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Abstract

A two-dimensional direction-length framework (G, p) consists of a multi-

graph G = (V ;D,L) whose edge set is formed of “direction” edges D and

“length” edges L, and a realisation p of this graph in the plane. The edges

of the framework represent geometric constraints: length edges fix the dis-

tance between their endvertices, whereas direction edges specify the gradient

of the line through both endvertices.

In this thesis, we consider two problems for direction-length frameworks.

Firstly, given a framework (G, p), is it possible to find a different realisation

of G which satisfies the same direction and length constraints but cannot be

obtained by translating (G, p) in the plane, and/or rotating (G, p) by 180◦?

If no other such realisation exists, we say (G, p) is globally rigid. Our main

result on this topic is a characterisation of the direction-length graphs G

which are globally rigid for all “generic” realisations p (where p is generic if

it is algebraically independent over Q).

Secondly, we consider direction-length frameworks (G, p) which are sym-

metric in the plane, and ask whether we can move the framework whilst

preserving both the edge constraints and the symmetry of the framework.

If the only possible motions of the framework are translations, we say the

framework is symmetry-forced rigid. Our main result here is for frameworks

with single mirror symmetry: we characterise symmetry-forced infinitesimal

rigidity for such frameworks which are as generic as possible. We also obtain

partial results for frameworks with rotational or dihedral symmetry.
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Chapter 1

Introduction

A fundamental problem in many fields is identifying whether a given struc-

ture is rigid or flexible. Such questions arise in civil engineering [31], me-

chanical engineering [34], computer science [12] and chemistry [38], amongst

others. In each of these applications, we can often think of the structure as

being formed of a collection of rigid objects which are subject to geomet-

ric constraints between them, usually a combination of fixed distances and

fixed angles. We then ask whether the constraints are sufficient to make the

structure rigid.

A closely related, although more subtle, question asks whether a given

structure could be rebuilt differently, so that it satisfies the same geometric

constraints, but the pieces are in different relative positions. A structure

which can only be built in one way is said to be globally rigid. This prop-

erty is of particular interest to molecular engineers [9]. The name “global

rigidity” reflects the fact that for a structure to satisfy this property, it must

first be rigid. Otherwise, we could simply move our flexible structure until

two pieces are in different relative positions.

In rigidity theory, we model structures using frameworks. There are

14
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a

b
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f

g

h
i

(a) A flexible framework (G, p1) with

P1 = {{a, g}, {b, h}, {c, i}, {d, e, f}}.

a

b
c

d

e

f

g

h
i

(b) A rigid framework (G, p2), with parti-

tion P2 = {{a, h}, {b, g}, {c, i}, {d, e, f}}.

Figure 1.1: Two bar-and-joint frameworks (G, pi) on the same graph. In both cases,

the edge set is partitioned into sets of parallel edges, Pi. The framework in (a) is flexible;

if we hold edge e in place, the triangles abc and ghi can rotate about the two endvertices of

e. The framework in (b) is rigid, if we hold e in place and try to rotate the two triangles,

the edge d would stretch, which is not allowed.

many different varieties of framework, but for our purposes a framework

is a pair (G, p), where G is a graph whose vertices correspond to the rigid

pieces of our structure, and whose edges correspond to geometric constraints

between their endvertices. The realisation p maps each vertex to a list of

coordinates in Rd. We then ask whether our framework is flexible, rigid, or

globally rigid.

Perhaps surprisingly, we can often determine whether a framework is

rigid, solely by considering the underlying graph. However, this method

does not work in general. If we place our graph in a realisation which has

geometric dependencies, such as parallel lines, collinear points, or symme-

try, then these dependencies will often affect the rigidity of the resulting

framework. See Figure 1.1.

To avoid these problematic special cases, we restrict our consideration

to generic frameworks (G, p), where the entries of p are algebraically inde-

pendent over the rationals. This restriction is often enough to allow us to

determine many properties of a generic framework by only analysing the
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underlying graph. A fundamental problem in rigidity theory is to identify

exactly when this restriction is enough. We say a property is generic, if for

every graph G, either all generic frameworks (G, p) satisfy the property, or

none of them do. In this terminology, our first motivating question is:

Problem 1. Given a property P, is P a generic property?

