ψ0,2δij + E

(0,2)
,ij + F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij + δx

(0,2)
,ij + δx

(0,2)
(i,j)

)(
δx(1,0),j + δx(1,0)j

)
˙

+

(
B

(0,3)
,i +B

(0,3)
i − 1

2a
δt

(0,3)
,i +

a

2

(
δx

(0,2)
,i + δx

(0,2)
i

) )̇
,j

(
δx(1,0),j + δx(1,0)j

)
+

(
B

(1,0)
,j +B

(1,0)
j − 1

2a
δt

(1,0)
,j +

a

2

(
δx

(1,0)
,j + δx

(1,0)
j

) )̇ (
δx(0,2),j + δx(0,2)j

)
,i

1

a
φ(0,2)δt

(1,0)
,i ,

we also have

χ
(1,2)
ij = (7.57)(
−ψ(0,2)δij + E

(0,2)
,ij + F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij + δx

(0,2)
,ij + δx

(0,2)
(i,j)

)
˙δt(1,0)

+2
ȧ

a

(
−ψ(0,2)δij + E

(0,2)
,ij + F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij + 2δx

(0,2)
,ij + 2δx

(0,2)
(i,j)

)
δt(1,0)
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+

(
−ψ(0,2)δik + E

(0,2)
,ik + F

(0,2)
(i,k) +

1

2
ĥ

(0,2)
ik + δx

(0,2)
,ik + δx

(0,2)
(i,k)

)(
δx(1,0),k + δx(1,0)k

)
,j

+

(
−ψ(0,2)δjk + E

(0,2)
,jk + F

(0,2)
(j,k) +

1

2
ĥ

(0,2)
jk + δx

(0,2)
,jk + δx

(0,2)
(j,k)

)(
δx(1,0),k + δx(1,0)k

)
,i

+

(
−ψ(1,0)δik + E

(1,0)
,ik + F

(1,0)
(i,k) +

1

2
ĥ

(1,0)
ik + δx

(1,0)
,ik + δx

(1,0)
(i,k)

)(
δx(0,2),k + δx(0,2)k

)
,j

+

(
−ψ(1,0)δjk + E

(1,0)
,jk + F

(1,0)
(j,k) +

1

2
ĥ

(1,0)
jk + δx

(1,0)
,jk + δx

(1,0)
(j,k)

)(
δx(0,2),k + δx(0,2)k

)
,i

and finally

χ
(1,1)
ij = Cij,kIk , (7.58)

where we have defined

Cij,k ≡
(
−ψ(0,2)δij + E

(0,2)
,ij + F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij + δx

(0,2)
,ij + δx

(0,2)
(i,j)

)
,k

(7.59)

∼ η2L−1
N

Ik ≡ δx(1,0),k + δx(1,0)k ∼ εη−1LN . (7.60)

The transformation of the above mixed-order quantities are purely a result of our

two parameter formalism.

This completes our treatment of gauge transformations of the metric tensor. These

transformations are original results and will be used in Section 7.5 to construct gauge

invariant potentials.

7.3. Transformation of matter sources

The same freedoms, associated with infinitesimal coordinate transformations, can

also be considered in the context of the total energy-momentum tensor. In the fol-

lowing we calculate how this tensor behaves under the gauge transformation specified

in Eq. (3.26) and by the gauge generators in Eqs. (7.1) and (7.2). As before, we

will first calculate the explicit transformations that apply to the components of the

energy-momentum tensor, and then to their irreducibly decomposed scalar, vector

and tensor parts. Again, we take LN ∼ ηLC , but not ε ∼ η2.
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7.3.1. Transformations of components

The transformation of T00: using the exponential map in Eq. (3.26), and the

gauge generators specified in Eqs. (7.1) and (7.2), we find the transformation of T00

at O
(
η2L−2

N

)
and O

(
εηL−2

N

)
are given by

ρ̃(0,0) + ρ̃(0,2) = ρ(0,0) + ρ(0,2) ∼ η2

L2
N

(7.61)

ρ̃(1,1) = ρ(1,1) + ρ
(0,2)
,i ξ(1,0)i ∼ εη

L2
N

. (7.62)

At order O
(
εη2L−2

N

)
the transformation of T00 is given by

ρ̃(1,0) + ρ̃(1,2) − h̃(1,0)
00

(
ρ̃(0,0) + ρ̃(0,2)

)
(7.63)

= ρ(1,0) + ρ(1,2) +
(

2ξ̇(1,0)0 − h(1,0)
00

) (
ρ(0,0) + ρ(0,2)

)
+
(
ρ(0,0) + ρ(0,2)

)·
ξ(1,0)0

∼ εη2

L2
N

,

and at O
(
η4L−2

N

)
the transformation of T00 is given by

1

2
ρ̃(0,4) − h̃(0,2)

00

(
ρ̃(0,0) + ρ̃(0,2)

)
+
(
ρ̃(0,0) + ρ̃(0,2) + p̃(0,0)

)
ṽ(0,1)iṽ

(0,1)
i (7.64)

=
1

2
ρ(0,4) − h(0,2)

00

(
ρ(0,0) + ρ(0,2)

)
+
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v(0,1)iv

(0,1)
i + ρ

(0,2)
,i ξ(0,2)i

∼ η4

L2
N

.

We now make several comments on the above transformations. Firstly, from

Eq. (7.61) we see ρ(0,0) transforms in a gauge invariant way, this is consistent with

intuition from the Stewart-Walker lemma [157]. We also see both ρ(0,2) and ρ(0,0)

transform together because they both dominate the expansion at leading-order due

to ∼ L−2
C ∼ η2L−2

N . This is somewhat different to cosmological perturbation theory

where only the homogeneous ρ(0)(t) is gauge invariant.

Also, we note that one further term is generated by the gauge transformation,

given by Eq. (3.26), in this part of the two-parameter perturbed energy-momentum

tensor: T
(2,0)
µν ∼ 1

2
ρ

(0,2)
,ij ξ(1,0)iξ(1,0)j ∼ ε2L−2

N . This term would appear in theO
(
η4L−2

N

)
field equation along with R

(2,0)
µν ∼ ε2L−2

N , see the term in (7.9)5. We explain what

5Such a term only appears if dust is considered. An analogous term in the gauge transformation
for radiation would have no contribution because ρ(0,0)(t),ijξ

(1,0)iξ(1,0)j = 0.
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happens to the terms of order O(ε2L−2
N ) in the discussion section of Chapter 8.

Finally, the expansion of the radiation energy density, given in Eq. (5.21), is

such that there does not exist a term ρ
(1,1)
R . We remind ourselves that the existence

of ρ
(1,1)
M was implied by the term ρ

(0,2)
M,i ξ

(1,0)i, given in the transformation in Eq.

(7.62), because if ρ
(1,1)
M did not exist from the offset, it would be generated via any

infinitesimal change in coordinates. So, the term ρ
(1,1)
M appears purely because ρ

(0,2)
M

is a function space and time. In contrast, the corresponding term ρ
(1,1)
R does not

exist in the expansion of ρR because ρR at lowest order is only time, not space-time,

dependent (see Eq. (5.25) and comments below it).

We will comment in detail on the form of the transformations of the energy density,

pressure and peculiar velocities in the following section. For now, we analyse how

the other components of the energy-momentum tensor transform.

The transformation of T0i: under the gauge transformation, Eq. (3.26), the

time-space part of the energy-momentum tensor at O
(
η3L−2

N

)
transforms in the

following way

−a
(
ρ̃(0,0) + ρ̃(0,2) + p̃(0,0)

)
ṽ

(0,1)
i = −a

(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
i (7.65)

∼ η3

L2
N

,

and at O
(
εη2L−2

N

)
it transforms such that

−a
(
ρ̃(0,0) + ρ̃(0,2)

) (
ṽ

(1,0)
i + h̃

(1,0)
0i

)
− ap̃(0,0)ṽ

(1,0)
i − aρ̃(1,1)ṽ

(0,1)
i (7.66)

= −a
(
ρ(0,0) + ρ(0,2)

) (
v

(1,0)
i + h

(1,0)
0i

)
− ap(0,0)v

(1,0)
i − aρ(1,1)v

(0,1)
i

+
(
ρ(0,0) + ρ(0,2)

)
ξ

(1,0)0
,i + a2p(0,0)ξ̇

(1,0)
i − aρ(0,2)

,j v
(0,1)
i ξ(1,0)j

−a
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
i,j ξ(1,0)j

∼ εη2

L2
N

.

The transformation of Tij: the gauge transformation of the space-space com-

ponent of the energy-momentum tensor gives

a2p̃(0,0)δij = a2δijp
(0,0) ∼ η2

L2
N

, (7.67)
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at O
(
η2L−2

N

)
. At order O

(
η4L−2

N

)
the transformation is

a2
(
ρ̃(0,0) + ρ̃(0,2) + p̃(0,0)

)
ṽ

(0,1)
i ṽ

(0,1)
j + a2p̃(0,0)h̃

(0,2)
ij +

1

2
a2p̃(0,4)δij (7.68)

= a2
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
i v

(0,1)
j + a2p(0,0)h

(0,2)
ij +

1

2
a2p(0,4)δij + 2a2p(0,0)ξ

(0,2)
(i,j)

∼ η4

L2
N

,

and at order O
(
εη2L−2

N

)
the transformation is

a2p̃(0,0)h̃
(1,0)
ij + a2

(
p̃(1,0) + p̃(1,2)

)
δij (7.69)

= a2p(0,0)h
(1,0)
ij + a2

(
p(1,0) + p(1,2)

)
δij + a2ṗ(0,0)ξ(1,0)0δij + 2a2p(0,0)ξ

(1,0)
(i,j)

∼ εη2

L2
N

.

Again we note that p(0,0), the lowest order contribution to the pressure that is purely

due to radiation, is gauge invariant because this is the lowest-order contributions to

the energy density.

The transformation of the cosmological constant: finally, using the expo-

nential map in Eq. (3.26), and the gauge generators specified in Eqs. (7.1) and (7.2)

we find that because Λ(0,0) is constant in time and space Λ(0,0) does not transform

Λ(0,0) 7→ Λ̃(0,0) = Λ(0,0) , (7.70)

again this is expected from the Stewart-Walker lemma and standard cosmological

perturbation theory.

7.3.2. Transformation of irreducibly-decomposed matter

sources

We now irreducibly decompose the matter sources that appear on the right-hand-

side of Einstein’s field equations, Eq. (2.15). The cosmological constant is scalar

and therefore does not need to be decomposed further, the transformation is given

above in Eq. (7.70). The total energy momentum tensor is made up of scalars, with

the only exception of the three-velocity, vi. This vector can be split into a scalar
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and divergenceless vector part in the following way:

vi ≡ v,i + v̂i , (7.71)

where v̂i,i = 0. The scalar degrees of freedom in the metric are then given by ρ, p, v

and Λ, while the only divergenceless vector is given by v̂i. There are no transverse

and trace-free potentials in the energy-momentum tensor, as defined in Eq. (2.20).

We now consider the transformation of these scalar and vector quantities. From

the above section we find that the irreducible decomposed energy density transfor-

mation, in dimensions of LN where LN ∼ ηLC , is such that

ρ̃(0,0) + ρ̃(0,2) = ρ(0,0) + ρ(0,2) ∼ η2

L2
N

(7.72)

ρ̃(1,1) = ρ(1,1) + ρ
(0,2)
,i

(
δx(1,0),i + δx(1,0)i

)
∼ εη

L2
N

(7.73)

ρ̃(1,0) + ρ̃(1,2) = ρ(1,0) + ρ(1,2) +
(
ρ(0,0) + ρ(0,2)

)·
δt(1,0) ∼ εη2

L2
N

(7.74)

ρ̃(0,4) = ρ(0,4) + 2ρ
(0,2)
,i

(
δx(0,2),i + δx(0,2)i

)
∼ η4

L2
N

, (7.75)

and the irreducible decomposed pressure transformation is such that

p̃(0,0) = p(0,0) ∼ η2

L2
N

(7.76)

p̃(1,0) + p̃(1,2) = p(1,0) + p(1,2) + ṗ(0,0)δt(1,0)0 − 2
ȧ

a
p(0,0)δt(1,0)0 ∼ εη2

L2
N

(7.77)

p̃(0,4) = p(0,4) ∼ η4

L2
N

. (7.78)

We now make further comments on the form of the transformation of the energy-

density and pressure which have not been observed previously. The transformations

in Eqs. (7.73), (7.75) and (7.78), for matter and radiation, remain exactly the same

with matter only, see Appendix C. Moreover, the post-Newtonian energy density

ρ(0,2) and pressure p(0,4) are automatically gauge invariant. This is to be expected

because they are the leading order post-Newtonian perturbations to the energy den-

sity and pressure, respectively. These terms describe Newtonian gravity at leading

order, which transforms trivially under general coordinate transformations.

Whereas, all other transformations of the energy density and pressure change

with the inclusion of radiation, compared to with matter alone. We have previously
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noted that the term ρ(0,0) transforms with the Newtonian energy density because it

has magnitude L−2
C ∼ η2L2

N . Similarly, ρ(0,0) appears alongside ρ(0,2) in the trans-

formation in Eq. (7.74). Furthermore, as seen in Eq. (7.77), with the inclusion of

radiation there exists a gauge invariant pressure term, p(0,0), and so the transfor-

mation of the cosmological and mixed order perturbations to the pressure are not

gauge invariant, this is not the case for matter only, see Appendix C.

Furthermore, the irreducibly decomposed peculiar velocities transform in the fol-

lowing way

ṽ
(1,0)
i = v

(1,0)
i − a

(
δx(1,0),i + δx(1,0)i

)·
+ v

(0,1)
i,j

(
δx(1,0),j + δx(1,0)j

)
∼ ε (7.79)

ṽ
(0,1)
i = v

(0,1)
i ∼ η . (7.80)

Where the transformation of the scalar part of the three-velocity, ṽ, and the di-

vergenceless vector part, ˜̂vi, are derived from the divergence of Eqs. (7.79) and

(7.80). We find the transformations in Eqs. (7.79) and (7.80) are the same for mat-

ter and radiation as for matter only, see Appendix C. We see Eq. (7.80) is gauge

invariant, therefore both scalar and vector parts of the Newtonian three-velocity

are gauge invariant. The quadratic term that appears in Eq. (7.79) shows that

the small-scale Newtonian velocity is important for determining how the large-scale

velocity (first-order in cosmological perturbations) transforms – this is a by-product

of our two-parameter expansion and would otherwise only appear at second-order

in cosmological perturbation theory.

These results differ from the quasi-static limit of cosmological perturbation the-

ory, as space and time derivatives are treated differently, and gauge generators and

velocities come in at different orders [107]. Note that, other than ρ(1,1), there are no

more perturbations at new orders implied by the transformation of the perturbed

matter sources. Therefore we have a consistent set of perturbed quantities in the

matter sector. This completes our study of the gauge transformation of stress energy

sources.

7.4. Allowed gauge choices

The above gauge transformations of the matter and gravity sectors of our two-

parameter theory implies which gauges can be used to study cosmological pertur-

bation theory and post-Newtonian gravity, and therefore our two-parameter theory.

We find that five out of the six gauges traditionally used in studies of cosmological
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perturbation theory, and listed in Section 3.3.3, are not appropriate for studies of

post-Newtonian gravity or the quasi-static limit of cosmological perturbation the-

ory (as post-Newtonian gravity can be thought of as formalising the quasi-static

limit), and therefore are not appropriate gauges for the post-Newtonian sector of

our two-parameter theory. This can be seen directly from the transformations of

the post-Newtonian sector of our theory, given in Eqs. (7.31)-(7.42), (7.72), (7.75),

(7.78) and (7.80).

