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Abstract

The meshless methods combined with infinite eldnerdeal with unbounded problems
are developed in this paper. The meshless methddsweving least square algorithm, radial
basis function interpolation and finite block medhihagrange polynomial) are observed. With
mapping of physical domain into a normalised squiamain, the first order partial differential
matrices both for regular and infinite elementso¢kk) are determined. The governing
equations and boundary conditions are formulateth e partial differential matrices.
Numerical examples in the elasticity solid mechaniéth non-homogenous and unbounded
media are given to demonstrate the efficiency awdiracy of the meshless method combined
with infinite elements. It is observed that thewate numerical solutions of unbounded media
can be obtained using the infinite elements at @hresser computational effort than the
conventional meshless methods in which unboundsdiarare represented by large number of
collocation points.

Key words: meshless method, infinite element, mapping tephmi differential matrix,

functionally graded material.
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1. Introduction

In the modeling of geomechanics problems involvéog-structure interaction, the soil
medium is sometimes represented as a region adraitfinite or semi-infinite extent. When
considering such problems using finite element nigples, the traditional approach is to
achieve the effect of unboundedness by incorpayaitarge number of elements. However,
the use of such large finite element discretizatiomay result in an in ordinate amount of
computational effort. Moreover, the truncated bamgdmay lead to erroneous results. In
analytical study, several problems of solid mectsmvolving unbounded domains have been
solved in closed-form, which includes the elastimiBons for a point load applied in an infinite
body, at the boundary of a half-space and at therionr of a semi-infinite solid etc. These
solutions are called fundamental solutions in tlmungary integral equation method or
boundary element method (BEM) named in 1970s. BBN e coupled with the FEM to give
the appropriate boundary condition at the truncdiedndary (see Zienkiewicz et al. [1];
Brebbia and Walker, [2]). However, it is often difflt to find the fundamental solutions,
especially for nonlinear problems and for non-hoermys materials in advanced material
science. .

The unbounded problems can be overcome by intradutiapped infinite elements, i.e.
utilizing the infinite element to extend the FEMunbounded domain problems (see Wood [3],
Bettess and Zienkiewicz [4], Khalili et al [5], Zikiewicz et al [6], Selvadurai and Karpurapu
[7], Bettess [8]). The shape function describesféindield characteristic of the problem, which
can be obtained by using a mapping to transformgtbkal infinite region into a local finite
domain by Bettess [9], Damjanic and Owen [10], Kiewicz et al. [11], Simoni and Schrefier
[12]. The comprehensive reviews for infinite elemand its applications are given by Dong
and Selvadurai [13] and Marques [14]

The appearance of the mesh free idea dates batR7AD with the development of the
Lagrangian method based on the kernel estimatelsoshéd model astrophysics problems by
Monaghan and Gingold [15] and Lucy [16]. This methcmamed Smoothed Particle
Hydrodynamics (SPH), is a particle method basethendea of replacing the fluid by a set of
moving particles and transforming the governingtiphdifferential equations into the kernel
estimates integrals [17]. There are many meshlppsoaches in the numerical engineering
including the Diffuse Element Method (DEM), Elemé&mnte Galerkin (EFG), Finite Point
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Method, Meshless Local Petrov-Galerkin (MLPG) aminP Interpolation Method (PIM) etc.
Meshless approximations have received much intsiase Nayroles et al [1®Foposed the
diffuse element method [19,20]. Recently, Atluridahis colleagues presented a family of
Meshless methods based on the Local weak Petraari@aformulation (MLPGS) for arbitrary
partial differential equations [21,22,23,24,25]lwioving Least Square (MLS) approximation.
Local Boundary Integral Equation method (LBIE) hlasen developed by Sladek et al
[26,27,28] for the boundary value problems in amggamc non-homogeneous media. The
development of the Radial Basis Functions (RBF)aasuly meshless method has drawn
attention (see Golberg et al [29]). Hardy [30] d#oh et al [31] developed the multiquadric
interpolation method for solving linear partial fdifential equation. Recently, strong-form
meshless methods also have been made progressasstieth Meshless Intervention Point (MIP)
method, see Yang et al [32, 33, 34], and estimaifdhe qualitative convergence by Deng et al
[35,36]). Based on the point collocation concep, Einite Block Method (FBM) with mapping
technique was proposed by Wen et al [37] and kal §88,39,40] to solve the heat transfer and
elastodynamic 2D and 3D problems in the functignghaded media with excellent accuracy
and convergence both in the Cartesian coordinatgalar coordinate systems.

