
Accepted Manuscript

Infinite element in meshless approaches

P.H. Wen, J.J. Yang, T. Huang, J.L. Zheng, Y.J. Deng

PII: S0997-7538(17)30745-3

DOI: 10.1016/j.euromechsol.2018.05.010

Reference: EJMSOL 3610

To appear in: European Journal of Mechanics / A Solids

Received Date: 2 October 2017

Revised Date: 9 May 2018

Accepted Date: 11 May 2018

Please cite this article as: Wen, P.H., Yang, J.J., Huang, T., Zheng, J.L., Deng, Y.J., Infinite
element in meshless approaches, European Journal of Mechanics / A Solids (2018), doi: 10.1016/
j.euromechsol.2018.05.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159079615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.euromechsol.2018.05.010


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Infinite element in meshless approaches                                                                                                                 Huang, Yang, Zheng, Deng, Wen 

 - 1 - 

Infinite element in meshless approaches 
P.H. Wen1*, J.J. Yang2, T. Huang2 , J.L. Zheng2 and Y.J. Deng3 

1School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK 
2School of Communication and Transportation Engineering, Changsha University of Science and Technology, 

Changsha, 410004, China 
3School of Mathematics and Statistics, Central South University, Changsha, Hunan, China 

 

 

 

Abstract 

 The meshless methods combined with infinite element to deal with unbounded problems 

are developed in this paper. The meshless methods with moving least square algorithm, radial 

basis function interpolation and finite block method (Lagrange polynomial) are observed. With 

mapping of physical domain into a normalised square domain, the first order partial differential 

matrices both for regular and infinite elements (blocks) are determined. The governing 

equations and boundary conditions are formulated with the partial differential matrices. 

Numerical examples in the elasticity solid mechanics with non-homogenous and unbounded 

media are given to demonstrate the efficiency and accuracy of the meshless method combined 

with infinite elements.  It is observed that the accurate numerical solutions of unbounded media 

can be obtained using the infinite elements at a much lesser computational effort than the 

conventional meshless  methods in which unbounded media are represented by large number of 

collocation points. 

  

Key words: meshless method, infinite element, mapping technique, differential matrix,  

functionally graded material. 
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1. Introduction 

In  the modeling of geomechanics problems involving soil-structure interaction, the  soil 

medium is sometimes represented as a region of either infinite or semi-infinite extent. When 

considering such problems using finite element techniques, the traditional approach is to 

achieve the effect of unboundedness by incorporating a large number of elements. However, 

the use of such large finite element discretizations may result in an in ordinate amount of 

computational effort. Moreover, the truncated boundary may lead to erroneous results. In 

analytical study, several problems of solid mechanics involving unbounded domains have been 

solved in closed-form, which includes the elastic solutions for a point load applied in an infinite 

body, at the boundary of a half-space and at the interior of a semi-infinite solid etc. These 

solutions are called fundamental solutions in the boundary integral equation method or  

boundary element method (BEM) named in 1970s. BEM can be coupled with the FEM to give 

the appropriate boundary condition at the truncated boundary (see Zienkiewicz et al. [1]; 

Brebbia and Walker, [2]). However, it is often difficult to find the fundamental solutions, 

especially for nonlinear problems and for non-homogenous materials in advanced material 

science.  . 

The unbounded problems can be overcome by introducing mapped infinite elements, i.e. 

utilizing the infinite element to extend the FEM to unbounded domain problems (see Wood [3], 

Bettess and Zienkiewicz [4], Khalili et al [5], Zienkiewicz et al [6], Selvadurai and Karpurapu 

[7], Bettess [8]). The shape function describes the far-field characteristic of the problem, which 

can be obtained by using a mapping to transform the global infinite region into a local finite 

domain by Bettess [9], Damjanic and Owen [10], Zienkiewicz et al. [11], Simoni and Schrefier 

[12]. The comprehensive reviews for infinite element and its applications are given by Dong 

and Selvadurai [13] and Marques [14] 

 The appearance of the mesh free idea dates back to 1977 with the development of the 

Lagrangian method based on the kernel estimates method to model astrophysics problems by 

Monaghan and Gingold [15] and Lucy [16]. This method, named Smoothed Particle 

Hydrodynamics (SPH), is a particle method based on the idea of replacing the fluid by a set of 

moving particles and transforming the governing partial differential equations into the kernel 

estimates integrals [17]. There are many meshless approaches in the numerical engineering 

including the Diffuse Element Method (DEM), Element-Free Galerkin (EFG), Finite Point 
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Method, Meshless Local Petrov-Galerkin (MLPG) and Point Interpolation Method (PIM) etc. 

Meshless approximations have received much interest since Nayroles et al [18] proposed the 

diffuse element method [19,20]. Recently, Atluri and his colleagues presented a family of 

Meshless methods based on the Local weak Petrov-Galerkin formulation (MLPGs) for arbitrary 

partial differential equations [21,22,23,24,25] with Moving Least Square (MLS) approximation. 

