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Abstract 29 

Antimicrobial peptides (AMPs) are components of innate immunity found in many forms of life. 30 

However, there have been no reports of AMPs in sea star (Phylum Echinodermata). Here we report 31 

the isolation and characterization of a novel antimicrobial peptide from the coelomic epithelium 32 

extract of the sea star Patiria pectinifera. The isolated peptide comprises 38 amino acid residues, is 33 

cationic (pI 9.2), has four cysteine residues that form two disulfide bonds (C1-C3 and C2-C4), is 34 

amidated at the C-terminus, and is designated P. pectinifera cysteine-rich antimicrobial peptide 35 

(PpCrAMP). Synthetic PpCrAMP identical to the native peptide exhibited the most potent 36 

antimicrobial activity compared to analogs with different disulfide bond configurations. Expression 37 

analysis of PpCrAMP precursor transcripts revealed constitutive expression in the coelomic 38 

epithelium and tube feet of P. pectinifera. Analysis of genomic DNA and cDNA encoding the 39 

PpCrAMP precursor protein revealed that an intron splits the coding region of the mature peptide into 40 

a positively charged N-terminal domain and a C-terminal domain harboring four cysteine residues and 41 

a glycine for C-terminal amidation. No significant homology with other known AMPs was observed, 42 

while orthologs of PpCrAMP were found in other echinoderm species. These findings indicate that 43 

PpCrAMP is the prototype of a family a novel cysteine-rich AMPs that participate in mechanisms of 44 

innate immunity in echinoderms. Furthermore, the discovery of PpCrAMP may lead to the 45 

identification of related AMPs in vertebrates and protostome invertebrates.  46 

 47 

Keywords: sea star, Patiria pectinifera, cysteine-rich antimicrobial peptide, innate immunity, 48 
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1. Introduction 50 

Antimicrobial peptides (AMPs) are evolutionarily ancient molecules produced by a wide variety 51 

of organisms (Ganz, 2003; Zasloff, 2002). AMPs are a major component of the immune defense 52 

system in invertebrates, which lack a vertebrate-type adaptive immune system (Bulet et al., 2004; 53 

Sperstad et al., 2011). Although AMPs exhibit structural diversity, they are commonly defined as 54 

being short (10-50 amino acids, AAs) with a net positive charge (+2 to +9) and have been classified 55 

into three major groups: (i) linear peptides that form amphipathic α-helices, (ii) cysteine-rich peptides 56 

containing one or more disulfide bonds and (iii) peptides with an overrepresentation of one or two 57 

AAs (Bulet et al., 2004; Hancock and Lehrer, 1998; Wang et al., 2016; Zasloff, 2002). The peptides 58 

are derived from larger precursor proteins (prepropeptides) that consist of a signal peptide, a 59 

prosequence, and a mature peptide (Bulet et al., 2004; Liu and Ganz, 1995; Valore and Ganz, 1992). 60 

AMPs are not only characterized by direct antibiotic, antifungal, and antiviral activity against a 61 

variety of microorganisms but are also involved indirectly in modulation of the innate immunity, 62 

including induction of chemokine production and regulation of apoptosis, angiogenesis, and wound 63 

healing (Bowdish et al., 2005; Ganz, 2003; Guilhelmelli et al., 2013; Hancock and Sahl, 2006; 64 

Oppenheim and Yang, 2005). Because of the development of antibiotic resistance by microorganisms, 65 

AMPs have attracted considerable attention in recent years as potential anti-infective therapeutic 66 

candidates for the design of new antimicrobial agents (Craik et al., 2013; Gordon et al., 2005; 67 

Parachin and Franco, 2014). In this context, isolation of new AMPs is of interest in providing general 68 

insights into AMP structure and activity.  69 

Marine organisms live in habitats abundant with bacteria, fungi, viruses, and parasites, some of 70 

which are potentially harmful. However, many marine organisms do not seem to be vulnerable to 71 

pathogenic invasions, suggesting that they have robust and effective immune effectors such as AMPs 72 

to defend against microbial pathogens (Cheung et al., 2015; Falanga et al., 2016; Otero-Gonzalez et 73 

al., 2010). Furthermore, AMPs from marine organisms are often taxon-specific or even species-74 

specific and are structurally different from their counterparts produced by terrestrial species (Augustin 75 

et al., 2009; Charlet et al., 1996; Lee et al., 1997; Li et al., 2010b; Li et al., 2008; Smith et al., 2008). 76 

Therefore, marine organisms provide fascinating sources for biochemical isolation of novel AMPs.  77 

Echinoderms are a phylum of exclusively marine invertebrates that include sea star, sea urchins, 78 

sand dollars, sea cucumbers, and sea lilies. As deuterostome invertebrates, they occupy an 79 

intermediate phylogenetic position with respect to the vertebrates and protostome invertebrates and 80 

therefore they are of particular interest from an evolutionary perspective (Blair and Hedges, 2005; 81 

Smith et al., 2010). Echinoderms rely on innate immunity for defense against harmful microorganisms 82 
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and although they are the second largest deuterostome phylum, relatively few AMPs have been 83 

isolated and characterized from these animals. Cysteine-rich AMPs (strongylocins) isolated from the 84 

sea urchins Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, and Echinus 85 

esculentus (Li et al., 2010a; Li et al., 2008; Solstad et al., 2016) and heterodimeric AMPs (centrocins) 86 

isolated from S. purpuratus and E. esculentus (Li et al., 2010b; Solstad et al., 2016) exhibit 87 

antimicrobial activity against both gram-positive and gram-negative bacteria (Li et al., 2010a; Li et 88 

al., 2010b). Strongylocins and centrocins have unique structural characteristics compared to other 89 

known AMPs and therefore it is of interest to identify AMPs in other echinoderms (e.g. sea star). 90 

Here we report the isolation of a novel sea star cysteine-rich AMP, named PpCrAMP, from the 91 

sea star Patiria pectinifera. The primary structure of PpCrAMP was determined by Edman 92 

degradation and MALDI-TOF MS and the cysteine connectivity of four cysteine residues that form 93 

two disulfide bonds in PpCrAMP was determined by comparison of native and synthetic peptides that 94 

were produced with different combinations of two disulfide bond pairings. The antimicrobial activity 95 

of synthetic PpCrAMP variants was showed both gram-positive and gram-negative bacteria.  96 

Genomic DNA and cDNA encoding the PpCrAMP precursor protein were cloned and sequenced, 97 

enabling investigation of its expression pattern in P. pectinifera. Furthermore, the organization of the 98 

PpCrAMP gene in P. pectinifera was compared with homologs in other echinoderms. Discovery of 99 

PpCrAMP is notable as it is the first cysteine-rich AMP to be purified from sea star.       100 
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2. Materials and Methods 101 

