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Abstract—The increasing number of Internet of things (IoT)
objects has been a growing challenge of the current spectrum
supply. To handle this issue, the IoT devices should have cognitive
capabilities to access the unoccupied portion of the wideband
spectrum. However, most IoT devices are difficult to perform
wideband spectrum sensing using either conventional Nyquist
sampling system or sub-Nyquist sampling system since both the
power-hungry sampling components and intricate sub-Nyquist
sampling hardware are unrealistic in the power-constrained
IoT paradigm. In this paper, we propose a blind joint sub-
Nyquist sensing scheme by utilizing the surround IoT devices to
jointly sample the spectrum based on the multi-coset sampling
theory. Thus, only the off-the-shelf low-rate analog-to-digital
converters (ADCs) on the IoT devices are required to form
coset samplers and only the minimum number of coset samplers
are adopted without the prior knowledge of the number of
occupied channels and signal-to-noise ratios. Moreover, to further
reduce the number of coset samplers and transfer part of the
computational burden from the IoT devices to the core network,
we adopt the data from geo-location database when applicable.
The experimental results on both the simulated and real-world
signals verify the theoretical results and the effectiveness of the
proposed scheme. At the meanwhile, it is shown that the adaptive
number of coset samplers could be adopted without causing the
degradation of the detection performance and the number of
coset samplers could be further reduced with the assists from geo-
location database even when the obtained information is partially
correct.

Index Terms—Compressive Sensing, Sub-Nyquist Wideband
Spectrum Sharing, Internet of Things.

I. INTRODUCTION

The recent developments of Internet of things (IoT) has
drawn world-wide attention of both academia and industry
with the vision of extending Internet connectivity to a vast
number of ”things” in our physical world [1]–[4]. With turning
IoT paradigm into a reality, the amount of IoT devices is
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expected to grow in large numbers, which leads to difficul-
ty in allocating sufficient spectrum bands to these devices.
Additionally, transmission performance degeneration will be
caused due to the overcrowding in the unlicensed industrial,
scientific and medical (ISM) bands [5]. On the other hand,
not every channel in every portion of the spectrum is fully
utilized all the time even for the ’busy’ spectrum below 6
GHz in the urban areas, as shown in Fig. 1. This observation
has encouraged the standardization bodies such as Federal
Communications Commission (FCC) in U.S. and Office of
Communications (Ofcom) in U.K. to release the underutilized
licensed bands such as TV white space (TVWS) [6] and
3.5GHz shared spectrum [7] for temporary secondary access
through the use of dynamic wideband spectrum sharing. For
example, It has shown that over 50% of locations in the UK
are likely to have more than 150 MHz of vacant TV spectrum
and that even 90% of locations might have around 100 MHz
of spectrum available [6]. Moreover, the superior penetration
propagation characteristic over Ultra High Frequency (UH-
F) spectrum enables TVWS to have longer communication
distance and better penetration through obstacles [8], which
makes TVWS be an ideal candidate for the long-range wide-
area IoT network, especially for the smart agriculture in
rural area. Therefore, it is the vision that smart IoT devices
should have cognitive capabilities to enable spectrum sharing
over wideband spectrum [9]–[11]. With cognitive capabilities,
interference among the IoT devices can be alle viated by
seeking for the vacant channels through dynamic spectrum
access.

The precondition for implementing the dynamic spectrum
access in IoT paradigm over TVWS or other shared spectrum
is the real-time observation of spectrum occupancy status. One
of the current operational mechanism to attain this information
is using the geo-location databases. However, it only protects
registered primary systems and those databases are only avail-
able in certain locations and spectrum, e.g., TVWS in U.K.
and U.S. [12]. For the concern of limited access to database
and the database update speed, spectrum sensing, as one of
the vital important technologies in cognitive radio (CR), was
proposed to efficiently explore the underutilized spectrum [13].

However, it is unrealistic to directly acquiring the wideband
signals by conventional Nyquist sampling scheme, especially
in the energy-constrained IoT devices, since that requires high
sampling rates (double or more than the bandwidth of the
signal in frequency domain) and high power consumption in
the analog-to-digital converter (ADC). In [14], [15], sequential
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sensing approaches were proposed to individually sense the
channels by using the tunable narrowband bandpass filter with
low-rate ADC. Due to the sequential nature of those schemes,
the large sensing latency would be introduced, which may
lead to missed opportunities or interferences [16]. Therefore,
compressive sensing (CS) [17], [18] was applied to to realize
wideband spectrum sensing without the high rate signal sam-
pling and processing. It enables the fast and accurate spectrum
detection with sub-Nyquist sampling rates by exploiting the
sparse nature of the underutilized wideband spectrum in prac-
tice [19], [20]. However, the specialized sampling schemes
for CS are difficult to be implemented in most of compact
IoT devices with limited energy supply and cost constraints.
For example, the random demodulation sampling [21] which
employs the high rate pseudorandom sequence to modulate the
input signal, and the conventional multi-coset sampling [22]–
[24] which have to assemble numerous ADCs into a single
sensing equipment due to the unknown number of occupied
channels in practice.

Therefore, the wideband spectrum sensing scheme without
employing either high-rate ADCs or specialized sampling
schemes is urgently needed for low-power IoT scenario. On
the other hand, as the rapid growth of low-power IoT market,
large number of IoT devices would be deployed closely in
order to achieve multiple environment sensing and machine
control functions, which are equipped with commercial low-
rate ADCs for data transmission [25]. Motivated by the above
challenges, the contribution of this paper is threefold.