Local Boundary Integral Equation method (LBIE) has been developed by Sladek et al 

[26,27,28] for the boundary value problems in anisotropic non-homogeneous media. The 

development of the Radial Basis Functions (RBF) as a truly meshless method has drawn 

attention (see Golberg et al [29]). Hardy [30] and Hon et al [31] developed the multiquadric 

interpolation method for solving linear partial differential equation. Recently, strong-form 

meshless methods also have been made progress, such as the Meshless Intervention Point (MIP) 

method, see Yang et al [32, 33, 34], and estimation of the qualitative convergence by Deng et al 

[35,36]). Based on the point collocation concept, the Finite Block Method (FBM) with mapping 

technique was proposed by Wen et al [37] and Li et al [38,39,40] to solve the heat transfer and 

elastodynamic 2D and 3D problems in the functionally graded media with excellent accuracy 

and convergence both in the Cartesian coordinate and polar coordinate systems. 

 In this paper, the meshless method of the point collocation type in strong form combined 

with infinite element to deal with unbounded media problems is developed first time. For the 

sake of convenience of analysis, the meshless collocation method with MLS approach, RBF 

interpolation and FBM are observed and tested. Firstly, the physical domain is mapped into a 

normalised square domain in which the nodes are uniformly/irregular distributed. Next, the first 

order of partial differential matrices for each element (block) are determined to present the 

governing equations in matrix form in terms of nodal values. Two dimensional non-

homogenous problems are formulated both in Cartesian coordinate and polar coordinate 

systems respectively with infinite element. To observe the accuracy and efficiency using 

meshless methods combined with infinite elements, three numerical examples in elasticity solid 

mechanics are given and the comparisons are made with analytical solutions and numerical 

solutions by finite element method (ABAQUS) especially for the Functionally Graded 

Materials (FGM). It is clear that the meshless approach combined with infinite elements is an 

effective and accurate algorithm for unbounded problems in engineering. 
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2. The approximation schemes 

2.1 Moving lease-square scheme 
 
 Consider a square mapped domain Ω  shown in Figure 1(a) and interpolate the distribution 

of function u in the sub-domain yΩ  centred at ),( ηξ=ξ  over a number of randomly 

distributed nodes siii ni ,...,2,1,),( == ηξξ . The approximation of function u at the point ξ can 

be expressed by  

 )()()( ξaξpξ Tu = ,                       (1) 

where { })(),...,(),()( 21 ξξξξa m
T aaa=  is a vector of coefficients and =T)(ξp { ),...,(),( 21 ξξ pp  

})(ξmp  is a complete monomial basis, m denotes the number of terms in the basis, i.e. for two 

dimensional problems. For example, { }ηξ ,,1)( =Tξp  when 3=m  and =T)(ξp  

{ }22 ,,,,,1 ηξηξηξ  when 6=m . The coefficient vector )(ξa  is to be determined by minimizing 

2L  norm with a weighted function ),( ηξw  as following 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                              (b) 

Figure 1. Two-dimensional node distribution: (a) distribution of node and local support domain 

in mapped domain; (b) mapped domain with 8 seeds. 
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where iη  denotes the position vector of node i in the support domain, ),(ηξiw  the weight 

function associated with the node i with 0),( >ηξiw  for all η in the support domain and iû  is 

the fictitious nodal values, but in general not the values of the unknown trial function at the 

nodes, )(ηiu . The stationary condition of J in (2) with respect to ia  0/ =∂∂ iaJ  leads to the 

following equations in matrix form 

 0ˆ)()()( =− uξBξaξA ,                        (3) 

where matrices )(and)( ξBξA  are defined 

 wppξA T=)( , wpξB T=)( .                          (4) 

The MLS approximation is well defined only when the matrix A in (3) is non-singular. 

Substituting (3) into (1) leads to the following relation 

 ∑
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T uu
1
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where  
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1 )]()()[()( ξBξAξξφ .            

Usually )(ξkφ  is call the shape function of the MLS approximation corresponding to the nodal 

point kη . The support area of the nodal point kη is taken to be a circle of radius sd  centred at 

kη  (same size of local sub-domain centred at field point ξ). The selection of the radius sd is 

important in the MLS approximation because it determines the range of the interaction between 

the degrees of freedom defined at the considered nodes. The size of the support domain (R) 

should be sufficiently large to cover the nodes in the domain of definition hence ensuring the 

regularity of the matrix A. In the numerical process, the radius sd of the support domain will be 

determined by the minimum number of ns in the sub-domain. A fourth order spline type weight 

function is defined as 
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where ir ηξ −= . As the matrices in the shape function )(and)(1 ξBξA− in (5) are functions of 

field point and nodal position in the support domain, the determination of high order 

derivatives of shape function with respect to the field point ξ  will become more complicated in 

the numerical process. The partial derivatives of shape function can be obtained from Eq. (3) 

by straight forward differentiation, using MLS, as  

 ∑
= ∂

∂=
∂
Φ∂=

∂
∂ sn

i
i

i u
u

1

ˆˆ
ξ
φ

ξξ
u ,  ∑

= ∂
∂=

∂
Φ∂=

∂
∂ sn

i
i

i u
u

1
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φ

ηη
u ,                (7) 
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As IAA =−1 , the derivative of the inverse of matrix A with respect to ξ  is given by  