2.1. Animals and sample collection 102 

 Specimens of the sea star Patiria pectinifera were collected at low tide from the intertidal 103 

zone on the rocky coast of Cheongsapo of Busan, Korea. The sea star were immediately transferred to 104 

our laboratory and maintained in a recirculating seawater system at 15 oC until sample collection. The 105 

coelomic epithelium, which includes layers of longitudinal and circular muscle, was collected from 106 

the aboral body wall of the arms of 100 specimens of P. pectinifera using sterile knives and forceps. 107 

The collected sample were immediately frozen in liquid nitrogen and stored at -80 °C until extraction. 108 

For immune challenge experiments, 30 live specimens of the sea star (approximate size 4-5 cm 109 

determined by the distance from the center of disk to outer tip of arm) were acclimatized in a 600 L 110 

recirculating aquarium tank equipped with sand-filtered and UV-sterilized seawater at 15 oC for 1 111 

month. The sea star were fed once every 3 days with live manila clam, Ruditapes philippinarum.  112 

Approval by the local institution/ethics committee was not required for this work because 113 

experimental work on sea star is not subject to regulation and P. pectinifera is not an endangered or 114 

protected species. 115 

2.2. Peptide extraction and purification 116 

Four volumes of 1% acetic acid was added to the frozen sample and then the mixture was 117 

heated in a double boiler for 5 min to prevent proteolytic enzyme activity. The boiled sample was 118 

cooled on ice and homogenized (T10 basic ULTRA-TURRAX Homogenizer system, IKA, USA). The 119 

homogenate was then centrifuged (20,000 × g, 30 min, 4 oC) and then the supernatant was applied 120 

onto a C18 cartridge (Sep-pak C18, 20 cc, Waters Corp, USA). The column was washed with 40 ml of 121 

10% methanol/0.1% trifluoroacetic acid (TFA) and retained materials were then eluted with 40 ml of 122 

60% methanol/0.1% TFA. An aliquot of the eluate was lyophilized and then dissolved in 0.01% acetic 123 

acid to evaluate its antimicrobial activity against Escherichia coli D31 and Bacillus subtilis 124 

KCTC1021. To purify antimicrobial components of the eluate, a portion (3 ml) of it was applied to a 125 

cation-exchange column (TSKgel SP-5PW, 7.5 × 75 mm, Tosho, Japan) and eluted with a linear 126 

gradient of 0 to 1.0 M sodium chloride in 10 mM phosphate buffer (PB, pH 6.0) for 100 min at a flow 127 

rate of 1.0 ml/min. Absorbance peaks were monitored at 220 nm to detect peptide bonds and fractions 128 

were collected manually. A bioactive peak from the first cation-exchange HPLC purification was 129 

subjected to reversed phase (RP)-HPLC (Capcellpak C18, 5μm, 4.6 × 250 mm; Shisheido Co., Tokyo, 130 

Japan). Elution was performed by isocratic elution in 10% acetonitrile/0.1% TFA for 10 min and then 131 

a linear gradient of 10 to 60% acetonitrile/0.1% TFA for 50 min at a flow rate of 1.0 ml/min. An 132 

active peak showing antimicrobial activity against B. subtilis KCTC 1021 was purified by 133 
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chromatography again using the same column as the previous step, but with isocratic elution in 22% 134 

acetonitrile/0.1% TFA (peak A) at a flow rate of 1 ml/min. 135 

2.3. Primary structure determination of the purified peptide 136 

The molecular mass and AA sequence of the purified AMP were determined using matrix 137 

assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) with a 138 

pulsed smartbeam II (355 nm Nd:YAG laser, repetition rate 1 kHz) in linear mode (Ultraflextreme 139 

from Bruker Daltonics, Billerica, MA, USA) and an automated N-terminal AA gas-phase sequencer 140 

(PPSQ-31A/33A protein sequencers, Shimadzu Co., Kyoto, Japan). To confirm the existence of 141 

disulfide bonds, the purified peptide was reduced with 100 μl of 0.1 M 1,4-dithiothreitol (DTT) 142 

solution for 2 h at 42 °C. After reduction of disulfide bonds, the retention times of the reduced and the 143 

native peptides were compared using RP-HPLC with a linear gradient of 5 - 65% acetonitrile/0.1% 144 

TFA for 60 min at a flow rate of 1 ml/min.  145 

2.4. Peptide synthesis and determination of disulfide bridge connectivity 146 

Based on the results of structure analyses and cDNA cloning, variants of PpCrAMP with three 147 

possible disulfide bond connectivities were custom synthesized by ChemPep Inc. (Wellington, FL, 148 

USA). The synthetic peptides were re-purified to be greater than 98% pure by RP-HPLC, and 149 

molecular masses were confirmed by MALDI-TOF MS. The reduced form of the synthetic peptide 150 

was obtained by RP-HPLC purification followed by the same procedure used for native PpCrAMP. 151 

The molecular mass of the reduced synthetic PpCrAMP was also confirmed by MALDI-TOF MS 152 

with observation of a 4 mass unit difference. Identity was assessed by comparison of the retention 153 

times of synthetic peptides and native PpCrAMP using RP-HPLC with a linear gradient of 20 to 30% 154 

acetonitrile/0.1% TFA for 20 min and, then, an isocratic elution with 23% acetonitrile/0.1% TFA. The 155 

quantities of the purified synthetic peptides were calculated using a linear relationship between peak 156 

area and peptide amount in a serial dilution of 1 mg/ml of synthetic PpCrAMP. 157 

2.5. Antimicrobial activity assay 158 

An ultrasensitive radial diffusion assay was adopted for monitoring antimicrobial activity 159 

during the purification steps and for testing synthetic peptides, as described previously (Seo et al., 160 

2016). The microbial strains used to evaluate the antimicrobial activity were B. subtilis KCTC1021, 161 

Staphylococcus aureus KCTC1621, Micrococcus luteus KCTC1071, E. coli D31, Streptococcus iniae 162 

FP5229, Salmonella enterica ATCC13311, Shigella flexneri KCTC2517, Aeromonas hydrophila 163 

KCTC2358, Edwardsiella tarda NUF251, and Vibrio parahaemolyticus KCCM41664, and Candida 164 

albicans KCTC9765 (Table 1). Briefly, microbial strains were pre-cultured overnight in tryptic soy 165 
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broth (TSB) at the appropriate temperatures, 25 °C for fish pathogens and 37 °C for the others. Pre-166 

cultured microbial strains were diluted with 10 mM PB (pH 6.6) to ~108 CFU/ml for microbial strains 167 

and ~106 CFU/ml for the fungus C. albicans, and 0.5 ml of the diluted strains was mixed with 9.5 ml 168 

of underlay gel containing 0.03% TSB and 1% Type I agarose in10 mM PB (pH 6.6). Peptides were 169 

serially diluted 2-fold in 5 μl of 0.01% acetic acid and each dilution was added to 2.5 mm diameter 170 

wells made in the 1 mm thick underlay gels. After 3 h of incubation at the appropriate temperatures, 171 

microbial strains were overlaid with 10 ml of double-strength overlay gel containing 6% TSB with 172 