Firstly, we propose a distributed sub-Nyquist sampling
scheme by utilizing adjacent IoT devices which have cognitive
capabilities with wide-range radio frequency (RF) front-end, to
jointly sample the spectrum based on the multi-coset sampling
theory. It means that only the off-the-shelf low-rate ADC on
each IoT device is required for sampling and formed as the
coset sampler. Secondly, we consider the situation in which
the number of occupied channels is unknown. As the multi-
coset sampling theory indicates that the number of cosets
should be at least more than two times of the number of occu-
pied channels [22], in the conventional multi-coset sampling
scheme [22]–[24], the prior knowledge of occupied channel
number is required to adopt the minimum number of cosets,
which is difficult to know in practice. Furthermore, even the
number of occupied channels is known, the least number of
coset to achieve the same detection performance is varying un-
der different signal-to-noise ratios (SNRs) [23]. Therefore, the
aforementioned schemes tend to further increase the amount
of cosets in order to keep stable detection performance. In the
proposed scheme, only the minimum number of coset samplers
are adopted without the prior knowledge of occupied channel
number by gradually increasing the number of involved coset
samplers and indirectly estimating the reconstruction errors
until the spectrum recovery is satisfactory. Thirdly, we propose
to incorporate the channel occupancy information from geo-
location database when it is applicable. In [26], a database-
assisted CS algorithm employs the channel historical power
information from geo-location database to reduce the iterations
of weights updating in the iteratively reweighted least square
(IRLS) algorithm. However, the dynamic change of channel
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Fig. 1. The real-time spectrum occupancy recorded at Queen Mary University
of London (51.523021◦N 0.041592◦W). The figure shows that the spectrum
is sparsely occupied below 6 GHz.

power information from geo-location database could severely
degrade the reconstruction accuracy, i.e., newly added PUs and
the errors in the prior information from geo-location database.
Therefore, we proposed a hybrid reconstruction scheme with
the awareness that the prior information from geo-location is
not perfectly reliable. Moreover, the proposed can track the
changes of spectrum occupancy state in real-time, i.e., newly
added users. With the assists from geo-location database, part
of the complexity of local wideband sensing is transferred
to the core network, thus further decreasing the processing
complexity and energy consumption required on the IoT
devices.

The rest of this paper is organized as follows: Section II
describes the preliminary system and signal model. In Section
III, the proposed blind joint sub-Nyquist sensing scheme is
introduced. Section IV introduces the joint iterative reweight-
ed sparse recovery incorporated with geo-location database.
Section V analyzes and validates the proposed algorithms
over simulated and real-world TVWS signals. Conclusions are
drawn in Section VI.

II. PRELIMINARY SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Model

In this paper, we consider that the observed wideband
spectrum signal x(t) is a continuous-time signal whose total
bandwidth is denoted as W Hz, such that

x(t) =

Nsig∑
i=1

[si(t) + ni(t)], (1)

where Nsig is the number of transmission signals from primary
users (PUs). si(t) and ni(t) refers to the i-th signal and
additive white Gaussian noise (AWGN) in the correspond-
ing band respectively. In the conventional Nyquist sampling
system, the sampling rate is adopted as fN ≥ 2W over the
observation time To to generate the uniform samples x[ nfN ].
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The corresponding discrete Fourier transform (DFT) of the
signal x[ nfN ] could be obtained as

X[k] =
N−1∑
n=0

x

[
n

fN

]
e−2
√
−1πkn/N , k = 0, 1, . . . , N − 1,

(2)
where N = fN · To and X[k] typically bears a near sparse
property due to the underutilization of wideband spectrum as
shown in Fig. 1. Without loss of generality, the wideband
spectrum is evenly segmented into H channels. Since the
probabilities that PUs present in any channel are assumed to
be unknown, we model the multiband sensing on each channel
as a binary hypothesis test [27]. The general compressive
spectrum sensing framework utilized in the proposed scheme is
illustrated in Fig. 2. The aim of compressive spectrum sensing
is to reconstruct signal x[ nfN ] or its spectrum X[k] from the
sub-Nyquist samples and then perform the spectrum sensing
techniques, e.g., energy detection and feature detection, on
the reconstructed signal in order to decide the occupancy
status. Compared with other conventional spectrum detection
technologies [28], the energy detection does not require any
prior knowledge of the PUs, i.e., modulation type, with lower
implementation and computational complexity [29], therefore,
we adopt the energy detection method [30] in this paper.

In the context of wideband spectrum sensing in shared
spectrum, some of the frequency bands are heavily used by the
primary users such as local radio stations, local TV stations,
etc., so the related information at the geo-location database
will be stable due to TV broadcasting arrangement in the long
run (e.g., years). Therefore, although the side-information from
geo-location database is possibly with some errors due to the
dynamic changes of the spectrum state, such information can
be incorporated at the sensing terminals to reduce the sensing
costs.

B. Problem Formulation

According to the general CS-based spectrum sensing frame-
work shown in Fig. 2, we know that the spectrum recovery per-
formance would have direct impact on the sensing results. For
the compressive multi-coset sampling theory, the reconstruc-
tion performance mainly depends on three factors: the number
of cosets, the reconstruction algorithm and the occupancy
ratio, i.e., bandwidth of transmission signals/total bandwidth.
As the occupancy ratio is determined by transmission activities
within the desired wideband spectrum. In this paper, we focus
on discussing how to choose the minimum number of cosets
samplers without the prior knowledge of the occupied channel
number and how to optimize the reconstruction stage in
terms of number of required measurements and computational
burden with the coexistence of dynamic incumbent systems
over TVWS.