 11
1

−−
−

∂
∂−=

∂
∂

A
A

A
A

ξξ
, 11

1
−−

−

∂
∂−=

∂
∂

A
A

A
A

ηη
.                     (9) 

2.2 Compact support radial basis function scheme 

 Similar to MLS, the distribution of function u in the sub-domain yΩ  over a number of 

randomly distributed notes { } si ni ,...,2,1, =η  can be interpolated, at the point ξ, by  

 bξpaηξRξξξ )()()()()(
11

+−=+= ∑∑
==

m

j
jj

n

k
kk bpaRu

s

,                  (10) 

where { })(),...,(),()( 2211 ss nnRRR ηξηξηξηξR −−−=−  and )(ξp  are a set of radial basis 

functions centred around the point ξ and a set d-variate polynomials of degree m defined in (1), 

a and b are the unknown coefficients to be determined. The radial basis function is selected as 

multiquadrics [30] as 

 
22)( kkk cR ηξηξ −+=− ,                    (11) 

along with the constraints 
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Then, a set of linear algebraic equations to determine coefficients a and b can be written, in the 

matrix form, as 

 ubpaR =+ 00  and 0ap =T
0 ,                   (13) 

in which 
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Obviously matrix 0R is symmetric and well defined. Solving equations (13) gives 
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where I denotes the diagonal unit matrix. Substituting the coefficients a and b in (16) into (10), 

we can obtain the shape function in (10) same as MLS method as 
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It is worth noting that the shape function depends uniquely on the distribution of scattered 

nodes within the support domain and has the Kronecker Delta property. As the inverse matrix 

of coefficient 1
0
−R  is function of distributed node η only in the support domain, it is much 

simpler to evaluate the partial derivatives of shape function by  
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. 2.3 Finite block method (Lagrange polynomials) 

Consider a set of nodes uniformly distributed in the normalised domain in Figure 2 with 

numbering system of node collocation at kξ , iNjk +×−= ξ)1( , ξNi ,...,2,1= and ηNj ,...,2,1= , 

where αN  are numbers of nodes along two axes. By two dimension Lagrange interpolation 

polynomials, the function )(ξu  can be approximated by 
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 Figure 2. Uniformly distributed nodes in mapped domain and numbering system for FBM. 
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Therefore, the shape functions can be constructed as  

 ∏∏
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Then the number of nodes in total is ηξ NNM ×= . Thereafter, the first order partial differential 

of shape function can be determined easily with respects to ξ  
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For Lagrange interpolation, the shape function in (20) depends uniquely on the distribution of 

scattered nodes within the support domain and has the Kronecker Delta property same as RBF 

approach.  

2.4 Partial differential matrix 

 For different approaches, the first order partial differentials at each node introduced above 

can be evaluated, in the form of vector, as 

 uDUu ααα ==, , { } MMlk ×= φαD ,  ),...,2,1,( Mlk = ,               (25a) 

in which ηξα ,= , αD is the first order differential matrix determined by each shape functions, 
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For the moving least square method, vector u  should be changed to fictitious displacement û . 

Furthermore, the L-th order partial differentials in two dimensional problems with respect to 

both coordinates ξ  and η can be obtained approximately by 

 Lnm
u

u
nm

nm
mn =+

∂∂
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+

    ,),()(
, ηξ

ηξξη .                  (26) 
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Therefore, the vectors of the higher order partial differentials can be constructed, in terms of 

the first order partial differential matrices ξD  and ηD , as  

 .)(
, uDDu nmmn

ηξξη ≈                        (27) 

3. Coordinate transform and mapping differential matrix 

3.1. Two dimensional problem 

For two dimensional problems, any quadratic block with 8 seeds shown in Figure 4(a) can 

be mapped into a square domain (normalised) using following shape functions   

4,3,2,1for      )1)(1)(1(
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2
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8,6for     )1)(1(
2

1 2 =+−= iN ii ξξη , 

where 8,...,2,1  ),( =iii ηξ  are the seed coordinates shown in Figure 1(b). The coordinate 

transform (mapping) can be written as 
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For partial differentials of function ),( yxu  in Cartesian coordinate system, one has  










∂
∂+

∂
∂=

∂
∂










∂
∂+

∂
∂=

∂
∂

η
β

ξ
β

η
β

ξ
β uu

Jy

uuu

Jx

u
22211211

1
   ,

1
,        (30) 

where  

ηξ

ηξ

∂
∂

∂
∂

∂
∂

∂
∂

=
yy

xx

J ,  
ξ

β
η

β
ξ

β
η

β
∂
∂=

∂
∂−=

∂
∂−=

∂
∂= xxyy

22211211 ,,, .       (31) 

Thus, the first partial differential matrices can be written, in physical domain, as 

( ) uDuD∆D∆U∆U∆U xx =+=+= ηξηξ 12111211 ,           (32) 

( ) uDuD∆D∆U∆U∆U yy =+=+= ηξηξ 22212221 ,           (33) 

in which 
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)()( / kk
ij Jβ  is calculated from (31) at collocation point ),( kkk ηξ=ξ  and differential matrices in 

the normalized domain ξD and ηD are given in (24). It means that the first partial differentials 

in the practical Cartesian coordinate can be obtained in terms of the first order partial 

differential matrix in the mapped domain, where 1;1 ≤≤ ηξ , and nodal values.   