When P is known to be a generic property, the next challenge is to

find a set of conditions on the underlying graph which determine exactly

when a generic framework satisfies or fails the property. Such conditions

are a combinatorial characterisation of P. This is the second question we

consider:

Problem 2. Can we find a combinatorial characterisation of P?

Observe that finding a combinatorial characterisation of P automatically

implies that the property is generic. In this thesis we consider a class of

frameworks with both distance and angle-like constraints, and attempt to

answer these questions for properties of such frameworks.

Systems containing angle constraints are notoriously difficult to solve, so

much work in rigidity has focussed on models with only length constraints.

Probably the most studied model of this type are bar-and-joint frameworks

(G, p) where every edge in E(G) fixes the distance between its endvertices.

See Figure 1.1. These frameworks have a long history, going at least as far

back as Maxwell [25]. In what is now a classical result of rigidity theory,

Laman [24] characterised rigidity for generic bar-and-joint frameworks in

the plane. More recently, Jackson and Jordán characterised global rigidity

for generic bar-and-joint frameworks in the plane [16].

A second classical model is parallel drawings (G, p), where each edge fixes

the slope of the line through its two end-vertices. Parallel drawings were once
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commonly used by engineers, until computer-based methods made these

traditional tools redundant. Recently, there has been a renewed interest

in parallel drawings and their generalisations [11, 21], as they provide a

tractable way to handle angle-like constraints.

Although parallel drawings are less intuitive than bar-and-joint frame-

works, in many ways they are significantly easier to work with. For example,

rigidity has been characterised for generic parallel drawings in all dimensions

[40], whereas for bar-and-joint frameworks, characterisations are only known

in dimensions 1 and 2. Coincidentally, the requirements for a generic bar-

and-joint framework or parallel drawing to be rigid in the plane are identical.

Further, rigidity and global rigidity are equivalent for parallel drawings [40].

As a result, global rigidity has a simple characterisation for generic parallel

drawings in all dimensions, whereas characterisations for generic bar-and-

joint frameworks are again only known for 1 and 2 dimensions.

Direction-length frameworks (G, p) meld these two earlier models into

one which has both length and angle-like constraints. We do this by defin-

ing our underlying graph G to have two types of edges: D for direction

edges and L for length edges, and call the resulting graph G = (V ;D,L) a

direction-length graph. In a direction-length framework, the direction edges

impose the same slope constraints as edges in parallel drawings, and the

length edges impose the distance constraints of a bar-and-joint framework.

This combined model allows us to analyse a much broader class of real-

world structures, and gives insight into the effects of true angle constraints.

Direction-length frameworks were first introduced in [35], in which the au-

thors characterised rigidity for generic direction-length frameworks in the

plane by combining the existing planar characterisation for bar-and-joint

frameworks with that for parallel drawings.
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This thesis focusses on characterising two properties of direction-length

frameworks in the plane. The first is global rigidity, which we consider in

Part II. Ideally, we would like to approach this in a similar way to how

planar rigidity was characterised by Servatius and Whiteley [35], namely,

to combine the results for bar-and-joint frameworks and parallel drawings.

However, this procedure is complicated by two features of the existing re-

sults. First, the requirements for a generic bar-and-joint framework or par-

allel drawing to be globally rigid are different, so we cannot switch so readily

between these two models in our proof. And second, the requirements for

a bar-and-joint framework to be globally rigid are particularly awkward to

use. This made the proof in [16] quite technical, and unfortunately these

complications are compounded when we add direction edges.

There is one further snag to our plan: it is not known whether global

rigidity is a generic property of direction-length frameworks (Problem 1).

Consequently, it is possible that for two generic realisations p and q of a

direction-length graph G, the framework (G, p) is globally rigid, but (G, q)

is not. Unfortunately, we cannot show that such a scenario is impossible.

So instead, we provide a characterisation of when a direction-length graph

G is globally rigid for all generic realisations.

In Part III we consider our second topic, symmetry. Many real-world

structures are not generic, and so results from rigidity theory often do not

apply. However, it is very common for real-world structures to exhibit sym-

metry. Over the past 10 years, there has been much interest in finding new

methods which can characterise rigidity for symmetric frameworks (G, p),

where the only algebraic dependencies allowed in p are those imposed by

the symmetry.

