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Distributed control of synchronization of a group of
network nodes

Lucia Valentina Gambuzza, Mattia Frasca, Senior, IEEE, Vito Latora

Abstract—Synchronization in networked systems of diffusively
coupled oscillators is a ubiquitous, well studied phenomenon,
and many techniques have been proposed to control all the
network nodes towards a common reference trajectory. In this
technical note, instead, we study the problem of synchronizing
an arbitrary subset of the nodes of a network at a fixed
coupling strength, disregarding the state of the remaining ones.
This problem is inspired to what observed in many biological
systems, where the functionality of the network is associated
to the presence of clusters of synchronous nodes and, on the
contrary, is lost when all the nodes synchronize. We propose a
distributed control that introduces further interactions between
the oscillators guaranteeing the onset and the stability of the
desired synchronous manifold. The controllers are designed so
that a proper set of symmetries is created in the network. In
addition, we show that the stability of the synchronization pattern
mainly depends on the degree of the nodes to synchronize and
can be, therefore, controlled by increasing it. Finally, we provide
numerical examples illustrating our results.

Index Terms—Distributed control, complex networks, synchro-
nization.

I. INTRODUCTION

In the last few decades, synchronization of networked
systems and its control have seen a growing interest in
the scientific community due to the theoretical importance
of understanding the dynamical behavior of many social,
biological and man-made systems, and to their applications
to multiagent systems, secure communications, power grids,
electronic circuits, and physiological processes [1]. Many
efforts have been devoted to explain the mechanisms behind
this collective phenomenon and its dependence on the local
dynamics of the units, the functional form of the coupling, and
the topology of the underlying network [2], [3]. The stability of
the synchronous state has been also studied with a wide variety
of different approaches, ranging from linearization [4] to
Lyapunov functions [3] and contraction theory [5]. At the same
time, a number of studies have shed light on the existence of
various types of synchronization in networked systems. In fact,
beyond the regime where all the network nodes asymptotically
tend towards the same trajectory (global synchronization),
other scenarios characterized by the appearance of clusters
of synchronized nodes [6] or coexistence of synchronized
domains and incoherent ones have been predicted theoretically
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and observed experimentally [7]. The latter forms of synchro-
nization are of practical relevance in biological systems (e.g.,
the phenomenon of unihemispheric sleep [8]) and in man-
made systems (e.g., islanding in power grids [9]).

The characterization of the phenomenon of synchronization
has prompted the definition of techniques for its control [10],
[11]. A particular relevant result in this field refers to the so-
called pinning control, which demonstrates that global syn-
chronization can be achieved by introducing feedback actions
on a small portion of the network nodes [12]–[17]. Other
studies have focused on control techniques aimed at inducing
different types of synchronization, as cluster [18]–[20] or
chimera states [21]–[23]. The works on cluster synchroniza-
tion are especially relevant for our study, and, hence, some
more details are given below. The aim of controlling cluster
synchronization is to induce a synchronization regime where
the networked system splits in groups of nodes, also called
clusters, such that all the nodes in a cluster are synchronized,
while different clusters exhibit distinct dynamical behaviors.
This goal is reached with techniques based on pinning control
[18], intermittent pinning control [24], aperiodically intermit-
tent pinning control [25], or exploiting the network symmetries
[26], [27].

In our technical note we study a slightly different problem:
the target is to control the synchronization of an arbitrary
subset of the nodes of the networked system, independently
of the state of the remaining units. Hence, our aim is not
to control the synchronization of all nodes grouped into
different clusters as in most of the previously cited works,
but of a single cluster of nodes. A similar problem, aiming at
stabilizing a single cluster by setting proper interconnection
weights and controller gains, has been considered in [26]. The
main difference with respect to our work is that in [26] the
control action targets at stabilizing a synchronization pattern
that already exists, as it is determined by the network structure.
In our case we investigate networks of diffusively coupled
oscillators (either identical or with heterogeneous dynamics),
and propose a distributed control to address the problem; the
cluster is created by the controllers which also guarantee its
stability. In addition, we assume that the coupling coefficient
is not a controllable parameter, but, on the contrary, is fixed.

Our results offer an interesting interpretation. Suppose to
consider two identical chaotic systems. As they start from
different initial conditions, they will follow distinct evolutions.
However, it is well known [28] that they can be synchronized,
inducing them to follow exactly the same trajectory, if their
interactions are chosen appropriately. For instance, in many
cases, one can establish a bidirectional coupling between the
two systems and select the proper coupling coefficient so that
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synchronization is achieved. In this work, the perspective is
different, as we assume that the two systems are embedded
in a network and are not isolated. Quite counter-intuitively,
our findings show that inserting a link between the two units
is not the most efficient solution to synchronize them, but,
on the contrary, it is much more efficient to act on their first
neighbors.