3.2 Three dimensional problem 

For three dimension problem, quadratic shape function with 20 seeds is used. Shape 

functions can be written as follows [40] 
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16,15,14,13for      )1)(1)(1(
4

1 2 =++−= iN iii ηηξξς . 

Same as two dimension and the coordinate transform (mapping) can be written as 
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Then the partial differentials of shape functions are  
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where  
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ξηηξ
β
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∂

∂
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∂
∂

∂
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∂
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∂
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∂
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∂
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∂
∂

∂
∂−

∂
∂

∂
∂= yxyxyxyxyxyx

333231 ,, . 

Therefore, the first order nodal partial differential matrices in Cartesian coordinate system can 

be written, in matrix form, as 

( ) uDuD∆D∆D∆U∆U∆U∆U xx =++=++= ςηξςηξ 131211131211 ,       

( ) uDuD∆D∆D∆U∆U∆U∆U yy =++=++= ςηξςηξ 232221232221 ,     (40) 

( ) uDuD∆D∆D∆U∆U∆U∆U zz =++=++= ςηξςηξ 3332313332
)

31 ,     

where ij∆  is defined in (34), matrix, ξD , ηD and ςD are first order of partial differential matrices 

defined in (24). Again, the first partial differentials can be determined in terms of the first order 

differential matrix in mapped domain, 1;1;1 ≤≤≤ ςηξ , with nodal values in the equation 

above. In addition, the higher order partial differentials with respect to Cartesian coordinates 

)(xyz  can be written as 

lnm

lnm
mnl

xyz zyx

u
zyxU

∂∂∂
∂=

++

),,()(                 (41) 

and the nodal values of the above partial differential are obtained in the matrix form by 

 .)( uDDDU l
z

n
y

m
x

mnl
xyz =                   (42) 
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4. Two dimensional infinite elements 

This element type was introduced by Zienkiewicz [1] and will be used in the meshless 

approach. Mapped infinite elements use a simple mapping technique akin to the isoparameteric 

formulation [14] but employing two set of element trial functions: (1) Geometry description is 

performed by means of specially devised mapping function; (2) Locations of collocation point 

are determined in real physical domain; (3) Partial differential matrices are obtained in the real 

domain. For two-dimensional problems, two simplest infinite elements are utilised in this paper: 

(1) Four-seeds mapping 

In the normalised domain, the edge of right hand side 1)( =ξ  is mapped to infinite place as 

shown in Figure 3. The mapping functions are   

)1(

)1(
  ,

)1(2

)1)(1(
  ,

)1(2

)1)(1(
  ,

)1(

)1(
4321 ξ

ηξ
ξ

ηξ
ξ

ηξ
ξ
ηξ

−
+−=

−
++=

−
−+=

−
−−= NNNN     (43) 

and the mapped geometry 

 

 

 

 

 

 

 

 

 

 

     (a)            (b) 

Figure 3. Four nodes mapping: (a) normalized domain; (b) physical domain. 
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ii yNyxNx ηξηξ .              (44) 

Also the locations for each collocation point can be specified as 

 ∑∑
==

==
4

1

4

1

),(  ,),(
i

ikkik
i

ikkik yNyxNx ηξηξ .            (45) 
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Then their partial differentials respect to ξ  and η  are given 

2
4

2
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2
2

2
1

)1(

)1(
  ,

)1(

)1(
  ,

)1(

)1(
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∂
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∂
∂

−
−−=

∂
∂ NNNN

     (46) 

and 

.
)1(

  ,
)1(2

)1(
  ,

)1(2

)1(
  ,

)1(
4321

ξ
ξ

ηξ
ξ

ηξ
ξ
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η −
−=

∂
∂

−
+=

∂
∂

−
+−=

∂
∂

−
=

∂
∂ NNNN

     (47) 

It is clear that the first derivative matrices for all collocation points in (32) and (33) are still 

valid for the infinite element except the nodes at 1=ξ .  