In this paper, the meshless method of the poilibaation type in strong form combined
with infinite element to deal with unbounded megdrablems is developed first time. For the
sake of convenience of analysis, the meshlessaatit;m method with MLS approach, RBF
interpolation and FBM are observed and testedtl¥irthe physical domain is mapped into a
normalised square domain in which the nodes afenmly/irregular distributed. Next, the first
order of partial differential matrices for eachmént (block) are determined to present the
governing equations in matrix form in terms of nodalues. Two dimensional non-
homogenous problems are formulated both in Cartesizordinate and polar coordinate
systems respectively with infinite element. To oleethe accuracy and efficiency using
meshless methods combined with infinite elemehtget numerical examples in elasticity solid
mechanics are given and the comparisons are matieawalytical solutions and numerical
solutions by finite element method (ABAQUS) esplyidor the Functionally Graded
Materials (FGM). It is clear that the meshless apph combined with infinite elements is an

effective and accurate algorithm for unbounded lgol in engineering.
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2. The approximation schemes
2.1 Moving lease-square scheme

Consider a square mapped dom&irshown in Figure 1(a) and interpolate the distrdout
of function u in the sub-domainQ centred at§=(¢,7) over a number of randomly
distributed nodeg, = (¢,,72,), i =12,...,n,. The approximation of function at the poing can
be expressed by

u©) =pE) ae), 1)
wherea(g)" ={a,(8),a,(8).....a, (&)} is a vector of coefficients amqu&)’ = {p, &), p,(&).-..,
pm(é)} is a complete monomial basis,denotes the number of terms in the basis, i.etwor
dimensional problems. For examplep(&)’ ={1£,7} when m=3 and pE)' =
{lf,/],fz,fq,qz} whenm=6. The coefficient vectoa(§) is to be determined by minimizing

L, norm with a weighted functiow (&,n) as following

n ,
A field point&
_ n
sub-domairf)g 4 7 3
v 1 1
& g 6 <
I —
I~
-nodenp
1 5 2
(a) (b)

Figure 1. Two-dimensional node distribution: (eg9tdbution of node and local support domain

in mapped domain; (b) mapped domain with 8 seeds.
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3@ =3 wE )P (1)a@) -G, @

where n, denotes the position vector of noden the support domainy & @, the weight

function associated with the nodevith w (§,m) > O for all n in the support domain angl is
the fictitious nodal values, but in general not #aues of the unknown trial function at the

nodes,t,(n) . The stationary condition af in (2) with respect t@, 0J/0a =0 leads to the

following equations in matrix form

A(g)ag) -B(E)u =0, 3)
where matricesA (&) andB(&) are defined
A(E)=p'wp, BE) =p'w. (4)

The MLS approximation is well defined only when thetrix A in (3) is non-singular.
Substituting (3) into (1) leads to the followindation

TOELACTE JICTE ©
where
Q) =p" A DBE) or 4=, pOIADBE,.

Usually ¢ € ) is call the shape function of the MLS approximatarresponding to the nodal
point n, . The support area of the nodal poiptis taken to be a circle of radiwg centred at
n, (same size of local sub-domain centred at fielohtpg). The selection of the radiud is

important in the MLS approximation because it daiaes the range of the interaction between
the degrees of freedom defined at the considereésiorhe size of the support domai) (

should be sufficiently large to cover the nodeshi@a domain of definition hence ensuring the

regularity of the matribA. In the numerical process, the radaiof the support domain will be

determined by the minimum numberrgfin the sub-domain. A fourth order spline type weig

function is defined as

r 2 r 3 r 4
w45 ) {5 osrea ®

0, d.<r,
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wherer =[g —n,|. As the matrices in the shape functidi*(¢) andB & if {5) are functions of
field point and nodal position in the support domathe determination of high order
derivatives of shape function with respect to fle&dfpoint§ will become more complicated in

the numerical process. The partial derivativeshaipg function can be obtained from Eq. (3)

by straight forward differentiation, using MLS, as

du OCDA 6¢gA ou OCDA > 09 -
S=oCis —a=) %4, ()
0¢ 65 Z 65 an 6/7 ;0/7
in which
ng A‘l ]
2g %\ on aB)+p 2 Bear%®
06 | 0¢ 0¢ 0¢ ).
n oA |
a_W:z %(A"IB)+ o B+A‘1a—B . (8)
on S| on o on )|
As A™'A =1, the derivative of the inverse of matAxwith respect tc; is given by
aA‘1 0A™
-A™ a—AA‘l =-A" a—AA‘l 9)
o0& o0& on on

2.2 Compact support radial basis function scheme

Similar to MLS, the distribution of function in the sub-domairQy over a number of

randomly distributed notefy,}, i =12,...,n, can be interpolated, at the poipby
UQ) =Y R+ P, @b =RE-ma+pEb, (10

where R(g—q):{Ri(g—ql),Rz(g—nz),...ﬂs(g—qns)} andp(§) are a set of radial basis

functions centred around the poinand a set d-variate polynomials of degnedefined in (1),
a andb are the unknown coefficients to be determined. rHa#al basis function is selected as

multiquadrics [30] as

R(E-n)=c?+[g-n, . (11)

along with the constraints

> pn)a; =0, 1sksm. (12)
j=1
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Then, a set of linear algebraic equations to determoefficientsa andb can be written, in the

matrix form, as

Ra+pb=u andpla=0, (13)
in which
c R(m-n,) ... R(m—m,)]
R(m,—n,) c . R.(m,—m,)
R - : : . 1)
R, -m) R, —m,) - c |
and
() p() - Pa(m) ]
p(m)  p(ny) - Pa(ny)
S @