In general, this is a much harder problem than in the non-generic case, so
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before asking whether a symmetric framework has any motions, we first ask

whether it has any motions which preserve the symmetry. If not, we say it is

symmetry-forced rigid. Symmetry-forced rigidity was recently characterised

for parallel drawings in any dimension, and under any point group symmetry,

by Tanigawa [37]. Once more, for bar-and-joint frameworks, the situation is

more complicated. In March 2016, Jordán, Kaszanitzky and Tanigawa [22]

characterised symmetry-forced rigidity for planar bar-and-joint frameworks

under single reflection, rotation or odd dihedral symmetry. However, no

characterisation is known for even dihedral symmetry.

These results for symmetry-forced rigidity have the same two features

we highlighted when discussing global rigidity: firstly, that the requirements

for bar-and-joint frameworks and parallel drawings differ, and secondly, that

bar-and-joint frameworks create additional complications. Most of these

complications arise when considering dihedral symmetries, so in this thesis

we limit our consideration to cyclic groups. This leads to a characterisation

of symmetry-forced rigidity for planar direction-length frameworks under

single reflection symmetry.

Before tackling these two topics, we provide an introduction to rigid-

ity theory in Chapter 4; focussing on the relevant results for bar-and-joint

frameworks, parallel drawings, and direction-length frameworks. Our aim is

to provide combinatorial characterisations of the properties we consider. To

do this, we shall use ideas from graph theory and matroid theory. As such,

we first provide a brief introduction to the key results and concepts from

these two areas in Chapters 2 and 3 respectively.

The methods we use to construct realisations of globally rigid frameworks

in Chapter 8, require some results from algebraic geometry and differential

geometry. A brief introduction to these topics, and their use in rigidity
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theory, is included in Chapter 5.



Chapter 2

Graph theory

A graph G = (V,E) consists of a finite set of vertices V , together with a set

of edges E, which are pairs of not necessarily distinct vertices. An edge e

between the vertices u and v is denoted either by {u, v}, or more concisely

by uv. We say e is a uv-edge; and that u and v are endvertices of e. When

u is an endvertex of e we say that u and e are incident.

Given a graph G, we refer to its vertex set as V (G) and edge set as E(G).

An edge {v, v} is a called a loop. Two distinct edges e and f are parallel if

e and f are both uv-edges for some u, v ∈ V (G). A graph G is simple if it

contains no parallel edges or loops, and is a multigraph otherwise. We say

a multigraph is loop-free if it contains no loops. Graphs are often thought

of as drawings, where each vertex is represented by a dot, and two dots are

connected by a line or curve if there is an edge between their corresponding

vertices. See Figure 2.1.

An oriented graph is a multigraph G, where every edge is assigned an

orientation from one of its endvertices to the other. A uv-edge oriented

from u to v is denoted by −→uv, ←−vu, or by the ordered pair (u, v). We also use

this notation for oriented loops (when u = v). See Figure 2.2 (a).

21
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v0 v1 v2 v3

(a) Path on four vertices.

v0

v1

v2 v3

v4

(b) Cycle on five vertices

v0

v1 v2

(c) A multigraph.

Figure 2.1: Examples of graphs. Examples (a) and (b) are simple. The multigraph in

(c) has a loop at v0, and two parallel v1v2-edges.

(a) An oriented

graph.

0

1

1
2

1

1

2

(b) An edge-labelled graph.

1

0

1

1

(c) A gain graph.

Figure 2.2: Multigraphs with oriented edges and edge-labellings. In examples (b) and

(c) the edges are labelled with elements of Z3 and Z2 respectively.

An edge-labelled graph, is a pair (G,ψ) where G is a graph, and ψ :

E(G) → Γ assigns an element of Γ to each edge. A gain graph is an edge-

labelled graph (G,ψ), where Γ is a group and G is an oriented graph. For

a gain graph (G,ψ), the map ψ is called the gain function, and we refer to

the labelling ψ(e) of an oriented edge e as the gain on e. See Figures 2.2(b)

and (c). In topological graph theory, gain graphs are more commonly called

voltage graphs [14], however the term “gain graph” is more usual in matroid

theory [28].
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In this thesis we consider direction-length graphs, which are multigraphs

of the form G = (V ;D,L), where each edge in E(G) is assigned one of

two types: D for direction or L for length. We represent this choice by 2-

colouring the edges of our graph drawings; edges of type D are represented

by dashed lines, and type L by solid lines throughout this thesis. See Figure

2.3.