(2) Five-seeds mapping 

Same as four seed mapping, the edge of right hand side 1)( =ξ  is mapped to infinite place 

as shown in Figure 4. The mapping functions are given as  

 

 

 

 

 

 

 

 

 

 

      (a)            (b) 

 Figure 4. Five nodes mapping: (a) normalized domain; (b) physical domain. 
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      (48) 

Same as four node mapping, the coordinate transformation is preformed as 

 ∑∑
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ii yNyxNx ηξηξ ,              (49) 
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and the locations for each collocation point can be specified as  

 ∑∑
==

==
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1
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1

),(  ,),(
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ikkik yNyxNx ηξηξ .            (50) 

Then their partial differentials respect to ξ  and η  are given as 
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and 
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          (52) 

 The physical values including displacements and stresses are zero at infinite. Two and three 

dimensional mapping and shape functions for different types of the infinite element used in the 

finite element method are catalogued in [14] by Marques. Zienkiewicz [6] presented an 

extensive survey of procedures used for finite element unbounded domain analysis, grouping 

them in accordance with the nature of the algorithm. 

5. Meshless method for unbounded media  

5.1. Cartesian coordinate system, 

Assuming that the material properties are dependent on the spatial coordinates in a non-

homogeneous material, the relationship between stress and strain isotropic materials, in the 

plane stress state and Cartesian coordinate system, gives 
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x 31221   ,  , τσσ .      (53) 

For plane stress elasticity, material mechanical coefficients are, for isotropic on-homogenous,  

given as 
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where  ,νE are Young's modulus and Poisson's ratio,  G is shear modulus. The equilibrium 

equations give 

 0=+
∂

∂
+

∂
∂

x
xyx b
yx

τσ
, 0=+

∂
∂

+
∂

∂
y

yxy b
yx

στ
,            (55)  

where xb and yb are body forces. Applying the differential matrices over (55) results, with 

considering (32)(33)(53)(54) in matrix form, as 

 
( ) ( )
( ) ( ) ,

,

1332

3231

0buDQDDQDuDQDDQD

0buDQDDQDuDQDDQD

=++++

=++++

yyyyxxxyxxy

xyxyyxxyyxx
        (56) 

where 
β

u and βb  ),( yx=β are vectors of nodal displacement and body force vectors, and 

][ )(k
ll QdiagQ =  is diagonal matrices, in which )3,2,1(  )( =lQ k

l  indicates the elasticity coefficient 

at node k . The boundary conditions give 

 
q

u

tt

uu

Γ∈=

Γ∈=

xxx

xxx

                       , )()(

                      ),()(
0

0

ββ

ββ
              (57) 

where 00   and ββ tu  are specified displacements and tractions on the boundary. Obviously there 

are M2  linear algebraic equations from (56) and (58), and therefore, all nodal values of 

displacement should be determined. Unlike the traditional meshless method, the physical 

domain is divided into few blocks by using the finite block method. In this case, the continuous 

condition on the smooth interface except two ends (joints) between blocks I and II gives 

    .0)()(  ,0)()( =+=− xxxx IIIIII ttuu ββββ  int Γ∈x           (58) 

However, at corner joint, both the displacement continuity conditions and point equilibrium 

equations should be considered as 

    ),(...)()( xxx XIII uuu βββ ===                 (59) 
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         (60) 

where )(
1

)(
2  and qq θθ  are starting and ending angles at joint for block q at the joint shown in 

Figure 5. 
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  Figure 5. Joint with blocks: starting and ending angles for each block.   

5.2. Polar coordinate system 

In many cases, the polar coordinate system is much convenient with circular boundary.  

Consider the 2D elasticity of the domain Ω  with boundary Γ  in functionally graded media in 

polar coordinate system. It is assumed that the materials are directionally dependent and all 

material coefficients could be dependent on the spatial coordinates in a non-homogeneous 

material. The equilibrium equations for two dimensional plane-stress are 

 θθθθ γτεεσεεσ rxyrrr QQQQQ 31221   ,  , =+=+= ,           (61) 

in which all material coefficients vary with coordinates r  and θ , and 
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u r
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εε −
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∂
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=
∂

∂= 1
,

1
,           (62) 

are normal and shear strains respectively. For static problem in the polar coordinate, one has 

the equilibrium equations as the following 
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                (63) 

For isotropic homogeneous functionally graded material and plane-stress problems, the 

coefficients 
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Applying the mapping technique and differential matrices, stresses can be obtained in matrix 

form in terms of the nodal values 

 

( )
( )

( ).ˆˆ

,ˆ

,ˆ

3

12

21

θϑθθ

θθθ

θθ

uRuDRuDQS

uuDRQuDQS

uuDRQuDQS

−+=

++=

++=

rrr

rrr

rrrr

               (65) 

where θDD  and r  are first order partial differential matrices obtained in the same way in 

Cartesian coordinate system, ]/1[ˆ
krdiagR =  is diagonal matrices. Substituting (61) into the 

equilibrium equations (63) gives the system equations as 

 
( )

                        .ˆ2ˆ

,ˆˆ

0SRSDRSD

0SSRSDRSD

=++

=−++

θθθθ

θθθ

rrr

rrrr             (66) 

Thereafter, substituting (65) into (66) results the system equations in matrix form in terms of 

nodal displacements. For elasticity, the boundary conditions must be considered in (58), where 

θβ   and  r=  respectively, rt  and θt  are tractions along r  and θ  directions respectively. 