We will proceed by turning to each of the six gauge choices from Section 3.3.3

and discuss which are not appropriate gauge choices for post-Newtonian gravity,

at leading-order in perturbations, and why. We start with the spatially flat gauge,

which would require ψ(0,2) = 0. From Eq. (7.31) we observe this potential is in fact

gauge-invariant and therefore there is no gauge in which it is zero. If we do make

this potential zero we lose generality. Next, consider the synchronous gauge which

requires φ(0,2) = 0, but we know this potential is gauge-invariant, from Eq. (7.33),

therefore we cannot undergo any possible gauge transformation which allows it to

be zero. A similar argument can be used to explain why the comoving orthogonal

gauge, which would require v(0,1) = 0, is not appropriate for post-Newtonian poten-

tials: we cannot transform to a gauge where v(0,1) = 0 because it does not transform

under a gauge transformation (see Eq. (7.80)). The uniform density gauge requires

that inhomogeneous perturbations are zero, in post-Newtonian gravity inhomoge-

neous perturbations are at leading-order (Newtonian-order) and therefore this gauge

would require ρ(0,2) − ρ(0,2) = 0, where ρ(0,2) is the spatial average of ρ(0,2). We can-

not undergo a gauge transformations which allows for this because the Newtonian

energy-density is gauge-invariant, which is apparent from Eq. (7.72) (and its aver-

age), see Section 8.2.1.

We can undergo an infinitesimal gauge transformation which allows post-Newtonian

perturbations to transform into the Newtonian (or longitudinal) gauge. This is

because the Newtonian gauge requires B(0,3) = 0, E(0,2) = 0, and F
(0,2)
i = 0 or

B
(0,3)
i = 0, and all these perturbations (B(0,3), E(0,2), F

(0,2)
i and B

(0,3)
i ) transform

under a general gauge transformation (see Eqs. (7.35), (7.36), (7.39) and (7.38),

respectively). Therefore we can transform to a gauge where these perturbations are

zero with a specific choice of gauge generators δx(0,2), δx(0,2)i and δt(0,3). Finally,

we turn to the total matter gauge, which requires v + B = 0. In cosmological

perturbation theory, this condition holds because both v and B occur at the same

orders in perturbations, and so this condition fixes one degree of freedom. For post-

Newtonian gravity, however, they do not occur at the same order in perturbations

therefore this condition fixes two degrees of freedom, v(0,1) = 0 and B(0,3) = 0, one



7.4: Allowed gauge choices 114

degree of freedom more than is required. Moreover, we cannot transform to a gauge

in which v(0,1) = 0 (see Eq. (7.80)), as observed previously with regards to the

comoving orthogonal gauge. One could consider the case in which v(0,1) 6= 0, but

B(0,3) = 0 and the other conditions for the total matter gauge hold (i.e. E = 0 and

Fi = 0). These conditions are then simply equivalent to those for the Newtonian

gauge.

The spatially flat, synchronous, comoving orthogonal, total matter and uniform

density gauges for post-Newtonian perturbations at leading-order are not applicable

because they correspond to conditions which cannot be fulfilled by any possible

infinitesimal gauge transformation. Therefore, by using the conditions necessary

for these gauges at leading-order in post-Newtonian potentials one would have to

lose generality by setting a physical degree of freedom to zero. Nevertheless, it

has been found in the literature that such gauges have been used in either post-

Newtonian gravity or the quasi-static limit of cosmological perturbation theory at

leading-order [13, 166]. The implication of this finding is that N-body simulations

which go beyond Newtonian theory, to include relativistic corrections due to general

relativity, are limited to the Newtonian gauge for leading-order perturbations (from

the list of typical gauge choices in Section 3.3.3). These other gauges may, however,

be appropriate for beyond leading-order post-Newtonian gravity. For example, the

synchronous gauge for post-Newtonian perturbations at order O(η4), requires that

φ(0,4) = 0. Unlike φ(0,2), we can transform φ(0,4) to a gauge where φ(0,4) = 0 (see Eq.

(7.32)) by a specific choice of gauge generators δt(0,3), δx(0,2) and δx(0,2)i.

As these gauges are not appropriate for studies of post-Newtonian gravity at

leading-order, they are also not appropriate gauges for the post-Newtonian pertur-

bations at leading-order in our two-parameter theory. Nevertheless, all six gauges

in Section 3.3.3 remain valid for first order (and beyond) cosmological perturbation

theory, and therefore cosmological perturbations in our two-parameter theory. Addi-

tionally, it would need to be carefully checked whether these gauges may be applied

to beyond leading-order post-Newtonian perturbations in our two-parameter the-

ory. Therefore the only gauge listed in Section 3.3.3 relevant for both leading-order

perturbations in the post-Newtonian and cosmological sectors of our two-parameter

theory is the Newtonian gauge.
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7.5. Gauge invariant quantities

Having performed infinitesimal coordinate transformations of the metric and matter

sources, we are now in a position to isolate and remove the superfluous degrees of

freedom associated with diffeomorphism invariance. This will leave us with a set of

quantities that represent the physical degrees of freedom in the problem only, and

will remove the possibility of any interference from spurious gauge modes. The field

equations written in terms of these quantities are greatly simplified, see Chapter 8.

Dealing with gauge freedoms can be done in a number of different ways, and

is often approached differently in the respective literatures associated with post-

Newtonian gravity [171] and cosmological perturbation theory [128]. In post-Newtonian

gravity, the usual method is to make a gauge choice by setting the sum of various

parts of the perturbed field equations to zero. If suitable choices are made, and if

they can be shown to be self-consistent, then this method can be used to remove

all gauge freedoms. This approach has the distinct benefit of allowing maximum

simplification of the field equations, making these equations easier to solve, and the

entire problem more tractable. However, it also has the drawback that one has to

determine what is, or is not, a suitable choice of terms to eliminate from the field

equations. This can sometimes be a challenge.

On the other hand, in the literature on cosmological perturbation theory a gauge

choice is most usually made by irreducibly decomposing the metric and energy-

momentum tensor, and then by setting some of the resulting terms to zero directly

[128]. This leaves a more complicated set of field equations compared to post-

Newtonian gravity, described in the previous paragraph, but does allow for the

maximum possible simplification of the basic objects involved in the problem. Even

in this case, however, it is still possible to leave behind residual gauge freedoms,

if inappropriate choices are made. These problems were circumvented by Bardeen,

who was the first to construct combinations of perturbations that remained invari-

ant under general gauge transformations [32]. Furthermore, extensions of this have

been applied to calculations of second-order gauge invariant quantities in cosmolog-

ical perturbation theory [128]. This removed all ambiguity, and allowed perturbed

field equations to be written down that were guaranteed to be free from all gauge

freedoms.

We choose to use the latter of these two approaches, to construct gauge invariant

quantities associated with the perturbations to metric and energy-momentum ten-

sors. This involves extending the method pioneered by Bardeen to post-Newtonian

perturbations, as well as using some of the extensions of this method developed
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for use in second-order cosmological perturbation theory [128]. By the end of this

chapter we will have written down gauge-invariant quantities for all of the pertur-

bations in our two-parameter theory. We will then write the differential equations

that govern them.

7.5.1. Gauge-invariant metric perturbations

Let us begin by constructing gauge-invariant quantities from the irreducibly decom-

posed metric tensor. The method we will use to do this is based on that developed

for single-parameter cosmological perturbation theory [128], and will be such that

our gauge invariant quantities reduce to the metric perturbations in longitudinal

gauge when E = B = Fi = 0 (we omit superscript indices here for simplicity). We

note that other gauge choices are possible; we make this choice for two reasons.

Firstly, it is the only gauge, out of the possible gauges traditionally used in cos-

mological perturbation theory, listed in Section 3.3.3, that can simultaneously be

applied at leading-order to the cosmological and post-Newtonian perturbations in

our two-parameter theory, see Section 7.4. Secondly, this choice means the resulting

field equations look similar to those traditionally used in post-Newtonian gravity.

The procedure we will use for this will be to choose gauge generators, δx, δxi

and δt, such that Ẽ = B̃ = F̃i = 0. We will then substitute these quantities back

into the expressions for all of the transformed perturbations presented in Sections

7.2.2 and 7.3.2. The results now correspond to gauge invariant quantities because

the original gauge transformations were written down in a completely arbitrary

coordinate system. This means that newly constructed quantities cannot depend on

any choice of gauge, and hence must be gauge invariant.

Below we present our results for the cosmological sector, the post-Newtonian sec-

tor, and the mixed-order sector of our expansion. All quantities have been checked,

by a somewhat lengthy explicit transformation, to ensure that they are in fact gauge

invariant.

Cosmological quantities: in the cosmological sector we can create several gauge

invariant quantities. They are of the form of two independent scalars, one vector

and one tensor. These are given by:

Φ(1,0) = φ(1,0) − 2aḂ(1,0) − 2ȧB(1,0) + 2ȧaĖ(1,0) + a2Ë(1,0) (7.81)

Ψ(1,0) = ψ(1,0) + ȧaĖ(1,0) − 2ȧB(1,0) (7.82)

B
(1,0)
i = B

(1,0)
i − a

2
Ḟ

(1,0)
i (7.83)
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h
(1,0)
ij = ĥ

(1,0)
ij , (7.84)

which are all at O(ε). The scalar gauge invariant quantities are identical to those

found by Bardeen, see Eqs. (3.40) and (3.41), in the context of standard cosmological

perturbation theory [32].

Post-Newtonian quantities: in the post-Newtonian sector, at O(η2), we can

create two scalar, and one tensor, gauge invariant quantities:

Φ(0,2) = φ(0,2) (7.85)

Ψ(0,2) = ψ(0,2) (7.86)

h
(0,2)
ij = ĥ

(0,2)
ij . (7.87)

At O(η3) there exists one gauge invariant vector,

B
(0,3)
i = B

(0,3)
i − a

2
Ḟ

(0,2)
i , (7.88)

while at O(η4) the gauge invariant quantities are two scalars and one tensor,

Φ(0,4) = φ(0,4) − 4aḂ(0,3) − 4ȧB(0,3) + 4ȧaĖ(0,2) + 2a2Ë(0,2) (7.89)

−φ(0,2),i
(
E(0,2),i + F (0,2)i

)
Ψ(0,4) = ψ(0,4) − 4ȧ

(
B(0,3) − a

2
Ė(0,2)

)
+

1

2

(
∇−2χ

(0,4),ij
Lij − χ(0,4)

L

)
(7.90)

h
(0,4)
ij = ĥ

(0,4)
ij + 2χ

(0,4)
Lij +

(
∇−2χ

(0,4),kl
Lkl − χ(0,4)

L

)
δij (7.91)

+∇−2
(
∇−2χ

(0,4),kl
Lkl + χ

(0,4)
L

)
,ij
− 4∇−2χ

(0,4),k
Lk(i j) ,

where χ
(0,4)
Lij is defined such that

χ
(0,4)
Lij = −

(
−ψ(0,2)

,k δij +
1

2
E

(0,2)
,ijk +

1

2
F

(0,2)
(i,j)k +

1

2
ĥ

(0,2)
ij,k

)(
E(0,2),k + F (0,2)k

)
(7.92)

−
(
−ψ(0,2)δik +

1

2
E

(0,2)
,ik +

1

2
F

(0,2)
(i,k) +

1

2
ĥ

(0,2)
ik

)(
E

(0,2),k
,j + F

(0,2)k
,j

)
−
(
−ψ(0,2)δjk +

1

2
E

(0,2)
,jk +

1

2
F

(0,2)
(j,k) +

1

2
ĥ

(0,2)
jk

)(
E

(0,2),k
,i + F

(0,2)k
,i

)
.

This gives a full set of gauge invariant quantities for the post-Newtonian sector of
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our theory, up to the order that we are considering.

Mixed-order quantities: at O(εη) the gauge invariant quantities we can construct

are two scalars and one tensor:

Φ(1,1) = φ(1,1) − 1

2
φ

(0,2)
,i

(
E(1,0),i + F (1,0)i

)
(7.93)

Ψ(1,1) = ψ(1,1) +
1

2

(
∇−2χ

(1,1),ij
Lij − χ(1,1)

L

)
(7.94)

h
(1,1)
ij = ĥ

(1,1)
ij + 2χ

(1,1)
Lij − 4∇−2χ

(1,1),k
Lk(i,j) +∇−2χ

(1,1),kl
Lkl δij − χ(1,1)

L δij (7.95)

+∇−2∇−2χ
(1,1),kl
Lkl,ij +∇−2χ

(1,1)
L,ij ,

and at order O(εη2) the gauge invariant quantities are two scalars, one vector and

one tensor:

Φ(1,2) = φ(1,2) + 2φ(0,2)

(
ȧB(1,0) + aḂ(1,0) − aȧĖ(1,0) − a2

2
Ë(1,0)

)
(7.96)

+φ̇(0,2)

(
aB(1,0) − a2

2
Ė(1,0)

)
Ψ(1,2) = ψ(1,2) +∇−2

(
χ

(1,2),k]l
Lk[l + 2C,|k]

Lk[l|,mI
m,l
L

)
(7.97)

B
(1,2)
i = B

(1,2)
i − a

2
Ḟ

(1,1)
i + χ

(1,2)
Li −∇

−2χ
(1,2),j
Lj,i (7.98)

h
(1,2)
ij = ĥ

(1,2)
ij + 2χ

(1,2)
Lij − 4∇−2χ

(1,2),k
Lk(i,j) +∇−2χ

(1,2),kl
Lkl δij − χ(1,2)

L δij (7.99)

+∇−2χ
(1,2)
L,ij +∇−2∇−2χ

(1,2),kl
Lkl,ij + 4∇−2∇−2

(
∇2CLij,mkIm,kL

−∇2CLk(i,j)mIm,kL − 2CLk(i,j)klmIm,lL −∇2C,kLk(i|,mI
m
L,|j) + C,k(l|

Lkl,mnI
m,|n)
L δij

)
+∇−2∇−2

(
−∇2CkLk,mlI

m,l
L δij + 2C,kLkl,mijI

m,l
L + 2C,klLkl,m(iI

m
L,j)

+2CLij,mkIm,kL

)
.

The definitions of χ
(1,2)
Li , χ

(1,2)
Lij and χ

(1,1)
Lij are given by:

χ
(1,2)
Li = φ(0,2)

(
B(1,0) − a

2
Ė(1,0)

)
,i

(7.100)

−a
2

(
−ψ(0,2)δij +

1

2
E

(0,2)
,ij +

1

2
F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij

)(
E(1,0),j + F (1,0)j

)
˙
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−1

2

(
1

2
B

(0,3)
,i +B

(0,3)
i − a

4
Ḟ

(0,2)
i

)
,j

(
E(1,0),j + F (1,0)j

)
−1

2

(
1

2
B

(1,0)
,j +B

(1,0)
j − a

4
Ḟ

(1,0)
i

)(
E(0,2),j + δF (0,2)j

)
,i

χ
(1,2)
Lij = 2ȧ

(
−ψ(0,2)δij +

1

2
ĥ

(0,2)
ij

)(
B(1,0) − a

2
Ė(1,0)

)
(7.101)

+a

(
−ψ(0,2)δij +

1

2
E

(0,2)
,ij +

1

2
F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij

)
˙
(
B(1,0) − a

2
Ė(1,0)

)
−1

2

(
−ψ(0,2)δik +

1

2
E

(0,2)
,ik +

1

2
F

(0,2)
(i,k) +

1

2
ĥ

(0,2)
ik

)(
E(1,0),k + F (1,0)k

)
,j

−1

2

(
−ψ(0,2)δjk +

1

2
E

(0,2)
,jk +

1

2
F

(0,2)
(j,k) +

1

2
ĥ

(0,2)
jk

)(
E(1,0),k + F (1,0)k

)
,i

−1

2

(
−ψ(1,0)δik +

1

2
E

(1,0)
,ik +

1

2
F

(1,0)
(i,k) +

1

2
ĥ

(1,0)
ik

)(
E(0,2),k + F (0,2)k

)
,j

−1

2

(
−ψ(1,0)δjk +

1

2
E

(1,0)
,jk +

1

2
F

(1,0)
(j,k) +

1

2
ĥ

(1,0)
jk

)(
E(0,2),k + F (0,2)k

)
,i

χ
(1,1)
Lij = CLij,kIkL , (7.102)

where CLij,k and IkL are given by

CLij,k ≡
(
−ψ(0,2)δij +

1

2
E

(0,2)
,ij +

1

2
F

(0,2)
(i,j) +

1

2
ĥ

(0,2)
ij

)
,k

(7.103)

IkL ≡ −1

2

(
E(1,0),k + F (1,0)k

)
. (7.104)

This completes our study of gauge invariant quantities constructed from perturba-

tions of the metric.

