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Abstract. We show that the dual character of the flagged Weyl module of

any diagram is a positively weighted integer point transform of a generalized
permutahedron. In particular, Schubert and key polynomials are positively

weighted integer point transforms of generalized permutahedra. This implies

several recent conjectures of Monical, Tokcan and Yong.
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1. Introduction

Schubert polynomials and key polynomials are classical objects in algebraic
combinatorics. Schubert polynomials, introduced by Lascoux and Schützenberger
in 1982 [13], represent cohomology classes of Schubert cycles in flag varieties.
Key polynomials, also known as Demazure characters, are polynomials associated
to compositions. Key polynomials were first introduced by Demazure for Weyl
groups [6], and studied in the context of the symmetric group by Lascoux and
Schützenberger in [14,15].

Schubert and key polynomials play an important role in algebraic combinatorics
[2,3,9,11,21]. The second author and Escobar [8] showed that for permutations 1π′

where π′ is dominant, Schubert polynomials are specializations of reduced forms in
the subdivision algebra of flow and root polytopes. On the other hand, intimate
connections of flow and root polytopes with generalized permutahedra have been
exhibited by Postnikov [20], and more recently by the last two authors [18]. These
works imply that for permutations 1π′ where π′ is dominant, the Schubert polyno-
mial S1π′(x) is equal to the integer point transform of a generalized permutahedron
[18].

Using realizations of Schubert polynomials and key polynomials as dual char-
acters of a certain module [16, 21], the main result of this paper proves that the
Newton polytope of any Schubert or key polynomial is a generalized permutahe-
dron, and that any such polynomial equals a sum over the lattice points of its
Newton polytope with positive integral coefficients.

After reviewing the necessary background, we prove our main theorem and draw
corollaries about Schubert and key polynomials, confirming several recent conjec-
tures of Monical, Tokcan and Yong [19].
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2. Background

This section contains a collection of definitions and facts relevant to the main
result of this paper. Our basic notions are Schubert polynomials, key polynomials,
Newton polytopes, generalized permutahedra, (Schubert) matroids, and flagged
Weyl modules.

2.1. Schubert polynomials. The Schubert polynomial of the longest permuta-
tion w0 = n n−1 · · · 2 1 ∈ Sn is

Sw0
:= xn−1

1 xn−2
2 · · ·xn−1.

For w ∈ Sn, w 6= w0, there exists i ∈ [n− 1] such that w(i) < w(i+ 1). For any
such i, the Schubert polynomial Sw ([13]) is defined as

Sw(x1, . . . , xn) := ∂iSwsi(x1, . . . , xn),

where ∂i is the ith divided difference operator

∂i(f) :=
f − sif
xi − xi+1

and si = (i, i+ 1).

Since the ∂i satisfy the braid relations, the Schubert polynomials Sw are well-
defined.

2.2. Key polynomials. A composition α is a sequence of nonnegative integers
(α1, α2, . . .) with

∑∞
k=1 αk < ∞. If α is weakly decreasing, define the key poly-

nomial κα ([7]) to be
κα = xα1

1 xα2
2 · · · .

Otherwise, set

κα = ∂i (xiκα̂) where α̂ = (α1, . . . , αi+1, αi, . . .) and αi < αi+1.

It is an important fact due to Lascoux and Schützenberger [14] that every Schubert
polynomial is a sum of key polynomials.

2.3. Diagrams. View [n]2 as an n by n grid of boxes labeled (i, j) in the same way
as entries of an n×n matrix, with labels increasing as you move top to bottom along
columns and left to right across rows from the upper-left corner. By a diagram,
we mean a subset D ⊆ [n]2, a collection of boxes in the n × n grid. Throughout
this paper, we view D as an ordered list of subsets D = (D1, D2, . . . , Dn) where for
each j, Dj = {i : (i, j) ∈ D} is the set of row indices of boxes of D in column j.
Two important classes of diagrams are Rothe diagrams and skyline diagrams.

Definition 1 ([17]). The Rothe diagram of a permutation π ∈ Sn is the collection
of boxes D(π) = {(i, j) : 1 ≤ i, j ≤ n, π(i) > j, π−1(j) > i}. D(π) can be visualized
as the set of boxes left in the n× n grid after you cross out all boxes weakly below
or right of (i, π(i)) for each i ∈ [n]. Let D(π)j = {i : (i, j) ∈ D(π)} for each j, so
D(π) = (D(π)1, . . . , D(π)n).