_pl(nns) pz('lns) pm(nns)

Obviously matrixR,is symmetric and well defined. Solving equatior) (dives

a= R;l[l —po(pgRglpo)'lpgRgl] u=Gu, b=(pIR;p,) PIRu = Hu, (16)
wherel denotes the diagonal unit matrix. Substitutingdbefficientsa andb in (16) into (10),

we can obtain the shape function in (10) same aS kiethod as

u© =Y a@u.
. . (17)
R =2 REG, + X P OH,.
iE =
It is worth noting that the shape function dependgjuely on the distribution of scattered
nodes within the support domain and has the KrogreDlelta property. As the inverse matrix
of coefficientR;" is function of distributed nodg only in the support domain, it is much

simpler to evaluate the partial derivatives of ghamction by
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0 = 0 m, dp,
0?( Z, R (é) Gy IZ—F;JQ(tg) Hic
i=1 =1 (18)
29, _ %ama L@@
an zl O ; on

. 2.3 Finite block method (Lagrange polynomials)

Consider a set of nodes uniformly distributed ia tiormalised domain in Figure 2 with
numbering system of node collocationggf k=(j -D >N, +i,i=12..,N.and j =12,..,N,
where N, are numbers of nodes along two axes. By two dimankagrange interpolation

polynomials, the functiom(§) can be approximated by

uE =YY FE &Y, (19)
where
_ e (E-4) _ 5 (1-n,)
F(&E) =120, Gir.n,) =[] 2ol 20
(£.) e (2.17;) g;,.(”i‘”n) (20)
@)

[}

S---- O ---O----f-----

[

CJ,;D

@____O___o __________
OO O ®

Figure 2. Uniformly distributed nodes in mappednéin and numbering system for FBM.

T S o Sy Y«




Infinite element in meshless approaches Huang, Yang, Zheng, Deng, Wen

Therefore, the shape functions can be constructed a

m¢|

Then the number of nodes in totalNé = N, x N, . Thereafter, the first order partial differential

of shape function can be determined easily witheets tog

24 - lapn) ——F(ff)aG(”””) 22)
where
F S -6 16 - (23)
0§ izl L, e
and
lNZZJJJNj,(Z n)/ I;L,(”' =17,) . (24)

For Lagrange interpolation, the shape function2@®) (depends uniquely on the distribution of
scattered nodes within the support domain and l&tonecker Delta property same as RBF

approach.

2.4 Partial differential matrix
For different approaches, the first order padiéfierentials at each node introduced above

can be evaluated, in the form of vector, as
u,=U, =D, D, ={@}, kl=12..M), (25a)

in which a = ¢&,7,D,, is the first order differential matrix determiney éach shape functions,

W @) @ 5@ M) (M) T
u_ = aU({l’”l)’au(fz’UZ) OU(fM ,/]M ) ’ u:{u‘l),u‘z),...,u(M)}T. (25b)
’ oa oa oa
For the moving least square method, vectawhould be changed to fictitious displacemént
Furthermore, thé.-th order partial differentials in two dimensionaioblems with respect to
both coordinate§ ands; can be obtained approximately by

am+nu
a&man"’

uG (£,m) = m+n=L. (26)
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Therefore, the vectors of the higher order paditferentials can be constructed, in terms of

the first order partial differential matricés, andD, , as

ue™ = D7Dyu. (27)

3. Coordinate transform and mapping differential matrix

3.1. Two dimensional problem
For two dimensional problems, any quadratic blodtk\8 seeds shown in Figure 4(a) can

be mapped into a square domain (normalised) usifaing shape functions

:%(1+Ef>(1+f7m(<?f+m—1) for i=1234,

=%(1—52)(1+/7i/7) for =57, (28)

N, :%(1—/72)(1+55) for i = 68,

where (&,7,) i =12,...8 are the seed coordinates shown in Figure 1(b). dterdinate

transform (mapping) can be written as

8 8
X= 2 N (EMXes ¥ =D N (€)Y - (29)
k=1 k=1
For partial differentials of function(x, y) in Cartesian coordinate system, one has
ou_1 ou) du_1
OX J (1311 1312 j’ ay J (1321 1322 j (30)
where
ox  0x
_|og on| by p Oy o 0x o _ox
ay ﬂ’ 1511_6,71,512_ af’ﬁZl_ 0/]“522_05- (31)
o a7
Thus, the first partial differential matrices camwritten, in physical domain, as
U, =AU, +A,U, =(A,.D, +A,,D, Ju=D,u, (32)
U, =AU, +A,U, =(A,D, +A,,D, Ju=Du, (33)
in which

-10 -



Infinite element in meshless approaches Huang, Yang, Zheng, Deng, Wen

BOI3® 0o .. 0
@ )
A O AP0 a4
0 0 .. BM/I™

B13% is calculated from (31) at collocation poift=(&,.77, apd differential matrices in
the normalized domaib ,and D, are given in (24). It means that the first partidterentials

in the practical Cartesian coordinate can be obthim terms of the first order partial

differential matrix in the mapped domain, whéfes 7| <1, and nodal values.