It can be seen that there are a number of perturbed quantities in our formalism

that are automatically gauge-invariant. These are stated previously, but to sum-

marise, they include the scalar Newtonian and post-Newtonian potentials φ(0,2) and

ψ(0,2), as well as the lowest-order tensor perturbations ĥ
(1,0)
ij and ĥ

(0,2)
ij . The first

two are expected as (depending on how one writes the field equations) they corre-

spond to the gravitational potential in the Newton-Poisson equation. The last two

show that the leading-order transverse and trace-free perturbations are invariant

in both sectors of the theory. Comparing the form of the gauge-invariant quan-

tities Φ(1,0) and Φ(0,4), it is interesting to note that they differ by a single term:

−1
2
φ(0,2),i (E

(0,2),i + F (0,2)i), which is quadratic in perturbations. The cosmological



7.5: Gauge invariant quantities 120

gauge invariant quantity Φ(1,0) cannot contain a quadratic term of this form, as this

term would appear higher-order, at O(ε2). A number of other terms can be seen

to occur in more than one of our gauge invariant quantities, and demonstrates the

effect that the different length scales have on the order of perturbed quantities.

To summarise these results: here we calculate gauge invariant metric poten-

tials Φ,Ψ,Bi and hij (omitting superscripts for simplicity) which correspond to the

cosmological, post-Newtonian, and mixed-order gauge invariant quantities. These

gauge invariant quantities were constructed such that if we consider one of these

terms, which we denote by Φ(n,m), in the longitudinal gauge, where E = B = Fi = 0

(at all orders), then Φ(n,m) is simply equal to the metric potential φ(n,m). This

construction is true for all other potentials, i.e. Ψ(n,m),B(n,m)i and h
(n,m)
ij in the

longitudinal gauge are equal to ψ(n,m), B(n,m)i and ĥ
(n,m)
ij , respectively.

7.5.2. Gauge invariant quantities from the matter sector

We now construct gauge invariant quantities from the transformations of the matter

sources on the right-hand-side of Einstein’s field equations, Eq. (2.15). Again, our

gauge invariant quantities will reduce to matter sources in the longitudinal gauge

when E = B = Fi = 0, at all orders. The invariance of all gauge invariant quantities

given below has been checked through explicit transformation.

We first construct gauge-invariant scalars which correspond to energy density

perturbations in the longitudinal gauge, when E = B = Fi = 0, they are given by

ρ(0,0) + ρ(0,2) = ρ(0,0) + ρ(0,2) (7.105)

ρ(1,1) = ρ(1,1) − 1

2
ρ

(0,2)
,i

(
E(1,0),i + F (1,0)i

)
(7.106)

ρ(1,0) + ρ(1,2) = ρ(1,0) + ρ(1,2) +
(
ρ(0,0) + ρ(0,2)

)·(
aB(1,0) − a2

2
Ė(1,0)

)
(7.107)

ρ(0,4) = ρ(0,4) − ρ(0,2)
,i

(
E(0,2),i + F (0,2)i

)
. (7.108)

The reader may note that ρ(1,0)+ρ(1,2) transform together, because ρ(1,0) and ρ(1,2) are

of the same order (O(εη2L−2
N )) in our framework, even though ρ(1,0) is the leading-

order large-scale perturbation to the energy density. They therefore form the gauge

invariant quantity in Eq. (7.107). Note the gauge invariant quantity defined in

Eq. (7.107) is quadratic in the inhomogeneous energy density ρ(0,2). This quadratic

term contributing to the gauge invariant quantity corresponding to the first-order

cosmological potential ρ(1,0), is highly unusual in linear cosmological perturbation
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theory. Such a term would only exist at second order in cosmological potentials.

Furthermore, we construct gauge invariant scalars which correspond to pressure

perturbations in the longitudinal gauge (when E = B = Fi = 0) such that

p(0,0) = p(0,0) (7.109)

p(1,0) + p(1,2) = p(1,0) + p(1,2) +

(
ṗ(0,0) − 2

ȧ

a
p(0,0)

)(
aB(1,0) − a2

2
Ė(1,0)

)
(7.110)

p(0,4) = p(0,4) . (7.111)

The cosmological constant is constant in time and space so it does not transform,

refer to Eq. (7.70), and is therefore trivially a gauge invariant quantity

Λ(0,0) = Λ(0,0) . (7.112)

The scalar and divergence-less vector parts of the Newtonian three-velocity are al-

ready gauge invariant, found in Eq. (7.80), and so the corresponding gauge invariant

quantities are simply given by

v(0,1) = v(0,1) (7.113)

v̂
(0,1)
i = v̂

(0,1)
i . (7.114)

We use this to define the gauge invariant total Newtonian velocity in the following

way v
(0,1)
i ≡ v

(0,1)
,i + v̂

(0,1)
i . This is what we use in the presentation of the field

equations in the next chapter.

We create one further scalar, v(1,0), and a divergence-free vector, v̂
(1,0)
i , which can

be extracted from the divergence of the following gauge invariant quantity:

v
(1,0)
i ≡ v(1,0),i +v̂

(1,0)
i (7.115)

= v
(1,0)
i +

a

2

(
Ė

(1,0)
,i + Ḟ

(1,0)
i

)
− 1

2
v

(0,1)
i,j

(
E(1,0),j + F (1,0)j

)
.

There are no further quantities to consider in Einstein’s field equations, so this

gives us a full set of gauge invariant quantities in our two-parameter perturbative

expansion.

At this stage we make a few comments on the gauge invariant quantities formed

in this section. Most of these gauge invariant quantities are of the same form for

matter only, see Appendix C.3 – this result is expected from the transformations

in Section 7.3.2. However, differences in the gauge invariant quantities are also
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expected and are analogous to the differences found previously, in Section 7.3.2. For

example the term ρ(0,0) appears in addition to ρ(0,2) in Eqs. (7.105) and (7.107) for

the case of radiation and dust. Furthermore, the gauge invariant quantity in Eq.

(7.107) is different for dust and radiation (compared to dust alone) because such

a combination allows for a term p(0,0). We refer the reader to Appendix C.3 for

the gauge invariant quantities analogous to those calculated in this section, but for

matter only, in full. Although this is less general, it is key for readers interested in

gauge invariant quantities for perturbations in the late Universe.

To summarise these results: here we calculate gauge invariant matter sources

ρ,p and vi (omitting indices for simplicity) which correspond to the cosmological,

post-Newtonian and mixed-order gauge invariant matter sources (the cosmological

constant is trivially gauge invariant). These gauge invariant quantities were con-

structed such that if we consider one of these terms, which we denote by ρ(n,m), in

the longitudinal gauge, where E = B = Fi = 0 (at all orders), then ρ(n,m) is simply

equal to the perturbation ρ(n,m). This construction is true for all other gauge in-

variant quantities presented in this section, i.e. p(n,m) and v
(n,m)
i in the longitudinal

gauge are equal to p(n,m) and v
(n,m)
i . These gauge invariant quantities, when com-

bined with the set of gauge-invariant metric potentials {Φ,Ψ,Bi,hij} constructed in

Section 7.5.1, gives us a full set of gauge-invariant quantities in our two-parameter

expansion. In the next chapter we present the field equations in terms of these

gauge-invariant variables.



8. Dynamics of gauge invariant

quantities

8.1. Field equations

We can now return to the field equations presented in Chapter 6 and write them in

terms of our newly-constructed gauge invariant quantities. These equations take the

same form as the field equations in the longitudinal gauge but are in fact valid in any

coordinate system. Furthermore these governing equations for our gauge invariant

quantities, upon specification of any particular valid gauge, should reduce to the

gauge-fixed Einstein equations. As before, we write down these equations under the

assumptions ε ∼ η2 and LN/LC ∼ η.

Note that we leave out both terms R
(2,0)
µν , in Eq. (7.9), and T

(2,0)
µν from the field

equations. These terms appear in the O(η4L−2
N ) field equation as simply the lower

order 00-field equations O(η2L−2
N ) with two spatial derivatives, multiplied by two

gauge generators, and so necessarily cancel and do not contribute any new dynamics

to the field equations.

8.1.1. Background-order potentials

The trace-free part of the ij-equations at O(η2L−2
N ) gives

Dij

(
Φ(0,2) + Ψ(0,2)

)
− 1

2
∇2h

(0,2)
ij = 0 , (8.1)

and its divergence implies

Φ(0,2) = −Ψ(0,2) and h
(0,2)
ij = 0 , (8.2)

as h
(0,2)
ij is transverse. The 00-field equation at O(η2L−2

N ) gives

ä

a
+

1

6a2
∇2Φ(0,2) = −4π

3

(
ρ(0,0) + ρ(0,2) + 3p(0,0)

)
+

1

3
Λ , (8.3)

123
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and the trace of the ij-equation at O(η2L−2
N ) gives(

ȧ

a

)2

− 1

3a2
∇2Φ(0,2) =

8π

3

(
ρ(0,0) + ρ(0,2)

)
+

1

3
Λ , (8.4)

where we have substituted in the results from Eq. (8.2). Furthermore, the re-

sults from Eq. (8.2) will be substituted into all equations in this chapter. These

background equations govern the leading-order part of the gravitational field, at

O(η2L−2
N ).

8.1.2. Vector potentials

We now use all 0i-field equations in Section 6.2.2. At order O(η3L−2
N ), these give

∇2B
(0,3)
i + 2

(
aΦ̇(0,2) + ȧΦ(0,2)

)
,i

= 16πa2
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
i . (8.5)

Although B
(0,3)
i is purely a divergenceless vector Eq. (8.5) has a divergenceless

vector and scalar part, which can be separated out with a derivative. At O(η4L−2
N )

the 0i-field equations give

∇2
(
B

(1,0)
i + B

(1,2)
i

)
+ 2

(
a
(
Φ(1,1) −Ψ(1,0)

)
˙+ ȧ

(
Φ(1,1) + Φ(1,0)

))
,i

(8.6)

−2
(
2ȧ2 + aä

)
B

(1,0)
i −B

(1,0)
j Φ

(0,2)
,ij

= 8πa2
(

2
(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(1,0)
i +

(
ρ(0,0) + ρ(0,2) + 3p(0,0)

)
B

(1,0)
i

+2ρ(1,1)v
(0,1)
i

)
− 2a2ΛB

(1,0)
i ,

which can also be split into scalar and divergenceless vector parts using a derivative.

As a result, the reader may note that the quadratic term, which includes the lower-

order potential Φ(0,2), does not source the vector part of Eq. (8.6), although this

may not be expected at first glance.

8.1.3. Higher-order scalar potentials

The 00-field equation and the trace of the ij-field equation at O(εηL−2
N ) gives

∇2Φ(1,1) = −8πa2ρ(1,1) , (8.7)
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and

Φ(1,1) = −Ψ(1,1) . (8.8)

The 00-field equation at O(η4L−2
N ) gives

∇2

(
Φ(1,0) +

1

2
Φ(0,4) + Φ(1,2)

)
+ 3a2

(
Φ(0,2) −Ψ(1,0)

)
¨+
(
∇Φ(0,2)

)2
(8.9)

+3aȧ
(
3Φ(0,2) + Φ(1,0) − 2Ψ(1,0)

)
˙−∇2Φ(0,2)

(
Φ(0,2) −Ψ(1,0)

)
− 1

2
Φ

(0,2)
,ij h

(1,0)
ij

= −8πa2

[
ρ(1,0) + ρ(1,2) +

1

2
ρ(0,4) −

(
ρ(0,0) + ρ(0,2) + 3p(0,0)

) (
Φ(1,0) + Φ(0,2)

)
+3

(
p(1,0) + p(1,2) +

1

2
p(0,4)

)
+ 2

(
v

(0,1)
i

)2 (
ρ(0,0) + ρ(0,2) + p(0,0)

)]
−2a2Λ

(
Φ(0,2) + Φ(1,0)

)
,

this field equation is analogous to the first-order 00-field equation derived from

cosmological perturbation theory. Although this equation may look like what is de-

rived from second-order cosmological perturbation theory with a quasi-static limit,

because it includes many quadratic terms, this is equation is actually much larger-in-

magnitude compared to the equation derived from the quasi-static limit of second-

order perturbation theory. One can observe this because the cosmological poten-

tials in Eq. (8.9) are purely linear in perturbations, O(ε), not second-order, O(ε2).

The above equation differs significantly to what would be derived using second-

order cosmological perturbation theory because, from our expansion, the effects

of non-linearities on large-scale potentials are at leading-order in ε, and are not

sub-dominant (at second-order, order ε2). Taking a precise example, we see the

linear cosmological potential Φ(1,0) appears in the above equation along with non-

linearities. Non-linearities would normally only occur in second-order cosmological

perturbation theory, alongside terms linear in Φ(2,0) (not Φ(1,0) – which is what occurs

here).

Furthermore, the trace of the ij-field equation at O(η4L−2
N ) gives

−2∇2

(
Ψ(1,0) + Ψ(1,2) +

1

2
Ψ(0,4)

)
− 3

(
2ȧ2 + aä

) (
Φ(1,0) −Ψ(1,0) + 2Φ(0,2)

)
+6ȧa

(
Ψ(1,0) − Φ(0,2)

)
˙

= −8πa2

[
2

(
ρ(1,0) +

1

2
ρ(0,4) + ρ(1,2)

)
+ 2

(
ρ(0,0) + ρ(0,2) + p(0,0)

) (
v

(0,1)
i

)2
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+ Φ(0,2)
(
ρ(0,0) + ρ(0,2) − 3p(0,0)

)
− 1

2

(
ρ(0,0) + ρ(0,2)

) (
Φ(1,0) + 3Ψ(1,0)

)
+

3

2
p(0,0)

(
Ψ(1,0) − Φ(1,0)

)]
− a2Λ

[
4Φ(0,2) + Φ(1,0) − 3Ψ(1,0)

]
+A , (8.10)

where we have defined terms that are quadratic in metric potentials as

A ≡ ∇2Φ(0,2)

(
3Φ(0,2) +

1

2
Φ(1,0) − 5

2
Ψ(1,0)

)
+

3

2

(
∇Φ(0,2)

)2
+

1

2
Φ

(0,2)
,ij h

(1,0)
ij . (8.11)

These are all of the scalar equations that exist up to O(η4L−2
N ).