6. Numerical examples 

Example 6.1. Infinite plate containing a circular hole under tension 0σ .  

In this example, a 2D isotropic homogeneous infinite plate containing a circular hole as 

shown in Figure 6 is observed by meshless method. Due to the symmetry of the problem, only 

a quarter of plate is modeled. In order to compare the accuracy with analytical solutions for 

each meshless strategy, the isotropic homogenous medium is considered. The node distribution 

for )77( ×=M  nodes are presented in both mapped domain and in real domain via mapping/ 

shape function with infinite element shown in Figure 7(a)(b). The analytical solution of stresses 

for a circular hole under tensile stress at infinite place is given  
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Because the infinite element cannot be used to model non-zero stress field at infinite in this 

case, a uniaxial tensile field (particular solution) is added with the principle of superposition in 

elasticity, i.e. 

  ( ) ( ) ,2sin
2

  ,2cos1
2

  ,2cos1
2

'0'0'0
θθθθ τθστσθσσσθσσ rrrr +−=+−=++=     (68) 

where '''   and  , θθ τσσ rr  are general solutions of stress with zero displacement/stress conditions at 

infinite. To satisfy the boundary condition of zero tractions on the surface of circular hole, the 

boundary conditions for general solution are described, when ar = , as 

 ( ) arrr ==+−=    when  2sin
2

  ,2cos1
2

0000 θστθσσ θ .          (69) 

 

 

 

 

 

 

 

 

   Figure 6. Infinite domain with a circular hole subjected to tensile load 0σ . 

 

 

 

 

 

 

  

                    (a)                                                            (b)                       

Figure 7. Polar coordinate system: (a) mapped domain; (b) coordinate )( θro with distributed 

nodes of infinite element. 
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To show the accuracy for different meshless methods, we consider a regularly distributed 

collocation points in the mapped domain )( ηξ NN = . For both MLS and RBF approaches, the 

local supported domain is selected as a circle with radius sd centered at field point ξ, which is 

determined such that the minimum number of nodes in the sub-domain 10≥sn . In addition, the 

number of terms in the complete monomial basis m is chosen to 6 for both MLS and RBF 

methods. The free parameter c, in RBF, is chosen as unit in the mapped domain. It has been a 

big issue how to select the parameter c for long time. The optimal selection has been addressed 

by Yao et al [41]. However, there is no any free parameter selection using the finite block 

method. Due to the simplicity of the geometry, only four seeds infinite element is utilised. To 

investigate the accuracy for different approaches, the average relative errors is defined as 

 [ ]∑
=

−+−+−=
M

k
kkrkkrkkkkkkkkr rrrrrr

M 1

*** ),(),(),(),(),(),(
3

1 θτθτθσθσθσθσε θθθθθ . (70) 

The numerical results of the average error over all collocation points are shown in Table 1 for 

different meshless methods vs node density. By observing the results in Table 1, it is clear that 

the degrees of accuracy for MLS and RBF approaches are very close for each node density. It is 

also clear that the solution by FBM is much accurate than that either by MLS or RBF method 

when the node number ξN  is large than 7. For the sake of analysis convenience in the 

following examples, only the finite block method is observed combined with infinite element 

for unbounded media. However, the solutions for FBM will be divergence when ξN  is large 

than 20 due to instability of Lagrange series interpolation with uniform distribution of nodes.     

  

Table 1 Average errors ε  for different meshless methods  

Nξ MLS RBF FBM 
5 2.8048e-02 6.3232e-02 3.4021e-02 
7 1.2334e-02 2.5512e-02 1.7766e-03 
9 5.7930e-03 1.0258e-02 4.6347e-05 
11 3.2991e-03 4.5900e-03 7.3596e-07 
13 2.1764e-03 2.2970e-03 7.7134e-09 
15 1.5147e-03 1.2679e-03 1.2151e-08 
17 9.7775e-04 7.5231e-04 7.7261e-07 
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 The effect caused by the truncation of unbounded domain is observed using RBF 

interpolation with same free parameter selection. The radius of outer boundary b  (truncation of 

boundary) is selected from 4a to 10a and number of node in the domain ξN (= ηN ) is chosen as 

11, 19 and 27 respectively. In this case, the distribution of collocation point is also uniform in 

the mapped domain. Table 2 shows the average errors defined in (70) against the ratio of ab /  

and the computation effort running on the Lenovo-PC with Intel(R) Processor 5Y70 

CPU@1.10GHz. It is clear that the accuracy is improved slightly when the number of node and 

the radius of domain increase. However, the CPU time in second increases significantly for 

large number of node. The numerical solutions using RBF with infinite element are listed in the 

table for comparison. It can be seen that for each number of node selection, the degree of 

accuracy with infinite element is much higher than that by traditional meshless method with the 

same level of computation effort. Similar results and conclusions of truncation error and CPU 

time can be observed using both MLS approach and FBM. Therefore, we can conclude that the 

infinite element plays a significant role to improve the computational accuracy and efficiency 

for unbounded medium. 