3.2 Three dimensional problem
For three dimension problem, quadratic shape fancwith 20 seeds is used. Shape
functions can be written as follows [40]

N, =%(1+ EEA+TMA+CO)(EE+AN+Cc—2) for i = 12345678,

N :%(1—52)(1+/7i/7)(1+¢c) for i = 9111719,
N :%(1—/72)(1+zi<)(1+35) for i= 10121820, (35)

N, =%(1— ¢+ EE)A+mn) for i= 13141516.
Same as two dimension and the coordinate trangfioapping) can be written as

X=D> N (E7.)%, Y= N (EA.6) Y, 2= D N (£:17,9)%, - (36)
k=1 k=1 k=1

Then the partial differentials of shape functiors a

ou_1(du ou

ou
— == —=B.+—B, +—
OX J af 1511 6/7 ﬂlZ a(ﬂlB)’

ou 1(ou ou ou
_— = — + — + — , 37
ay J 65 1321 6/7 1322 ac ﬁ23] ( )

ou_1(au ou

ou
— == =B, +— L., +—
OZ J af 1531 6/7 1532 ac 1533j’

where

-11 -



Infinite element in meshless approaches Huang, Yang, Zheng, Deng, Wen

o0& 0n o0¢
o dn 0¢
0z 0z 0z
o0& 0n o0¢
and coefficients
B, = _0y oz ayazl[), _oOyoz ayazﬁ 0y 0z 0y 0z
“oanac acon'? afac acaE’T afan anoé’
_0x az 0x 0z 0X 0z _0x 0z 0x 0z 0X 0z
= -— 39
Par 6/76( acan oz = & dc dcaf’ e = 0fdn 9An of (39)
B = _ ox oy axayﬁ _ox oy axayﬂ _0xdy oxoay
¥ 0noc ocon’T* 0foc 0cog? ofon 0nof

Therefore, the first order nodal partial differahtmatrices in Cartesian coordinate system can

be written, in matrix form, as

U, =AU, +A,U, +A U = (A,D, +A,D, +A,D u=Du,

U, =AU, +AU, +A,U. = (A,D, +A,,D, +A,D Ju=Du, (40)

U, =A,U) +A,U, +A U = (A,D, +A,,D, +A D Ju=Du,
where A, is defined in (34), matridD, , D, and D _are first order of partial differential matrices
defined in (24). Again, the first partial differéads can be determined in terms of the first order
differential matrix in mapped domaitg|<L|7 <1|¢|<1, with nodal values in the equation

above. In addition, the higher order partial défetials with respect to Cartesian coordinates
(xyz) can be written as

am+n+|

u

U YA =G er

(41)

and the nodal values of the above partial diffeatiare obtained in the matrix form by

Uiy’ =DyD)D}u. (42)

-12 -
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4. Two dimensional infinite elements

This element type was introduced by Zienkiewicz §bjd will be used in the meshless
approach. Mapped infinite elements use a simplepmgpechnique akin to the isoparameteric
formulation [14] but employing two set of elemenal functions: (1) Geometry description is
performed by means of specially devised mappingtfan; (2) Locations of collocation point
are determined in real physical domain; (3) Padifierential matrices are obtained in the real
domain. For two-dimensional problems, two simpleBhite elements are utilised in this paper:

(1) Four-seeds mapping

In the normalised domain, the edge of right hade & =1) is mapped to infinite place as

shown in Figure 3. The mapping functions are
Noo€Aom)  @rOA-p) @A+ Q) 43)

oot 20-8 7 20-8 Y @-9)

and the mapped geometry

n
4 T3 3
y
A
5 4
2
1

O =X
1 2

(@) (b)

Figure 3. Four nodes mapping: (a) normalized dom{ainphysical domain.

4 4
x= 2 N EX%, y=2 N (&MY, - (44)
i=1 i=1
Also the locations for each collocation point canspecified as

X= Z N (o7 )% Vi = Z N; (S, 7)Y; - (45)

-13 -
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Then their partial differentials respectdoand s are given

ON, _ (-n7) ON,_ (I-n) ON, _ (@+n) OoN, __ (1+n)
0 (-8 0 (-8 0F @-&7 9F  @-é)
and
ON, _ & 0N, __(1+&) ON,_ (1+&) ON,__ ¢
o (-&' on  20-& an 20-&) an  (@1-&)

It is clear that the first derivative matrices fat collocation points in (32) and (33) are still

(46)

(47)

valid for the infinite element except the nodes at1l.

(2) Five-seeds mapping
Same as four seed mapping, the edge of right hded &=1) is mapped to infinite place

as shown in Figure 4. The mapping functions arergas

n
. s 3
y
A
é 4
5 -
5
2
1
O - X
1 2
€Y (b)

Figure 4. Five nodes mapping: (a) normalized dom@) physical domain.