8.1.4. Tensor potentials

The trace-free part of the ij-field equation at O(εηL−2
N ) is

Dij

(
Φ(1,1) + Ψ(1,1)

)
− 1

2
∇2h

(1,1)
ij = 0 , (8.12)

and its divergence implies

Φ(1,1) = −Ψ(1,1) and h
(1,1)
ij = 0 , (8.13)

because h
(1,1)
ij is transverse. The reader may note that, unlike Ψ(0,2) and Φ(0,2), the

first of these conditions has already been given by the 00-field equation and the trace

of the ij−field equations, see Eq. (8.8). We substitute the results in Eq. (8.13) into

all equations in this chapter. Finally, the ij-field equation, at O(η4L−2
N ), can be

used to write the following trace-free equation:

−Dij

(
Φ(1,0) + Φ(1,2) +

1

2
Φ(0,4) + Ψ(1,0) + Ψ(1,2) +

1

2
Ψ(0,4)

)
− 3

2
aȧḣ

(1,0)
ij

+
1

2
∇2

(
h

(1,0)
ij + h

(1,2)
ij +

1

2
h

(0,4)
ij

)
+

2

a

[
a2
(
B

(0,3)
(i,j) + B

(1,0)
(i,j)

)]
˙− 1

2
a2ḧ

(1,0)
ij

−
(
2ȧ2 + aä

)
h

(1,0)
ij

= −4πa2
[(
ρ(0,0) + ρ(0,2) − p(0,0)

)
h

(1,0)
ij + 4

(
ρ(0,0) + ρ(0,2) + p(0,0)

)
v

(0,1)
〈i v

(0,1)
j〉

]
−a2Λh

(1,0)
ij + Bij , (8.14)

where we have defined terms that are quadratic in metric potentials as

Bij ≡ DijΦ
(0,2)

(
2Φ(0,2) + Φ(1,0) −Ψ(1,0)

)
+ Φ

(0,2)
,〈i Φ

(0,2)
,j〉 − Φ

(0,2)
,k〈i h

(1,0)
j〉k . (8.15)
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Note that, unlike standard cosmological perturbation theory, these equations do not

imply Φ(1,0) = −Ψ(1,0) or h
(1,0)
ij = 0 as non-linearities act as an effective anisotropic

stress, see Chapter 9. So scalar, vector and tensor modes do not decouple at linear

order in cosmological perturbations because of the additional potentials in that

simply do not exist in first-order cosmological perturbation theory. The fact that

Φ(1,0) 6= −Ψ(1,0) here implies a slip between these potentials which corresponds

to an effective anisotropic-stress when written as an effective fluid, refer to the

next chapter. In fact, this coupling-of-modes (and non-zero slip) normally only

occurs at second-order in cosmological perturbations, this effect now happens in

a larger-in-magnitude field equation as a result of our two-parameter perturbed

potentials, which have different characteristic length scales and vary differently in

time and space. We also write the field equations for dust only, also in terms gauge

invariant variables, in Appendix D. The key difference in adding dust, radiation and

a cosmological constant to these field equations, rather than just including dust,

is outlined in detail in Chapter 6. This completes the full set of field equations in

terms of our gauge-invariant variables, up to the order in perturbations that we wish

to consider here.

8.2. Discussion

In the following section we discuss the application of our two-parameter expansion

to various physical situations that are of interest and comment on the resulting field

equations. The first situation of which considers the field equations given previously

in this chapter. Note that although the relationship between the lengths scales

of non-linear structure, LN , and linear perturbations, LC , vary in the following

discussion, in Sections 8.2.1 and 8.2.2, gravitational potentials remain small and of

similar size ε ∼ η2.

8.2.1. Large-scale limit: l ∼ η

In this section we discuss the application of our two-parameter expansion to the

largest structures that exist in the Universe: this is the case when the non-linear

post-Newtonian structure, on scales LN , compared to linear cosmological perturba-

tions, on scales LC , saturates the bound given in Eq. (5.30). We find that within the

two-parameter formalism outlined in this thesis, the Friedmann-like equations that

govern the evolution of the scale factor a(t), and hence the large-scale expansion of

the Universe, are not independent of the perturbations. This can be seen explic-
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itly in Eqs. (8.3) and (8.4), where the Newtonian mass density and gravitational

potential act as sources for the cosmological expansion.

This is in some sense a very pleasing result; the large-scale expansion is driven by

the same Newtonian mass that governs the leading-order part of the gravitational

field on small scales. On the other hand, it means that our “background” is not

by itself an exact solution of Einstein’s equations1. This stretches the meaning of

what is usually implied by the phrase “perturbation theory” in Einstein’s theory2.

Nevertheless, both the fundamental objects being perturbed and the field equations

themselves are being consistently expanded in the perturbative parameters ε and

η, and we see no reason to expect this expansion should not converge. Indeed

the present expansion seems to have much better convergence properties than the

standard approach to cosmological perturbation theory, in the presence of non-

linear structures [143]. Furthermore, a change of coordinates on a sub-horizon-sized

region of space can be shown to be isometric to perturbed Minkowski space, with

the cosmological expansion arising from boundary conditions at the edge of the

region [73]. In this sense, the cosmological expansion can be considered an emergent

property, and the background on small-scales could equally well be considered to be

either a Friedmann model or Minkowski space (which definitely is a solution when

ε = η = 0).

Furthermore, in Eqs. (8.3) and (8.4) the Newtonian-mass density, the back-

ground contribution to the energy density due to radiation, the Newtonian and

post-Newtonian gravitational potentials, and cosmological constant all contribute

to the evolution of the scale factor. In the next-to-leading-order field equations,

(8.5), (8.7) and (8.12), we have mixed-order and post-Newtonian potentials, but no

quadratic lower-order terms. The latter two of these equations only exists when

non-relativistic matter fluids are considered, and are both strictly zero for radiation

or cosmological constant domination. Similarly, Eq. (8.1) is the same for all matter

content.

1To emphasise this point further, perturbative expansions of post-Newtonian gravity and cosmo-
logical perturbation theory are quite different in nature. Cosmological perturbation theory is a
perturbative expansion around an exact solution such that this exact solution is a good approx-
imation to, close to in magnitude, the perturbed solution. On the other hand, post-Newtonian
gravity is closer to an asymptotic expansion, a perturbative expansion which allows for small
perturbations in the geometry and large perturbations to the energy density and so when these
perturbations are set to zero the vacuum solution is not close to, in magnitude, the perturbed
solution. Despite the difference of these perturbative expansions, both allow for a systematic
treatment of accounting for relativistic effects in Einstein’s field equations, i.e. the lowest-order
field equations are solved for and substituted into higher-order field equations which are then
solved for, and so on.

2I am grateful to Marco Bruni for a number of stimulating discussions on this point.
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In the O(η4) field equations, Eqs. (8.6), (8.9), (8.10) and (8.14), on the other

hand, we find matter, radiation and a cosmological constant sourcing first order

cosmological, mixed-order, Newtonian and post-Newtonian potentials. At this order

in the field equations we find a combination of non-linear gravity, mode-mixing

and a mixing-of-scales – which comes from the mixing of large and small scales

through cosmological and post-Newtonian perturbations, respectively, sourcing one

another in the same equation. For example see Eq. (8.9), where the potential

for mode-mixing proposed in Chapter 6 is observed in this chapter because of the

irreducible decomposition of perturbations and the mixing of scalars and transverse

and traceless tensors. This means that linear-order cosmological perturbations (that

usually arise as first-order corrections to the background field equations) in fact come

in after two lower order field equations. These effects only arise because of the form

of our two-parameter expansion, and so do not (and cannot) occur in linear-order

cosmological perturbation theory.

Our expansion requires field equations to exist at orders that simply do not exist in

linear cosmological perturbation theory. For example, in cosmological perturbation

theory the leading-order vector mode (which contributes to frame-dragging effects)

decays quickly, and so is usually taken to be zero. However, the magnitude of the

second-order part of this potential has recently been found to be much bigger than

one might naively estimate – between O(ε) and O(ε2) [26], at about O(ε1.5). In our

expansion we already have a vector potential at order η3 ∼ ε1.5, in Eq. (8.5), we

find the gravitomagnetic potential we solve for first (that dominates) is 100 times

larger than what is expected from second order cosmological perturbation theory,

as found in Ref. [26]. It is clear that such a potential should exist from the post-

Newtonian perturbed sector. This means that the result of Ref. [26], is at odds

with cosmological perturbation theory, but fits very naturally into our framework.

Our expansion also suggests that there should be field equations at O(η5), which

would correspond to a potential between the first and second order field equations

in normal cosmological perturbation theory. This simply does not exist in the usual

expansion, but is included if one follows the approach we have used in this thesis.

Note that cosmological perturbation theory is not recovered by simply setting

η → 0. This is because in cosmological perturbation theory the lowest order energy

density is always homogeneous, whereas in the late Universe, as described by our

two-parameter expansion, during matter domination, the lowest order energy density

is inhomogeneous. We therefore cannot recover cosmological perturbation theory

during matter domination by ignoring the post-Newtonian sources, as when η → 0

the evolution of the scale factor in Eq. (8.3) would have no source at all. This
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means that post-Newtonian sector must be included, in both the equations for the

background expansion and the linear-order cosmological perturbations if we wish

to consider non-linear matter. Specifically, this means that standard cosmological

perturbation theory is not necessarily recovered if one averages the field equations

given previously in this chapter over some length scale greater than or equal to

the homogeneity scale, as is usually assumed [71]. We could recover the Friedmann

equations for an Einstein-de Sitter Universe, during matter domination, if there were

no inhomogeneities at lowest order, such that ρ
(0,2)
M (xµ) ≡ ρ

(0,2)
M (t) (or of course by

adding a homogeneous background to the matter component of the energy density).

On the other hand, if η → 0 and we consider radiation or a cosmological constant,

without matter, then we do recover cosmological perturbation theory essentially

because there are no large density contrasts due to matter. Nevertheless, if we truly

live in a two-parameter universe, then setting one parameter to zero is not physical.

To compare our two-parameter expansion to cosmological perturbation theory we

average the background field equations over a suitably large scale, which is what we

do next.

Friedmann and Newtonian cosmological equations

We now proceed to find the simplest way in which to express the background equa-

tions that govern the large-scale expansion of space, this will enable us to compare

our results to that of standard cosmological perturbation theory more easily. In

order to do this we average Eq. (8.4) over a suitably large scale. We start by

calculating the average mass density and radiation density on distances above the

homogeneity scale, Lhom ∼ 100Mpc [104]. At leading-order these are given by

ρM ≡
∫
Vhom

ρ(0,2)dV∫
Vhom

dV
and ρR ≡

∫
Vhom

ρ(0,0)dV∫
Vhom

dV
= ρ(0,0), (8.16)

where Vhom indicates the spatial volume associated with the homogeneity scale.

Of course, we know from Eq. (5.25), that there can be no leading-order small-scale

inhomogeneities in the radiation fluid. For the matter fluid, on the other hand, small-

scale fluctuations most definitely do exist and are of order unity. To accommodate

these fluctuations we define

δρ(0,2) ≡ ρ(0,2) − ρM , (8.17)
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one may notice that spatial derivatives acting on the quantity δρ(0,2) go like L−1
N , not

L−1
C . This equation implies that the leading-order inhomogeneous part of the matter

energy density, δρ(0,2), is formally of the same order as the background component

of the matter fields, ρ̄M , both being O(η2L−2
N ). These quantities can now be used

to write Eqs. (8.3) and (8.4) into a more useful form.

To derive a set of effective Friedmann equations we first integrate Eq. (8.4) over

the volume corresponding to the homogeneity scale:∫
Vhom

(
3H2 − 1

a2
∇2Φ(0,2)

)
dV =

∫
Vhom

(
8π
(
ρ(0,0) + ρ(0,2)

)
+ Λ

)
dV , (8.18)

where H ≡ ȧ/a. Given Gauss’ theorem∫
∇ · Y dV =

∫
Y dS (8.19)

where these integrals are over the total surface S and volume V , where S contains

V , and Y is a function. We now substitute Gauss’ theorem into Eq. (8.18) which

implies

3H2Vhom −
1

a2

∫
Shom

∇Φ(0,2) · dS = 8π (ρM + ρR)Vhom + ΛVhom . (8.20)

If we now assume a homogeneity scale, defined such that there is no net flux of

∇Φ(0,2) into or out of the surface Shom, then the second term in Eq. (8.20) vanishes.

This leaves us with

H2 =
8π

3
(ρM + ρR) +

Λ

3
, (8.21)

which is exactly the same form as the standard Friedmann equation in the presence

of matter, radiation and a cosmological constant. What is more, the lowest-order

parts of the energy-momentum conservation equations yields the results [149]

ρM ∝ a−3 and ρR ∝ a−4 , (8.22)

which are again exactly as expected from Friedmann cosmology. Finally, substitut-

ing these results back into Eq. (8.4) gives

∇2Φ(0,2) = −8πa2δρ(0,2) , (8.23)

which is identical to the standard equation used in Newtonian simulations for cos-

mology, taken from Newtonian gravity or the lowest-order equation derived from the
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quasi-static limit of cosmological perturbation theory. This equation can be solved

using Green’s functions, N-body simulations or Fourier methods [55, 141].

In summary, we find that the leading-order parts of the field equations, in the con-

text of our two-parameter expansion, reproduce exactly the same results as standard

Friedmann cosmology with dust, radiation and a cosmological constant, although the

meaning of the equations is slightly different. Nevertheless, in the following chapter

we will find that the same results are not derived from our two-parameter expansion

and perturbed standard Friedmann cosmology when considering the beyond leading-

order, non-linear, aspects of Einstein’s equations, which becomes important on large

scales, when l ∼ η. In other words, from our two-parameter expansion, although

back-reaction on the background expansion a may be small, the back-reaction from

small-scale structure on large-scale perturbations are not, for example refer to Eqs.

(8.9) and (8.10).

Furthermore, Eq. (8.21) provides a justification for why only the average energy

density, the radiation energy density and cosmological constant source the large-scale

expansion. On the other hand, only inhomogeneous matter sources the Newton-

Poisson equation, Eq. (8.23). This split of the Friedmann and Newton-Poisson

equation occurs even though both equations, Eqs. (8.21) and (8.23), are derived

at the same order in perturbations, from the same equation, Eq. (8.4): the key

here is the existence of a homogeneity scale at which there is no net flux in ∇Φ(0,2),

which is a restrictive but necessary condition in order to derive Eqs. (8.21) and

(8.23). It means that for the system to be perturbed FLRW globally with radiation

and a cosmological constant we need matter to be strictly distributed such that the

average energy density in every region is the same, which is a similar result to Ref.

[148].

We can clearly see, from Eq. (8.23), that for the case where the dust compo-

nent of the energy density goes to zero (or just its inhomogeneous part is zero,

δρ(0,2) = 0) then we have that ∇2Φ(0,2) = 0. Given appropriate boundary con-

ditions this homogeneous equation has the solution Φ(0,2) = 0. As stated previ-

ously, this implies we can also recover the Friedmann equations for an Einstein de

Sitter Universe when considering homogeneous sources. This is not the same con-

dition as setting ε = η = 0, which would correspond to an empty space within

our framework. Moreover, when there does not exist inhomogeneous matter, the

infinitesimal two-parameter coordinate transformation of h
(1,1)
00 in the metric gives

h̃
(1,1)
00 = h

(1,1)
00 + h

(0,2)
00,i ξ

(1,0)i = h
(1,1)
00 (see Eq. (7.6)). So, not only does h

(1,1)
00 = 0

without inhomogeneous matter, noted below Eq. (6.49), it remains zero under any

infinitesimal coordinate transformation h̃
(1,1)
00 = h

(1,1)
00 = 0, or Φ̃(1,1) = Φ(1,1) = 0.
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Not only is this important to note formally, but it shows that the Newtonian po-

tentials are only important to the dynamics if there exists some inhomogeneous

post-Newtonian matter, otherwise we expect cosmological perturbation theory to

be a good approximation to the governing equations.

Finally, we comment that our two-parameter expansion was constructed such

that perturbations on scales above the cut-off of 100Mpc are treated as cosmological,

whereas perturbations below this cut-off are treated as post-Newtonian (see Chapter

5). This cut-off is somewhat artificial. In the real Universe there are structures, such

as Baryon Acoustic Oscillations, that exist on approximately the scale of this cut-

off [83]. The practical application of our two-parameter expansion to model such

structures would require further thought, and perhaps some flexibility.