The compressive measurement acquisition can be expressed
by the following analytical model:

y = Φx+ ξ subject to ||x||0 ≤ s, (3)

where Φ ∈ RM×N is the measurement matrix to collect the
compressive samples y ∈ RM from the original signal x.
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Fig. 2. Block diagram of compressive spectrum sensing framework.

M ∈ Z (with s < M < N ) refers to the dimension of y, and
|| · ||0 represents the number of nonzero elements in the vector,
which is also treated as the measure of sparsity. Parameter ξ ∈
RM is the noise perturbation, whose magnitude is constrained
by an upper bound η, i.e., ||ξ||2 < η.

Under certain assumptions including the restricted isometry
property (RIP) on Φ and the signal sparsity bound [17], robust
signal reconstruction with respect to the above linear system
can be formulated as the following unconstrained minimization
problem:

x∗ := arg min
x∈RN

1

2
||Φx− y||22 + λ||x||0, (4)

where x∗ is the reconstructed signal and constant parameter
λ > 0 is introduced to balance the objective of minimizing
the reconstruction error ||x − x∗||22 and the solution sparsity
||x||0 according to the Lagrange multiplier theorem. However,
problem (4) is NP-hard due to the l0-norm minimization of x.
It was shown in [17] that the result of l0-norm minimization
can be equivalent to the solution obtained by the l1-norm
minimization which can be solved in polynomial time. There-
fore, (4) can be approximated as

x∗ := arg min
x∈RN

1

2
||Φx− y||22 + λ||x||1. (5)

Recent works [31] show that additional prior knowledge on
the original signal can be utilized to enhance the reconstruc-
tion capabilities of CS algorithms. For example, the signal
reconstruction stage could adapt to the incomplete or complete
prior information on the support of original signal in sparse
domain, e.g., frequency spectrum, which aims to obtain a result
that explains the samples, whose support contains the smallest
number of new additions to the known support T and subject
to the target sparsity, so the solution is given by

x∗ := arg min
x∈RN

1

2
||Φ(x)T c − y||22 + λ||(x)T c ||1. (6)

Suppose that the support set of x is denoted as S = supp(x),
where the known part of the support set is T , the unknown
support set is U and the error in the known part set is Ue :=
T \S . The size of these sets are denoted as s := |S|, u := |U|
and e := |Ue|, so that s = t+u−e. The theoretical lower bound
for exact reconstruction based on the l0-norm minimization
can be expressed with the restricted orthogonality constant δ
as [32]

δt+2u < 1, (7)
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which is much weaker than that of the original sparse recovery
δ2s < 1 [31] as the restricted orthogonality constant δ is
nondecreasing, and s � u; s � e. Sufficient condition for
exact reconstruction in terms of δ measures the theoretical
minimum number of samples needed. Therefore incorporating
the prior known part of the signal support can reduce the
number of samples to guarantee the successful reconstruction,
so that the sampling rate and computational burden will be
further reduced for the power-constrained IoT devices.

The notation used is summarized as follows. The super-
scripts (·)T , (·)H denote transpose, Hermitian transpose re-
spectively. Ai,j is the (i, j)-th entry of the matrix A. A(i)

is the i-th column of the matrix A. A[i] is the i-th row
of the matrix A. AT denotes the sub-matrix containing the
columns of A with indices from T . The notation T c denotes
the complement of the set T . T1\T2 = T1∩T c2 denotes the set
difference. And |T | denotes the size of set T . vec(·) operator
refers as vec(A) , [AT

(1),A
T
(2), . . . , ]

T and supp(x) denotes
the support set of x.

III. THE PROPOSED BLIND JOINT SUB-NYQUIST SENSING
SCHEME

In this section, the proposed blind joint sub-Nyquist sensing
scheme is presented, which utilizes adjacent IoT devices to
jointly sense the wideband spectrum. Compared with the con-
ventional multi-coset sampling scheme, the adaptive number
of cosets samplers are adopted without the prior knowledge
of the occupied channel number.

As shown in Fig. 3, the joint sub-Nyquist sensing system is
realized by utilizing multiple IoT devices which are served as
low-rate coset samplers, and the edge computing unit which
could be either the IoT device or independent computing
unit if the IoT device with sufficient power supply and
computing capability is not available in surrounding area. The
power-constrained IoT devices could benefit from transferring
the computing task to the edge computing unit, especially
for those IoT devices with sensing capability but sufficient
computing resource. Given the number of channels H and
corresponding Nyquist sampling rate fN = 1/TN ≥ 2W ,
each of the coset samplers takes uniform samples by a
significantly decreased sampling rate fs = 1

HTN
= fN/H

with a time offset of {ciTN}, i = 1, ..., p, where p < H is
the number of coset samplers and the set C = {ci}pi=1 consists
of p distinct integers randomly selected from [0, H − 1].
Thus the average compressive ratio could be given as α =
(fN/H)TN ·p/(fN ·TN ) = p/H . For the i-th coset sampler,
the uniform sampling sequence is defined as

xci [n] =

{
x(nTN ), n = mH + ci, m ∈ Z

0, otherwise. (8)

Furthermore, by applying Fourier transform to xci [n], the
relationship between its spectrum Xci(e

2
√
−1πkTN ) and the

unknown Fourier spectrum X(k) of x(t) is presented as [33]