__@réen)-n) | _@+&)A-n) | _ @+EA+n)

' @ 2= 7 2-8) 48)
_ (L =8+ 2077
* w7 -9
Same as four node mapping, the coordinate transtaymis preformed as
X=2 N Emx%, y =2 N(EmY, (49)

-14 -
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and the locations for each collocation point casfecified as
5 5
szzNi(Czk’”k))ﬁ’ Yi =ZNi(£k!I7k)yi : (50)
i=1 i=1

Then their partial differentials respectfoands, are given as

oN, __(@A-7)2+n) ON, (@A-n7) ON; _ d+7)

& @-&> ' 0& (@-&? o0& -8 (51)
ON, _ _@+m)(2-n) oNg _2(1-1%)
0F  @-9* T (-8
and
oN, _ (27+4) ON, __ (@+5) ON; _ (1+¢)
on  @-¢&€ ' on 20-¢)" on  20-¢&)’ (52)

N, _(27-6) N, ___ 4
on  @-¢& "an  (@1-&)

The physical values including displacements aresses are zero at infinite. Two and three

dimensional mapping and shape functions for diffetgpes of the infinite element used in the
finite element method are catalogued in [14] by dle&s. Zienkiewicz [6] presented an
extensive survey of procedures used for finite el@unbounded domain analysis, grouping

them in accordance with the nature of the algorithm

5. Meshless method for unbounded media

5.1. Cartesian coor dinate system,

Assuming that the material properties are dependerthe spatial coordinates in a non-
homogeneous material, the relationship betweerssstaad strain isotropic materials, in the

plane stress state and Cartesian coordinate sygiees,

ou ou ou ou ou, Ou
g = X 4 —y,U: — X 4+ _y,z‘ = X+_y_ 53
X Q1 ox Qz ay y Qz ox Ql ay xy Qs( ay aXJ ( )
For plane stress elasticity, material mechanicaffments are, for isotropic on-homogenous,
given as
__EX _VIIE(X) A _
=, Q,=———F—, Q, =G(x), 54
Ql 1_V2(X) Qz 1_V2(X) QS ( ) ( )

-15 -
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where E y are Young's modulus and Poisson's raBojs shear modulus. The equilibrium
equations give
or

a&+bxzo’_xy+%+b =0, (55)
oy ox oy

00,
X 4
0Xx

where b, and b, are body forces. Applying the differential matriceger (55) results, with

considering (32)(33)(53)(54) in matrix form, as
(0,Q.D,+D,Q,D, Ju, +(D,Q,D, +D,Q.D, u, +b, =0,
(0,Q,D, +D,Q,D, Ju, +(D,Q,D, +D,Q,D, Ju, +b, =0,

whereuﬂ andb, (B=x,y)are vectors of nodal displacement and body forctéove, and

(56)

Q, =diag[Q™] is diagonal matrices, in whif* (I = 123dicates the elasticity coefficient
at nodek . The boundary conditions give
U, (X) = uj(x), x0T,

(57)
ty(x) =t5(x), x0T,

Whereu2 andtf,, are specified displacements and tractions on thendary. Obviously there

are 2M linear algebraic equations from (56) and (58), dnerefore, all nodal values of
displacement should be determined. Unlike the ticathl meshless method, the physical
domain is divided into few blocks by using the tinblock method. In this case, the continuous

condition on the smooth interface except two ejalat§) between blocks | and Il gives

Uy (X) =g (X) = 0, ty(x) +ty(x) = 0. xOr,, (58)
However, at corner joint, both the displacementtiooiity conditions and point equilibrium
equations should be considered as

up(x) = ug (X) =...= ux (), 59)
X

> (ai‘*)[sin 6 -sing ] - r{P[cosa” - cos@l‘q’]) =0,

q;I (60)
> (ri;*)[sin 6 -sing®] - o{”[cosE® - COSHl(q)]) =0,

o=l
where 8% andd® are starting and ending angles at joint for blockt the joint shown in

Figure 5.

-16 -
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Figure 5. Joint with blocks: starting and endamgles for each block.

5.2. Polar coordinate system

In many cases, the polar coordinate system is noocivenient with circular boundary.
Consider the 2D elasticity of the domdh with boundaryl” in functionally graded media in
polar coordinate system. It is assumed that theemadd are directionally dependent and all
material coefficients could be dependent on theiapaoordinates in a non-homogeneous

material. The equilibrium equations for two dimemsil plane-stress are

0, = Q€ +Quy, 0, =QE +Q&,, T, =Qs)4, (61)
in which all material coefficients vary with coonditesr and &, and
gr:ai’ 6:&%+u_f, rg:%+iai_ﬁ (62)
or rog r or raoé r

are normal and shear strains respectively. Foicgpabblem in the polar coordinate, one has
the equilibrium equations as the following
do, 107, 0, -0, _
or r 06 r
07, 100, 21, _
o r a6 r

For isotropic homogeneous functionally graded nmateand plane-stress problems, the

0,
(63)

0.

coefficients

E(r,6)

_v(r,6)E(r,6)
1-v2(r,6) -

Qr.6) = 1-v?(r,6)

, Q,(r,0) , Q(r,0) =G(r,0) . (64)
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Applying the mapping technique and differential neats, stresses can be obtained in matrix
form in terms of the nodal values

S, =Q,D,u, +Q,R(Du, +u,),

S, =Q,D,u, +QR(D,u, +u,), (65)

S, = Q3(Dru6 +RD,U, - Iiug)

whereD, andD, are first order partial differential matrices dbtad in the same way in

Cartesian coordinate systerlﬁ,:diag[l/ r, is]diagonal matrices. Substituting (61) into the
equilibrium equations (63) gives the system equates
D,S, +RD,S,, +R(S, -S,)=0,
r~r ) o~ro E r 9) (66)
D,S,,+RD,S, +2RS,, =0.