8.2.2. Small-scale limit: l� η

Let us consider what would happen if we considered a two-parameter system which

described structure on the smallest scales, where inhomogeneous structure exists on

scales similar to the Solar System, such that LN ∼ L� � ηLC . Firstly, we note that

long-wavelength cosmological perturbations in the energy density, ρ(1,0) for example,

would be relegated to very high-order field equations compared to those presented

in Section 8.1, because L� � ηLC � LC . Moreover, the ‘post-Newtonian-order’

energy density (given by ρ(4) in Chapter 4) would be replaced by 1
2
ρ(0,4) + ρ(1,2),

given our two-parameter expansion. To disentangle ρ(1,2) and ρ(0,4) one would then

have to use the fact that ρ(1,2) has large-scale correlations, whereas ρ(0,4) does not.

Also note that if l � η there are no potentials ρ(1,1), h
(1,1)
00 or h

(1,1)
ij (see Chapter 5

where such perturbations are constructed).

However, there does remain a potential h
(1,2)
0i , which appears in the field equations

at O(η4) if ε ∼ η2. This does not occur in usual post-Newtonian gravity, where the

0i-field equations contain terms at O(η3) and then at O(η5). This means that the

mixed term h
(1,2)
0i would correspond to a η4 correction to the post-Newtonian η3

0i-field equation. Nevertheless, h
(1,2)
0i ∼ η4 is at higher order than anything that has

so far been observed in the Solar System, as current observations have only allowed

the 0i-metric potential to be constrained to O(η3).3 Our formalism is therefore

consistent with observed post-Newtonian gravity to date, as non-linear structure on

the smallest scales is ignorant to the presence of structure on the horizon-size, up

3The best observational constraints on h
(0,3)
0i have been made up to an accuracy of about 20%

with Gravity Probe B’s gyroscope precession experiment [90], and about 5% with the LAGEOS
and LARES satellites [70].
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to the precision of current observations. This may offer a new opportunity to test

gravity at higher-orders in the future, on small-scales, as more accurate observations

may one day be able to detect gravitational phenomena associated with h
(1,2)
0i , which

couples with cosmological perturbations.

Finally, if l � η, the field equations will be dominated by the Newton-Poisson

equation at lowest order. Cosmological terms such as ä ∼ ρ(0,0) ∼ L−2
C and∇2h

(1,0)
00 ∼

ε/L2
C (see Eq. (6.48), will only occur at much higher order. Although the leading-

order parts of post-Newtonian gravity and our two-parameter expansion are indis-

tinguishable when applied to structure on small scales, at higher-orders (or for struc-

tures on larger scales) our formalism also includes terms that account for the sourcing

of the expansion of the scale factor and large-scale cosmological potentials. These

corrections simply do not appear in the usual approach to post-Newtonian gravity,

where cosmological perturbations are entirely neglected. However, we recover the

usual post-Newtonian expansion, for dust, in the limits ε→ 0 and a(t)→ 1.

8.2.3. Other systems

Let us now consider other scenarios that one might try to model with a two-

parameter approach of the type described in this thesis, that do not fall into the two

cases described above, or may not satisfy ε ∼ η2. The first thing that one may note

for such a situation is that our two-parameter expansion simply does not allow for

post-Newtonian-perturbed structures larger than the supercluster scale of 100Mpc,

so great walls or voids larger than this scale cannot be considered within this ex-

pansion, see the bound in Eq. (5.30). If such situations were considered during

matter domination, then the lowest order field equation would be H2 = 0, which

only has the solutions a ∝ t, which corresponds to an empty universe with a Milne

(not Einstein-de Sitter) solution. We note that for post-Newtonian perturbed struc-

tures smaller than supercluster scales l < η the field equations will behave similarly

to those discussed in Section 8.2.2, specifically the scale factor would be sourced at

higher order, as would all terms with derivatives or units LC , and Newtonian gravity

would dominate. Note that our expansion, during radiation domination, recovers

the usual solution from the Friedmann equations. Also, for cosmological constant

domination our implies implies a de Sitter solution (see Section 2.4.2).

Now consider cases where ε > η2. This could be the case, for example, in a uni-

verse full of low-mass stars or large density contrast voids. In this case and for l ∼ η

the evolution of the scale factor would remain in the lowest order field equation, at

O(η2L−2
N ), with the energy density. Long-wavelength cosmological perturbations,
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on the other hand, would be squeezed in somewhere between the lowest Newto-

nian order, O(η2L−2
N ), and first post-Newtonian order, O(η4L−2

N ), for 00- and ij-

field equations. Nevertheless, by construction, the cosmologically perturbed energy

density must be strictly less than the Newtonian perturbed energy density, see Eq.

(5.32).

Finally, if η2 > ε then the expansion around FLRW is still valid (but may start to

break down if η → 1). This holds when close to very dense compact objects, such as

neutron stars and black holes. This can be seen clearly from Eq. (5.33) because if

the mass of an object considered is too great, MN , or the the length scale considered

is too small, LN , then the gravitational potentials for post-Newtonian gravity, U ,

may become non-perturbative, U ∼ 1. In this case cosmological perturbations

are relegated to higher-order. Of course, in the real Universe these strong gravity

scenarios tend to happen on small-scales, when LN � ηLC . We would also expect

the scale factor to be sourced at higher order too.

As a last remark, if one were to consider a system with structure on more than

two scales, say N scales, this could be modelled with an N -parameter expansion.

Nevertheless, structure on supercluster scales would always remain the dominant

contributor to the scale factor, as discussed throughout this section.



9. Effective fluid dynamics

In the previous chapter we derived the field equations for our two-parameter per-

turbative expansion in terms of gauge-invariant variables. These equations can

now be applied to realistic cosmological models that contain relativistic fluids with

barotropic equations of state, as well as a cosmological constant, and non-relativistic

dust-like matter that can be used to model dark matter and baryons. The result is

a set of equations that can be used to calculate the effect of small-scale structure

on the leading-order perturbations on large-scales. These equations contain terms

that are quadratic in short-scale potentials and can be written as an effective fluid,

as well as mode-mixing terms that couple scalar, vector and tensor perturbations

in the large-scale cosmology – this effective fluid description is what we construct

in this chapter. Both of these types of terms offer exciting possibilities for testing

non-linear gravity with upcoming surveys.

9.1. Perturbations

The equations presented in Section 8.1 constitute a hierarchy of field equations,

where the equations from Section 8.2.1 are the leading-order parts. Once the Fried-

mann equation (8.21) and the Newton-Poisson equation (8.23) have been solved,

then their solutions can be substituted into the remaining higher-order equations to

gain a set of solutions for the leading-order cosmological perturbations. This latter

set of solutions, at O(η4L−2
N ), contain linear-order cosmological large-scale potentials

and post-Newtonian potentials from small-scales. With this in mind, we therefore

seek to recast the O(η4L−2
N ) equations in the form of the equations of standard first-

order cosmological perturbation theory, modified by the addition of terms related

to the existence of inhomogeneity on the length scale LN . These terms will then be

form the components of an effective fluid on large scales, whose characteristics and

behaviour is determined by the small-scale gravitational physics. Such an approach

has similarities to the effective fluid approaches in, for example see Refs. [36, 64],

but in our case it is also required to reduce the number of gravitational degrees of

136
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freedom to be no more than the available number of field equations.

In the end, we want to reduce to a set of six perturbed field equations for six

degrees of freedom (i.e. the 10 degrees of freedom in the metric minus the four

coordinate freedoms). At present Eqs. (8.5)-(8.14), from Section 8.1, contain a

total of sixteen degrees of freedom: six scalars (Φ(1,0), Φ(1,2), Φ(0,4), Ψ(1,0), Ψ(1,2) and

Ψ(0,4)), six in the tensors (h
(1,0)
ij , h

(1,2)
ij and h

(0,4)
ij ) and four in the vectors (B

(1,0)
i and

B
(1,2)
i ). Taking into account the four degrees of freedom removed by gauge fixing

implies that we need to remove six degrees of freedom. This is achieved by defining

new sets of variables as follows:

U ≡ −1
2

(
Φ(0,2) + Φ(1,1)

)
(9.1)

φ ≡ −1
2

(
Φ(1,0) + Φ(1,2) + 1

2
Φ(0,4)

)
(9.2)

ψ ≡ 1
2

(
Ψ(1,0) + Ψ(1,2) + 1

2
Ψ(0,4)

)
(9.3)

Sj ≡ −
(
B

(1,0)
j + B

(0,3)
j + B

(1,2)
j

)
(9.4)

hij ≡ 1
4

(
h

(1,0)
ij + h

(1,2)
ij + 1

2
h

(0,4)
ij

)
, (9.5)

and

δρN ≡ δρ(0,2) + ρ(1,1) (9.6)

δρ ≡ ρ(1,0) + ρ(1,2) + 1
2
ρ(0,4) (9.7)

δp ≡ p(1,0) + p(1,2) + 1
2
p(0,4) (9.8)

vNi ≡ v
(0,1)
i (9.9)

vi ≡ v
(1,0)
i , (9.10)

which are the variables we will use in Section 9.2. A number of these new vari-

ables could be considered to be “composite quantities”, as they contain a number

of different perturbative orders in the same variable. For example, the variable ψ

is dominated by O(ε) terms on cosmological length scales LC , but contains smaller

terms at O(η4) on small-scales LN . This is quite atypical in cosmological pertur-

bation theory. However, the way in which these quantities arise together in the

field equations (under two spatial derivatives) suggest that they should be solved

for together. Note that the above composite quantities, defined in Eqs. (9.1)-(9.10),

are gauge invariant, as they are formed from linear summations of gauge-invariant
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quantities.

Note that U has been removed from the scalar potentials φ and ψ because we

intend it to correspond to the Newtonian gravitational potential. Furthermore, one

can understand U as the leading-order part of the gravitational field produced by

non-linear density contrasts. The potentials φ and ψ, as well as hij and Si, contain

information about both the large-scale cosmological potentials and the small-scale

post-Newtonian potentials. Likewise, the Newtonian density contrast is δρN, and

the cosmological and post-Newtonian density contrast is given by δρ. The former

of these is allowed to be arbitrarily large, while the latter is required to be small.

Similar comments apply to vNi and vi.

9.2. Effective field equations

In this section we will present the perturbed field equations that result from simul-

taneously considering non-linear structure on small-scales and linear structure on

large-scales, given in Section 8.1, but in terms of an effective fluid (in conformal

time). Some of the quantities that appear in these equations will then be explained

in more detail later in this section. We hope this will allow the reader to see the

most physically interesting aspects of this work first.

Explicitly, the field equations we present will be expressed in terms of the following

set of gauge-invariant gravitational fields:

{U,φ,ψ, Si, hij} , (9.11)

defined in Eqs. (9.1)-(9.5), as well as a corresponding set of gauge-invariant matter

perturbations:

{δρN, δρ, δp, vNi, vi} , (9.12)

defined in Eqs. (9.6)-(9.10), where ρ, p and vi correspond to the total energy-density,

pressure and peculiar velocity, respectively. These perturbations have been defined

to be perturbations about a spatially-flat FLRW geometry, which in a particular

choice of coordinates can be written as1

ds2 = a2(τ)
[
−(1+2U+2φ)dτ 2+

(
(1−2U−2ψ)δij+2hij

)
dxidxj−2Sidτdx

i
]
. (9.13)

1Note that the perturbations to the metric, see the line element in Eq. (9.13), are defined in Eqs.
(9.1)-(9.5), and are directly analogous to the perturbations in the cosmological perturbation
theory chapter in conformal time, see Chapter 3.
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In what follows we will also require the Hubble rate in conformal time, defined as

H ≡ a′/a.

After simultaneously expanding the field equations in post-Newtonian and cosmo-

logical perturbation theories, from Eqs. (8.3), (8.4) and (8.21) we find the leading-

order parts are given by the effective Friedmann equations

H2 =
8πa2

3
ρ̄+

1

3
Λa2 +O(η4) (9.14)

H′ = −4πa2

3
(ρ̄+ 3p̄) +

1

3
Λa2 +O(η4) , (9.15)

where ρ̄ = ρ̄M + ρ̄R, is given by Eq. (8.16), and p̄ = p̄R are the leading order parts of

the spatial averages of the energy density and pressure, respectively. Note that they

have both radiation (ρ̄R and p̄R), and dark and baryonic matter (ρ̄M) contributions.

From Eq. (8.23) and (8.7), the Newtonian gravitational field equation occurs at the

same order in our expansion, and is given by

∇2U = 4πa2δρN +O(η4) . (9.16)

Note that only dark matter and baryonic matter contribute to δρN, and not radia-

tion.

Subsequent orders of the perturbation expansion in the field equations yield the

following two equations for the scalar part of the gravitational field:

1

3
∇2φ+Hφ′ +Hψ′ +ψ′′ + 2H′φ (9.17)

=
4πa2

3

(
δρ+ δρeff + 3δp + 3δpeff

)
+

2

3
(DijU)hij −

8πa2

3
δρN(ψ− φ) +O(η5)

and

1

3
∇2ψ−Hψ′ −H2φ (9.18)

=
4πa2

3

(
δρ+ δρeff

)
+

1

3
(DijU)hij −

16πa2

3
δρNψ+O(η5) ,

from Eqs. (8.9) and (8.10), respectively. Note that perturbations in radiation, and

dark and baryonic matter contribute to both δρ and δp.

As Eqs. (8.9) and (8.10) contain extra terms, when compared to standard cos-

mological perturbation theory, so do Eqs. (9.17) and (9.18), respectively. We now

comment on several of these differences. Firstly, there are effective energy density
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and pressure terms, δρeff and δpeff . These are solely due to the presence of non-linear

structures on small scales, and are given explicitly in Eqs. (9.22) and (9.23), below.

In other words, by writing the field equations in an effective fluid description, one

can clearly identify that small-scale non-linearities lead to, amongst other things, an

effective pressure on large-scales. Secondly, in the above equations, the Newtonian

potential U couples to hij and there are extra source terms on the right-hand-side of

these equations that are linear in φ and ψ. These interaction terms do not exist in

standard cosmological perturbation theory (as stated previously) and vanish in the

limit in which non-linear small-scale structures vanish. In general, the interaction

terms should be expected to produce mode-mixing between scalar, vector and tensor

parts of the gravitational field on cosmological scales and coupling between different

Fourier modes in Fourier-space.

The above equations, Eqs. (9.17) and (9.18), may have consequences for high-

precision observations. For example, the large-scale potential φ couples to cosmolog-

ical length-scales and therefore could be important in calculations of the integrated

Sachs-Wolfe effect [83], where the contribution
∫
φ′dτ would strictly be affected

by non-linearities from Eq. (9.17). Note that the integrated Sachs-Wolfe effect is

just one relativistic effect, and can be observed from cross-correlations between the

galaxy density and the CMB temperature. This effect is expected to occur beyond

linear order in cosmological perturbations, however, with our two-parameter frame-

work such an effect, from non-linearities, may occur at linear order. Therefore,

determining values of observables may change using our two-parameter framework

compared to standard cosmological perturbation theory.

The remaining parts of the gravitational field are the vector and tensor modes.