Figure 2.3: A direction-length graph.

When discussing global rigidity in Part II, we use loop-free direction-

length multigraphs. When we later consider symmetry in Part III, we also

use direction-length gain graphs (G,ψ), where G = (V ;D,L) is a direction-

length multigraph which is oriented, and labelled with elements of some

group Γ by ψ.

2.1 Graph connectivity

Given a graph G = (V,E), a subgraph of G is a graph H = (U,F ) such

that U ⊆ V and F ⊆ E. Given a vertex set X ⊆ V , the subgraph induced

by X in G is denoted G[X], and has vertex set X and edge set EG(X) =

{{u, v} ∈ E(G) : u, v ∈ X}. We extend this concept to sets of edges, and say

the edge set F ⊆ E induces the subgraph G[F ], with edge set F and vertex

set VG(F ) = {u ∈ V : {u, v} ∈ F for some v ∈ V }. When the original graph

is clear from the context, we omit these subscripts, and just refer to E(X)
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and V (F ).

For vertex sets X ⊆ V , we follow the standard convention of letting

i(X) = |E(X)|. When G is a direction-length graph, we adapt this notation

by letting iD(X) and iL(X) denote respectively the number of direction and

length edges in G[X].

A graph G = (V,E) is a path if for some ordering of the vertex set

V = {v0, v1, . . . , vt} we can write E = {v0v1, v1v2, . . . , vt−1vt}. In this case,

we say G is a path from v0 to vt, or simply G is a v0vt-path. If instead, there

is an ordering of the vertex set which gives E = {v0v1, v1v2, . . . , vt−1vt, vtv0},

we say G is a cycle. See Figure 2.1 (a) and (b).

Given any graph G, a walk W in G is a sequence v0, e0, v1, e1, v2, . . . , vt

where vi ∈ V (G) and ei = vivi+1 ∈ E(G). Unlike a path, a walk may contain

both repeated vertices and repeated edges. If v0 = vt, we say W is a closed

walk.

A graph G = (V,E) is connected, if for all distinct u, v ∈ V , G contains

a uv-path. We say G is disconnected otherwise. If G contains no cycles,

then G is a forest ; and if G is connected with no cycles, then G is a tree. A

subgraph H of G is a spanning subgraph of G if V (H) = V (G). Similarly, a

set of edges F ⊆ E(G) or subgraph F ⊆ G spans G when V (F ) = V (G). If

H is a tree and spans G, we say H is a spanning tree of G. It is easy to see

that a graph is connected if and only if it has a spanning tree.

Connectivity is key to many of our proofs, so it will often be useful to

know how far our graph is from being disconnected. We say G = (V,E) is

k-connected if |V | > k, and for all U ⊆ V with |U | < k, the graph G[V −U ]

is connected. Similarly, G is k-edge-connected if |E| > k, and for all F ⊆ E

with |F | < k, the graph G[E −F ] is connected. A set of vertices U is called

a k-vertex-cut of G if |U | = k and G[V − U ] is disconnected. In the special
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case where k = 1, the unique vertex in U is called a cut-vertex. Again, we

extend this idea to edges by saying F is a k-edge-cut of G if |F | = k and

G[E − F ] is disconnected.

In this terminology, G is k-connected if and only if it has no k-vertex-

cuts, and is k-edge-connected if and only if it has no k-edge-cuts. When the

set of edges or vertices deleted from a graph is small we shall often abuse

notation by letting, for example, G− u = G[V − {u}], G− e = G[E − {e}]

and G− F = G[E − F ].

A connected component of a graph G is a maximal subgraph H such that

for all distinct vertices u and v in V (H), there is a path in H from u to v.

A trivial connected component of G consists of a single vertex, incident to

no edges in G. The set of connected components of a graph G is denoted

C(G). For an edge set F , we let C(F ) denote the family of edge sets F ′ ⊆ F

such that G[F ′] is a connected component of G[F ].