II. PRELIMINARIES

This section introduces notations and definitions of graph
theory [29], [30], group symmetry [31] and algebraic matrices
[32], which will be used in the rest of the work.

We indicate by In the identity matrix with dimension n×n;
with 0m×n a matrix of zeros of dimension m× n (whenever
possible we omit the subscripts in this matrix, even if it is
not a square matrix); with 1n the vector of dimension n with
unitary elements. A diagonal matrix, say D, with diagonal
terms λ1, . . . , λn is indicated as D = diag{λ1, . . . , λn}.

A graph G is defined by the set of nodes/vertices V(G) =
{v1, . . . , vN}, and the set of edges/links E(G) ⊆ V x V ,
whose elements are ordered pairs of distinct vertices. If, for
all (vi, vj) ∈ E(G), the edge (vj , vi) ∈ E(G) the graph is
undirected, otherwise the graph is direct. In the rest of the
work we will consider undirected graphs. To indicate the nodes
of G we will equivalently use vi or, shortly, i.

The set of neighbors of node i is denoted by Ni = {vj ∈ V :
(vi, vj) ∈ E}. Let Ni and Nj be the sets of neighbors of node
i and node j respectively, the common part or intersection of
Ni and Nj is defined as the set of those elements which belong
simultaneously to Ni and Nj , and indicated as Ni ∩Nj . Two
sets are disjoint if their intersection is empty. More in general,
the intersection of more than two sets, Ni ∩ Nj ∩ . . .Nk is
the set of nodes which belong simultaneously to Ni,Nj , . . . ,
and Nk. We recall also that the union between two sets Ni

and Nj is defined as Ni ∪ Nj = {vh | vh ∈ Ni or vh ∈ Nj}
and, analogously, the difference between two sets Ni and Nj

is defined as Ni − Nj = {vh | vh ∈ Ni, vh ̸∈ Nj}. We
indicate the cardinality of a set N , i.e., the number of elements
contained in it, as |N |.

Graphs are also represented through their adjacency and
Laplacian matrices. The elements of the adjacency matrix A
of undirected graphs are defined such that, if there is a link
between node i and node j (i ̸= j), i.e., if (vi, vj) ∈ E(G),
then aij = aji = 1, otherwise aij = aji = 0. We assume that
there are no self-loops, i.e., aii = 0 for all i = 1, . . . , N . We
define the degree ki of node i as the number of connections
incident on node i:

∑N
j=1,j ̸=i aij =

∑N
j=1,j ̸=i aji = ki, with

i = 1, 2, . . . , N . Given an undirected graph G, the Laplacian
matrix L(G) or, shortly, L, is defined through its coefficients
Lij = −aij if i ̸= j, and Lii = ki.

A path between vi ∈ V(G) and vj ∈ V(G) is a sequence
of vertices such that each pair of consecutive vertices in the
sequence is connected by an edge. An undirected graph is
connected if for each pairs of vertices there exists a path con-
necting them. The Laplacian L(G) of a connected, undirected
graph is irreducible, symmetric and semi-positive definite, so 0
is an eigenvalue with multiplicity 1, and all other eigenvalues
are strictly positive: 0 = λ1 < λ2 ≤ λ3 · · · ≤ λN .

In the following we will also use some tools from group
theory which are here briefly recalled. We say that an object
has a symmetry if there exists a transformation/operation
which, when applied to the object, leaves it unchanged. In
particular, for graphs, symmetries are associated to automor-
phisms, i.e. permutations of the graph nodes that preserve the
adjacency of nodes [30]. The symmetries of a graph (more
in general of an object) form a mathematical group. Each
element of the group is a symmetry of the graph and can
be represented as a permutation matrix, Rg , i.e., a square
matrix containing exactly one non-zero entry for each row
and column, with rij = 1 if nodes i and j permute, and
rij = 0 otherwise. The adjacency and the Laplacian matrix are
invariant to graph symmetries which implies that RgA = ARg

and RgL = LRg . Furthermore, for any permutation matrix we
have that RgR

−1
g = R2

g = IN .
Graph symmetries can be difficult to detect and appropriate

tools have been defined [33]. The following Lemma introduces
a specific case where a trivial symmetry can be immediately
identified.

Lemma 2.1: If two or more nodes i, j, . . . , h of a graph G,
have the same neighborhoods, Ni = Nj = . . . = Nh, then
such nodes are symmetric.