See Figure 1 for an example of a Rothe diagram.

Definition 2 ([10, 19]). If α = (α1, α2, . . .) is a composition, let l = max{i :
αi 6= 0} and n = max{l, α1, . . . , αl}. The skyline diagram of α is the diagram
D(α) ⊆ [n]2 containing the first αi boxes in row i for each i ∈ [n]. More specifically,
D(α) = (D(α)1, . . . , D(α)n) with D(α)j = {j ≤ n : αj ≥ j} for each j.

See Figure 2 for an example of a skyline diagram.
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Figure 1. The Rothe diagram of π = 41532 is ({1}, {1, 3, 4}, {1, 3}, ∅, ∅).

Figure 2. The skyline diagram of α = (3, 2, 1, 0, 1) is ({1, 2, 3, 5}, {1, 2}, {1}, ∅, ∅).

2.4. Newton polytopes and generalized permutahedra. If f is a polynomial
in a polynomial ring whose variables are indexed by some set I, the support of f
is the lattice point set in RI consisting of the exponent vectors of the monomials
that have nonzero coefficient in f . The Newton polytope Newton(f) ⊆ RI is
the convex hull of the support of f . Following the definition of [19], we say that a
polynomial f has saturated Newton polytope (SNP) if every lattice point in
Newton(f) is a vector in the support of f .

Our main objects of study are the supports of Schubert and key polynomials.
We prove that these polynomials have SNP and that their Newton polytopes are
generalized permutahedra, which we define next.

The standard permutahedron is the polytope in Rn whose vertices consist of
all permutations of the entries of the vector (0, 1, . . . , n − 1). Following the defi-
nition of [20], a generalized permutahedron is a deformation of the standard
permutahedron obtained by translating the vertices in such a way that all edge di-
rections and orientations are preserved (edges are allowed to degenerate to points).
Generalized permutahedra are parametrized by certain collections of real numbers
{zI} indexed by nonempty subsets I ⊆ [n]. Given {zI}, the associated generalized
permutahedron is given by

P zn({zI}) =

{
t ∈ Rn :

∑
i∈I

ti ≥ zI for I 6= [n], and

n∑
i=1

ti = z[n]

}
.

Postnikov initiated the study of these fascinating polytopes in [20], and they have
since been studied extensively. An important note is that the class of generalized
permutahedra is closed under Minkowski sums. This follows from [1, Lemma 2.2]:

P zn({zI}) + P zn({z′I}) = P zn({zI + z′I}).

2.5. Schubert matroids. A matroid M is a pair (E,B) consisting of a finite
set E and a nonempty collection of subsets B of E, called the bases of M . B is
required to satisfy the basis exchange axiom: If B1, B2 ∈ B and b1 ∈ B1 − B2,
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then there exists b2 ∈ B2 −B1 such that B1 − b1 ∪ b2 ∈ B. By choosing a labeling
of the elements of E, we can always assume E = [n] for some n.

Definition 3 ([4], Section 2.4). Fix positive integers 1 ≤ s1 < · · · < sr ≤ n. The
sets {a1, . . . , ar} of positive integers with a1 < · · · < ar such that a1 ≤ s1, . . . , ar ≤
sr are the bases of a matroid, called the Schubert matroid SMn(s1, . . . , sr)

2.6. Matroid polytopes. Given a matroid M = (E,B) with E = [n] and a basis
B ∈ B, let ζB be the indicator vector of B. That is, let ζB = (ζB1 , . . . , ζ

B
n ) ∈ Rn

with ζBi = 1 if i ∈ B and ζBi = 0 if i /∈ B for each i. The matroid polytope of
M is the polytope

P (M) = Conv{ζB : B ∈ B}.

The rank function of M is the function

rM : 2E → Z≥0

defined by rM (S) = max{#(S ∩ B) : B ∈ B}. The sets S ∩ B where S ⊆ [n] and
B ∈ B are called the independent sets of M .

Matroid polytopes are actually a subclass of generalized permutahedra and admit
the parametrization

P (M) = P zn ({rM (E)− rM (E\I)}I⊆E)

=

{
t ∈ Rn :

∑
i∈I

ti ≤ rM (I) for I 6= E, and
∑
i∈E

ti = rM (E)

}
.