Thereafter, substituting (65) into (66) results flystem equations in matrix form in terms of
nodal displacements. For elasticity, the boundanddions must be considered in (58), where

B =r and @ respectivelyt, andt, are tractions along and & directions respectively.

6. Numerical examples

Example 6.1. Infinite plate containing a circular hole under tensiong, .

In this example, a 2D isotropic homogeneous irdirptate containing a circular hole as
shown in Figure 6 is observed by meshless methad.tb the symmetry of the problem, only
a quarter of plate is modeled. In order to compghesaccuracy with analytical solutions for
each meshless strategy, the isotropic homogenodaimas considered. The node distribution
for M(=7x7) nodes are presented in both mapped domain arehlrdomain via mapping/
shape function with infinite element shown in Figui(a)(b). The analytical solution of stresses

for a circular hole under tensile stress at infitace is given

2 2 2
o =%1-2 14 %copg1-2 |1-32 |
2 r 2 r r

. _0o,(, a*) a, a’
O,=—>|1+— |—-—>c0s26| 1+ 3—; |, 67
2

2
r,= —%sinze(l—?—zj(H 3%}
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Because the infinite element cannot be used to hmumezero stress field at infinite in this
case, a uniaxial tensile field (particular solujichadded with the principle of superposition in

elasticity, i.e.

g,

r

:%(1+ cos26)+a., o, :%(1—00320)+J;,, T.,= —%sin26?+ I, (68)

whereo,,o0, and r,, are general solutions of stress with zero displer#/stress conditions at

infinite. To satisfy the boundary condition of zdractions on the surface of circular hole, the

boundary conditions for general solution are désctj whenr =a, as

o° = —%(1+ cos26), 1°, :%sinZH whenr =a. (69)
~— Mk —
B ek — 0‘0
Ty 4T

Figure 6. Infinite domain with a circular holebgected to tensile load, .

n 0
A
4 3 4 3
? /2 o o
¢
P (00]
1 2 r
o e o o -
1 2 a 2a
(a) (b)

Figure 7. Polar coordinate system: (a) mapped dunfh) coordinatgrod) with distributed

nodes of infinite element.
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To show the accuracy for different meshless methads consider a regularly distributed

collocation points in the mapped domdN, =N, . For both MLS and RBF approaches, the
local supported domain is selected as a circle wathus d, centered at field poirg, which is

determined such that the minimum number of nodésd@rsub-domaim, 210. In addition, the

number of terms in the complete monomial basiss chosen to 6 for both MLS and RBF
methods. The free parametgrin RBF, is chosen as unit in the mapped doméaiha$ been a
big issue how to select the parameter c for lomgtiThe optimal selection has been addressed
by Yao et al [41]. However, there is no any freeapaeter selection using the finite block
method. Due to the simplicity of the geometry, ofdyr seeds infinite element is utilised. To

investigate the accuracy for different approactiesaverage relative errors is defined as

1 M * * *
s=Wzﬂar(rkﬂk)—ag(rkﬂk)|+|ag(rk,9k)—ag(rk,«9k)\+rm(rkﬂk)—rm(rk,ek)|]. (70)
k=1

The numerical results of the average error ovecalbcation points are shown in Table 1 for
different meshless methods vs node density. Byrolggethe results in Table 1, it is clear that
the degrees of accuracy for MLS and RBF approaateesery close for each node density. It is
also clear that the solution by FBM is much acaithan that either by MLS or RBF method

when the node numbeN, is large than 7. For the sake of analysis conveeiein the

following examples, only the finite block methodadbserved combined with infinite element

for unbounded media. However, the solutions for F&M be divergence whe, is large

than 20 due to instability of Lagrange series péation with uniform distribution of nodes.

Table 1 Average errors for different meshless methods

- MLS RBF FBM
5 2.8048e-02 6.3232e-02 3.4021e-02
7 1.2334e-021 2.5512e-02 1.7766e-03
9 5.7930e-03 1.0258e-02 4.6347e-05
11 3.2991e-03 4.5900e-03 7.3596e-07

3
3
4

13 2.1764e-03 2.2970e-( 7.7134e-09
15 1.5147e-03 1.2679e-0 1.2151e-08
17 9.7775e-04 7.5231e-C 7.7261e-07
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The effect caused by the truncation of unboundedhain is observed using RBF
interpolation with same free parameter selectidre fladius of outer boundaty (truncation of

boundary) is selected frona4o 10 and number of node in the domdi) (=N, ) is chosen as

11, 19 and 27 respectively. In this case, theiligion of collocation point is also uniform in
the mapped domain. Table 2 shows the average etedireed in (70) against the ratio bf a
and the computation effort running on the Lenovo-R@h Intel(R) Processor 5Y70
CPU@1.10GHz. It is clear that the accuracy is impdoslightly when the number of node and
the radius of domain increase. However, the CPW timsecond increases significantly for
large number of node. The numerical solutions uBIBg with infinite element are listed in the
table for comparison. It can be seen that for eaamber of node selection, the degree of
accuracy with infinite element is much higher thlaat by traditional meshless method with the
same level of computation effort. Similar resultsl a&onclusions of truncation error and CPU
time can be observed using both MLS approach ari. HBerefore, we can conclude that the
infinite element plays a significant role to impeothe computational accuracy and efficiency

for unbounded medium.