For the vectors we find that we can write the following single equation to describe

Si, accurate up to order O(η5):

∇2Si + 4∂i
(
ψ′ +Hφ

)
+ 16πa2

(
ρ̄+ p̄ + δρN

)
(vi − Si) (9.19)

= −16πa2Qeff
i − 8πa2δρNSi − 2(∂j∂iU)Sj +O(η5) ,

which is derived from Eq. (8.6). We can take the leading-order part of this equation,

at O(η3), and write it as the following simple Poisson equation

∇2Si + 4∂i(U
′ +HU) + 16πa2

(
ρ̄+ p̄

)
vNi = −16πa2δρNvNi +O(η4) , (9.20)

from Eq. (8.5). The leading-order part of the vector gravitational field, given by

the solution to Eq. (9.20), is only sourced by small-scale quantities. This is the
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equation that was identified in the post-Friedmann approach of Ref. [130], and

solved for numerically in Ref. [159]. For the full vector equation (9.19), accurate

up to O(η5), it can be seen that there exists sources on both small and large scales

and mode-mixing, which are missing from Refs. [18, 19]. For example, the term

−2(∂j∂iU)Sj was missing from [18, 19]. This term was added to the relativistic

N-body simulation created by the authors of [18, 19], and tentative results suggest

that Si is corrected by of order 1% – which is exactly the signal expected from our

two parameter formalism. In further work we would wish to verify this fully. This

equation has an effective energy flux, Qeff
i , which is due to small scale potentials.

It also has extra source terms on the right-hand-side that are linear in Si. Both of

these vanish when small-scale structures are absent. The explicit expression for Qeff
i

is given in Eq. (9.24), below, along with the other effective fluid quantities.

We now comment on the form of our vector field equations, Eqs. (9.20) and

(9.19), in comparision to the one derived in Refs. [16–19], where a quasi-static

approach to cosmological perturbation theory is taken to derive the field equations.

Their derived vector field equation is similar to our Eq. (9.20), which is of order η3.

However, given their book-keeping, their derived vector field equation is expected to

be accurate to the same order as the scalar potential φ ∼ η4. From our formalism, for

their vector field equation to be accurate to order η4 (see our Eq. (9.19)), one would

need to include the extra (mode-mixing) term −2(∂j∂iU)Sj, which does not appear

in Eq. (9.20). With the inclusion of this term we expect to improve the accuracy of

their calculation of Si by a factor of η, which is about 1%. Furthermore, a next-to-

leading-order vector equation, derived at order η4, differentiates our book-keeping

from post-Newtonian gravity, where the next-to-leading order vector equation occurs

at order η5, this implies a correction to the leading-order vector potential of about

0.1%2, an order of magnitude smaller than what is expected from our two-parameter

expansion.

The final field equations we require, in order to complete our set to the desired

order, is given as follows:

∇2hij − h′′ij − 2Hh′ij +Dij(φ−ψ)− 2H∂(jSi) − ∂(jS
′
i) (9.21)

= −8πa2Πeff
ij − 8πa2δρNhij + 4(∂k∂〈iU)hj〉k + 2(DijU)(φ+ψ) +O(η5) ,

2We note that, from our two-parameter expansion, the existence of a vector equation at order
η4, Eq. (9.19), is an effect generated from having two parameters. Moreover, in our expansion,
the term −2(∂j∂iU)Sj is a product of small and large-scale perturbations, and as derivatives
act differently these scales this term is of order η4. Using post-Newtonian book-keeping, on the
other hand, implies this term (and a vector field equation) at order η5.
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and is derived from Eq. (8.14). This equation can be used to determine the tensor

part of the gravitational field, hij. It also has an effective fluid source, Πeff
ij , which

this time acts as an effective anisotropic stress and is formed from the quadratic

contractions of the lower-order small-scale potentials, see Eq. (9.25). Again, the

non-linear structure on small-scales couples the large-scale scalar and tensor parts

of the cosmological gravitational fields, and again we have additional terms on the

right-hand-side that are linear in hij, resulting in mode-mixing.

Finally, the effective fluid quantities in the perturbation equations above are given

as follows:

δρeff = (ρ̄+ p̄ + δρN)(vN)2 − 1

πa2
U∇2U +

3

4πa2

(
H2U +HU′ − 1

2
(∇U)2

)
(9.22)

δpeff =
1

3
(ρ̄+ p̄ + δρN)(vN)2 − 1

4πa2

(
U′′ + 3HU′ − 7

6
(∇U)2 + a2U(Λ− 8πp̄)

)
+

1

3πa2
U∇2U (9.23)

Qeff
i =

(
ρ̄+ p̄ + δρN

)
vNi +

1

4πa2
∂i(U

′ +HU) (9.24)

Πeff
ij = (ρ̄+ p̄ + δρN)vN〈ivNj〉 −

1

4πa2
∂〈iU∂j〉U−

1

2πa2
UDijU . (9.25)

It can be seen that each of these quantities was constructed only from variables

that correspond to small-scale gravitational fields, or background quantities, which

have been shown to be calculated from the average of small-scale quantities, see

Section 8.2.1. We therefore have a hierarchy of equations that can be solved order-

by-order: firstly, the Friedmann and Newtonian equations for a and U , respectively,

see Eqs. (9.14), (9.15) and (9.16). Then the equations which contain large-scale

perturbations can be solved for, Eqs. (9.17)-(9.21). The former of these sets are

already calculated routinely in modern N-body simulations of Friedmann cosmology.

The latter are modified versions of the usual cosmological perturbation equations on

large scales, and can be used to find post-Newtonian equations on small scales (as

recently solved for numerically in Refs. [16–19]) using the effective fluid parameters

previously calculated. The above effective quantities, in Eqs. (9.22)-(9.25), contain

terms that would normally only be included in second or third order in cosmological

perturbation theory. In particular, the term δρNvN〈ivNj〉 in Eq. (9.25) would appear

at third order in standard perturbation theory, but here should be expected to source

a gravitational “slip” in the leading-order part of the large-scale physics.

Solving the higher-order equations in our perturbation hierarchy will inevitably be

complicated by the additional “mode-mixing” terms in the cosmological perturba-
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tion equations. This will require more sophisticated techniques than at leading-order

in standard cosmological perturbation theory as the usual methodology of separat-

ing equations like (9.19) and (9.21) into scalar, vector and tensor parts [128] is much

more difficult to apply here. This is due to the fact terms like (DijU)(φ + ψ) do

not have scalar, vector and tensor parts that are easy to identify. This term, for

example, is a scalar multiplied by a tensor, and in general should be expected to

contain scalar, vector and tensor parts. This does not mean that such a separation

is impossible – indeed we very much expect it to be possible. It just means that the

resulting equations are very messy to write down, which is the reason why we have

chosen to present these equations without such a decomposition. As highlighted in

Chapter 8.1, such mode-mixing terms suggest that it may in fact be possible to gen-

erate vector and tensor modes from scalar fluctuations, which is already well known

in second-order cosmological perturbation theory [127, 134], but is not usually seen

at first order.

One should also note that certain terms, for example 8πa2

3
δρN(ψ − φ) in Eq.

(9.17), also mean that Fourier modes no longer decouple in a trivial way as they

do in standard first-order perturbation theory, even if no mode-mixing occurs. This

is because the Fourier transforms of such terms are expressible only in terms of

a convolution integral over all Fourier modes. Our approach can be compared to

the effective fluid approach studied previously in [36, 64], as well as the large and

small wavelength split used in [99, 100]. Finally, the reader should also be warned

that manipulation of these equations is considerably more difficult than in either

cosmological perturbation theory or standard post-Newtonian theory. This is due

to different derivative operators changing the order to the terms they operate on in

different ways.

By writing the two-parameter perturbed field equations as an effective fluid we

have substantially simplified the field equations given in Section 8.1 and this has

allowed us to make further direct comparisons with cosmological perturbation theory

more easily.

9.3. Discussion

We will discuss how our two-parameter expansion, defined in Chapter 5, with field

equations in terms of gauge-invariant quantities given in Chapter 8, and in terms an

effective fluid in this chapter, compares to other approaches derived in the literature.

The approaches delveloped by Milillo et al. [130] and Adamek et al. [18] all
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use post-Newtonian-like expansions. Instead of expanding the metric around a

Minkowski metric an FLRW metric is used and spatial derivatives are large com-

pared to time derivatives – this is equivalent to the post-Newtonian book-keeping

(see Chapter 4). Baumann et al., [36], uses a quasi-static limit of cosmological

perturbation theory (this is problematic because it requires a priori that density

contrasts remain small, which is not true in the late Universe) and write the field

equations as an effective fluid. These expansions are in a single parameter, with a

single characteristic length scale. On the other hand, our formalism includes two

types of perturbations: post-Newtonian perturbations and cosmological perturba-

tions, which behave differently under space-time derivatives, and vary on different

length scales. This truly enables us to clearly see the effects of small-scale non-

linearities on the large-scale expansion of the Universe. Our field equations are

mostly in agreement with Baumann et al., Adamek et al. [18], and Milillo et al.,

[130]. There are, however, differences.

Baumann et al. include terms which should in fact be excluded if completing the

quasi-static limit correctly [36]. For example, in their non-linear, next to leading-

order equations, they include both leading-order and next-to-leading-order scalar

potentials with two time derivatives. However, only the former term is necessary

when taking the quasi-static limit. Additionally, Baumann et al. claim that the

equations in Ref. [36] provide the dynamics of long wavelength scalar fluctuations

sourced by products of short wavelength fluctuations. We believe their equations in

fact show how the dynamics of short wavelength scalar fluctuations are sourced by

product of short wavelength fluctuations, because they consider a single parameter

expansion in the near-zone, where spatial derivatives add largeness, not in the wave-

zone (where long wavelength fluctuations exist). Furthermore, the expansions in

Refs. [18, 36, 130] all include a background energy density during dust domination,

which does not exist in the late Universe, where matter is highly inhomogeneous,

such an energy density is excluded for dust in our two-parameter expansion (see

Section 5.2.3).

As stated previously, the book-keeping of the 0i−vector potential in our two-

parameter expansion is different to those derived by Adamek et al. and Baumann

et al.. Their leading-order vector potential is a hundred times smaller than what

is expect from our two-parameter expansion and post-Newtonian gravity. This is

because both approaches expand the metric in terms of smallness E , E2, and so on,

at the offset. However, if they expanded the energy-momentum tensor fully they

would find that both peculiar velocities are in fact not order E , but order E 1
2 for

non-linear structure (see Section 5.3.1). This implies the leading-order 0i−vector
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potential are of order E 3
2 , not of order E .

In both Refs. [36] and [130] they split the perturbed field equations into linear and

non-linear parts after a quasi-static expansion, which are then solved for separately

even though some non-linear and linear terms may exist at the same order in per-

turbations. We observe this split is arbitrary as there are an infinite number of ways

to split the perturbed field equations, therefore the process of doing so is not well

defined. In the formalism discussed in this thesis, however, the perturbed field equa-

tions are derived and split by order of magnitude given by the strict book-keeping

in Chapter 5. Note that, like Baumann et al., we also write our field equations as

an effective fluid, in this chapter.

Baumann et al. include scalar perturbations alone. The expansion outlined in this

thesis, however, is completely general and includes tensor and vectors perturbations.

The inclusion of these perturbations is crucial as we find there exists mode-mixing, of

scalars, vectors and tensors, at orders in the field equations where non-linearities are

present, and so Ref. [36] has important missing terms which contribute to the non-

linear equations they are solving for. Similarly, Adamek et al. are missing important

mode-mixing terms which, given their own book-keeping, should be included in their

equations [18]. These include mode-mixing terms that appear in our Eqs. (9.17)

and (9.19). Their justification for this may be empirical, from simulations, but it is

not derivable from their book-keeping.

It is proposed in Ref. [18] that their expansion could be valid for modelling

neutrinos, not only dust. This is possible if neutrinos are diffuse enough. If they are

not diffuse, but appear at leading-order, we expect that peculiar velocities are such

that v ∼ 1. This would couple to ‘cosmological’ perturbations in our two-parameter

framework. Therefore, at leading-order, neutrinos behave like perturbations in the

wave-zone rather than the near-zone.

Finally, the quasi-static approximation of cosmological perturbation theory has

been used to calculate relativistic corrections to large-scale structure observations.

For example, in Ref. [161], this approximation is used to calculate the relativistic

corrections to HI intensity mapping up to third order in perturbation theory. This

approximation means terms given by time derivatives acting on potentials are omit-

ted completely. On the other hand, in our two-parameter expansion these terms

are strictly relegated one order higher in η for each time derivative, due to the

book-keeping outlined in Chapter 5, and may appear at high-order in perturbation

theory. This implies that any calculation of relativistic observables which uses the

quasi-static limit, by entirely omitting terms which correspond to time derivatives

on potentials, may be incomplete.
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In this thesis we propose and construct a two-parameter perturbation expansion

around an FLRW background that simultaneously describes non-linear structures

on small-scales and linear structures on large-scales. Moreover, the two-parameter

formalism can model the entire evolution of the Universe by including radiation,

dust and a cosmological constant, Λ. In doing so we use both cosmological and

post-Newtonian perturbation theories. At lowest-order, radiation and Λ fit naturally

into the cosmological sector of our theory, whereas dust fits naturally into the post-

Newtonian sector of our theory. As this expansion is able to model large density

contrasts and different matter components it therefore both contains the essential

features of the real Universe and has a number of potential advantages over standard

cosmological perturbation theory.

The book-keeping outlined in this thesis enables us to derive the two-parameter

perturbed field equations valid for structure on the order of a fraction of the hori-

zon size, the two-parameter gauge transformations of the matter and gravity sectors

of our theory, and construct gauge-invariant quantities. We find that out of the

gauges traditionally used in cosmological perturbation theory only the Newtonian

gauge is applicable to post-Newtonian perturbations at lowest-order, and therefore

also our two-parameter expansion. This may be of importance for those who use

other gauges, for example, the synchronous gauge, in studies of post-Newtonian

gravity [13, 167] or the quasi-static limit of standard perturbation theory. The

consistency of the gauge transformations requires not only gravitational potentials

and matter perturbations at the orders expected from post-Newtonian gravity and

cosmological perturbation theory alone, but also a number of others at orders in

perturbation which may not naively have been expected. We have therefore identi-

fied a minimal set of perturbations that are required for mathematical consistency

of the problem, and written down gauge-invariant versions of the field equations

that contain all such perturbations. These equations were derived to account for

non-linear structure on the scales of clusters and superclusters along with ultra-

large-scale cosmological perturbations, and so models the Universe on scales of a

fraction of the horizon size. We also discuss the application of our formalism to a

146
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universe containing other gravitational systems. This includes a universe containing

post-Newtonian structure on solar system scales, for which our field equations are

consistent with post-Newtonian gravity up to the accuracy of current observations,

but they differ at higher-order. In the limit of setting the cosmological expansion

parameter to zero we recover standard post-Newtonian gravity. However, we do

not recover standard cosmological perturbation theory during dust domination by

setting the post-Newtonian expansion parameter to zero. It is recovered, however,

by setting the leading-order inhomogeneous part of the Newtonian energy density

to zero.

We find that the small-scale Newton-Poisson equation for the scalar gravitational

potential occurs at the same order in perturbations as the Friedmann equation, but

that they can be separated after the introduction of a suitable homogeneity scale.

At leading order, this results in the small-scale Newton-Poisson equation sourced

by the inhomogeneous part of the Newtonian energy density, and the large-scale

Friedmann equations sourced by the spatial average of the leading-order parts of

the energy density and pressure, and the cosmological constant. A nice feature of

our equations is that a universe with dust is sourced by the average of the Newtonian

rest-mass energy density, not a fictitious time-dependent background contribution.