The following terminology and notation shall be useful when discussing

connectivity. The degree of a vertex v in G is denoted dG(v), and counts the

number of times v is incident to edges in G. Each loop at v contributes 2

to dG(v), as both ends of the edge terminate at v, whereas a non-loop edge

at v contributes 1 to the degree. In the special case where v is incident to

no loops, dG(v) is equal to the number of edges incident to v. When the

graph is clear from the context, we use d(v) instead of dG(v). The minimum

degree of a graph G is δ(G) = minv∈V (G) dG(v).

We extend the notion of degree to other contexts. For a graph G, and

non-empty vertex sets X,Y ⊆ V (G), we let d(X,Y ) denote the number of

edges from X − Y to Y − X in G. We extend this further to three non-

empty vertex sets X,Y, Z ⊆ V (G) by letting d(X,Y, Z) denote the set of

edges between these three vertex sets which are not induced by any one of
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them. Equivalently, d(X,Y, Z) = d(X,Y −Z) + d(Y,Z −X) + d(Z,X −Y ).

We shall also use the related concept of the neighbourhood of a vertex.

In a graph G, we say that two distinct vertices u and v are neighbours if

G contains a uv-edge. The neighbourhood of v, denoted NG(v), is the set

of all neighbours of v in G. If G contains no loops or parallel edges at v,

then |NG(v)| = dG(v); otherwise |NG(v)| < dG(v). For a more detailed

introduction to graph theory, see [3] or [10].



Chapter 3

Matroid theory

Matroids were introduced by Whitney [41], to describe the abstract rules

which govern linear dependence between rows or columns in matrices.

Given a matrix M with entries in R, a subset of the rows of M is linearly

independent if no linear combination of these row vectors sums to zero. With

this one property, many others follow: a set of rows is linearly dependent if

they are not linearly independent, a maximal linear independent set forms

a basis of the row space of M , and the cardinality of a basis gives the rank

of M .

The only information about M that we used to derive these properties

was its set of rows, which we denote by E, and the collection of linearly

independent subsets of E, which we denote by I. This pair (E, I) is an

example of a matroid, and in fact all matrices over fields generate a matroid

in this way. But we do not need a matrix to construct a matroid, all we

require is a base set E and a good definition of independence with which

to build I. This idea forms the foundation for the following definition of a

matroid.

A matroid M is an ordered pair (E, I) where E is a finite set, and I is

27
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a collection of subsets of E which satisfies:

(I1) ∅ ∈ I,

(I2) if I ∈ I and I ′ ⊆ I then I ′ ∈ I, and

(I3) if I, I ′ ∈ I and |I ′| < |I| then there exists e ∈ I − I ′ such that

I ′ ∪ {e} ∈ I.

Given a matroid M = (E, I), any set contained in I is said to be an

independent set of M. In the same way as for matrices, this one definition

generates the others. A set of S ⊆ E is dependent if S 6∈ I, or is a basis if S

is maximal in I. Condition (I3) implies that all bases of M have the same

cardinality. So the rank ofM, written r(M), is the cardinality of a basis of

M.

For matroids, we extend this last definition to all subsets of E. For any

set E′ ⊆ E, the rank of E′, denoted r(E′), is the cardinality of the largest

independent subset of E′. Under this extended definition r(M) = r(E). The

following is a trivial consequence of this definition which shall be particularly

useful.

Proposition 3.0.1. [28] Let M = (E, I) be a matroid. Then X ∈ I if and

only if r(X) = |X|.

There are many equivalent definitions for a matroid. Common variants

include defining a matroid in terms of properties of bases, dependent sets,

or the rank function. The following formulation is less common, but has

been used in rigidity theory [16, 22] to show that a set of conditions on a

graph define a matroid. We shall use it for this purpose.

Lemma 3.0.2. The pair M = (E, I) is a matroid if and only if

(I1) ∅ ∈ I,
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(I2) if I ∈ I and I ′ ⊆ I then I ′ ∈ I, and

(R3) for every E′ ⊆ E, all maximal subsets of E′ in I have the same car-

dinality.

We can use the rank function to define another function, called the clo-

sure. Conceptually, the closure can be thought of as the matroid equivalent

of the span of a set of vectors. Given a matroid M = (E, I), the closure

of a set X ⊆ E is denoted cl(X), and is the largest set C ⊆ E such that

X ⊆ C and r(X) = r(C). The following properties of the closure shall be

useful:

Proposition 3.0.3. [28] Let M = (E, I) be a matroid. Let X,Y ⊆ E and

x ∈ E. Then

(i) X ⊆ cl(X).