See [22, Corollary 40.2d] for a proof.

Remark. It is unconcerning that the presentation of P (M) here uses ≤ inequalities
whereas Postnikov’s definition of P zn{zI} above uses ≥, as any inequality in the
definition can be flipped by exploiting the equality t1 + · · ·+ tn = z[n].

The following two lemmas about matroid polytopes are crucial to the proof of
Theorem 11.

Lemma 4. Let M1,M2, . . . ,Mn be matroids and let Q be the Minkowski sum Q =
P (M1) + · · · + P (Mn). Then, every integral point q ∈ Q can be written as q =
p1 + · · ·+ pn, where pi is an integral point of P (Mi) for each i.

Lemma 4 is an easy consequence of the analogous result for integral polymatroids,
see for instance [22, Corollary 46.2c]. Lemma 5 below is well-known, but we give a
proof for completeness.

Lemma 5. For any matroid M on E, the only integral points of the matroid
polytope P (M) are its vertices.

Proof. Let P (M) have vertices v1, . . . , vm ∈ Rn corresponding to bases B1, . . . , Bm,
and assume q = (q1, . . . , qn) ∈ P (M) is an integral point that is not a vertex. Then,
q can be written q =

∑m
i=1 λivi with 0 ≤ λi ≤ 1 for all i and

∑m
i=1 λi = 1. It follows

from a characterization of matroid polytopes [5, Theorem 1.11.1] that every face
of a matroid polytope is also a matroid polytope, so there is no loss of generality
in assuming that q lies in the interior of P (M). In particular, this implies that all
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λi are positive. Note that since q is integral, if qj 6= 0 for some j then qj = 1. It
follows that for any j, qj > 0 if and only if j ∈ Bi for all i. This implies that

n∑
i=1

qi = #(B1 ∩ · · · ∩Bm) < #B1 = rM (E),

contradicting that q ∈ P (M). �

2.7. Flagged Weyl modules. Let G = GL(n,C) be the group of n×n invertible
matrices over C and B be the subgroup of G consisting of the n×n upper-triangular
matrices. The flagged Weyl module is a representation MD of B associated to a
diagram D. We use the construction of MD in terms of determinants given in [16].

Denote by Y the n × n matrix with indeterminants yij in the upper-triangular
positions i ≤ j and zeros elsewhere. Let C[Y ] be the polynomial ring in the in-
determinants {yij}i≤j . Note that G acts on C[Y ] on the right via left translation:
if f(y) ∈ C[Y ], then a matrix g ∈ G acts on f by f(y) · g = f(g−1y). For any
R,S ⊆ [n], let Y SR be the submatrix of Y obtained by restricting to rows S and
columns R.

For R,S ⊆ [n], we say R ≤ S if #R = #S and the kth least element of R does
not exceed the kth least element of S for each k. For any diagrams C = (C1, . . . , Cn)
and D = (D1, . . . , Dn), we say C ≤ D if Cj ≤ Dj for all j ∈ [n].

Definition 6. For a diagram D = (D1, . . . , Dn), the flagged Weyl module MD

is defined by

MD = SpanC


n∏
j=1

det
(
Y
Cj

Dj

)
: C ≤ D

 .

MD is a B-module with the action inherited from the action of B on C[Y ].

Note that since Y is upper-triangular, the condition C ≤ D is technically un-

ncessary since det
(
Y
Cj

Dj

)
= 0 unless Cj ≤ Dj .

Flagged Weyl modules of diagrams are related to Schubert and key polynomials
through their dual characters. Let N be any B-module, and X ∈ B the diagonal
matrix with entries x1, . . . , xn ∈ C. Since X acts on N via the B-action, X can be
viewed as a map of C-vector spaces X : N → N .

Definition 7. The character of a B-module N is defined as the trace of X viewed
as a linear map on N :

char(N)(x1, . . . , xn) = tr (X : N → N)

Similarly, the dual character of N is the character of the dual module N∗:

char∗(N)(x1, . . . , xn) = tr (X : N∗ → N∗)

= char(N)(x−1
1 , . . . , x−1

n ).