Proof: The proof immediately follows from the definition
as exchanging any pairs of nodes with the same neighborhood
leaves the graph unchanged.

Finally, we recall some properties of the Kronecker product:

(A⊗ B) · (C⊗D) = (A · C)⊗ (B ·D) (1)
(A⊗ B)−1 = A−1 ⊗ B−1 (2)

with A, B, C, and D matrices of appropriate size.

III. PROBLEM FORMULATION

We consider a dynamical network formed by N diffusively
coupled identical nodes, with each node being a n-dimensional
dynamical system:

ẋi = f(xi) + σ
N∑
j=1

aijH(xj − xi) (3)

where xi = (xi1, xi2, . . . , xin)
T ∈ Rn is the state variable of

node i, f(xi) : Rn → Rn is the local dynamics, the constant
σ > 0 represents the coupling strength, and H ∈ Rn×n is
a constant matrix of 0-1 coefficients, representing how the
coupled variables are linked. Eqs. (3) are commonly used
to model the dynamics of various systems of interacting
oscillators, from ecological, circadian, electronic and neuronal
networks to power grids [2]. Equivalently, the dynamical
equations (3) of the network can be rewritten in terms of the
graph Laplacian L as:

ẋi = f(xi)− σ
N∑
j=1

LijHxj (4)

or, in compact form:

ẋ = F (x)− σL ⊗H · x (5)
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where x = [xT
1 ,x

T
2 , . . . ,x

T
N ]T is the stack vector of all node

states, and F (x) = [f(x1)
T , f(x2)

T , . . . , f(xN )T ]T describes
the local dynamics of the network.

In the networked dynamical system (4) we introduce dis-
tributed controllers ui with i = 1, . . . , N as follows:

ẋi = f(xi)− σ

N∑
j=1

LijHxj + ui (6)

and we assume that they represent further proportional (diffu-
sive) coupling that can be established from node i to the other
nodes of the network, i.e.:

ui = −σ
N∑
j=1

L′
ijHxj (7)

The controllers act on the dynamical network through the
same state variables of the other nodes, and with the same type
of coupling (matrix H) used for the other links. The coupling
coefficient σ is fixed to be the same as that in Eq. (6). In
this way, Eqs. (7) implement a communication protocol of the
same nature as that already used by the networked system to
be controlled. The controllers introduce an additional layer of
links, modeled through the matrix L′, whose elements L′

ij with
i ̸= j can be −1, 1 or 0. Namely, L′

ij = −1 if a link between
i and j is added, L′

ij = 1 if an existing link is removed, and
L′
ij = 0, otherwise. Finally, the elements L′

ii are chosen as

L′
ii = −

N∑
j=1,j ̸=i

L′
ij , so that, even if L′ is not a Laplacian

as it may also contain positive off-diagonal terms, L′ is zero
row-sum. We indicate as G′′ the graph formed by the original
links and those introduced by the controllers. Links are added
or removed so that L′′ = L+L′ is a Laplacian matrix (in this
way G′′ is unweighted and undirected). Correspondingly, the
neighborhood of node i in the graph G′′ is indicated as N ′′

i .
In this work, we study the problem of controlling synchro-

nization of a subset of the network nodes through distributed
control. Given a set of n2 < N nodes of the network, denoted
as Sn2 , we consider the problem of finding a set of controllers
ui as in Eq. (7) such that the nodes in Sn2 are synchronized
each other. We indicate with n1 the number of remaining
nodes, n1 = N − n2, and relabel the network nodes so that
the units to synchronize are indexed as i = n1 + 1, . . . , N .
The aim of our study is, thus, to determine a control such that
a synchronous state of the type:

x1(t) = s1(t)
. . .
xn1(t) = sn1(t)
xn1+1(t) = xn1+2(t) = . . . = xN (t) = s(t)

as t → +∞

(8)
exists and is exponentially stable. In compact form, we
indicate the synchronous state as x(t) = xs(t) =
[s1(t)

T , . . . , sn1(t)
T , s(t)T , . . . , s(t)T ]T . Notice that, in the

most general case, the first n1 nodes follow different trajecto-
ries, that is si(t) ̸= sj(t) for i, j = 1, . . . , n1, but eventually
some of them may coincide.