10 mM PB (pH 6.6) in 1% agarose. Plates were incubated for an additional 18 - 24 h and then the 173 

clear zone diameters were measured. After subtracting the diameter of the well, the clear zone 174 

diameter was expressed in units (0.1 mm = 1 U). The minimal effective concentration (MEC, μg/ml) 175 

of the synthetic peptides was calculated as the X-intercept of a plot of units against the log10 of the 176 

peptide concentration (Lehrer et al., 1991). The antimicrobial assay was performed in triplicate and 177 

the results were averaged. 178 

2.6. cDNA and gene cloning 179 

Cloning of a cDNA encoding the complete PpCrAMP precursor protein was performed by 3’ 180 

and 5’ rapid amplification of cDNA ends (RACE) polymerase chain reaction (PCR). Total RNA was 181 

extracted from the coelomic epithelium of P. pectinifera using Hybrid-R kit (GeneAll, Seoul, Korea), 182 

and then mRNA was purified using Oligotex mRNA mini kit (Qiagen, USA) following the 183 

manufacturer’s instructions. The synthesis for RACE-ready cDNA template was performed with 184 

GeneRacer kit (RLM-RACE, Invitrogen, CA, USA) according to the manufacturer’s instructions. The 185 

sequence of primers for 3’RACE was based on analysis of a GenBank transcriptome shotgun 186 

assembly (TSA) database (accession no. GFOQ01277783.1) from P. pectinifera obtained by Illumina 187 

HiSeq 2500 sequencing, reported previously by our group (Kim et al., 2017). Two sequence specific 188 

primers were designed for 3’ RACE, and then 5’ RACE was conducted with sequence-specific 189 

primers designed from the sequencing result of the 3’ RACE product. The sequences of primers used 190 

in RACE are listed in Table 1. The first 3’RACE reaction (30 cycles, 95 °C for 30 s, 60°C for 30 s, 191 

and 72 °C for 1 min) was performed using a primer (GSP-F1) and the GeneRacer 3′ primer. The PCR 192 

product was re-amplified (30 cycles, 95 °C for 30 s, 58°C for 30 s, and 72 °C for 1 min) using a 193 

primer (GSP-F2) and GeneRacer 3′ nested primer. The 5’ RACE reaction (30 cycles, 95 °C for 30 s, 194 

58°C for 30 s, and 72 °C for 1 min) was completed using a gene-specific primer (GSP-R) and the 195 

GeneRacer 5′ primer. PCR products in the last step of 3’ and 5’ RACE were introduced into the 196 

pGEM-Teasy vector system (Promega Corporation, USA) and sequenced. The sequence of precursor 197 

transcripts obtained was submitted to the GenBank database (accession no. MF443207).  198 
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Based on the cDNA sequence of the PpCrAMP precursor, both forward (Gene F) and reverse 199 

(Gene R) primers located in the 5’ and 3’ untranslated regions (UTRs) of the cDNA sequence were 200 

designed for studying the gene structure (see Table S1 for sequences). Genomic DNA was extracted 201 

from the coelomic epithelium of one animal using Exgene DNA extraction kit (GeneAll, Seoul, 202 

Korea) following the manufacturer’s instructions and 100 ng of genomic DNA was employed as a 203 

template in PCR (30 cycles, 95 °C for 30 s, 58°C for 30 s, and 72 °C for 3 min). The PCR product 204 

was also cloned into pGEM-Teasy vector and sequenced. The sequence of genomic DNA containing 205 

the PpCrAMP gene was also submitted to the GenBank database (accession no. MF443208). 206 

2.7. Real time quantitative polymerase chain reaction (RT-qPCR) of PpCrAMP precursor transcripts 207 

RT-qPCR analysis was done to determine the basal expression level of PpCrAMP precursor 208 

transcripts in various tissues, including coelomic epithelium, coelomocytes, gonad, oral hemal ring 209 

including Tiedemann’s bodies, pyloric caeca, stomach (including cardiac and pyloric regions), and 210 

tube feet. Furthermore, to determine whether acute changes in the abundance of PpCrAMP precursor 211 

transcripts occur following immune stimulation, tissues that express PpCrAMP constitutively 212 

(coelomic epithelium and tube feet) were sampled 0, 8, 16, and 32 h post-immune stimulation. The 213 

immune challenge was performed by injection with 50 μl V. parahaemolyticus (OD600=0.1, 3.3×108 214 

CFU/ml) into the coelomic cavity through the body wall at the tip of each of the arms of sea star with 215 

arm lengths of 4-5 cm. Total RNA was extracted from pooled sample tissues (five individuals per 216 

pool) using Hybrid-R (GeneAll, Seoul, Korea) according to the manufacturer's instructions, and RNA 217 

quality was assessed by 1.0% agarose gel electrophoresis and then quantified spectrophotometrically 218 

using a NanoDrop Lite (Thermo Fisher Scientific, Wilmington, MA, USA). cDNA was synthesized 219 

using the TOPscript cDNA synthesis Kit with oligo dT (dT18) (Enzynomics, Deajeon, Korea) 220 

according to the manufacturer's instructions. The primer pairs used for amplifying PpCrAMP 221 

precursor cDNA and elongation factor 1α (EF1α, accession No. AAT06175) cDNA as a control for 222 

normalization were PpCrAMP qPCR-F and qPCR-R, and EF1α qPCR-F and qPCR-R, respectively 223 

(see Table S1 for sequences). To analyze expression of PpCrAMP precursor transcripts in different sea 224 

star tissues/organs quantitatively, RT-qPCR was employed using a CFX Connect Real-Time PCR 225 

Detection System (Bio-Rad, USA), as previously described with slight modifications (Kim et al., 226 

2016). In brief, the amplification was carried out in a 20 μl reaction mixture containing 10 μl of 2× 227 

SYBR green premix (TOPreal qPCR 2X PreMix, Enzynomics, Deajeon, Korea), 1 μl (10 pmol/μl) 228 

each of forward and reverse primers, 1 μl of 10 times diluted cDNA template and nuclease free water. 229 