3. Newton Polytopes of Dual Characters of Flagged Weyl Modules

In this section, we prove the main results of this paper, obtaining the Newton
polytopes and Schubert and key polynomials by considering the dual characters
of flagged Weyl modules. We begin with the results connecting Schubert and key
polynomials to flagged Weyl modules.
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Theorem 8 ([12]). Let w ∈ Sn be a permutation, D(w) be the Rothe diagram of
w, and MD(w) be the associated flagged Weyl module. Then,

Sw(x1, . . . , xn) = char∗MD(w).

Theorem 9 ([7]). Let α be a composition, D(α) be the skyline diagram of α,
and MD(α) be the associated flagged Weyl module. If l = max{i : αi 6= 0} and
n = max{α1, . . . , αl, l}, then

κα(x1, . . . , xn) = char∗MD(α).

Definition 10. For a diagram D ⊆ [n]2, let χD = χD(x1, . . . , xn) be the dual
character

χD = char∗MD.

Theorem 11. Let D = (D1, . . . , Dn) be a diagram. Then χD has SNP, and the
Newton polytope of χD is the Minkowski sum of matroid polytopes

Newton(χD) =

n∑
j=1

P (SMn(Dj)).

In particular, Newton(χD) is a generalized permutahedron.

Proof. Let X ∈ B be a diagonal matrix with diagonal entries x1, x2, . . . , xn ∈ C.
First, note that by matrix multiplication, yij is an eigenvector of X with eigen-

value x−1
i . Take a diagram C = (C1, . . . , Cn) with C ≤ D. Then, the element∏n

j=1 det
(
Y
Cj

Dj

)
is an eigenvector of X with eigenvalue

n∏
j=1

∏
i∈Cj

x−1
i .

Since MD is spanned by elements
∏n
j=1 det

(
Y
Cj

Dj

)
and each is an eigenvector of

D, the monomials appearing in the dual character χD with nonzero coefficient are
exactly 

n∏
j=1

∏
i∈Cj

xi : C ≤ D

 .

For a diagram C = (C1, . . . , Cn), define a vector ξC = (ξC1 , . . . , ξ
C
n ) by setting

ξCi = #{j : i ∈ Cj} for each i. The exponent vector of
∏n
j=1

∏
i∈Cj

xi is exactly

ξC , so the support of χD is precisely the set
{
ξC : C ≤ D

}
.

However, for each j ∈ [n], the sets S ⊆ [n] with S ≤ Dj are exactly the bases
of the Schubert matroid SMn(Dj). In particular, choosing a diagram C ≤ D is
equivalent to picking a basis Cj of SMn(Dj) for each j ∈ [n]. If ζCj is the indicator
vector of Cj , then comparing components shows

ξC =

n∑
j=1

ζCj .

This shows that each vector ξC is a sum consisting of a vertex from each matroid
polytope P (SMn(Dj)) for j ∈ [n]. Conversely, given any sum

∑n
j=1 ζ

Bj of a vertex

ζBj from each P (SMn(Dj)), let C = (B1, . . . , Bn). Since each Bj is a basis of



SCHUBERT POLYNOMIALS VIA GENERALIZED PERMUTAHEDRA 7

SMn(Dj), C ≤ D. Thus, ξC =
∑n
j=1 ζ

Cj is in the support of χD.

Consequently,

Newton(χD) =

n∑
j=1

P (SMn(Dj)).(1)

To prove that χD has SNP, it remains to show that every integral point q in
Newton(χD) is in the support of χD. By (1), q is an integral point of a Minkowski
sum of matroid polytopes, so by Lemmas 4 and 5, q can be written as a sum
consisting of one vertex from each P (SMn(Dj)). As shown above, this is precisely
what it means for q to be in the support of χD. �

Corollary 12. The support of any Schubert polynomial Sw or key polynomial κα
equals the set of lattice points of a generalized permutahedron.

This confirms Conjectures 3.10 and 5.1 of [19], namely that key polynomials
and Schubert polynomials have SNP. We now confirm Conjectures 3.9 and 5.13
of [19], which give a conjectural inequality description for the Newton polytopes
of Schubert and key polynomials. We state this description and match it to the
Minkowski sum description proven in Theorem 11.

Let D ⊆ [n]2 be any diagram with columns Dj = {i : (i, j) ∈ D} for j ∈ [n].
Let I ⊆ [n] be a set of row indices and j ∈ [n] a column index. Construct a
string wordj,I(D) by reading column j of the n by n grid from top to bottom and
recording

• ( if (i, j) /∈ D and i ∈ I;
• ) if (i, j) ∈ D and i /∈ I;
• ? if (i, j) ∈ D and i ∈ I.