IV. MAIN RESULTS

Our main result is represented by the following theorem.
Theorem 4.1: Consider the dynamical network (6), a set

Sn2 of n2 arbitrary nodes, and a fixed value of the coupling
coefficient σ. If the controllers ui in Eq. (7) are such that
L′′ = L+ L′ fulfils these conditions:

1) N ′′
n1+1 = . . . = N ′′

N (⇒ kn1+1 = . . . = kN , i.e., the
nodes of Sn2 have the same degree);

2) the n2 nodes in Sn2 are not connected each others;
then, a synchronous state xs(t) =
[s1(t)

T , . . . , sn1(t)
T , s(t)T , . . . , s(t)T ]T exists.

If moreover there exist a diagonal matrix C > 0 and two
constants q̄ > 0 and τ > 0, such that the linear matrix
inequality (LMI)

[Df(s(t))− qH]TC+ C[Df(s(t))− qH] ≤ −τ In (9)

is satisfied for all q ≥ q̄ and t > 0 (where Df(s(t)) is the
Jacobian of f on s(t)), and if σ > q̄/n1 and κ , kn1+1 =
. . . = kN is selected so that κ > q̄

σ , then the synchronous
state xs(t) is exponentially stable.

Remark 4.2: As introduced above, the controllers in Theo-
rem 4.1 establish additional links in the network; the resulting
network, with Laplacian given by L′′, is such that the nodes
to synchronize have the same sets of neighbors N ′′

i for
i = n1 + 1, . . . , N . Theorem 4.1 requires that the nodes in
Sn2 have a degree greater than q̄/σ, a critical value which
is larger the smaller is the coupling in the network. If some
nodes of Sn2 , e.g., nodes ī and j̄, are connected in the original
graph G, then condition 2) is satisfied by selecting L′

īj̄
= 1.

Remark 4.3: Let us exemplify the application of Theo-
rem 4.1 for n2 = 2. Let us indicate the two nodes to
synchronize as node A and node B. If |NA ∪ NB | < q̄/σ,
we define a set of arbitrary nodes of the network, indi-
cated as V2 ⊆ (V(G) − NA − NB − {A,B}), such that
|NA ∪NB |+ |V2| > q̄/σ, and select the controller as:

uA = σ
∑

j∈(NB−NA)

H(xj − xA) + σ
∑

j∈V2

H(xj − xA)

uB = σ
∑

j∈(NA−NB)

H(xj − xB) + σ
∑

j∈V2

H(xj − xB)

(10)
In the case that |NA ∪ NB | > q̄/σ, then V2 = ∅, and the

last term in the right hand side of each Eq. (10) vanishes.
In addition, as the links are bidirectional, complementary

control actions are set to the other end-nodes of the links.
Proof of Theorem 4.1: Existence of the synchronous so-

lution. The application of the controllers (7) in the dynamical
network (6) leads to:

ẋi = f(xi)− σ
N∑
j=1

L′′
ijHxj (11)

or, in compact form

ẋ = F (x)− σL′′ ⊗H · x (12)
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System (12) represents a dynamical network of units cou-
pled through the Laplacian L′′. L′′ satisfies conditions 1)-
2), which guarantee for Lemma 2.1 that the n2 nodes are
symmetric. This means that the equations of motion of the
dynamical network remain unchanged if any of the nodes of
Sn2 is permuted with any other node of Sn2 . The nodes of Sn2

have, thus, the same equations of motions. If these nodes have
the same initial conditions, they remain synchronized at any
time. Hence, system (12) admits an invariant synchronization
manifold and, so, a solution xs exists.

Stability of the synchronous solution. It remains to demon-
strate that this solution is exponentially stable. To this aim,
we first demonstrate that the synchronous state xs(t) of the
dynamical network (11) is exponentially stable, if

ζ̇ = (Df − σκH)ζ (13)

is exponentially stable, where ζ ∈ Rn and κ is the degree that
the nodes to synchronize have in G′′.

We consider the synchronous state xs and define x = xs+η,
that is, xi = xs

i + ηi, with η =
[
ηT1 ηT2 . . . ηTN

]T
, and

ηi ∈ Rn, i = 1, . . . , N .
We proceed by linearizing Eqs. (12) around xs:

η̇ = DF · η − σ(L′′ ⊗H) · η (14)

with DF = diag{Df1, Df2, . . . , Dfn1 , Dfs, . . . , Dfs},
where Df1 = Df(s1(t)), Df2 = Df(s2(t)), ..., Dfn1 =
Df(sn1(t)), and Dfs = Df(s(t)). Note that the structure of
this matrix with the first n1 blocks being different and the
other n2 blocks being identical derives from the choice of the
synchronous state xs as in (8).