We find later that although there is no back-reaction, from small-scale inhomo-

geneities, on the background expansion a (at leading order), this does not mean

that the effects of small-scale structure on the large-scale cosmological perturbations

are small. In fact we find in the higher-order field equations quadratic Newtonian

potentials within the effective fluid terms, which source cosmological large-scale per-

turbations, along with post-Newtonian and mixed potentials (this mixing-of-scales

is not found in cosmological perturbation theory). Critically, the two-parameter ex-

pansion allows us to clearly identify how small-scale structure can source the growth

of first-order cosmological potentials on large-scales, through non-linearities, mode-

mixing and mixing-of-scales in the field equations (all arising from the non-linearity

of Einstein’s theory). Such effects are beyond the scope of standard linear pertur-

bation theory. We find Newtonian potentials are only important to the dynamics if

our cosmology contains dust, otherwise cosmological perturbation theory should be

a good approximation to the governing equations. Because our perturbation theory

expansion contains the essential features of the late Universe it is advantageous over

standard cosmological perturbation theory applied to epochs which include a pro-

portion of non-linear matter. The inclusion of different fluids is important because

it allows us to identify relativistic effects from our two-parameter expansion over

different epochs of our Universe. It would be of interest, in further work, to calcu-



10: Conclusions and further work 148

late these potentials in relativistic N-body simulations. We expect the results to be

similar to those derived in Ref. [17], but our equations do differ (e.g. our equations

include mode-mixing and equations at new orders) so we expect their solutions to

differ – they literally describe different physics. For example, our gravitomagnetic

potential is a hundred times smaller than what is derived in Ref. [17], but is a result

expected from Ref. [26].

Indeed, these beyond-leading-order equations contain valuable information about

non-linear gravity, and could potentially be used to identify relativistic effects, which

actually behave like biases in observations of large-scale structure. In the calculation

of relativistic corrections to galaxy number counts the quasi-static limit of second-

order cosmological perturbation theory is normally taken and, for example, the

two-point correlation functions are derived [48]. Our book-keeping differs from this

approach because, for example, peculiar velocities, cosmological large-scale poten-

tials, and gravitomagnetic potentials are taken to occur at different orders compared

to standard perturbation theory. Therefore the significance of each contribution to

galaxy number counts, due to light travelling through an inhomogeneous universe,

may differ using our approach.

These relativistic effects are of significance for the next generation of high preci-

sion surveys, such as SKA, Euclid and LSST, which will probe non-linear density

contrasts on unprecedented scales – a significant fraction of our entire horizon. For

example, they hope to probe primordial non-Gaussianity using observations of the

late Universe. Relativistic contributions to the bispectrum, due to non-linearities

(characterised in our two-parameter framework) may be degenerate with this pri-

mordial non-Gaussianity. In other words, non-linearities from Einstein’s equations

may contaminate signals of primordial non-Gaussianity. In further work, it would

be of interest to calculate such corrections using our two-parameter framework and

compare it to the frameworks described in Refs. [79, 167]. Detecting these effects

would allow us to test Einstein’s general relativity on unprecedented scales.

Accounting for the effects of non-linearities is also important for observations of

the CMB. As photons travel from the surface of last scattering to us, their energy was

effected by non-linear inhomogeneous structure (the integrated Sachs-Wolfe effect)

which distorts the CMB we observe. The integrated Sachs-Wolfe effect is observed to

be of order 10% [117] larger than what is expected theoretically. Our formalism could

be used to calculate the integrated Sachs-Wolfe effect, determined from large-scale

cosmological gravitational potentials, which are affected by quadratic Newtonian

potentials. There are many other questions relating to the effects of non-linear

structure on astrophysical and cosmological observables, such as large-scale magnetic
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fields which are much larger than predicted theoretically [84], which our expansion

may also be useful for understanding.

Additionally, theoretical extensions of this work may allow for the nature of rel-

ativistic gravity to be probed more generally, as is done in parameterized-post-

Newtonian gravity. This has been undertaken using parameterized post-Newtonian

cosmology. In Ref. [150] four parameters are needed to characterize deviations from

general relativity for conservative theories of gravity. These parameters could then

be tested observationally. This would enable the determination of qualitative differ-

ences between different theories of gravity while removing leading-order degeneracies

between them. Furthermore, it could help us answer how close gravity is to general

relativity on the largest scales.

By presenting the higher-order field equations in terms of an effective fluid we are

able to highlight the similarities and differences between our formalism and stan-

dard cosmological perturbation theory, post-Newtonian gravity and new approaches

[18, 36, 130]. We expect this to aid further application of our equations by allowing

some standard techniques from cosmological perturbation theory to be imported.

This description also enables an easier physical interpretation of the effects of non-

linearities in the field equations, which clearly lead to, for example, a large-scale

effective pressure and anisotropic stress. Since the effective fluid terms are all con-

structed from the solution to the short-scale Newtonian gravitational potential, their

properties should be able to be determined from Newtonian N-body simulations, and

the field equations can be solved for order-by-order in perturbations. Once the form

of these effective fluids has been identified, one can proceed to solve the cosmolog-

ical equations for the long-wavelength perturbations. This method of solution is

available to us because of the hierarchical nature of the perturbation equations –

short-scale fluctuations appear at lower-order compared to cosmological perturba-

tions, and so can be solved for before cosmological perturbations. Understanding

the consequences of these relativistic effects for the formation of non-linear structure

in the Universe is of importance not only for removing sources of observational bias,

but also because it has the potential to offer new ways of probing Einstein’s theory

on unprecedented scales within cosmology.



A. Energy-momentum tensor for

dust

We present the stress energy tensor for dust only, Tµν = TMµν , in this appendix.

All the other appendices also contain calculations for dust only. This is because

it is really the presence of dust that leads to non-linear small-scale dynamics, so

we expect the appendices to be of most use for future applications which model

non-linearities in the late Universe, for example in the calculation of relativistic

corrections to Newtonian gravity in N-body simulations.

Expanding in both ε and η the non-vanishing components of the tensor TMµν are

given by

TM00 = T
(0,2)
M00 + T

(1,0)
M00 + T

(1,1)
M00 + T

(1,2)
M00 +

1

2
T

(0,4)
M00 + . . . (A.1)

TM0i = T
(0,3)
M0i + T

(1,2)
M0i + . . . (A.2)

TMij = T
(1,0)
Mij + T

(1,2)
Mij +

1

2
T

(0,4)
Mij + . . . , (A.3)

where ellipses again indicate higher-order terms that we will not consider in this

thesis. The terms on the right-hand side of Eq. (A.1) are given by

T
(0,2)
M00 = ρ

(0,2)
M ∼ η2

L2
N

(A.4)

T
(0,4)
M00 = ρ

(0,4)
M − 2h

(0,2)
00 ρ

(0,2)
M + 2ρ

(0,2)
M v

(0,1)i
M v

(0,1)
Mi ∼

η4

L2
N

(A.5)

T
(1,0)
M00 = ρ

(1,0)
M ∼ ε

L2
C

(A.6)

T
(1,1)
M00 = ρ

(1,1)
M ∼ εη

L2
N

(A.7)

T
(1,2)
M00 = ρ

(1,2)
M − h(1,0)

00 ρ
(0,2)
M ∼ εη2

L2
N

, (A.8)
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while the terms in Eq. (A.2) are given by

T
(0,3)
M0i = −aρ(0,2)

M v
(0,1)
Mi ∼

η3

L2
N

(A.9)

T
(1,2)
M0i = −a

(
ρ

(0,2)
M v

(1,0)
Mi + ρ

(1,1)
M v

(0,1)
Mi

)
− aρ(0,2)

M h
(1,0)
0i + terms of size

[
εη2

L2
C

]
(A.10)

∼ εη2

L2
N

+
εη2

L2
C

,

and the terms in Eq. (A.3) are given by

T
(0,4)
Mij = 2a2ρ

(0,2)
M v

(0,1)
Mi v

(0,1)
Mj + a2p

(0,4)
M δij ∼

η4

L2
N

(A.11)

T
(1,2)
Mij = a2p

(1,2)
Mij + terms of size

[
εη2

L2
C

]
∼ εη2

L2
N

+
εη2

L2
C

(A.12)

T
(1,0)
Mij = a2p

(1,0)
M δij ∼

ε

L2
C

. (A.13)

All components of the energy-momentum tensor for dust only, apart from those

presented in Eqs. (A.10) and (A.12), differ from the total energy-momentum tensor,

presented in Section 6.1.2.

This completes the list of expanded energy-momentum tensor components for the

matter fluid necessary to calculate the field equations up to the order considered in

Chapter 6.



B. The field equations for dust

Using the conditions given in Eq. (6.39), i.e. ε ∼ η2 and LN ∼ ηLC , we write the

field equations for dust (see [97]).

B.1. Background-order potentials

The leading-order part of the field equations, in our formalism, comes in atO(η2L−2
N )

and is given by
ä

a
+

1

6a2
∇2h

(0,2)
00 = −4π

3
ρ

(0,2)
M . (B.1)

This equation results from Eqs. (6.4), (6.5) and (A.4), and is a combination of both

the Raychaudhuri equation and the Newton-Poisson equation. We can see only the

rest mass density, ρ
(0,2)
M , is the source of both the Newtonian gravitational field and

the large-scale acceleration equation.

At the same order of accuracy, we find that the leading-order contribution to the

trace of the ij-field equations is given by

ȧ2

a2
− 1

6a2

(
∇2h

(0,2)
ii − h(0,2)

ij,ij

)
=

8π

3
ρ

(0,2)
M . (B.2)

This equation is derived from Eqs. (6.16), (6.17) and (A.4), and is a combination

of the Friedmann equation and the Newton-Poisson equation for the trace of the

post-Newtonian potential h
(0,2)
ii .

Finally, the leading-order trace-free part of the ij-field equations is at O(η2L−2
N ),

and is the same as what is derived with the inclusion of non-anisotropic radiation

and cosmological constant, see Eq. (6.44).
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B.2. Vector potentials

Now let us consider the 0i-field equations. The leading-order contribution to these

equations comes in at O(η3L−2
N ), and is given by

∇2h
(0,3)
0i − h(0,3)

0j,ij − aḣ
(0,2)
ij,j + aḣ

(0,2)
jj,i + 2ȧh

(0,2)
00,i = 16πa2ρ

(0,2)
M v

(0,1)
Mi . (B.3)

This equation is the result of using Eqs. (6.11), (6.12) and (A.9). It can be consid-

ered as the governing equation for small-scale vector potentials and purely consists

of post-Newtonian perturbations, which will source phenomena such as the Lense-

Thirring effect.

At next-to-leading-order in the 0i-field equation, at O(η4L−2
N ), we find from Eqs.

(6.13)-(6.15) and (6.32) that

∇2
(
h

(1,0)
0i + h

(1,2)
0i

)
−
(
h

(1,0)
0j + h

(1,2)
0j

)
,ij
− h(1,0)

0j h
(0,2)
00,ij − a

(
h

(1,0)
ij + h

(1,1)
ij

)·
,j

+a
(
h

(1,0)
jj + h

(1,1)
jj

)·
,i

+ 2ȧ
(
h

(1,0)
00 + h

(1,1)
00

)
,i
− 2h

(1,0)
0i

(
2ȧ2 + aä

)
= 8πa2

(
2ρ

(1,1)
M v

(0,1)
Mi + ρ

(0,2)
M

(
h

(1,0)
0i + 2v

(1,0)
Mi

))
. (B.4)

This equation can be thought of as the governing expression for the large-scale vector

potentials at late times.

B.3. Higher-order scalar potentials

The next-to-leading-order 00-field equation is O(η3L−2
N ), and is given by a Newton-

Poisson equation, derived from Eqs. (6.9) and (A.7). It is sourced only by the

mixed-order matter energy density ρ
(1,1)
M , and is the same with the inclusion of

radiation and Λ, see Eq. (6.47).

The metric perturbations that correspond to cosmological scalar potentials are

h
(1,0)
00 and h

(1,0)
ii . The governing equations for both of these perturbations occur

with post-Newtonian and mixed order potentials at O(η4L−2
N ). From the 00-field

equation, at this order, we therefore find that

∇2

(
h

(1,0)
00 + h

(1,2)
00 +

1

2
h

(0,4)
00

)
+

1

2

(
∇h(0,2)

00

)2

+ a2
(
h

(0,2)
ii + h

(1,0)
ii

)··
(B.5)

−2

[
a
(
h

(0,3)
0i + h

(1,0)
0i

)
,i

]·
+ 2aȧ

(
h

(0,2)
ii + h

(1,0)
ii

)·
− 1

2
h

(0,2)
00,i

(
2h

(0,2)
ij,j − h

(0,2)
jj,i

)
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−h(0,2)
00,ij

(
h

(1,0)
ij + h

(0,2)
ij

)
+ 3aȧ

(
h

(0,2)
00 + h

(1,0)
00

)·
= −8πa2

[
ρ

(1,0)
M + ρ

(1,2)
M +

1

2
ρ

(0,4)
M − ρ(0,2)

M

(
h

(1,0)
00 + h

(0,2)
00

)
+3

(
p

(1,0)
M + p

(1,2)
M +

1

2
p

(0,4)
M

)
+ 2

(
v

(0,1)
Mi

)2

ρ
(0,2)
M

]
,

which has been derived using Eqs. (6.6)-(6.8), (6.10), (A.5), (A.6), (A.8), (A.11)

and (A.13).

The ij-field equation, at O(η3L−2
N ), can be split into its trace and trace-free parts.

Firstly, the trace is derived from Eqs. (6.21) and (A.7) and is a Poisson equation

for the trace of the mixed order potential h
(1,1)
ii , it is the same with the inclusion of

non-anisotropic radiation and cosmological constant, see Eq. (6.49).

The trace of the ij-field equation, at O(η4L−2
N ), gives

(
δij∇2 − ∂i∂j

)(
h

(1,0)
ij + h

(1,2)
ij +

1

2
h

(0,4)
ij

)
+ 4ȧ

(
h

(1,0)
0i + h

(0,3)
0i

)
,i

−
(
2ȧ2 + aä

) (
h

(1,0)
ii + h

(0,2)
ii + 3h

(1,0)
00 + 3h

(0,2)
00

)
− 2aȧ

(
h

(1,0)
ii + h

(0,2)
ii

)
˙

= −4πa2

[
ρ

(0,2)
M

(
h

(1,0)
ii + h

(0,2)
ii − h(1,0)

00 − h(0,2)
00 + 4

(
v

(0,1)
Mi

)2
)

+4

(
ρ

(1,0)
M + ρ

(1,2)
M +

1

2
ρ

(0,4)
M

)]
+A , (B.6)

where the trace-free part will be given in the next section and we have simplified this

expression using Eq. (6.48) multiplied by a factor of a2. These expressions result

from Eqs. (6.18)-(6.20), (6.22), (A.5), (A.6), (A.8), (A.11) and (A.13). The A in Eq.

(B.6) represents the sum of all terms that are quadratic in lower-order potentials,

and is given defined Eq. (6.51). Note that both A and the left-hand-side of Eq.

(B.6) are the same as those in Eq. (6.50). This is simply because the perturbed

metric, given by Eqs. (5.5)-(5.7), is the same for dust only and for dust, radiation

and a cosmological constant.

B.4. Tensor potentials

The next-to-leading-order trace-free ij-field equation is at O(η3L−2
N ), and is given

by Eqs. (6.21) and (A.7). It is exactly the same as Eq. (6.52), derived with the

inclusion of the non-anisotropic fluid of radiation and a cosmological constant, and
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has the same form as the lowest order trace-free ij-field equation, given in Eq. (6.46).