(ii) If X ∈ I and X ∪ {x} 6∈ I, then x ∈ cl(X).

(iii) If X ⊆ Y ⊆ E, then cl(X) ⊆ cl(Y ).

(iv) If X ⊆ cl(Y ), then cl(X ∪ Y ) = cl(Y ).

3.1 Matroid connectivity

We shall be mostly interested in the independent sets of a matroid. However,

when considering global rigidity, many of our arguments will be structured

around the minimally dependent sets, or circuits, of a matroid. These sets

satisfy many useful properties, but in particular are key to the definition of

connectivity for matroids.

A matroid M = (E, I) is connected if for all e, f ∈ E, either e = f or

there is a circuit C ofM such that e, f ∈ C. We sayM is trivially connected
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if |E| = 1. A particularly useful property of matroid connectivity is the fact

it is transitive i.e. if for e, f, g ∈ E, there exist circuits C1 and C2 inM such

that e, f ∈ C1 and f, g ∈ C2, then M also contains a circuit C3 such that

e, g ∈ C3 [28]. We shall frequently use this property in Chapter 7.

This definition suggests we can think of a connected matroid as being

formed from an intersecting collection of circuits. Let M = (E, I) be a

matroid, and C1, C2, . . . , Cm be a non-empty sequence of circuits inM. Let

Ei = C1 ∪C2 ∪ · · · ∪Ci for all 1 ≤ i ≤ m. The sequence C1, C2, . . . , Cm is a

partial ear decomposition of M if for all 2 ≤ i ≤ m

(E1) Ci ∩ Ei−1 6= ∅,

(E2) Ci − Ei−1 6= ∅, and

(E3) no circuit C ′i satisfying (E1) and (E2) has C ′i − Ei−1 ⊂ Ci − Ei−1.

When Em = E, we say that C1, C2, . . . , Cm is an ear decomposition of

M. The set C̃i = Ci − Ei−1 is the lobe of the circuit Ci. The following

properties of ear decompositions are well known:

Lemma 3.1.1. [8] Let M = (E, I) be a matroid with |E| ≥ 2 and rank

function r. Then

(i) M is connected if and only if M has an ear decomposition.

(ii) If M is connected, then any partial ear decomposition of M can be

extended to an ear decomposition of M.

(iii) If C1, C2, . . . , Cm is an ear decomposition of M then

r(Ei)− r(Ei−1) = |C̃i| − 1 for 2 ≤ i ≤ m.
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Graph connectivity and matroid connectivity shall both be used fre-

quently. The relevant definition of “connectivity” will always match the

object being discussed.



Chapter 4

Rigidity theory

In Chapter 2 we defined direction-length graphs. These graphs form the

basis for our main model: direction-length frameworks. A direction-length

framework is a pair (G, p) where G = (V ;D,L) is a direction-length graph

and p : V → Rd is a realisation of G in Rd for some d ≥ 1. In this thesis,

we only consider properties of direction-length frameworks and realisations

in R2, so for brevity, we use the terms “realisation” and “direction-length

framework” to refer to the 2-dimensional case. When the broader meanings

are intended, this shall be stated explicitly. See Figure 4.1 for an example

of a direction-length framework.

A direction-length graph G = (V ;D,L) is mixed if both D and L are

non-empty. Otherwise, we say G is direction-pure if L = ∅, or length-pure

if D = ∅; and that G is pure if it is either direction-pure or length-pure.

We apply these same definitions to edge sets, by saying that E(G) is mixed,

direction-pure, length-pure or pure, whenever G is. Similarly, we say a vertex

v in G mixed if it is incident to both length and direction edges, and is pure

otherwise. When v is incident to only length or only direction edges, then

we say it is length-pure or direction-pure respectively.
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p(v1) =
(

0
2

)

p(v2) =
(−1

0

)
p(v3) =

(
1
0

)
e1 e2

e3

e4

Figure 4.1: A direction-length framework (G, p). This differs from the drawing of a

direction-length graph in Figure 2.3, as here the locations of the vertices are dictated by

the realisation p.

In Chapter 1, we mentioned that direction and length edges correspond

to edges in parallel drawings and bar-and-joint frameworks respectively.