We now aim at defining proper transformed variables lead-
ing to a system of equations that can be decoupled. To do this,
we consider the following matrix R ∈ Rn×n

R =

[
In1 0
0 1n2 · 1T

n2
− In2

]
(15)

and note that this matrix is symmetric and, thus, for
the Schur’s lemma, there exists an orthogonal matrix M
such that M−1RM = diag{λ1(R), . . . , λN (R)}, where
λ1(R), . . . , λN (R), are the eigenvalues of R. These eigen-
values are known and can be ordered in the following way:
λ1(R) = . . . = λn1(R) = 1, λn1+1(R) = n2 − 1,
λn1+2(R) = . . . = λN (R) = −1 [29]. For n2 = 2, R is the
permutation matrix associated to the symmetry in L′′ of the
two nodes to synchronize. In the more general case, n2 > 2,
R is no more a permutation matrix as R2 ̸= IN .

It is known that any permutation matrix Rg of a symmetry
of a network with Laplacian L has the property that, given
M such that M−1RgM is diagonal, then M−1LM is block-
diagonal [34]. In the following, we prove and use the fact that
this property also applies with R as in Eq. (15).

We use M, which diagonalizes R, to define the following
transformed variables

ξ = (M−1 ⊗ In) · η (16)

By substituting the new variables into Eq. (14) and applying
the properties of the Kronecker product (1), we obtain

ξ̇ = (M−1 ⊗ In)DF (M−1 ⊗ In)
−1ξ−

−σ(M−1 ⊗ In)(L′′ ⊗H)(M−1 ⊗ In)
−1ξ =

= (M−1 ⊗ In)DF (M⊗ In)ξ − σ(M−1L′′M)⊗Hξ
(17)

In what follows we make explicit the two terms appearing
in Eq. (17). We first derive the term (M−1⊗In)·DF ·(M⊗In).
To this aim, let us write M as

M =

[
In1 0
0T Vn2

]
where Vn2 is an orthogonal matrix such that VT

n2(1n2 ·1T
n2

−
In2)Vn2 = diag{λn1+1(R), . . . , λN (R)}, and, correspond-
ingly, let us partition DF as

DF =

[
DF 11 0
0 DF 22

]
(18)

with DF 11 ∈ R(n1·n)×(n1·n) and DF 22 ∈ R(n2·n)×(n2·n).
We get

(M−1 ⊗ In) ·DF · (M⊗ In) =

=

[
In1·n 0
0T VT

n2
⊗ In

]
·
[
DF 11 0
0 DF 22

]
·
[
In1·n 0
0T Vn2 ⊗ In

]
=

=

[
DF 11 0
0T (VT

n2
⊗ In) ·DF 22 · (Vn2 ⊗ In)

]
=

=

[
DF 11 0
0T In2 ⊗Dfs

]
where we have used that:

M⊗ In =

[
In1 0
0T Vn2

]
⊗ In =

[
In1 ⊗ In 0

0T Vn2 ⊗ In

]
Hence, we obtain that

(M−1 ⊗ In) ·DF · (M⊗ In) = DF (19)

We now compute the term (M−1L′′M) appearing in Eqs.
(17). To this aim, we write the Laplacian matrix L′′ as

L′′ =

[
L′′
11 L′′

12

L′′
21 L′′

22

]
(20)

where the blocks L′′
11 and L′′

22 have size n1×n1 and n2×n2,
respectively. Furthermore, L′′

21 = L′′T
12 with size n2 × n1.

We obtain:

(M−1L′′M) =

=

[
In1 0
0T VT

n2

]
·
[
L′′
11 L′′

12

L′′T
12 L′′

22

]
·
[
In1 0
0T Vn2

]
=

=

[
L′′
11 L′′

12Vn2

VT
n2
L′′T
12 VT

n2
L′′
22Vn2

] (21)

Since L′ is chosen so that the nodes n1 + 1, . . . , N are
disconnected (condition 2) of Theorem 4.1), then L′′

22 =
diag{κ, . . . , κ}. It follows that VT

n2
L′′
22Vn2 = κVT

n2
Vn2 =

κIn2 .
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The term L′′
12 also has a particular structure. This term, in

fact, represents how the nodes n1+1, . . . , N are connected to
the rest of the network. Since, for condition 1) of Theorem 4.1,
they have the same sets of neighbors, then each row i of L′′

12

contains either all ones (if node i is connected to the nodes
n1 + 1, . . . , n2) or all zeros (if it is not connected), that is:

L′′
12 =


0 . . . 0
...

...
1 . . . 1
...