Xci(e
2
√
−1πkTN ) =

1

HTN

H−1∑
h=0

Xh(k)e
√
−1 2π

H cih, ∀k ∈ [0,W ],

(9)
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Fig. 3. Block diagram of the proposed joint sub-Nyquist sensing system.

for every 1 ≤ i ≤ p, where Xh(k) = X(k+ h
HTN

) corresponds
to the pieces of the original spectrum X(k) in the h-th channel,
which is shifted to the left by h

HTN
units. Therefore, (9) could

be simplified into the matrix form as

Y (k) = AX(k), ∀k ∈ [0,W ], (10)

where Y (k) ∈ Cp×L is a matrix whose i-th row is
Xci(e

2
√
−1πkTN ), X(k) = [X0(k), X1(k), ..., XH−1(k)]T is

the unknown spectrum vectors of x(t) in the H channels,
and A ∈ Cp×H is a matrix with (i, j)-th element given by
Ai,j = 1

HTN
e
√
−1 2π

H ci(j−1).
The multi-coset sampling theory indicates that the number

of cosets p should be at least more than two times of the
number of occupied channels [22]. Therefore, in the conven-
tional multi-coset sampling scheme [22], [23], the number of
occupied channels κ is assumed as the prior knowledge to
decide the number of coset p needed in integrated sampling
hardware. However, as the number of occupied channels is
unknown in practice, p could be set unnecessary large when
it is determined by κ. Moreover, even if the exact number of
occupied channels is known or estimated, the least number
of cosets to achieve the same detection performance are
still varying under different SNRs [23]. Therefore, fixing
the number of coset when produce the sampling hardware
could cause either performance degeneration or the waste of
sampling resources.

In the proposed scheme, only the minimum coset samplers
are adopted without the prior knowledge of the number of
occupied channels or its upper bound value κ. Specifical-
ly, through repeating the procedure of signal acquisition by
gradually increasing the number of involved coset samplers
and performing signal reconstruction, we could obtain a se-
quence of reconstructed signal, i.e., x̂1, x̂2, · · · , x̂p, where
x̂ = vec(X̂(k)). After each time of signal reconstruction, the
proposed scheme should decide whether the reconstruction of
the original signal is accurate enough or not. If the recon-
structed signal does not satisfy certain accuracy requirement
of spectral detection, the scheme should require more coset
samplers until the accuracy of the signal reconstruction is good
enough. However, the actual reconstruction error e = ||x−x̂||22
is inaccessible since the original signal x = vec(X(k)) is un-
known. In this paper, we propose to estimate the reconstruction
error e indirectly and set stopping criterion.
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Before proposing the scheme to approximate reconstruction
error, we give the vectorization of (10) in the following lemma.

Lemma 1. Given the matrix form Y (k) = AX(k), we could
obtain the vector form as vec(Y (k)) = Φvec(X(k)), where
the matrix Φ = IL ⊗A and the operator ⊗ represents the
Kronecker product.

Proof. Let X(k) = [X(1)(k),X(2)(k), · · · ,X(L)(k)] and
u1,u2, · · · ,uL denote the unit vectors. We could obtain

vec(Y (k)) = vec(AX(k)) = vec(AX(k)IL)

= vec
( L∑
i=1

AXi(k)ui
T IL

)
=

L∑
i=1

vec
(
(AXi(k))(ILui)

T
)

=
L∑
i=1

(
ILui ⊗AXi(k)

)
= (IL ⊗A)

L∑
i=1

(
ui ⊗Xi(k)

)
= (IL ⊗A)

L∑
i=1

vec
(
Xi(k)ui

T
)

= Φvec(X(k))

(11)
Thus vec(Y (k)) = vec(AX(k)) = Φvec(X(k)) is obtained.

In the following of this section, we denote vec(Y (k)) as y.
Specifically, the samples vector y in each step is divided into
two vectors yr (yr ∈ Rr×1) and yv (yv ∈ Rv×1). According
to Lemma 1, these two vectors therefore can be expressed
as yr = Φrx and yv = Φvx respectively, where Φr is a
r × HL matrix and Φv is a v × HL matrix. Parameter r
represents the number of samples in yr for signal recovery
and v is the number is set to guarantee the sufficient accuracy
of reconstruction error estimation as illustrated later.

As mentioned before, the exact reconstruction error e =
||x−x̂||22 could not be obtained to determine how accuracy the
reconstructed signal is. Therefore, we propose to estimate the
actual reconstruction error e indirectly by using the verification
vector yv and the proposed stopping criterion is defined as

Sp = ||Φvx̂− yv||22. (12)

The Johnson-Lindenstrauss Lemma presented in [34] asserts
that a high-dimensional space can be projected into a low-
dimensional one whose dimension is equal or larger than
O(ζ−2logHL) so that all distances are preserved up to a
multiplicative factor between 1− ζ and 1 + ζ with the factor
ζ ∈ [0,≤ 1/2]. To demonstrate the rigorous relationship
between the actual reconstruction error e and the proposed
stopping parameter Sp, we prove the point that the actual
reconstruction error e = ||x − x̂||22 could be approximated
by Sp within the boundary factor of 1 ± ζ in Theorem 2.
Therefore, in order to terminate the signal acquisition process,
i.e., determine whether the number of coset samplers are
sufficient or not, one can compare the proposed stopping
parameter Sp with a predefined threshold which could be

determined according to the certain reconstruction accuracy
requirement.