The thermal profile was 95 °C for 10 min, 40 cycles of 95 °C for 10 s, 60 °C for 15 s and 72 °C for 15 230 

s with fluorescence recording at the end of each cycle. Melt curve analysis was performed to ensure 231 
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product specificity over the temperature range of 60-90 °C. Amplicons were analyzed on agarose gels 232 

to confirm the product size. Based on the standard curves for both PpCrAMP and EF1α, the relative 233 

expression levels of PpCrAMP precursor transcripts in each tissue were normalized against the level 234 

of the EF1α control using the comparative CT method (2-ΔΔCT) (Livak and Schmittgen, 2001). 235 

Triplicate amplifications were carried out independently, and the results were analyzed statistically. 236 

For statistical analysis of PpCrAMP precursor transcript expression, the graphs were generated, and 237 

one-way analysis of variance (ANOVA) with Duncan's multiple range post-hoc analysis was 238 

performed using GraphPad Prism software version 7.0 for Windows (GraphPad Software, San Diego, 239 

California, USA). Relative fold expression was presented as means ± standard deviation. P values 240 

with p < 0.05 were considered statistically significant. 241 

2.8. In silico analysis 242 

A cDNA encoding the PpCrAMP precursor protein was translated into protein sequence using 243 

Expert Protein Analysis System (ExPASy) proteomics server of the Swiss Institute of Bioinfromatics 244 

(http://web.expasy.org/translate/) and SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/) was used 245 

to predict the signal peptide of the translated protein sequence. Theoretical molecular mass and 246 

isoelectric points of the mature PpCrAMP were calculated by the computer pI/Mw tools 247 

(http://web.expasy.org/compute_pi/) at ExPASy. To identify potential homologs of PpCrAMP the 248 

deduced AA sequence and genomic nucleotide sequence of the PpCrAMP were submitted as queries 249 

for BLAST analysis of i) the NCBI/GenBank nr database (http://blast.ncbi.nlm.nih.gov/blast.cgi), ii) 250 

the AMP database, including the collection of antimicrobial peptides (CAMP, 251 

http://www.camp.bicnirrh.res.in), iii) the antimicrobial peptide database (APD, 252 

http://aps.unmc.edu/AP/main.php), iv) the Echinoderm genomic database 253 

(http://www.echinobase.org/Echinobase/Blasts) and v) neural transcriptome sequence data from the 254 

sea star Asterias rubens (Semmens et al., 2013; Semmens et al., 2016). Multiple sequence alignment 255 

of the full-length P. pectinifera PpCrAMP precursor and putative related proteins from other species 256 

was performed using a multiple sequence alignment algorithm, Kalign, from the European 257 

Bioinformatics Institute (EMBL-EBI) (https://www.ebi.ac.uk/Tools/msa/kalign/). Secondary structure 258 

prediction was performed using the Network Protein Sequence Analysis (NPS@: https://npsa-259 

prabi.ibcp.fr/) server (Combet et al., 2000).  260 

3. Results 261 

3.1. Purification of AMP from the coelomic epithelium of Patiria pectinifera 262 

http://web.expasy.org/translate/
http://www.cbs.dtu.dk/services/SignalP/
http://web.expasy.org/compute_pi/
http://blast.ncbi.nlm.nih.gov/blast.cgi
http://www.camp.bicnirrh.res.in/
http://aps.unmc.edu/AP/main.php
http://www.echinobase.org/Echinobase/Blasts
https://www.ebi.ac.uk/Tools/msa/kalign/
https://npsa-prabi.ibcp.fr/
https://npsa-prabi.ibcp.fr/
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An aliquot of a coelomic epithelium extract of P. pectinifera exhibited antimicrobial activity 263 

against B. subtilis and E. coli, which was abolished by tryptic digestion (Fig. 1A), indicating that it 264 

was an appropriate source to isolate AMPs. The gram-positive bacterium B. subtilis was highly 265 

susceptible to the crude extract and so was used to test for antimicrobial activity during the 266 

purification steps. A single absorbance peak (peak A) that exhibited antimicrobial activity against B. 267 

subtilis was purified successfully from the coelomic epithelium extract through three steps of column 268 

purification. The extract was first fractionated using cation-exchange HPLC with a salt gradient and 269 

an active peak was eluted with 0.6 M sodium chloride corresponding to a retention time of 69 min 270 

(Fig. 1B). The peak was further subjected to RP-HPLC and an active peak, designated as peak A, was 271 

eluted with 22% acetonitrile/0.1% TFA (Fig. 1C). Finally, a single absorbance peak was obtained 272 

with isocratic 22% acetonitrile/0.1% TFA elution, and this peak was then subjected to structural 273 

analyses (Fig. 1D). 274 

3.2. Primary structure analyses of purified AMP 275 

The first 37 AAs from the N-terminus of the purified peptide were determined by Edman 276 

sequencing (Fig. 2A), but with some unidentified residues (X) from blank cycles. The molecular mass 277 

determined by MALDI-TOF MS was 4027.8 Da and 2014.7 as the protonated molecular ion (M+H)+ 278 

and the double charged ion (M+2H)2+, respectively (Fig. 2B upper panel). Without reduction and 279 

alkylation cysteine residues often emerge as blank cycles during amino acid sequencing because they 280 

form disulfide bonds that are important for the folding and stability of AMPs and proteins. Therefore, 281 

the purified AMP from P. pectinifera was reduced by treatment with DTT to confirm the existence of 282 

disulfide bonds. The retention time of the reduced peptide was revealed as 29.8 min, which 283 

represented a delay of about 2 min compared to the native form (Fig 2C), and the molecular mass of 284 

the reduced peptide was 4 Da higher than the native peptide (Fig. 2B lower panel). These data 285 

indicated that the purified native peptide contained four cysteine residues that formed two 286 

intramolecular disulfide bonds. Accordingly, in the deduced sequence of the AMP we replaced three 287 

X residues with cysteine residues and added an additional cysteine residue at the C-terminus: 288 

GRKGRKGVRGNPFFNCEDEFGNPGCVCDKRKGGAAVTC. This peptide was designated P. 289 

pectinifera cysteine-rich antimicrobial peptide (PpCrAMP). The theoretical molecular mass of the 290 

deduced peptide in reduced form was calculated as 4032.6 Da (M+H)+, which differed from observed 291 

molecular mass of reduced PpCrAMP by 1 Da (Fig. 2B lower panel). C-terminal amidation is a 292 

common post-translational modification of AMPs and this decreases the molecular mass by only 1 Da 293 

compared to peptides with a free carboxyl-terminus. Furthermore, glycine is a substrate for C-terminal 294 

amidation. To investigate if PpCrAMP was C-terminally amidated in this way, the AA sequence of 295 
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PpCrAMP was submitted as a query against the non-redundant protein sequences in the NCBI 296 

database using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) but no significant sequence 297 

homology with other known AMPs was observed. Therefore, we attempted to find putative transcripts 298 

encoding PpCrAMP in GenBank transcriptome shotgun assemblies (TSA) of Patiria (taxid: 35076) 299 