...
0 . . . 0

 (22)

Now, consider that Vn2 is formed by n2 orthonormal
eigenvectors of the matrix 1n2 · 1T

n2
− In2 , i.e., Vn2 =[

V1 V2 . . . Vn2

]
. In addition, V1 = [ 1√

n
. . . 1√

n
]T and,

thus, 1T
n2

· V1 = N√
N

, and, since 1T
n2

is orthogonal to
V2, . . . ,Vn2 , we have that 1T

n2
·V2 = 0, . . . ,1T

n2
·Vn2 = 0.

This yields:

L′′
12 ·Vn2 =



0 0 . . . 0
...
N√
N

0 . . . 0
...
0 0 . . . 0

 (23)

In conclusion, we get:

(M−1L′′M) =

=



L′′
11

0 0 . . . 0
...
N√
N

0 . . . 0
...
0 0 . . . 0

0 . . . N√
N

. . . 0

0 . . . 0 . . . 0
...
0 . . . 0 . . . 0

κ
κ

. . .
κ



(24)

Substituting Eqs. (19) and (24) into Eq. (17), we obtain:

ξ̇ =



Df1
Df2

. . .
. . .

Dfn1

Dfs
Dfs

. . .
Dfs


·ξ−σ



L′′
11

0
...
N√
N
...
0

0 . . . 0

0 . . . 0

0 . . . 0

0 . . . N√
N

. . . 0 κ

0 . . . 0 . . . 0
...
0 . . . 0 . . . 0

κ
. . .

κ


⊗H·ξ

(25)

The Laplacian matrix appearing in Eqs. (25) is divided by
the continuous lines in four submatrices of size n1×n1, n1×
n2, n2×n1, and n2×n2. The zeros appearing in the two off-
diagonal submatrices suggest another subdivision, emphasized
by dashed lines, into blocks of size (n1+1)× (n1+1), (n1+
1)×(n2−1), (n2−1)×(n1+1), and (n2−1)×(n2−1). Hence
Eqs. (25) split into a block of n1 + 1 coupled n-dimensional
linear time-varying systems and n2 − 1 decoupled, identical
blocks of n-dimensional linear time-varying systems of the
form:

ζ̇ = (Df − σκH)ζ (26)

The first block of Eqs. (25) describes the dynamics within
the synchronization manifold; variations within this manifold
do not affect the stability of the synchronous state as the man-
ifold is invariant [35] (for the equivalence between transverse
exponential stability of an invariant manifold and exponential
stability of the transverse linearized system see also [36]). The

other n2 − 1 blocks represent the modes transverse to this
manifold. The synchronous state is, therefore, exponentially
stable if Eqs. (26) are exponentially stable.

To prove the exponentially stability of Eqs. (26), consider
that, since σ > q̄/n1, we can select L′ such that |Nn1+1| =
. . . = |Nn2 | = κ is greater than q̄/σ. This yields σκ > q̄. From
condition 9, by using the Lyapunov function V = ηTCη, the
exponential stability of Eqs. (26) follows.

Remark 4.4: We note that the conditions on L′′ in Theorem
4.1 are mild. In particular, the results highlight that to syn-
chronize the nodes in Sn2 it is required that each of them has
at least κ links with the other network nodes. The theorem
states that it is not important to which nodes they are actually
connected, but only their number.

Remark 4.5: To check the condition for the stability in The-
orem 4.1, one can numerically simulate a trajectory of system
(3) subjected to the constraints of the synchronous state, i.e.,
xn1+1(t) = xn1+2(t) = . . . = xN (t), obtain s(t) = xn1+1(t)
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and numerically check LMI (9) with this trajectory. If the
trajectory is sufficiently long, then one can assume that the
behavior is representative for the whole chaotic attractor. The
condition expressed by this hypothesis essentially establishes
that the units of the dynamical network are such that they
can be fully synchronized for a large coupling coefficient,
where the value of the threshold for synchronization is derived
from the application of the LMI condition. This assumption is
also used in [37], [38]. For proper matrices H, many systems,
e.g., Chua’s circuit, Rössler system, Lorenz system, and many
others, satisfy the property that synchronization is ensured
for a coupling coefficient larger than a threshold. Note that
the existence of a threshold for synchronization can be also
established with other techniques [4], and Theorem 4.1 also
applies in these cases.

Finally, we present the extension of Theorem 4.1 to the case
of dynamical networks of nodes with heterogeneous dynamics.