Theorem 2. Given ζ ∈ (0, 1/2], and γ ∈ (0, 1) and v ≤
Cζ−2log(1/2γ), we have

Sp
(1 + ζ)

≤ e ≤ Sp
(1− ζ)

(13)

with confidence 1−γ, where the parameter C depends on the
concentration property of random variables in measurement
matrix Φ∆M [34]. ê and e are defined as before.

Proof. With the aid of Johnson-Lindenstrauss Lemma, if the
number of row v in Φv is equal or larger than Cζ−2log(1/2γ),
we have

(1− ζ)||x− x̂||22 ≤ ||Φv(x− x̂)||22 ≤ (1 + ζ)||x− x̂||22
(14)

with confidence 1− γ, where ζ ∈ (0, 1/2] and γ ∈ (0, 1). As
matrix Φv could be seen as a linear projection from RHL to
Rv , we can get

(1− ζ)||x− x̂||22 ≤ ||Φvx̂− yv||22
≤ (1 + ζ)||x− x̂||22.

(15)

To obtain the observation that e = ||x−x̂||22 could be bounded
and estimated by Sp = ||Φvx̂− yv||22, we change the (15) to
another form (16) and simplify it to (17):

1

(1 + ζ)
||Φvx̂− yv||22 ≤ ||x− x̂||22

≤ 1

(1− ζ)
||Φvx̂− yv||22,

(16)

Sp
(1 + ζ)

≤ e ≤ Sp
(1− ζ)

. (17)

Therefore, when the row number v in Φv is equal or larger
than Cζ−2log(1/2γ), the distance between Sp and e could be
bounded up to a multiplicative factor between 1− ζ and 1 + ζ
with the confidence 1− γ.

To further reduce the computational complexity of the signal
reconstruction of (10), we compute the covariance matrix of
the sample sequences as [35]

R = E[Y (k)Y H(k)] = ARXA
H , (18)

where RX = E[X(k)XH(k)] is the H × H primary signal
correlation matrix and σ2

n is the noise variance. According
to the eigenvalue decomposition (EVD) method [23], the
covariance matrix R could be decomposed as R = UΛUH .
Utilizing eigenvalues Λ and the corresponding eigenvectorsU ,
the measurement matrix could be constructed as χ = U

√
Λ,

and we can define the following linear system

χ = Aν, (19)

where the support of the sparest solution to (19) converges
to the original spectrum in matrix form, i.e., supp(ν) =
supp(X(k)) [23]. Compared with original sub-Nyquist sam-
ples Y (k) ∈ Cp×N , using χ ∈ Cp×p for support recovery
reduces the computation complexity required on the SUs.
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Algorithm 1 The proposed blind joint sub-Nyquist sensing
scheme
Require: Sampling rate fs, the maximum number of available

coset samplers pmax, the stopping parameter threshold δ,
A.

Ensure: The reconstructed signal x̂
1: while p = 0, · · · , pmax do
2: Sampling the wideband signal using fs with p coset

samplers so as to obtain the compressive measurement
matrix Y (k) and the corresponding covariance matrix R.

3: Reconstruct the support and spectral fromR by utilizing
SOMP algorithm according to (19), leading to a spectral
reconstruction x̂p.

4: Calculate the stopping parameter

Sp = ||Φvx̂− yv||22
5: if Sp smaller than predefined threshold is true
6: Terminate the signal acquisition process.
7: else
8: p = p+ 1
9: end if

10: end while

After the support recovery, the exact signal reconstruction
could be achieved by the reconstruction algorithm. In CS, the
original signal could be recovered from sub-Nyquist samples
by solving the l1-norm minimization. Since the reconstruc-
tion of the unknown matrix ν with jointly sparse columns
in (19) is referred to as the joint sparse problem [36], we
extend greedy-type algorithm such as simultaneous orthogonal
matching pursuit (SOMP) [37] to solve this joint sparse
problem, because of its lower complexity compared with the
l1-norm minimization [38]. Besides, the related exact recovery
criterion for the conventional orthogonal matching pursuit
(OMP) remains valid for its extension to SOMP [39].

IV. JOINT ITERATIVE REWEIGHTED SPARSE RECOVERY
WITH GEO-LOCATION DATABASE

In this section, firstly we extend the single measurement
vector (SMV) problem to the multiple measurement vectors
(MMV) problem in (10), where X(k) is row-sparse, i.e.,
having nonzero entries in only a few rows. Then the lν-
norm (0 < ν < 1) minimization problem solving by the
iteratively reweighted least square (IRLS)-type algorithm is
modified to incorporate the information from geo-location
database for enhancing the recovery performance with fewer
measurements. Based on the white space channel information
from the geo-location database, the sensor node can get a
response with details of available channels in the vicinity. For
simplifying the notation, X(k) and Y (k) are denoted as X
and Y respectively.

Since the parameter H is set based on the number of
channels in the spectrum of interest, the positions of nonzero
rows in (10) is equivalent to the active channel index set S.
Therefore, the channel status information from geo-location
database could be incorporated on the indices of the cor-
responding rows with large norm in the recovery process,

Algorithm 2 Iterative Reweighted Sparse Recovery with Prior
Information
Require: matrix of p samples sequence Y ∈ Cp×N , measure-

ment matrixA = [a1, ...,aM ] ∈ Cp×M , information from
geo-location databaseT , κ̂ from EFT, W (0) and λ(X(0)).