using BLAST. Two transcripts were found that encoded proteins identical or similar to the AA 300 

sequence of PpCrAMP: a 1,242 bp transcribed RNA (accession No. GFOQ01277783.1) and a 910 bp 301 

transcribed RNA (accession No. GAWB01039446.1) from de novo assembled transcriptomes of P. 302 

pectinifera and P. miniata, respectively (Fig. 2D). The transcripts encoded PpCrAMP or a PpCrAMP-303 

like protein with a glycine residue at its C-terminus, consistent with this residue being a substrate for 304 

amidation mediated by peptidylglycine α-amidating monooxygenase (PAM) (Eipper et al., 1991) and 305 

the mature PpCrAMP peptide having an α-amide at the C-terminus. In conclusion, the structural 306 

analyses demonstrated that PpCrAMP was a C-terminally amidated cationic AMP (with a predicted 307 

isoelectric point (pI) of 9.20; http://web.expasy.org/compute_pi/) comprising 38 AAs, which include 308 

four cysteine residues (Cys16, Cys25, Cys27 and Cys38) that form two disulfide bonds (Fig. 2D). 309 

3.3.  Determination of cysteine connectivity in native PpCrAMP 310 

The four cysteine residues in PpCrAMP could mediate three different cysteine connectivities to 311 

form two intramolecular disulfide bonds. To determine the authentic cysteine connectivity in the 312 

native peptide, we synthesized C-terminally amidated PpCrAMPs that have the three different 313 

cysteine connectivities: PpCrAMP-1 (Cys16-Cys25 and Cys27-Cys38), PpCrAMP-2 (Cys16-Cys27 and 314 

Cys25-Cys38) and PpCrAMP-3 (Cys16-Cys38 and Cys25-Cys27) corresponding to C1-C2 and C3-C4, 315 

C1-C3 and C2-C4, and C1-C4 and C2-C3, respectively (Fig. 3A). The retention time of native 316 

PpCrAMP was compared with the elution times of the synthetic peptides using RP-HPLC. Native 317 

PpCrAMP was eluted at 15.1 min in a gradient elution, which was almost identical to the retention 318 

time (14.9 min) of synthetic PpCrAMP-2. In contrast, both synthetic PpCrAMP-1 and PpCrAMP-3 319 

and the reduced form of PpCrAMP (PpCrAMPreduced) were eluted at 16.6, 16.8 and 19.1 min on the 320 

same RP-HPLC, respectively, which represented delays of 2 to 4 min compared to the native peptide 321 

(Fig. 3B). Furthermore, native PpCrAMP and synthetic PpCrAMP-2 co-eluted with isocratic RP-322 

HPLC (Fig. 3C), whereas the retention times of both synthetic PpCrAMP-1 and PpCrAMP-3 were 323 

not identical to synthetic PpCrAMP-2 (Fig. 3D and E). Collectively, these findings indicated that the 324 

four cysteine residues in native PpCrAMP formed two disulfide bonds with Cys16-Cys27 and Cys25-325 

Cys38 pairings (i.e. C1-C3, C2-C4 connectivity) and the C-terminus of native PpCrAMP was 326 

amidated. 327 

3.4. Antimicrobial activity of synthetic PpCrAMP variants 328 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://web.expasy.org/compute_pi/
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All four synthetic PpCrAMP variants exhibited antimicrobial activity against the gram-negative 329 

bacteria S. enterica and S. flexneri, with a minimal effective concentration (MEC) of 4.5 to 330 

31.4 μg/ml, and against the gram-positive bacteria B. subtilis, S. aureus, and M. luteus, with a MEC of 331 

15.6 to >250 μg/ml. However, the antimicrobial activity of synthetic PpCrAMP-2 was significantly 332 

higher than the antimicrobial activity of the other synthetic PpCrAMPs and reduced PpCrAMP (Table 333 

1). The most potent antimicrobial activity exhibited by all four synthetic PpCrAMPs was against the 334 

gram-negative bacterium S. enterica [MECs, 4.5 – 8.4 μg/ml]. However, antimicrobial activity of 335 

synthetic PpCrAMPs was barely detectable against fish pathogens and was undetectable with the 336 

fungus C. albicans. These findings demonstrated that the existence of the disulfide bonds in 337 

PpCrAMP was not critical for antimicrobial activity, but the cysteine connectivity in native PpCrAMP 338 

corresponding to C1-C3 and C2-C4 was required for maximum activity against the bacteria tested 339 

here. Interestingly, while coelomic epithelium extract showed antimicrobial activity against E. coli 340 

D31 (Fig. 1A), all four synthetic PpCrAMPs did not show antimicrobial activity against E. coli D31 341 

up to a peptide concentration of 250 μg/ml, indicating that the coelomic epithelium extract also 342 

contained other AMPs responsible for antimicrobial activity against E. coli D31. 343 

3.5.  cDNA and genomic DNA sequence encoding PpCrAMP 344 

To obtain the complete sequence of the PpCrAMP precursor protein, a cDNA encoding 345 

PpCrAMP was cloned and sequenced (accession number: MF443207). The cDNA of the PpCrAMP 346 

precursor comprised 926 bp, starting with a 5’-UTR of 81 bp, followed by an open reading frame 347 

(ORF) of 240 bp, a 3’-UTR of 605 bp containing a polyadenylation consensus sequence (AATAAA) 348 

located at 31 bp upstream of a poly(A)+ tail (Fig. 4A). The deduced AA sequence of the ORF of the 349 

PpCrAMP precursor started with a signal peptide of 21 residues, as predicted by SignalP 4.1, 350 

followed by two peptide fragments cleaved at putative dibasic cleavage site (Lys39Arg40): an N-351 

terminal prosequence (Ser22-Val38) containing several anionic AAs and mature PpCrAMP consisting 352 

of 38 AAs plus one C-terminal glycine residue (Gly41-Gly79), consistent with the structural analyses 353 

(Fig. 4B). Accordingly, these sequence data demonstrated that PpCrAMP was derived from a larger 354 

precursor protein which underwent post-translational modifications such as formation of disulfide 355 

bonds and α-amidation at the C-terminus followed by cleavage at a putative dibasic cleavage site 356 

(KR) between the anionic prosequence and the mature peptide. The genomic DNA sequence encoding 357 

PpCrAMP (accession number: MF443208) comprised two exons and one intron (Fig. 4B). The first 358 

exon comprised a 5′ UTR followed by an ORF encoding the signal peptide, the prosequence, and the 359 

first 14 AAs of mature PpCrAMP, which was followed by an 896 bp intron. The second exon 360 

comprised an ORF encoding the cysteine-rich region of PpCrAMP (25 AAs) followed by a 3′ UTR. 361 
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The classical canonical splicing recognition sequence GT/AG was present at the exon-intron 362 

junctions. 363 

BLAST analysis revealed that PpCrAMP exhibited no significant sequence homology with other 364 

known AMP precursors. However, genomic DNA sequence encoding PpCrAMP exhibited sequence 365 

similarity with genes in the sea star P. miniata (accession No. AKZP01101613), the sea star 366 