Theorem 4.6: Consider the following dynamical network

ẋi = fi(xi)− σ
N∑
j=1

LijHxj + ui (27)

a set Sn2 of n2 arbitrary nodes with identical dynamics, i.e.,
fi(xi) = f(xi) for all i ∈ Sn2

, and a fixed value of the
coupling coefficient σ. If the controllers ui in Eq. (7), are
such that L′′ = L+ L′ fulfils these conditions:

1) N ′′
n1+1 = . . . = N ′′

N (⇒ kn1+1 = . . . = kN , i.e., the
nodes of Sn2 have the same degree);

2) the n2 nodes in Sn2 are not connected each others;
then a synchronous state xs =
[s1(t)

T , . . . , sn1(t)
T , s(t)T , . . . , s(t)T ]T exists.

If moreover there exist a diagonal matrix C > 0 and two
constants q̄ > 0 and τ > 0, such that the LMI

[Df(s(t))− qH]TC+ C[Df(s(t))− qH] ≤ −τ In (28)

is satisfied for all q ≥ q̄ and t > 0 (where Df(s(t)) is the
Jacobian of f on s(t)), and if σ > q̄/n1 and κ , kn1+1 =
. . . = kN is selected such that κ > q̄

σ , then the synchronous
state xs(t) is exponentially stable.

Proof: The proof is similar to that of Theorem 4.1 by
replacing Df1 = Df1(s1(t)), Df2 = Df2(s2(t)), ..., Dfn1 =
Dfn1(sn1(t)), in the definition of DF .

V. EXAMPLES

We illustrate our control technique with two examples.
Example 1. In the first example, we consider the case

where the dynamical systems at the network nodes are iden-
tical Chua’s oscillators [39]. The state of each node is then
described by a three-dimensional vector (x1, x2, x3) whose
dynamics can be written (in a dimensionless form) as:

ẋ1 = α(x2 − x1 + g(x1))
ẋ2 = x1 − x2 + x3

ẋ3 = −βx2 − γx3

(29)

where g(x1) is the piecewise linear function defined as
g(x1) = −bx1+0.5(b−a)(|x1+1|−|x1−1|) with a = −1.27

Fig. 1. Study case of a network with N = 20 nodes and L = 23 edges (blue,
continuous lines). Each of the nodes is a Chua’s oscillator and we assume
that we want to synchronize the two nodes 4 and 12 highlighted in red. The
obtained control scheme is obtained by the creation of an additional layer of
links, reported with red dashed lines.

and b = −0.68. The other parameters of the Chua’s oscillator
are chosen so that the system is chaotic, i.e., α = 10, β = 15
and γ = 0.0385.

We consider a dynamical network (6) of N = 20 Chua’s
oscillators coupled as in Fig. 1, where the original links of the
network are shown in solid lines. As for the functional form
of the coupling, we assume that the interaction between two
Chua’s oscillators is realized through the first and the second
state variables. This corresponds to adopting a coupling matrix
H of the form H = diag{1, 1, 0}. We also fix the coupling
coefficient to the value σ = 2, and we suppose that the nodes
we want to synchronize are nodes 4 and 12, i.e., n2 = 2 and
Sn2 = {4, 12}.

To analyze the temporal evolution of the network,
we evaluate the global synchronization error e(t) =√

1
N2

∑
i,j ∥ xi(t)− xj(t) ∥2, which takes into account all

the possible pairs of nodes of the network, and the syn-
chronization error between the nodes in Sn2 = {4, 12} as
e4,12(t) =∥ x4(t)− x12(t) ∥.

For σ = 2 the dynamical network is not synchronized as
the trend of e(t), reported in Fig. 2(a), clearly indicates. Cor-
respondingly, also the two nodes in Sn2

are not synchronized
as shown by e4,12(t) in Fig. 2(b).

We now apply the control technique of Theorem 4.1. The
dynamical network of Chua’s oscillators satisfies LMI (9) with
q̄ = 4.5, hence q̄

σ = 2.25. By setting κ = 3, we have σκ >
q̄, that is, the condition for the exponential stability of the
synchronous state is satisfied.