Ensure: S
1: for l = 1, · · · , lmax do
2: Compute
3: X(l) = W (l−1)AT (AW (l−1)AT + λ(X(l−1))I)−1Y
4: if ||∆X(l+1)|| ≤ δ break;
5: Update
6: Weights: w(l)

i = (||X(l−1)[i]||2)v−2

7: Penalty parameter:
8: λ(X(l)) = 1

2 ||AX
(l) − Y ||22/[%−

∑
w

(l)
i (||X(l)

[i] ||2)2]
9: l = l + 1

10: end for
11: Estimate support S by selecting the position of the first κ̂

smallest components in W (l+1)

12: return S=S-1

in order to enhance the recovery performance with fewer
measurements under sub-Nyquist sampling. To that end, SMV
is extended to the MMV problem, where the objective is to
minimize the number of rows containing nonzero entries while
satisfying the measurement constraint in (10). The problem can
be formulated as [36]

arg min
X

1

2
||AX − Y ||22 + λ||Rlν (X)||1. (20)

Rlν (X) is a vector in RH whose i-th entry is the lν norm of
the i-th row of X:

Rlν (X) = [v1, v2, ..., vH ]T , (21)

where vi = ||X [i]||q = (
∑N
j=1 |xi,j |q)1/q .

Compared with the l1-norm minimization in (5), the lν-
norm minimization with 0 < ν < 1 leads to the better
sparsity approximation performance with the fewer samples
since it is an intermediate problem in the sense of norm
minimization between (4) and (5) [40]. Therefore the l1-norm
minimization is replaced with the lν-norm minimization for
signal reconstruction in this section. It can be given as

arg min
X

1

2
||AX − Y ||22 + λ||Rlν (X)||vv. (22)

where the penalty parameter λ > 0 is introduced to balance
the reconstruction accuracy and the sparsity of minimization
result as discussed in Section II. Since the choice of λ greatly
influences the behavior of the spectrum reconstruction [41],
in this work, λ is defined as a function of the target signal to
optimize λ along with the signal reconstruction process, such
that the problem in (22) can be transformed into the following
form:

arg min
X

F (X) =
1

2
||AX − Y ||22 + λ(X)||Rlν (X)||vv. (23)

Without losing the numerical property of (22), we define the
linear function of the form: F (X) = %λ(X) [42] to preserve
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the convexity in each iteration and exhibits only a global
minimizer regardless of the value of λ(X), where % is the
coefficient representing the slope of the line and also controls
convexity. We substitute F (X) = %λ(X) to (23) and therefore
λ(X) can be expressed as

λ(X) =
1
2 ||AX − Y ||

2
2

%− ||Rlν (X)||vv
0 < ν < 1. (24)

However, it is general computationally hard and not guar-
anteed to obtain its global minimum due to the nonconvexity
of the lν-norm minimization. It is shown in [40] that under
certain assumptions such as the null space property (NSP)
on measurement matrix A, the solution sequence generated
by the IRLS algorithm converges to the local minimum as
the sparsest solution that is also the actual global lν-norm
minimizer. With q = 2, each iteration of the IRLS algorithm
corresponds to a convex weighted least squares subproblem
that can be formulated as

arg min
X

1

2
||AX − Y ||22 + λ(X)

H∑
i=1

wi(||X [i]||2)2, (25)

The problem in (25) will be repeatedly solved by updating the
weight wi at each iteration using the solution from previous
iteration: at each iteration, wi will be set as

w
(l)
i = (||X(l−1)

[i] ||2)v−2. (26)

where w(l)
i , i = 1, ...,H is the value of the weighting vector

to be used at the l-th iteration and X(l−1) is the (l − 1)-th
iterate. After convergence, X(l−1) will be sufficiently close to
X(l). The weighting parameter w(l) are computed from the
row norms of the solution obtained in the previous iteration,
so the corresponding rows with smaller norm are likely to be
de-emphasised as they are irrelevant in fitting the data and
vice versa. In (26), as 0 < v < 1, the weights will be chosen
inversely proportional to the l2-norm of the rows. Since it gives
a large weight to the small component, it will encourage a
sparse solution in the minimization problem of (25). Assuming
that T ⊂ [0, H − 1] is the prior knowledge of the occupied
channel indices from geo-location database, its relation to the
actual occupied channel set S can be expressed as:

S = T ∪4 \4e, (27)

where 4 := S \ T is newly occupied channel set, and 4e :=
T \S are the newly released channel indices, i.e., the occupied
channel indices recorded at geo-location database but actually
released as vacant at current time.

As the i-th row in X corresponds to the piece of the
original spectrum in the subchannel, the occupied channel
information from geo-location database indicates the indices
of the corresponding rows with large norm. Similar as (6), the
objective function in (25) can therefore be changed as the lν
minimisation over the remaining positions only, i /∈ T , i.e.,

arg min
X

1

2
||AX − Y ||22 + λ(X)

∑
i/∈T

wi(||X [i]||2)2. (28)

By defining
wi = 0,∀i ∈ T , (29)

Antenna

RFeye Node

NI LabVIEW

Fig. 4. Experimental setup for real-time processing and live compressive
spectrum sensing testbed on TVWS [43].

the minimisation in (25) is transformed in the form of (28).
Here, in order to add the prior channel occupancy informa-

tion from geo-location database, the weighing strategy in the
joint sparse reconstruction is modified as

w
(l)
i =

{
ϕ(||X(l−1)

[i] ||2)v−2, i ∈ T
(||X(l−1)

[i] ||2)v−2, otherwise,
(30)

where ϕ is a specified small constant. For ϕ = 0, the first
expression in (30) reduces to 0 as required by (29).