Table 2. Average errors and CPU time for different truncations of unbounded domain.  

b/a 
Nξ = 11  Nξ = 19 Nξ = 27 

ε  CPU(s) ε  CPU(s) ε  CPU(s) 
4.0 1.0648e-01 6.0000e-01 7.8060e-02 3.0333e+00 7.2835e-02 2.5933e+01 
6.0 7.6171e-02 8.1667e-01 4.3334e-02 3.2500e+00 3.5096e-02 2.8417e+01 
8.0 6.9144e-02 1.0000e-01 3.5701e-02 3.1333e+00 2.5413e-02 3.0850e+01 
10.0 6.6478e-02 7.8333e-01 3.3752e-02 3.8667e+00 2.2349e-02 2.9983e+01 

Infinite  4.5900e-03 8.1667e-01 4.7377e-04 3.5500e+00 1.2650e-04 3.0617e+01 
 

Example 6.2. Infinite strip containing a circular hole under tensile load 0σ .  

Firstly consider an isotropic homogeneous infinite strip containing a circular hole under a 

uniaxial load 0σ . Again, only a quarter of plate is modeled as the symmetry with two 8-seeds 

blocks and one 5-seeds finite element shown in Figure 8. To catch up the stress concentration 

accurately, the coordinates of node in mapped domain is selected to be Chebyshev's roots, as 

)1(,...,2,1   ,
)1(

cos  ),1(,...,2,1   ,
)1(

cos +=−=+=−= η
η

ξ
ξ

πηπξ Nl
N

l
Nk

N

k
lk    (71) 
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and the distribution of node in real domain is shown in Figure 9 in the case of 14== ηξ NN . 

The analytical solution of maximum stress at point A is given as )/(0max awwK −= σσ  [42], 

where K defined as the stress concentration factor is given by 
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53.166.313.300.3 
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w

a
K .            (72) 

Numerical solutions of concentration factor K obtained by using FBM are presented in Figure 

10 versus the ratio of radius of the circular hole a and the half width of the strip w. Analytical 

solutions are presented in the same figure for comparison and excellent accuracy is observed.  

 

 

 

 

 

 

 

 

 

 

 

Figurer 8. A quarter of infinite strip containing circular hole with two blocks and one infinite 

element.  

           

 

 Figure 9. Nodal distribution in the physical domain: two blocks and one infinite element. 
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Secondly, consider an infinite strip containing a circular hole with functionally graded 

material. In this example, a non-homogenous functionally graded material is considered and the 

elastic modulus has an exponential variation in y-axis as =E )(0 yfE , where yeyf α=)( , α is 

arbitrary constant and 0E  is elastic modulus on the bottom. In engineering, it represents an 

infinite strip bonded with two strips of FGM. The Poisson ratio 3.0=ν  and shear modulus 

)1(2/)()( ν+= yEyG . Plane stress is assumed. The particular solution can be obtained by 

considering a constant uniaxial strain 0
xε  in a strip without hole. By using Saint-Venant's 

Principle, the stresses in domain are 

 

 

                  

`      Figure 10. Stress concentration factor K for a strip with circular hole. 

  

0  ,0  ,0 === xyyxx E τσεβσ ,                (73) 

where coefficient β  can be determined by considering equivalency as 

 wdx
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x 0

0

σσ =∫ ,                    (74) 
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which gives 
0

0

)1( Ee

w
w −

= α
σαβ . Therefore, one has general solution of stresses 

 '''
0   ,  ,)1/( θ

αα ττσσσσασ rxyyyx
wy

x eew ==+−= .           (75) 

In the Cartesian coordinate system, the traction boundary conditions on the hole hold 

 0  ),1/(cos 0sin
0

0 =−−= y
wa

x teeht αθα θσα .             (76) 

where )/(atan xy=θ . The stress distributions xσ and yσ along y-axis when 0=x  in and 

5.0/ =wa  are shown in Figure 11 and 12 respectively for different coefficient α . The 

numerical solutions given by FEM (ABAQUS) [43] are also presented in the figures to 

demonstrate the agreement.            

 

 

   

              

          Figure 11. Distribution of normal stress ),0( yxσ . 
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      Figure 12. Distribution of normal stress ),0(yyσ . 

6.3. Cracked infinite strip under tension 0σ .  

 For a cracked strip, four blocks are needed to model crack problem as shown in Figure 13. 

For non-homogeneous linear elastic solids, Eischen [44] showed that the asymptotic crack-tip 

stress and displacement fields have the same form as those in homogeneous linear elastic 

materials. Therefore, for isotropic FGM plane stress case, the mixed mode stress intensity 

factors are obtained from 

 
rE
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K
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ua
K

2424 tip
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II

tip

I
I

∆=∆= ππ
， ,               (77) 

where III  and  uu ∆∆ are relative opening and shearing crack displacements, tipE  is Young's 

modulus at crack tip and r is the distance measured from crack tip.  Firstly Consider an infinite 

strip of width w with a central crack of length 2a subjected to a uniform tensile load 0σ  at 

infinite.as shown in Figure 13. Because of the singularity of the stresses at the crack tip, the 

nodal distribution in the normalised domain is selected to be Chebyshev's roots in (71) with 

nodal density 21== ηξ NN  for each block and infinite element. The convergent numerical 
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solutions can be obtained when 15≥= ηξ NN . The numerical results of the normalised stress 

intensity factors aK I πσ 0/  versus the ratio of wa /  are plotted in Figure 14, where the 

distance 09549.0/ =ar  (location of the fourth node from the crack tip). In the case of 

wa / =0.1 or 0.9, the relative error is about 4% due to the difference of the size effect between 

block I and II. 