Acanthaster planci (accession No. BDGH01001773), the sea cucumber P. parvimensis (accession No. 367 

JXUT0100825), and the sea urchin S. purpuratus (accession No. AAGJ05078965) (Fig. 5A). All four 368 

genes were similar to the P. pectinifera PpCrAMP gene in containing one intron and two exons, which 369 

encoded homologs of the PpCrAMP precursor. In addition, analysis of neural transcriptome sequence 370 

data from the sea star Asterias rubens (Semmens et al., 2013; Semmens et al., 2016) revealed two 371 

transcripts encoding homologs of the PpCrAMP precursor – ArCrAMP-1 precursor (accession 372 

number: MG711458) and ArCrAMP-2 precursor (accession number: MG711459). A multiple 373 

alignment of the PpCrAMP precursor with homologs identified in other echinoderms is shown in Fig. 374 

5B. The PpCrAMP precursor shared 96.2% AA identity with the homolog from the sea star P. 375 

miniata, 53.6% AA identity with the homolog from the sea star A. planci, 45.7% and 46.6% identity 376 

with the two homologs from the sea star A. rubens, 43.1% AA identity with the homolog from the sea 377 

urchin S. purpuratus, and 34.3% AA with the homolog from the sea cucumber P. parvimensis. 378 

Collectively, these data indicated that PpCrAMP was the prototype for a novel family of cysteine-rich 379 

AMPs that occur in echinoderms.  380 

 381 

3.6. RT-qPCR analysis for PpCrAMP mRNA 382 

To compare expression levels of PpCrAMP transcript in various sea star tissues and post immune 383 

challenge, the relative expression levels of the PpCrAMP precursor transcript in different tissues 384 

(coelomic epithelium, coelomocytes, gonad, oral hemal ring, pyloric caeca, stomach, and tube feet) of 385 

P. pectinifera were determined by RT-qPCR using sequence specific primers targeting the PpCrAMP 386 

coding region. An EF1α gene was used as an invariant control and for comparison of relative 387 

expression between transcripts (Kim et al., 2016). The results showed that the highest expression level 388 

of PpCrAMP precursor transcripts was detected in the tube feet and the coelomic epithelium, which 389 

was the original source of PpCrAMP in this study, followed by moderate expression levels in the oral 390 

hemal ring (including Tiedemann’s bodies), and the stomach (Fig. 6A). These findings indicated that 391 

the coelomic epithelium and the tube feet were the major tissues/organs that produced PpCrAMP in P. 392 

pectinifera. Accordingly, these two tissues were selected to determine whether acute changes in the 393 

abundance of PpCrAMP precursor transcript occur after bacterial challenge. However, no significant 394 
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changes in PpCrAMP precursor expression were observed at different times after the bacterial 395 

challenge (Fig. 6B). 396 

  397 
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4. Discussion 398 

Few AMPs have been identified in echinoderms to date. Strongylocins and centrocins were first 399 

isolated from coelomocytes of the green sea urchin (S. droebachiensis) and related peptides 400 

(SpStronylocins 1 and 2) were then discovered and characterized in the purple sea urchin 401 

(S. purpuratus) and the edible sea urchin (E. esculentus) (Li et al., 2010a; Li et al., 2010b; Li et al., 402 

2008; Solstad et al., 2016). These are cationic peptides that exhibit antimicrobial activity against both 403 

gram-positive and gram-negative bacteria (Li et al., 2010a; Li et al., 2008). Strongylocins with six 404 

cysteine residues forming three intramolecular disulfide bonds show a cysteine arrangement pattern 405 

different from any known cysteine-rich AMPs with six cysteine residues and have post-translational 406 

modifications such as a brominated tryptophan (Li et al., 2008). Centrocins have a heterodimeric 407 

structure, containing a heavy chain (30 AAs) and a light chain (12 AAs), and also have a brominated 408 

tryptophan (Li et al., 2010b). Thus, AMPs isolated from echinoderm species, including strongylocins 409 

and centrocins, have distinct structures compared to those that have been isolated from vertebrates and 410 

protostomes. Here we report the purification from an extract of the coeleomic epithelium of the sea 411 

star P. pectinifera of a novel AMP designated PpCrAMP, which contains four cysteine residues that 412 

form two disulfide bonds and which has a amidated C-terminal cysteine (Fig. 2 and 3).  413 

Cysteine-rich AMPs represent the most diverse and widely distributed family of AMPs in the 414 

animal kingdom. Depending on the number of cysteine residues (mostly between 2 to 8) and their 415 

paring, cysteine-rich AMPs are classified into three groups: a β-sheet conformation with triple strands, 416 

a β-hairpin-like structure, and a mixed α-helix/β-sheet conformation (Bulet et al., 2004). Among these 417 

three groups of peptides, AMPs containing four cysteine residues that form two disulfide bonds have 418 

been identified in arthropods and pigs (Fig. 7): tachyplesin and polypemusin from the horseshoe crab 419 

Tachypleus tridentatus and Limulus polyphemus (Miyata et al., 1989; Nakamura et al., 1988), 420 

respectively, gomesin from the spider Acanthoscuria gomesiana (Silva et al., 2000), androctonin from 421 

the scorpion Androctonus australis (Ehret-Sabatier et al., 1996), and protegrin from porcine 422 

leukocytes (Storici and Zanetti, 1993). Moreover, with exception of androctonin, all of these peptides 423 

are amidated at the C-terminus and their cysteine connectivity is C1-C4 and C2-C3 (Fahrner et al., 424 

1996; Laederach et al., 2002; Mandard et al., 2002). In contrast, the novel AMP identified here in the 425 

sea star P. pectinifera, PpCrAMP, has two disulfide bonds with C1-C3 and C2-C4 connectivity.  426 

The antimicrobial activity of synthetic PpCrAMP, with C1-C3 and C2-C4 cysteine connectivity 427 

(PpCrAMP-2), is identical to that of the native peptide, and synthetic PpCrAMP-2 exhibits the most 428 

potent activity against both gram-positive and gram-negative bacteria compared with other synthetic 429 

variants. Investigation of the importance of the disulfide bonds in cysteine-rich antimicrobial peptides 430 
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with two disulfide bonds demonstrates that the peptides require the correct disulfide bond 431 

configuration to adopt a conformation such as the β-hairpin-like structure and to retain full bioactivity 432 