Given an initial guess of the signal X(0) (e.g., the least-
squares solution), the iterative reweighting algorithm generates
a sequence of iterations of as follows:

X(l+1) = arg min
X

1

2
||AX(l) − Y ||22+

λ(X(l))
∑
i/∈T

w
(l)
i (||X(l)

[i] ||2)2.
(31)

The solution to (31) at the l-th iteration can be expressed as

X(l+1) = W (l)AT (AW (l)AT + λ(X(l))I)−1Y , (32)

where W (l) = diag{[1/w(l)
1 , ..., 1/w

(l)
H ]}. The initial weight

is given by

w
(0)
i =

{
ϕ, i ∈ T
1, otherwise. (33)

The algorithm is terminated once the convergence criterion has
been satisfied, i.e.,

||∆X(l+1)|| = ||X
(l+1) −X(l)||22
||X(l)||22

≤ δ, (34)

where δ is a user-selected parameter. Here, based on the spar-
sity guess of the support dimension κ̂ from exponential fitting
test (EFT), the estimated active channel set is determined by
selecting the position of the first κ̂ smallest components in the
final weight w or comparing the components with predefined
threshold. The entire procedure of the proposed scheme in this
section is summarised in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, we test the proposed schemes using the
simulated signals as well as the real-world signals as the proof
of concepts in this paper.
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Fig. 5. Normalized power spectrum density (PSD) of the real-time TVWS
signal recorded at QMUL, S = [22, 23, 25, 26, 28, 29, 30, 33]

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15SNR (dB)0.20.30.40.50.60.70.80.91.0
= 12.5%= 25.0%= 37.5%

Fig. 6. Detection Probability Pd vs. SNR (dB) with p = 20 under different
channel occupancy ratios Ω = 12.5%, 25%, 37.5%.

A. Experiment Setups

The simulated signals are assumed as x(t) ∈ F = [0, 320]
MHz, whose DFT is denoted as xsim

0 . To keep consistency
with the real TVWS setting, the spectrum is equally divided
into L = 40 channels with bandwidth B0 = 8 MHz, which
contains up to J active channels:

x(t) =
J∑
i=1

√
EiB0sinc(Bi(t− ti))ej2πfit + n(t), (35)

where sinc(x) = sin(πx)/(πx), Ei, ti and fi represent the
energy, time offset, and central frequency of the i-th channel
respectively and n(t) denotes the noise. The channel occu-
pancy ratio Ω is defined as J/L. The real-world signals xreal

0

is collected by the real-time wideband compressive spectrum
sensing testbed as shown in Fig. 4. There are 40 channels
(indexed as Channel 21 - Channel 60) in the recorded TVWS
signal, ranging from 470 to 790 MHz and each channel con-
tains either noise only or transmitting signal with noise. Fig. 5
shows that the normalized downconverted real-world TVWS
signal in the baseband F = [0, 320] MHz. Strong DVB-T sig-
nal reception at channel set S = [22, 23, 25, 26, 28, 29, 30, 33]
can be observed in the recorded spectrum. Thus the channel
occupancy ratio is Ω = 20%. To quantify the detection
performance, we compute the detection probability Pd, i.e.,
the existing of occupied channels correctly being detected as
occupied, under 1000 trials.

B. Results and Analysis

1) Detection Performance versus SNR and Number of Coset
samplers: Firstly, we demonstrate that channel occupancy

5 10 15 20 25 30 35 40Number of Coset Samplers p00.20.20.3
0.40.50.60.7
0.80.91.0

SNR = -5 dBSNR =  0 dBSNR =  5 dBSNR = 10 dBSNR = 15 dB
Fig. 7. Detection Probability Pd vs. number of coset samplers p with Ω =
12.5% under different SNRs.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15SNR (dB)0.20.30.40.50.60.70.80.91.0
Detection Prob
ability p=10p=15p=20p=25p=30p=35p=40

Fig. 8. Detection Probability Pd vs. SNR (dB) with Ω = 12.5% under
different number of coset samplers.

ratio Ω affects the required minimum number of coset sam-
plers to achieve the same detection probability Pd. It shows
in Fig. 6 that the detection performance Pd against SNR
from -5 dB to 20 dB with fixed number of coset samplers
p = 20. Moreover, it is observed that Pd improves as SNR
increases under different scenarios with channel occupancy
ratios Ω = 12.5%, 25%, 37.5%, which means the minimum
number of coset samplers varying with the channel occupancy
ratio Ω to achieve the same detection probability Pd. However,
the information of channel occupancy ratio Ω is usually
unknown in practice.

To verify the theory that the better detection performance
Pd always could be achieved by evolving more coset samplers,
we compare Pd against different number of coset samplers p
with fixed Ω and SNR. It is shown in Fig. 7 that detection
performance Pd increases with the number of coset samplers
but the extra coset samplers are unnecessary after the optimal
detection performance is obtained by minimum number of
coset samplers.

The proposed scheme could prevent the waste of sam-
pling resources and guarantee the detection performance with
sufficient number of coset samplers under different channel
environments, i.e., SNRs. As demonstrated in Fig. 8, the
proposed scheme therefore can be terminated according to the
stopping criterion when the number of coset samplers reaches
p = 10 if the received SNR is equal or greater than 5 dB.
Besides, more coset samplers are required in the proposed
scheme under the worse SNRs to achieve accurate detection
performance. Therefore, it is shown that the proposed scheme
is allowed to adaptively choose the number of coset samplers
under different SNRs.
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Fig. 9. Detection Probability Pd vs. number of coset samplers p under
different ratio of known part τ = 0.3, 0.5, 0.8, 1.0 and sensing only.