Table 2. Average errors and CPU time for diffetemmcations of unbounded domain.

N:=11 N:=19 N: = 27
£ CPU(s) & CPU(s) & CPU(s)
4.0 1.0648e-01 6.0000e-01 7.8060e-02 3.0333er00 833202 | 2.5933e+01
6.0 7.6171e-02 8.1667e-01 4.3334e-02 3.2500e-00 098502 | 2.8417e+01
8.0 6.9144e-02 1.0000e-01 3.5701e-02 3.1333er00 4126502 | 3.0850e+01
10.0 6.6478e-02 7.8333e-01 3.3752e-02 3.8667e+002342e-02 | 2.9983e+01
Infinite | 4.5900e-03 8.1667e-01 4.7377e-04 3.5500e100 1.28650¢ 3.0617e+01

b/a

Example 6.2. Infinite strip containing a circular hole under tensile load gy, .

Firstly consider an isotropic homogeneous infistep containing a circular hole under a
uniaxial loadg,. Again, only a quarter of plate is modeled assjn@metry with two 8-seeds
blocks and one 5-seeds finite element shown inrEigu To catch up the stress concentration

accurately, the coordinates of node in mapped dormeaelected to be Chebyshev's roots, as

& :cos$, k=12,...(N; +1), 7 :cos%, | =12,...(N, +1) (71)

3 7
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and the distribution of node in real domain is shaw Figure 9 in the case ™, =N, =14.

The analytical solution of maximum stress at pdinis given aso, = Ko,w/(w-a )42],

whereK defined as the stress concentration factor isngbye

K = 300- 3.13(% 3.66(Ej2 - 15{3j3. (72)
w W W

Numerical solutions of concentration factérobtained by using FBM are presented in Figure
10 versus the ratio of radius of the circular hokend the half width of the strip. Analytical

solutions are presented in the same figure for @rispn and excellent accuracy is observed.

|—— W ———»

-O—-- —

infinite element

5 8o

Figurer 8. A quarter of infinite strip containingaular hole with two blocks and one infinite

element.

Figure 9. Nodal distribution in the physical doméaiwo blocks and one infinite element.
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Secondly, consider an infinite strip containing iecidar hole with functionally graded
material. In this example, a non-homogenous funelly graded material is considered and the

elastic modulus has an exponential variatiog-axis as = E, f (y), where f (y) = e ais

arbitrary constant ané, is elastic modulus on the bottom. In engineerihgepresents an

infinite strip bonded with two strips of FGM. TheiBson ratiov = 0.3 and shear modulus

G(y) =E(y)/2(l+v). Plane stress is assumed. The particular soludéon be obtained by
considering a constant uniaxial straifi in a strip without hole. By using Saint-Venant's

Principle, the stresses in domain are

30
28 1 —— Analytical [36]
o Meshless (FBM)
26
N4

24
22
20 T T T T T T T T T T T T T T T 1

nn 01 nz ns n4 ns ne nT nea

alw
Figure 10. Stress concentration faétdor a strip with circular hole.
o, =[Ee, 0,=0,1,=0, (73)

where coefficient3 can be determined by considering equivalency as

J' o,dx = g,w, (74)
0
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which gives :(ng—i;Eo . Therefore, one has general solution of stresses
e —
o, =awo,e” (€™ -1)+0,, 0,=0,, T, =T,,. (75)

In the Cartesian coordinate system, the tractiambary conditions on the hole hold

t? =-aho,e™ "’ cosg/(e™ - 1), t; = 0. (76)
where § =atar(y/x) . The stress distributions, and o, along y-axis whenx=0 in and

a/w=05 are shown in Figure 11 and 12 respectively fofeddnt coefficienta . The
numerical solutions given by FEM (ABAQUS) [43] aetso presented in the figures to

demonstrate the agreement.

ox(0.Y)! o0

Figure 11. Distribution of normal stress(0, y) .
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0.6

0.5 4 Ty

ay(0.y)/ oo

Figure 12. Distribution of normal stress  Y0Q, )