Thus a direction-length framework (G, p) is a bar-and-joint framework when

G is length-pure, and is a parallel drawing when G is direction-pure. To em-

phasise this connection, we break with tradition and refer to bar-and-joint

frameworks and parallel drawings as length-pure frameworks and direction-

pure frameworks respectively. Once more, we say that a framework is pure

if it is either direction-pure or length-pure, and is mixed otherwise.

4.1 Rigidity and infinitesimal rigidity

In rigidity theory, each edge of a framework corresponds to a geometric

constraint. We then identify the motions of the framework which maintain

these constraints. For direction-length frameworks, the type of the edge

determines the type of geometric constraint imposed. Length edges fix the

distance between their end-vertices, whereas direction edges fix the slope of

the line through their end-vertices. Note that this means the name “direction

edge” is slightly misleading, as it is the slope, not the direction, of the edge
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which is fixed. For a given uv ∈ D it does not matter which order the

vertices u and v appear in, we can slide one vertex past the other on a line

of fixed slope without violating the constraint.

More rigorously, a motion of a direction-length framework (G, p) is a

continuous function pt = P (t) for 0 ≤ t ≤ 1 where pt : V (G) → R2 is a

realisation of G which satisfies

(M1) p0(v) = p(v) for all v ∈ V (G);

(M2) for all {u, v} ∈ L and t ∈ [0, 1], ‖pt(u)− pt(v)‖ = ‖p(u)− p(v)‖; and

(M3) for all {u, v} ∈ D and t ∈ [0, 1] there exists a λ ∈ R such that pt(u)−

pt(v) = λ(p(u)− p(v)).

A motion is trivial if (M2) and (M3) hold for all u, v ∈ V (G). In other

words, when (G, pt) is a translation of (G, p) for all 0 ≤ t ≤ 1. A direction-

length framework is rigid if the only continuous motions which preserve the

edge constraints are trivial. A direction-length framework which is not rigid

is said to be flexible.

A length-pure framework has no constraints of type (M3) and so can

be reflected, or continuously rotated; whereas a direction-pure framework

has no constraints of type (M2), and can be continuously dilated. In the

theory of bar-and-joint frameworks and parallel drawings, these give extra

trivial motions which lead to modified definitions of rigidity. To distinguish

these definitions from those we consider, we append the words “length-” and

“direction-” accordingly. So a length-pure framework is length-rigid if its

only motions are formed of translations and rotations, and a direction-pure

framework is direction-rigid if its only motions are formed of translations

and dilations. Note that although length-pure frameworks can be reflected,

this is not a continuous motion in the plane, and thus has no impact on
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length-rigidity.

Every smooth motion of a framework (G, p) starts off as an instanta-

neous motion p0, whose derivative assigns an instantaneous velocity vector

m0(v) to every vertex v in the framework. If we concatenate these vectors,

we obtain a vector m0 ∈ R2|V (G)|. Since the motion preserves the edge con-

straints, m0 lies in the kernel of the Jacobian matrix given by the system

of equations (M2) and (M3) (i.e. the matrix of partial derivatives of pt, see

Chapter 5 for more details). However, there may be other assignments of

instantaneous velocity vectors which also lie in this kernel, but cannot be

extended to finite motions. This observation allows us to define a stronger

version of rigidity, known as infinitesimal rigidity or first-order rigidity.

For a direction-length framework (G, p), we use the fact p(u) − p(v) is

fixed to obtain a dot product for each equation of type (M2) and (M3). By

taking derivatives of these dot products at t = 0, we obtain the Jacobian

matrix, R(G, p), which we call the rigidity matrix of (G, p). This matrix has

2|V (G)| columns and |E(G)| rows where the row corresponding to an edge

{u, v} ∈ L has entries (p(u) − p(v))T in the pair of columns corresponding

to u, (p(v) − p(u))T in the columns corresponding to v, and 0 everywhere

else. If {u, v} ∈ D then the entries in the columns corresponding to u and v

instead contain ((p(u)− p(v))⊥)T and ((p(v)− p(u))⊥)T respectively, where( x
y

)⊥
=
(

y
−x
)

and
( x
y

)T
= (x, y).