(Laederach et al., 2002; Mani et al., 2005; Muhle and Tam, 2001; Rao, 1999). The β-hairpin-like 433 

structure consists of two antiparallel β-strands stabilized by a disulfide bond, linked by a short loop of 434 

two to five amino acids (Panteleev et al., 2015). The β-hairpin-like structure that is essential for the 435 

activity seen in cysteine-rich AMPs (e.g. tachyplesin-I and protegrin-I) is consistent with the predicted 436 

consensus secondary structure of PpCrAMP (Fig. 7). Analysis of the sequence of PpCrAMP using the 437 

NPS@ server indicates that PpCrAMP is likely to adopt a β-hairpin-like structure consisting of two 438 

extended β-strands (residues 25-28 and 35-37) linked by a random coil region. Therefore, the potent 439 

antimicrobial activity of synthetic PpCrAMP-2 may reflect the disulfide bond connectivity that 440 

establishes the most stable structure. Further investigation of the relationship between conformation 441 

and antimicrobial activity of PpCrAMP will be required to address this issue. Homologs of PpCrAMP 442 

identified in other echinoderms also have four cysteine residues in equivalent positions but C-terminal 443 

amidation appears not to be a generic characteristic. For example, the two PpCrAMP-type proteins 444 

identified in the sea star A. rubens do not have C-terminal glycine residue that could provide a 445 

substrate for C-terminal amidation.   446 

The PpCrAMP gene contains an intron that interrupts the region of the open reading frame 447 

encoding the mature PpCrAMP, with one exon encoding the N-terminal domain and another exon 448 

encoding the C-terminal domain that contains four cysteine residues. Orthologous genes in other 449 

echinoderm species, including the sea curcumber P. parvimensis and the sea urchin S. purpuratus, 450 

have the same intron/exon structure (Fig. 4 and 5). Although the organization of genes encoding 451 

cysteine-rich AMPs is very diverse, the peptides are classified in the same structural scaffold group 452 

based upon size, cysteine pattern and function, revealing links between the AMPs found in vertebrates 453 

and those found in invertebrates (Charlet et al., 1996; Froy, 2005). Nothing is known about the 454 

occurrence of PpCrAMP-like proteins in other phyla. However, the occurrence of PpCrAMP-type 455 

proteins in echinoderms, a phylum that occupies an “intermediate” position with respect to the 456 

deuterostome invertebrates, which include two chordate subphyla that are closely related to 457 

vertebrates and the Ambulacraria, and protostome invertebrates, indicates there is a possibility of the 458 

presence of orthologous genes and proteins related to defense in deuterostome invertebrates as well as 459 

protostomes.  460 

Analysis of the expression of the PpCrAMP precursor transcripts in P. pectinifera using qPCR 461 

reveals that the coelomic epithelium and the tube feet are a major source of PpCrAMP. This is  462 

consistent with our recent finding that the coelomic epithelium and the tube feet are grouped in a 463 
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tissue/organ cluster with a related biological functions based on an evaluation of differentially 464 

expressed genes in P. pectinifera using de novo transcriptome data (BioProject accession: 465 

PRJNA371229) (Kim et al., 2017). The coelomic epithelium is a tissue layer that lines the aboral 466 

inner surface of the body wall of sea star. It appears to be a unique tissue with many features of an 467 

“ancient multifunctional organogenetic tissue”, which is involved not only in common epithelial 468 

functions, but also in a range of important biological processes such as wound healing, regeneration, 469 

and haematopoiesis (Bossche and Jangoux, 1976; Holm et al., 2008). The absence of change in the 470 

expression levels of the PpCrAMP precursor transcripts after immune challenge suggests that 471 

PpCrAMP may contribute to innate immune defense in an indirect manner. Recent study on the 472 

neuropeptide NDA-1, which was secreted in sensory and ganglion of the ectodermal epithelium of the 473 

model organism Hydra during early development, surprisingly shows antimicrobial activity that may 474 

affect microbiome composition on the body surface (Augustin et al., 2017). PpCrAMP may also 475 

contribute to endocrine system with antimicrobial activity in a similar manner on the body surface.   476 

In conclusion, PpCrAMP, the cysteine-rich AMP isolated from the coelomic epithelium of the 477 

sea star P. pectinifera, is the first reported sea star AMP. This study increases our knowledge of AMPs 478 

that are involved in the innate immune system of sea star and other echinoderm species and may lead 479 

to the discovery of homologs that are involved in immune mechanisms of other animal types. 480 

Furthermore, PpCrAMP along with AMPs isolated from other echinoderms may provide a framework 481 

for development of novel antimicrobial drugs. 482 
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Figure legends 619 

Fig. 1. Isolation of an AMP from an extract of coelomic epithelium of the sea star P. pectinifera. (A) 620 

Antimicrobial activity of the crude and the trypsin treated extract against B. subtilis KCTC 1021 and 621 

E. coli D31 is shown. (B) Fractionation of the crude extract by cation-exchange HPLC reveals an 622 

active peak (downward arrow) is eluted with 0.6 M sodium chloride. (C). A single absorbance peak 623 

(peak A) responsible for the antimicrobial activity against B. subtilis was obtained in the second RP-624 

HPLC step. (D) Peak A was isolated through RP-HPLC with isocratic elution in 22% 625 

acetonitrile/0.1% TFA. 626 

Fig. 2. Primary structure determination of purified AMP. (A) N-terminal 37 amino acid residues of 627 

purified peak A was determined by Edman degradation. (B) The retention times of the native peptide 628 

and the reduced peptide (after treatment 0.1 M DTT) on RP-HPLC were compared. (C). MALDI-TOF 629 

MS analysis of the native peptide and the reduced peptide showed a 4 Da difference in molecular 630 

mass consistent with the presence of two disulfide bonds. (D). Complete primary structure of purified 631 

peak A designated P. pectinifera cysteine-rich AMP (PpCrAMP) comprised 38 AAs with C-terminal 632 

α-amidation and was compared with sequences derived from transcriptome data obtained from P. 633 

pectinifera and P. miniata. 634 

Fig. 3. Determination of the disulfide bond cysteine connectivity of native PpCrAMP (A) Structures 635 

of four PpCrAMP variants with three different disulfide bond connectivities or without disulfide 636 

bonds are shown. (B) The retention times of native PpCrAMP and synthetic variants were compared 637 

using RP-HPLC with a linear gradient of 20% to 30% acetonitrile/0.1% TFA over 20 min. (C) Native 638 

PpCrAMP co-elutes with synthetic PpCrAMP that has a C1-C3 and C2-C4 connectivity using RP-639 

HPLC under isocratic conditions with 23% acetonitrile/0.1% TFA. (D) Synthetic PpCrAMP-1 and 640 

PpCrAMP-3 co-elute under the same conditions as in (C). (E) Synthetic PpCrAMP-1 and PpCrAMP-641 