It remains to select the links in L′ such that the neighbor-
hoods of nodes 4 and 12 in L′′ are equal and have cardinality
3. In the original network, the node 4 is linked to nodes 3
and 14, i.e., N4 = {3, 14}, while node 12 is linked to node
18, i.e., N12 = {18}. We then select L′ by considering the
following links: (4, 18), (12, 14), and (12, 3). These are the
links highlighted as dashed lines in Fig. 1. This yields to the
same set of neighbors for the two nodes 4 and 12 and to the
same degree, equal to κ = 3. Accordingly the controllers for
the nodes 4 and 12 are:
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Fig. 2. Behavior of the dynamical network of Fig. 1 without control: (a)
global synchronization error e(t); (b) synchronization error e4,12(t) between
nodes 4 and 12. Without control the whole network is not synchronized.
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Fig. 3. Behavior of the dynamical network of Fig. 1 in presence of control
(30): (a) global synchronization error e(t); (b) synchronization error e4,12(t)
between nodes 4 and 12. Control enables synchronization between the two
target nodes, 4 and 12, while the rest of the network remains not synchronized.

u4 = σ
∑

j∈(N12−N4)={18}
H(xj − x4)

u12 = σ
∑

j∈(N4−N12)={3,14}
H(xj − x12)

(30)

In addition, as the links are bidirectional, complementary
control actions are set to the other end-nodes of the links, i.e.,
nodes 3, 14 , and 18. Fig. 3 shows that by applying the con-
trollers specified above the nodes 4 and 12 are synchronized,
while the rest of the network is not. Although it is not the aim
of this work to inspect the whole network behavior, we notice
that the common neighbors of the two nodes 4 and 12 to be
synchronized, i.e., nodes in N ′

4 = N ′
12 = {3, 14, 18}, display

some correlation (data not shown), but they are not completely
synchronized as, on the contrary, it occurs (in accordance to
our theoretical results) to nodes 4 and 12. In the rest of the
network we have not noticed any special behavior.

Finally, we show as a counterexample that a strategy which
only considers a controller consisting in a single link between
the two nodes 4 and 12 is not effective for synchronization.
This corresponds to a network formed by the links denoted
as continuous lines in Fig. 1 and a further link (not shown)
between nodes 4 and 12 (in this case L′ would include a single
link, i.e. (4,12), with a weight as in the rest of the network,
σ = 2). Fig. 4 indicates that we do not observe synchronization
between the two nodes. Therefore, directly connecting the two
units with a link is an efficient synchronization strategy only
if the two units are not embedded into a network.
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Fig. 4. Behavior of the dynamical network of Fig. 1 (continuous lines) when
the controller consists of a single direct link between nodes 4 and 12: (a)
global synchronization error e(t); (b) synchronization error e4,12(t) between
nodes 4 and 12. The introduction of a direct link between nodes 4 and 12 is
not able to induce synchronization in them.
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Fig. 5. Behavior of the dynamical network of Fig. 1 with heterogeneous
units in presence of control (30): (a) global synchronization error e(t); (b)
synchronization error e4,12(t) between nodes 4 and 12. Control enables
synchronization between the two target nodes, 4 and 12, while the rest of
the network remains not synchronized.

Example 2. In this example, we illustrate the case of a dy-
namical network with heterogeneous dynamics. In particular,
we study a network with the same topology as in Example 1,
but we now introduce heterogeneity in the oscillators through
the parameter α, which is now made node-dependent, i.e., αi.
In particular, we set αi = 8.4 for nodes 1, 3, 8, 10, 11, 19, and
20, and αi = 10 for all the other units. In this way, the isolated
dynamics is different for the nodes with αi = 8.4, displaying
a single-scroll chaotic attractor, and for the others, displaying
a double-scroll chaotic attractor. The other parameters and the
goal of the control are the same as in Example 1. Note that
the two nodes to synchronize have the same dynamics.

Fig. 5 shows the results when the distributed control (30) is
applied. Nodes 4 and 12 are synchronized, while the rest of
the network is not.

We note that, in both examples, the dynamical network
achieves a form of synchronization which is known as remote
[40]–[42]. In fact, the nodes in Sn2 synchronize even if they
are not directly connected.

VI. CONCLUSION

In this technical note we have studied the problem of
controlling synchronization of an arbitrary set of dynamical
units embedded in a networked system, independently from
the states of the remaining units. We have assumed that the
coupling gain is not controllable, but fixed, and we have
devised a distributed control method to solve the problem. The
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proposed control relies on the creation of appropriate network
symmetries through an additional layer of links, that ensures
the stability of the induced synchronization manifold if the
overall degree of the nodes to synchronize is made larger
than a critical value, which is inversely proportional to the
coupling coefficient. Quite interestingly, we have found that
it is not important to which nodes the units to synchronize
are connected, but only their number, a finding that paves the
way to further optimization of the control strategy. The results
presented in this work are formulated as a sufficient condition
for a system of diffusively coupled identical dynamical units,
and are obtained by using state transformations determined by
network symmetry considerations and by Lyapunov functions.
The extension to the case of a heterogeneous system of
dynamical units has been also considered, showing that the
important condition is that only the units to synchronize must
have the same dynamics.
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