Let θjD(I) = #paired ()’s in wordj,I(D) + # ? ’s in wordj,I(D), and set

θD(I) =

n∑
j=1

θjD(I).

Definition 13 ([19]). For any diagram D ⊆ [n]2, define the Schubitope SD by

SD =

{
(α1, . . . , αn) ∈ Rn≥0 :

n∑
i=1

αi = #D and
∑
i∈I

αi ≤ θD(I) for all I ⊆ [n]

}
.

Theorem 14. Let D be a diagram D ⊆ [n]2 with columns Dj = {i : (i, j) ∈ D} for
each j ∈ [n]. The Schubitope SD equals the Minkowski sum of matroid polytopes

SD =

n∑
j=1

P (SMn (Dj)).

Proof. Let rj be the rank function of the matroid SMn(Dj). By [1, Lemma 2.2],
the Minkowski sum

∑n
j=1 P (SMn (Dj)) equals(α1, . . . , αn) ∈ Rn≥0 :
∑
i∈[n]

αi =

n∑
j=1

rj([n]) and
∑
i∈I

αi ≤
n∑
j=1

rj(I) for all I ⊆ [n]

 .

Thus, it is sufficient to prove that θjD(I) = rj(I) for each j ∈ [n] and I ⊆ [n]. Fix
I and j, and let wordj,I(D) have p paired ()’s and q ?’s.
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First, note that Dj is a basis of SMn(Dj). Let B be any basis of SMn(Dj)
and pick elements r1 and r2 with r1 /∈ B, r2 ∈ B, and r1 < r2. Consider the set
B′ = B\{r2} ∪ {r1}. Then B′ ≤ B ≤ Dj , so B′ is also a basis of SMn(Dj). Using
this observation, we build a decreasing sequence of bases Dj ≥ B1 ≥ · · · ≥ Bp.

Order the set of paired ()’s in wordj,I(D) from 1 to p. For the first pair, we get
two grid squares (r1, j) and (r2, j) with r1 < r2, r1 ∈ I\Dj , and r2 ∈ Dj\I. Define
B1 to be the basis Dj\{r2} ∪ {r1}.

Inductively, the ith set of paired ()’s in wordj,I(D) gives two grid squares (r1, j)
and (r2, j) with r1 < r2, r1 ∈ I\Bi−1, and r2 ∈ (Bi−1 ∩Dj)\I. Define Bi to be the
basis Bi−1\{r2} ∪ {r1}.

By construction, #(I ∩Bp) = p+ #(I ∩Dj) = p+ q. The proof will be complete
if we can show I ∩ Bp is a maximal independent subset of I. If not, there is some
k ∈ I\Bp and l ∈ (Bp ∩Dj)\I such that Bp\{l} ∪ {k} is a basis. If k < l, then k
and l correspond to a () in wordj,S(D), so k ∈ Bp already, a contradiction. If k > l,
then in wordj,S(D), k and l correspond to a subword )( where neither parenthesis
was paired. Then, the position of l in Bp is the same as the original position of l
in Dj , since it cannot have been changed by any of the swaps. In this case, k > l
implies B\{l} ∪ {k} is not a basis. �

Theorem 14 confirms Conjectures 3.9 and 5.13 of [19].
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[8] L. Escobar and K. Mészáros. Subword complexes via triangulations of root polytopes. 2015.

arXiv:1502.03997.

[9] S. Fomin and A. N. Kirillov. The Yang-Baxter equation, symmetric functions, and Schubert
polynomials. Discrete Mathematics, 153(1):123–143, 1996. Proceedings of the 5th Conference

on Formal Power Series and Algebraic Combinatorics.

[10] J. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for nonsymmetric macdonald
polynomials. American Journal of Mathematics, 130(2):359–383, 2008.

[11] A. Knutson and E. Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1):161–176,

2004.
[12] W. Kraśkiewicz and P. Pragacz. Foncteurs de Schubert. C. R. Acad. Sci. Paris Sér. I Math.,

304(9):209–211, 1987.

[13] A. Lascoux and M.-P. Schützenberger. Polynômes de Schubert. C. R. Acad. Sci. Paris Sér.
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