6.3. Cracked infinite strip under tensiong, .

For a cracked strip, four blocks are needed toahodck problem as shown in Figure 13.
For non-homogeneous linear elastic solids, Eis¢déhshowed that the asymptotic crack-tip
stress and displacement fields have the same farth@se in homogeneous linear elastic
materials. Therefore, for isotropic FGM plane srease, the mixed mode stress intensity
factors are obtained from

ety _ sy

= , = 77
"4 N2r " 4B V2 (r7)
where Au, andAu, are relative opening and shearing crack displacené, is Young's

modulus at crack tip andis the distance measured from crack tip. FirSibyisider an infinite

strip of widthw with a central crack of lengthaZsubjected to a uniform tensile loadq at

infinite.as shown in Figure 13. Because of the wlagty of the stresses at the crack tip, the
nodal distribution in the normalised domain is etdd to be Chebyshev's roots in (71) with

nodal densityN, =N, =21 for each block and infinite element. The convetgenmerical
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solutions can be obtained whdp: N, 215. The numerical results of the normalised stress

intensity factorsK, /g,~/7a versus the ratio of/w are plotted in Figure 14, where the

distancer /a=0.09549 (location of the fourth node from the crack tiph the case of

a/w=0.1 or 0.9, the relative error is about 4% du¢htodifference of the size effect between
block | and II.

A
y
r T v
A infinite element
w T _____ o,
¢ ——
a |2 | 1l
t° .
8 68 6 6 &

Figure 13. Central cracked infinite strip subgecto a tensile load.

3.0

2.5 1 —— Handbook [45]

o Meshless (FBM)

K,/oo\ma

05 -+

00 T T T T T T T T T T

T T T T T
0 01 02 03 04 05 06 07 08 09
a/w

Figure 14. Normalized stress intensity fastnsus the ratio o&/w.
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Next, non-homogenous material with an edge craokvehin Figure 15 is considered and the

elastic modulus has an exponential variation algrgxis as E(y)=E,f ¢ ), where

f(y) =€™" anda is dimensionless constant and definedaasIn(E,/E, , E) and E, are
Young's moduli on the bottom and top layers of #igp respectively. Shear modulus
G(y)=E(y)/21+v) and Poisson ratio = 0.3. In order to obtain the particular solution for

an infinite long strip without crack subjected tther uniform tensile load® or bending

momentM , the normal strain can be written, from plane agstion, as

E = E T B, (78)
where £, andg, are two constants. The solution of stress is given
O-X = ('EO + ¢Oy) Eoeﬂ'y/W, ay = Z-xy = O (79)

By using Saint-Venant's Principle, the equivaleattion boundary conditions become

o, ydy=-M +7, (80)

j.vady:P,f[V ; Pw
0 0

where P=og,w and M is bending moment at the infinite. Substitutin@®)(into (80) and

solving linear algebraic equations yields

. _Pl,=(-M +Pw/2)|,

0

_ PIL-(-M +Pw/2)I,
) ¢o N

2 2
IOIZ Il IOIZ Il

: (81)

wherel, = _[ ye™"dy and
0

I, =Y (e -1, I, =ﬁ2[1+ & (a-1), 1, =E3[—2+e”(a2 -2 +2)]. (82)
a a a
To demonstrate the accuracy of meshless methodinfittite element, a cracked strip with the
ratioa/w= 05 is observed. For the case under a pure bendingemprthe applied stress

0, =6M /w? from plate bending theory. The normalised stressnsity factorsk, /JO\/E

under tensile and bending loads are presented lne T& versus different ratio of material

propertiesg, / E,. Agreement of numerical solution by meshless net{lBM) with either

analytical solutions by Erdogan and Wu [46] or FBEW Kim and Paulino [47] for long strip
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(L =4w) are demonstrated in Table 3. It is reasonabletiigastress intensity factor for infinite

cracked strip is smaller than that for finite strip

Figurel5. Edge cracked strip under tensile loatllzending moment in FGM.

Table 3. Normalized SIK, /JO\/E for edge cracked strip.

E,/E, FBM Erdogan [46] Kim [47]
0.1 3.4220 3.570 3.496
e 0.2 3.2159 3.326 3.292
g 1 2.7159 NA 2.822
= 5 2.2330 2.365 2.366
10 2.0310 2.223 2.175
0.1 2.1196 2.215 2.145
2 0.2 1.9015 1.953 1.925
2 1 1.4567 NA 1.496
@ 5 1.1047 1.151 1.158
10 0.9750 1.035 1.035

7. Conclusion

The Meshless approaches, including moving lastirggunethod, radial bases function
method and finite block method, combined with irtBrelement was presented in this paper for
general linear elasticity of two dimensional probte with unbounded media. Mapping a
infinite domain into an normalised domain with mfe element, the system equations in a

strong form are formulated with the first ordertgdmdifferential matrices from the equilibrium
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equations and boundary conditions. Comparisons dmmiwthese meshless methods with
different interpolations have been made and shawttie finite block method with Lagrange
series in the mapping domain is of highest accurApart from all advantages of meshless
method, the finite block method is of much highecwaacy and convergence degrees. For
complicated large scale dimension problems, only fdocks are needed in the domain.
Therefore it is much easier to handle few blockthwertain domain collocation points. This
method can be extended easily to any types ofgpalifferential equations, including nonlinear
problem etc with unbounded media. The presentedhadetan also be combined with other

methods such as finite element method and bourelanyent method directly.
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