The remaining part of the field equations that we wish to consider is the trace-free

part of the ij-component. At O(η4L−2
N ) we find that this equation is given by

∇2

(
h

(1,0)
〈ij〉 + h

(1,2)
〈ij〉 +

1

2
h

(0,4)
〈ij〉

)
− 2

(
h

(1,0)
k〈i + h

(1,2)
k〈i +

1

2
h

(0,4)
k〈i

)
,j〉k

(B.7)

−Dij

(
h

(1,0)
00 + h

(1,2)
00 +

1

2
h

(0,4)
00 − h(1,0)

kk − h
(1,2)
kk −

1

2
h

(0,4)
kk

)
− a2

(
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉

)··
−2
(
2ȧ2 + aä

) (
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉

)
− 3aȧ

(
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉

)·
+

2

a

[
a2
(
h

(1,0)
0〈i + h

(0,3)
0〈i

)]·
,j〉

= −8πa2ρ
(0,2)
M

[
h

(1,0)
〈ij〉 + h

(0,2)
〈ij〉 + 2v

(0,1)
M〈i v

(0,1)
Mj〉

]
+ Bij ,

where we used Bij to denote the summation of all terms that are quadratic in lower-

order potentials, and is defined in Eq. (6.54). Again, Bij and the left-hand-side

of Eq. (B.7) are the same as those in Eq. (B.7) because the perturbed metric,

given by Eqs. (5.5)-(5.7), is the same for dust only and for dust, radiation and

a cosmological constant. This expressions results from Eqs. (6.18)-(6.20), (6.22),

(A.5), (A.6), (A.8), (A.11) and (A.13).



C. Two-parameter gauge

transformations for dust

We perform the two-parameter transformation, given by Eq. (3.26), on the per-

turbed energy-momentum tensor for dust given in Appendix A. We then irreducibly

decompose these transformations into scalar and divergence-less vector parts – there

is no anisotropic stress and therefore no tensor part. Throughout this section we

assume LN/LC ∼ η, but not ε ∼ η2.

C.1. Transformation of the energy-momentum

tensor for dust

The transformation of T00: using the exponential map in Eq. (3.26), and the

gauge generators specified in Eqs. (7.1) and (7.2), we find the following transforma-

tion at lowest order

ρ̃
(0,2)
M = ρ

(0,2)
M ∼ η2

L2
N

, (C.1)

and at higher-order we have

ρ̃
(1,0)
M + ρ̃

(1,2)
M − h̃(1,0)

00 ρ̃
(0,2)
M (C.2)

= ρ
(1,0)
M + ρ

(1,2)
M − h(1,0)

00 ρ
(0,2)
M + ρ̇

(0,2)
M ξ(1,0)0 + 2ρ

(0,2)
M ξ̇(1,0)0

∼ εη2

L2
N

,

and

1

2
ρ̃

(0,4)
M − h̃(0,2)

00 ρ̃
(0,2)
M + ρ̃

(0,2)
M ṽ

(0,1)i
M ṽ

(0,1)
Mi (C.3)

=
1

2
ρ

(0,4)
M − h(0,2)

00 ρ
(0,2)
M + ρ

(0,2)
M v

(0,1)i
M v

(0,1)
Mi + ρ

(0,2)
M,i ξ

(0,2)i
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∼ η4

L2
N

,

The transformation of T
(1,1)
M00 is the same as the transformation of the total energy-

momentum tensor T
(1,1)
00 given in Eq. (7.62). We note that the Stewart-Walker

lemma tells us ρ
(0,2)
M is gauge invariant because this is the only lowest-order contri-

bution to the energy-density for dust [157].

The transformation of T0i: the same gauge transformations give the following

results for the time-space components of the energy-momentum tensor:

−aρ̃(0,2)
M ṽ

(0,1)
Mi = −aρ(0,2)

M v
(0,1)
Mi ∼

η3

L2
N

(C.4)

and

−aρ̃(0,2)
M ṽ

(1,0)
Mi − aρ̃

(1,1)
M ṽ

(0,1)
Mi − aρ̃

(0,2)
M h̃

(1,0)
0i (C.5)

= −aρ(0,2)
M v

(1,0)
Mi − aρ

(1,1)
M v

(0,1)
Mi − aρ

(0,2)
M h

(1,0)
0i + ρ

(0,2)
M ξ

(1,0)0
,i − a

(
ρ

(0,2)
M v

(0,1)
Mi

)
,j
ξ(1,0)j

∼ εη2

L2
N

.

The transformation of Tij: finally, the gauge transformation of the space-space

components of the energy-momentum tensor gives

a2ρ̃
(0,2)
M ṽ

(0,1)
Mi ṽ

(0,1)
Mj +

1

2
a2p̃

(0,4)
M δij = a2ρ

(0,2)
M v

(0,1)
Mi v

(0,1)
Mj +

1

2
a2p

(0,4)
M δij ∼

η4

L2
N

(C.6)

a2
(
p̃

(1,0)
M + p̃

(1,2)
M

)
δij = a2

(
p

(1,0)
M + p

(1,2)
M

)
δij ∼

εη2

L2
N

. (C.7)

We note p
(1,0)
M +p

(1,2)
M is gauge invariant because there is no homogeneous (or constant)

background pressure. This is because at late times the Universe is dust dominated,

but we allow for a small cosmological source of pressure.

C.2. Transformation of irreducibly-decomposed

sources for dust

The irreducible decomposition of the quantities that appear in the energy-momentum

tensor for dust are simplified by the fact that they are all three-scalars, with the



C.2: Transformation of irreducibly-decomposed sources for dust 158

exception of the three-velocity, vMi. This vector can be split into scalar and diver-

genceless vector parts:

vMi ≡ vM,i + v̂Mi , (C.8)

where v̂iM,i = 0. The scalar degrees of freedom are given by ρM , pM and vM , while

the only divergenceless vector is given by v̂Mi. There are no transverse and trace-free

tensorial terms in the energy-momentum tensor for, as defined in Eq. (2.20).

Cosmological and mixed-order scalar and vector sources: using Eq. (C.1)-

(C.7), we find that the irreducibly decomposed scalars transform according to

ρ̃
(1,0)
M + ρ̃

(1,2)
M = ρ

(1,0)
M + ρ

(1,2)
M + ρ̇

(0,2)
M δt(1,0) (C.9)

p̃
(1,0)
M + p̃

(1,2)
M = p

(1,0)
M + p

(1,2)
M , (C.10)

and the transformation of ρ
(1,1)
M in terms of three-scalars and vectors is given in Eq.

(7.73). The transformation of the scalar part of the three-velocity, v
(1,0)
M , and the

divergenceless vector part, v̂
(1,0)
Mi , are the same as those for the total three-velocity,

derived from the divergence of Eq. (7.79).

Post-Newtonian scalar and vector sources: Eqs. (C.1)-(C.7) can also be used

to find the transformation of the scalar and vector parts of the post-Newtonian

sector of our theory, this gives

ρ̃
(0,2)
M = ρ

(0,2)
M , (C.11)

the transformation of ρ
(0,4)
M and p

(0,4)
M are the same for the total energy density and

pressure, see Eqs. (7.75) and (7.78), respectively. Furthermore, the transformation

of the scalar part of the three-velocity, v
(0,1)
M , and the divergenceless vector part,

v̂
(0,1)
Mi , are the same as those for the total three-velocity, derived from the divergence

of Eq. (7.80).

The leading-order parts of the post-Newtonian three-velocity, energy density and

pressure are automatically gauge invariant for dust. This is to be expected, as these

equations describe Newtonian gravity at leading order, which transforms trivially

under general coordinate transformations. These results differ from the quasi-static

limit of cosmological perturbation theory, as space and time derivatives are treated

differently and velocities come in at different orders [107]. This completes our study

of the gauge transformations of this tensor.
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C.3. Gauge invariant quantities for dust

We construct gauge invariant quantities from perturbations of the energy-momentum

tensor for dust. Our gauge invariant quantities will reduce to the matter sources of

energy-momentum in the longitudinal gauge (when E = B = Fi = 0). We will do

this first for the cosmological sector, and then for the post-Newtonian sector.

Cosmological and mixed-order quantities: we can construct the following three

gauge-invariant scalars, corresponding to the mixed-order and cosmological energy

density and pressure:

ρ
(1,0)
M + ρ

(1,2)
M = ρ

(1,0)
M + ρ

(1,2)
M + ρ̇

(0,2)
M

(
aB(1,0) − a2

2
Ė(1,0)

)
(C.12)

p
(1,0)
M + p

(1,2)
M = p

(1,0)
M + p

(1,2)
M , (C.13)

and the gauge invariant quantity ρ
(1,1)
M is equivalent to the total energy density gauge

invariant quantity ρ(1,1), see Eq. (7.106)

One further scalar, v
(1,0)
M , and a divergence-free vector, v̂

(1,0)
Mi , can be extracted

from the divergence of the gauge invariant quantity defined in Eq. (7.115). These

are all of the gauge invariant quantities that can be constructed from the energy-

momentum tensor for dust, in the cosmological and mixed-order sector of our theory.

Post-Newtonian quantities: in the post-Newtonian sector we have the gauge

invariant quantity

ρ
(0,2)
M = ρ

(0,2)
M , (C.14)

we also have ρ
(0,4)
M ,p

(0,4)
M ,v

(0,1)
M and v̂

(0,1)
Mi , given in Eqs (7.108), (7.111), (7.113) and

(7.114), respectively. We note that there is a strong similarity between the post-

Newtonian gauge invariant quantities for dust and radiation, compared to dust alone.

The fact that many of the post-Newtonian perturbations are themselves gauge in-

variant is unsurprising, as many of these objects appear in the Newtonian equations

of hydrodynamics.

These gauge invariant quantities derived from the transformation of the energy-

momentum for dust are all that are needed to write the field equations (up to the

order we wish to consider) in terms of gauge invariant quantities, see the following

appendix.



D. Dynamics of gauge invariant

quantities for dust

With the gauge invariant quantities constructed in Appendix C.3 and Section 7.5.1,

and the field equations in Appendix B, we can write the field equations for dust in

terms of gauge invariant quantities. These equations take the same form as the field

equations in the longitudinal gauge but are in fact valid in any coordinate system.

Furthermore, these equations can be used to write down the governing equations for

our gauge invariant quantities, which, upon specification of any particular gauge,

reduce to the gauge-fixed Einstein equations. As before, we write down these equa-

tions under the assumptions ε ∼ η2 and LN/LC ∼ η.

D.1. Background-order potentials

The background-order 00-field equation can be used to write

ä

a
+

1

6a2
∇2Φ(0,2) = −4π

3
ρ

(0,2)
M , (D.1)

while the trace of the background-order ij-equation gives(
ȧ

a

)2

− 1

3a2
∇2Φ(0,2) =

8π

3
ρ

(0,2)
M , (D.2)

The background order trace-free ij-equation gives Eq. (8.1) and its derivative implies

the conditions in Eq. (8.2). Note that all equations in this appendix are written

with the substitution of the results in Eq. (8.2), because dust and radiation matter

sources are non-anisotropic. These equations govern the leading-order part of the

gravitational fields for non-relativistic matter, at O(η2L−2
N ).
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D.2. Vector potentials

We now use all 0i-field equations. At order O(η3L−2
N ), these give

∇2B
(0,3)
i + 2

(
aΦ̇(0,2) + ȧΦ(0,2)

)
,i

= 16πa2ρ
(0,2)
M v

(0,1)
Mi . (D.3)

Although B
(0,3)
i is a divergenceless vector, Eq. (8.5), has a divergenceless vector and

scalar part, which can be separated out with a derivative. The same goes for the

O(η4L−2
N ) 0i-field equation, which gives

∇2
(
B

(1,0)
i + B

(1,2)
i

)
+ 2

(
a
(
Φ(1,1) −Ψ(1,0)

)
˙+ ȧ

(
Φ(1,1) + Φ(1,0)

))
,i

(D.4)

−2
(
2ȧ2 + aä

)
B

(1,0)
i −B

(1,0)
j Φ

(0,2)
,ij

= 8πa2
(

2ρ
(1,1)
M v

(0,1)
Mi + ρ

(0,2)
M

(
B

(1,0)
i + 2v

(1,0)
Mi

))
.

D.3. Higher-order scalar potentials

The 00- and ij-trace field equation at O(εηL−2
N ) gives exactly the same equation as

Eq. (8.7) because ρ(1,1) by definition only has a contribution from matter pertur-

bations, so ρ(1,1) ≡ ρ
(1,1)
M . The derivative of Eq. (8.7) implies the condition in Eq.

(8.8), which is substituted in throughout this section.

Using the 00-field equation, at O(η4L−2
N ), we find

∇2

(
Φ(1,0) +

1

2
Φ(0,4) + Φ(1,2)

)
+
(
∇Φ(0,2)

)2
+ 3aȧ

(
3Φ(0,2) + Φ(1,0) − 2Ψ(1,0)

)
˙

+3a2
(
Φ(0,2) −Ψ(1,0)

)
¨+ 6aä

(
Φ(0,2) −Ψ(1,0)

)
− 1

2
Φ

(0,2)
,ij h

(1,0)
ij

= −8πa2

(
ρ

(1,0)
M + ρ

(1,2)
M +

1

2
ρ

(0,4)
M + 3

(
p

(1,0)
M + p

(1,2)
M +

1

2
p

(0,4)
M

)
−ρ(0,2)

M

(
Φ(1,0) + Ψ(1,0) − 2

(
v

(0,1)
Mi

)2
))

. (D.5)

The trace of the ij-field equation gives, at O(η4L−2
N ),

−2∇2

(
Ψ(1,0) + Ψ(1,2) +

1

2
Ψ(0,4)

)
− 3

(
2ȧ2 + aä

) (
Φ(1,0) −Ψ(1,0) + 2Φ(0,2)

)
+6ȧa

(
Ψ(1,0) − Φ(0,2)

)
˙



D.4: Tensor potentials 162

= −4πa2

(
4

(
ρ

(1,0)
M + ρ

(1,2)
M +

1

2
ρ

(0,4)
M

)
+ ρ

(0,2)
M

(
2Φ(0,2) − Φ(1,0) − 3Ψ(1,0)

+4
(
v

(0,1)
Mi

)2
))

+A , (D.6)

where we have defined terms that are quadratic in metric potentials as A, given in

Eq. (8.11). These are all of the scalar equations that exist at this order.

D.4. Tensor potentials

The trace-free ij-field O(εηL−2
N ) equation is given by Eq. (8.12), as it is the same

with the inclusion of non-relativistic matter, radiation and a cosmological constant.

This is because we are considering non-anisotropic radiation and a cosmological

constant. The derivative of Eq. (8.12) implies the conditions in Eq. (8.13). We

substitute the results in Eq. (8.13) into all equations in this appendix.

Finally, the ij-field equation, at O(η4L−2
N ), can be used to write the following

trace-free equation:

−Dij

(
Φ(1,0) + Φ(1,2) +

1

2
Φ(0,4) + Ψ(1,0) + Ψ(1,2) +

1

2
Ψ(0,4)

)
−
(
2ȧ2 + aä

)
h

(1,0)
ij

+
1

2
∇2

(
h

(1,0)
ij + h

(1,2)
ij +

1

2
h

(0,4)
ij

)
+ 4ȧ

(
B

(0,3)
(i,j) + B

(1,0)
(i,j)

)
+ 2a

(
B

(0,3)
(i,j) + B

(1,0)
(i,j)

)
˙

−3

2
aȧḣ

(1,0)
ij − 1

2
a2ḧ

(1,0)
ij

= −8πa2ρ
(0,2)
M

(
1

2
h

(1,0)
ij + 2v

(0,1)
M〈i v

(0,1)
Mj〉

)
+ Bij , (D.7)

where we have defined terms that are quadratic in metric potentials as Bij, given in

Eq. (8.15). Importantly, we observe that, unlike in linear cosmological perturbation

theory, our expansion scheme does not imply Φ(1,0) = −Ψ(1,0) or h
(1,0)
ij = 0 during

matter domination, because of the additional non-linearities in Eq. (D.7) that do

not exist in first-order cosmological perturbation theory. This completes the full

set of equations for dust in terms of gauge-invariant variables, up to the order in

perturbations that we wish to consider here.
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