2 do not co-elute under the same conditions as in (C).  642 

Fig. 4. Sequence and structural features of the P. pectinifera PpCrAMP precursor. (A) Schematic 643 

showing the structure of a cDNA encoding the PpCrAMP precursor protein is shown. (B) DNA 644 

sequence of the gene encoding the PpCrAMP precursor protein, which comprises two exons (upper 645 

case) separated by an intron (lowercase) is shown. The canonical splicing recognition sequence 646 

GT/AG and the polyadenylation signal site are shadow boxed and underlined, respectively. The amino 647 

acid sequence of the precursor is shown below the coding sequence, with the predicted signal peptide, 648 

anionic prosequence and purified mature PpCrAMP shown in blue, black, and red, respectively, and a 649 

putative dibasic cleavage site (KR) shown in green. A glycine residue that provides a substrate for C-650 

terminal amidation is boxed and the stop codon is indicated with an asterisk. The sequences of the 651 
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cDNA and genomic DNA encoding the PpCrAMP precursor are accessible from GenBank under 652 

accession numbers MF443207 and MF443208, respectively. 653 

Fig. 5. Comparison of the gene structure and sequences of PpCrAMP-type proteins in echinoderms 654 

(A). The structure of the gene encoding PpCrAMP in the sea star P. pectinifera with related genes in 655 

the sea star P. miniata and A. planci, the sea cucumber P. parvimensis, and the sea urchin S are 656 

compared. purpuratus: (B) Sequence alignment of P. pectinifera PpCrAMP with PpCrAMP-like 657 

peptides from other echinoderms.   658 

Fig. 6. Quantitative analysis of basal expression of PpCrAMP precursor transcripts in various 659 

organs/tissues (A) and after immune challenge in the coelomic epithelium and the tube feet (B) from 660 

P. pectinifera. The relative expression levels of PpCrAMP transcripts in each organ/tissue were 661 

normalized against the level of the EF1α gene as an internal control. Means ± standard deviation 662 

(n=3) are shown. Means denoted by the same letter did not differ significantly (p > 0.05) while 663 

different letters (a, b, c, d) at the top of the bars indicate statistically significant differences (p < 0.05) 664 

between tissues determined by one-way ANOVA followed by Duncan’s Multiple Range test.  665 

Fig. 7. Comparison of amino acid sequence and cysteine array of P. pectinifera PpCrAMP to 666 

vertebrate and invertebrate cysteine-rich AMPs that have four cysteine residues forming two disulfide 667 

bonds and adopting β-hairpin-like structure. PpCrAMP is compared with (i) tachyplesin-I and (ii) 668 

polyphemusin-I from the horseshoe crabs T. tridentatus and L. polyphemus, respectively (Miyata et 669 

al., 1989; Nakamura et al., 1988); (iii) gomesin from the spider A. gomesiana (Silva et al., 2000); (iv) 670 

androctonin from the scorpion A. australis (Ehret-Sabatier et al., 1996); (v) protegrin from from 671 

porcine leukocytes (Storici and Zanetti, 1993). Lowercase (a) at the C-terminus of peptides and 672 

lowercase (p) at the N-terminus of peptides indicate a C-terminal α-amide and pyroglutamate, 673 

respectively. Predicted consensus secondary structure of PpCrAMP using NPS@ server is shown 674 

below the amino acid sequence. Lowercase c (orange) and e (blue) indicate random coil and extended 675 

strand, respectively.  676 

  677 
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Table legend 678 

Table 1. Antimicrobial activity against various microbial strains of synthetic PpCrAMPs, including 679 

the reduced peptide and peptides with three different combinations of two disulfide bonds   680 
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Supplementary table legend 681 

Supplementary Table S1. Designations and nucleotide sequences of the primers used in this study  682 
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Figure 1. 683 
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Figure 2. 685 
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Figure 3. 687 
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Figure 4. 689 
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Figure 5. 692 
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Figure 6. 694 
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Figure 7.  696 

697 
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Table 1. Antimicrobial activity against various microbial strains using synthetic PpCrAMPs, including 698 

a reduced linear peptide and peptides with two disulfide bonds in three different configurations 699 

 Microbe 
aMinimal effective concentration (μg/ml) 

PpCrAMP-1 PpCrAMP-2 PpCrAMP-3 PpCrAMPred. 
Gram-positive     

Bacillus subtilis KCTC1021 33.8 22.9 38.3 42.3 

Staphylococcus aureus KCTC1621 32.1 15.6 41.2 91.2 

Micrococcus luteus KCTC1071 >250 153 >250 82.9 

Gram-negative     

Escherichia coli D31 bND ND ND ND 
Salmonella enterica ATCC13311 8.0 4.5 8.1 8.4 

Shigella flexneri KCTC2517 29.8 12.2 31.4 24.2 

Marine bacterium (gram-
positive) 

    

Streptococcus iniae FP5229 ND ND ND ND 

Marine bacteria (gram-
negative) 

    

Aeromonas hydrophila KCTC2358 ND 107.2 ND ND 

Edwardsiella tarda NUF251 ND ND ND ND 

Vibrio parahaemolyticus 
KCCM41664 

ND >250 ND ND 

Fungus     

Candida albicans KCTC9765 ND ND ND ND 
aAntimicrobial assay were performed in triplicates and the results were averaged. 700 

bND means not detected in the range of the concentrations tested up to 250 μg/ml of peptides  701 
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Supplementary Table S1. Designations and nucleotide sequences of the primers used in this study 702 

Primers Nucleotide sequence (5’→3’) Usage 
GSP-F1 GGTGTCAGGGGCAATCCTTT  
GSP-F2 CAACTGTGAAGACGAGTTCGG cDNA cloning 
GSP-R GCATGTACTTAGCCGCAGG  
Gene F AACTCGCCTCTCCGCAAAA 

Gene cloning Gene R ACTAGGCCAGATGTGAGCAG 
PpCrAMP qPCR-F GGTGTCAGGGGCAATCCTTT 

RT-qPCR 
PpCrAMP qPCR-R GGCTCCACCCTTCCTTTTGT 
EF1α qPCR-F TCAACGACTACCAGCCCCTA 
EF1α qPCR-R TTCTTGCTAGCCTTCTGGGC 

703 
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Highlights 

 A novel cysteine-rich AMP (PpCrAMP) is identified from the starfish Patiria pectinifera. 

 PpCrAMP adopts two disulfide bonds with Cys16-C27 and Cys25-Cys38 pairings. 

 PpCrAMP transcripts are highly expressed in the tube feet and the coelomic epithelium. 

 PpCrAMP gene contains an intron. 

 PpCrAMP exhibits antimicrobial activity to different bacteria. 

 