 

 

 

 

 

 

 

 

 

  Figure 13. Central cracked infinite strip subjected to a tensile load.  

 

           

      Figure 14. Normalized stress intensity factor versus the ratio of wa / .  
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Next, non-homogenous material with an edge crack shown in Figure 15 is considered and the 

elastic modulus has an exponential variation along y-axis as )()( 0 yfEyE = , where 

wyeyf /)( α=  andα is dimensionless constant and defined as )/(ln 0EEw=α , 0E  and wE are 

Young's moduli on the bottom and top layers of the strip respectively. Shear modulus 

)1(2/)()( ν+= yEyG  and Poisson ratio 3.0=ν . In order to obtain the particular solution for 

an infinite long strip without crack subjected to either uniform tensile load P or bending 

moment M , the normal strain can be written, from plane assumption, as 

yx 00 ϕεε += ,                    (78) 

where 00  and  ϕε  are two constants. The solution of stress is given 

 0,)( /
000 ==+= xyy

wy
x eEy τσϕεσ α               (79) 

By using Saint-Venant's Principle, the equivalent traction boundary conditions become 

2
  ,

00

Pw
MdyyPdy

w

x

w

x +−== ∫∫ σσ ,               (80) 

where wP 0σ=  and M is bending moment at the infinite. Substituting (79) into (80) and 

solving linear algebraic equations yields 

2
120

01
02

120

12
0

)2/(
  ,

)2/(

III

IPwMPI

III

IPwMPI

−
+−−−=

−
+−−= ϕε  ,        (81) 

where dyeyI
w

wyk
k ∫=

0

/α  and 

  )].22(2[  )],1(1[  ),1( 2
3

3

22

2

10 +−+−=−+=−= αα
α

α
αα

ααα e
w

Ie
w

Ie
w

I      (82) 

To demonstrate the accuracy of meshless method with infinite element, a cracked strip with the 

ratio 5.0/ =wa  is observed. For the case under a pure bending moment, the applied stress 

2
0 /6 wM=σ  from plate bending theory. The normalised stress intensity factors aK I πσ 0/  

under tensile and bending loads are presented in Table 3 versus different ratio of material 

properties 0/ EEw . Agreement of numerical solution by meshless method (FBM) with either 

analytical solutions by Erdogan and Wu [46] or FEM by Kim and Paulino [47] for long strip 
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( wL 4= ) are demonstrated in Table 3. It is reasonable that the stress intensity factor for infinite 

cracked strip is smaller than that for finite strip. 

 

 

 

 

 

 

 

  Figure15. Edge cracked strip under tensile load and bending moment in FGM. 

 

Table 3. Normalized SIF aK I πσ0/  for edge cracked strip.  

 

0/ EEw  FBM Erdogan [46] Kim [47] 

T
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0.1 3.4220  3.570  3.496 
0.2 3.2159  3.326 3.292 
1 2.7159  NA 2.822 
5 2.2330 2.365 2.366 
10 2.0310  2.223 2.175 

B
en

di
n

g 

0.1 2.1196 2.215 2.145 
0.2 1.9015 1.953 1.925 
1 1.4567 NA 1.496 
5 1.1047 1.151 1.158 
10 0.9750 1.035 1.035 

 

7. Conclusion 

 The Meshless approaches, including moving last square method, radial bases function 

method and finite block method, combined with infinite element was presented in this paper for 

general linear elasticity of two dimensional problems with unbounded media. Mapping a 

infinite domain into an normalised domain with infinite element, the system equations in a 

strong form are formulated with the first order partial differential matrices from the equilibrium 
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equations and boundary conditions. Comparisons between these meshless methods with 

different interpolations have been made and show that the finite block method with Lagrange 

series in the mapping domain is of highest accuracy. Apart from all advantages of meshless 

method, the finite block method is of much higher accuracy and convergence degrees. For 

complicated large scale dimension problems, only few blocks are needed in the domain. 

Therefore it is much easier to handle few blocks with certain domain collocation points.  This 

method can be extended easily to any types of partial differential equations, including nonlinear 

problem etc with unbounded media. The presented method can also be combined with other 

methods such as finite element method and boundary element method directly. 
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� Meshless methods with infinite element have been proposed; 

� Mapping technique and finite block method are derived; 

� Partial differential matrices are obtained by the first order matrix; 

� Stress intensity factor for functionally graded materials are determined.  