2) Detection Performance with the Prior Information in
the Geo-location Database: As the active channel set S is
randomly generated from {Z ∩ [1, L]}, among which the
prior known part T obtained from geo-location database are
randomly chosen from the elements of S . The ratio of the prior
known part T in the active channel set S, referred as τ , is
varied between 0 to 1. The case τ = 0 and τ = 1 corresponds
to the sensing only case without assists from geo-location
database and the case that current channel occupancy states
from geo-location database are fully reliable and no change
occurs on the spectrum at current time.

Firstly, the received SNR is set as −5 dB and the number
of coset samplers p is varied from 15 to 35. As shown in the
Fig. 9, the detection performance Pd generally increases with
the involved number of coset samplers p, and also improves as
the percentage of the known part τ increases. With the input
from geo-location database, the number of coset samplers is
further reduced in the the proposed joint sensing scheme to
achieve the same detection probability compared with the sens-
ing only case. For example, to achieve the desired detection
probability of 0.97, sensing only method needs around p = 20
coset samplers, while the proposed joint sensing scheme needs
only p = 15 coset samplers. Moreover, the proposed scheme
can update the lack of channel occupancy information in the
geo-location database, which helps to improve the detection
performance and reduce the required number of coset samplers
in the subsequent sensing activities.

Secondly, the detection performance is evaluated with vary-
ing received SNR from -5 dB to 15 dB in Fig. 10 with fixing
the number of coset sampler as p = 15 to sample the received
signals. As shown in Fig. 10, the detection performance of
the proposed joint sensing scheme utilizing different ratio of
known part τ is always superior to that of the sensing only,
especially more sensitive to the low SNR region.

3) Detection Performance with the Partially Incorrect Pri-
or Information in the Geo-location Database: Both Fig. 9
and Fig. 10 follow that the prior information from geo-
location database is correct for all given channels. As stated
in Section IV, it may be the case that the information from
geo-location database is not fully reliable, e.g., some of the
channel occupancy states are changed but the geo-location
database has not been updated timely. In this situation, the
proposed joint sensing scheme can still recover the actual
signals since it could remove the incorrect elements in T from

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15SNR (dB)0.700.730.760.790.820.850.880.910.940.971.00
Detection Prob
ability sensing only=0.3=0.5=0.8=1.0

Fig. 10. Detection Probability Pd vs. number of SNR (dB) under different
ratio of known part τ = 0.3, 0.5, 0.8, 1.0 and sensing only.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35Number of Coset Samplers p0.700.730.760.790.820.850.880.910.940.971.00 sensing only=0.3, c=2, =1=0.8, c=8, =0=1, c=10, =0=0.3, c=1, =2=0.5, c=5, =0=0.5, c=4, =1=0.5, c=3, =2=0.8, c=6, =2
Fig. 11. Detection Probability Pd vs. number of coset samplers p under
different ratio of known part with partially incorrect prior information and
sensing only.

the minimization problem, but more cost samplers are adopted
compared with the case when no errors are present in T .

In Fig. 11, the cases in which T contains some incorrect
prior information are simulated, which means that apart from
the c channels correctly belonging to the support, there are ω
out of τ |S| channels in T that do not belong to the current
signal support. The simulation setting is same as that in Fig. 9
and Fig. 10, but with different combinations of c and ω in
T . As shown in the Fig. 11, the proposed scheme can still
reconstruct the underlying signals and shows an improvement
in detection performance with respect to the case with no prior
information.

4) Detection Performance with the Partially Incorrect Prior
Information in the Geo-location Database over Real-world
Signal: Finally, we apply the proposed scheme on the col-
lected real-world signal to validate the proposed scheme in the
practical environment. It is shown in Fig. 12 that the proposed
scheme could recover the spectrum even with the partially
incorrect prior information from the geo-location database
and the detection performance of the proposed joint sensing
scheme still is superior to that of the sensing only.

VI. CONCLUSION

In this paper, we proposed a blind joint sub-Nyquist wide-
band spectrum sensing scheme for cognitive IoT, which on-
ly requires the off-the-shelf low-rate ADCs in the wireless
IoT devices which have cognitive capabilities. Without the
prior knowledge of the number of occupied channels and
the level of SNRs, the proposed scheme could blindly select
sufficient number of coset samplers to achieve desired sensing
performance. To further reduce the required number of the
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Fig. 12. Detection Probability Pd vs. number of coset samplers p under
different ratio of known part with partially incorrect prior information over
real-world signals.

coset samplers, the processing complexity and the energy
consumption over the evolved IoT devices, we proposed to
incorporate the channel occupancy information from the geo-
location database and the wideband signal reconstruction pro-
cess. Moreover, with the awareness that the information from
geo-location is not fully reliable, the proposed scheme could
reconstruct the signal with partially correct information and re-
turn the newly updated information to databases. Experimental
results have shown that the proposed scheme could not only
utilize the minimum number of coset samplers without known
number of occupied channels but also guarantee the desired
detection performance under wide range of SNRs. Moreover,
the performance of the proposed scheme assisted with geo-
location database is superior to the sensing only method even
when the obtained information is partially correct, especially
in low SNR region. These benefits from the proposed scheme
make it be a good candidate for the large-scale deployment of
the power constrained IoT devices and spectrum management.
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