A vector in the kernel of R(G, p) is called an infinitesimal motion of

(G, p). As described above, every instantaneous velocity of our framework

is an infinitesimal motion. Since we can always translate our framework,

we know dim(kerR(G, p)) ≥ 2. We say (G, p) is infinitesimally rigid if this

holds with equality, or equivalently, if all infinitesimal motions of (G, p) are

trivial. Thus any infinitesimally rigid framework is rigid.
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Figure 4.2: An infinitesimal motion of a length-pure framework which does not extend

to a finite motion. The leftmost and rightmost vertices are assigned the zero vector.

Once again, in the theory of bar-and-joint frameworks and parallel draw-

ings we have an analogue of infinitesimal rigidity. In these cases, we use

the same rigidity matrix. However, as the underlying graph is pure, the

matrix only has rows corresponding to one type of edge. When describ-

ing length-rigidity and direction-rigidity, we saw that these definitions were

based on three trivial motions. This change is reflected here: a length-pure

(direction-pure) framework (G, p) is infinitesimally length-rigid (infinitesi-

mally direction-rigid) if dim(kerR(G, p)) = 3. In the same way as for mixed

frameworks, these pure analogues of infinitesimal rigidity are sufficient but

not necessary conditions for the corresponding pure notion of rigidity. For

example, the length-pure framework in Figure 1.1(b) is length-rigid but not

infinitesimally length-rigid. Figure 4.2 shows a non-trivial infinitesimal mo-

tion of this framework.

Example 4.1.1. Let (G, p) be the direction-length framework given in Fig-
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ure 4.1. Then its rigidity matrix is given by

R(G, p) =

v1︷ ︸︸ ︷ v2︷ ︸︸ ︷ v3︷ ︸︸ ︷



1 2 −1 −2 0 0 e1

2 1 0 0 −2 −1 e2

0 0 −2 0 2 0 e3

0 0 0 2 0 −2 e4.

The rows of this matrix are independent. Hence dim(kerR(G, p)) = 2 and

(G, p) is infinitesimally rigid and thus also rigid.

Given a rigid direction-length framework, algebraic dependencies be-

tween the coordinates of the vertices may lead to additional row depen-

dencies within the rigidity matrix. This was the case for the length-pure

examples in Figure 1.1. This suggests there may exist rigid frameworks

which are not infinitesimally rigid. To avoid this problem, we only con-

sider frameworks where such dependencies are not allowed. We say that a

realisation p or framework (G, p) is generic when the entries in p are alge-

braically independent over the rationals. For generic frameworks, rigidity

and infinitesimal rigidity are equivalent:

Lemma 4.1.2. [19, Lemma 8.1] Let (G, p) be a generic direction-length

framework in Rd. Then (G, p) is rigid if and only if (G, p) is infinitesimally

rigid.

This Lemma is the direction-length analogue of Asimow and Roth’s

[1] important result for bar-and-joint frameworks, which said that length-

rigidity and infinitesimal length-rigidity are equivalent for generic length-

pure frameworks.

Since either all generic realisations of a graph G are infinitesimally rigid,

or none of them are, infinitesimal rigidity is a generic property of direction-
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length frameworks. Recall that identifying when a property is a generic

property was our first motivating problem in Chapter 1. We can now define

a graph G to be infinitesimally rigid when it has a generic realisation which

is infinitesimally rigid (or equivalently, when all generic realisations are in-

finitesimally rigid). Lemma 4.1.2 implies rigidity is also a generic property

of direction-length frameworks. Hence we have the following

Lemma 4.1.3. Let (G, p) be a generic direction-length framework. If (G, p)

is (infinitesimally) rigid, then all generic realisations of G give an (infinites-

imally) rigid framework.

This Lemma implies that for generic frameworks, our choice of realisation

has no impact on the rigidity of the framework. Hence the rigidity of generic

frameworks is determined solely by the structure of the underlying graph

G. By identifying the necessary structure, Servatius and Whiteley obtained

a combinatorial characterisation of infinitesimal rigidity, and thus also of

rigidity, for generic frameworks:

Lemma 4.1.4. [35, Theorem 4] Let (G, p) be a generic direction-length

framework. Then (G, p) is infinitesimally rigid if and only if it has a span-

ning subgraph H which has

(i) |E(H)| = 2|V (H)| − 2,

(ii) |F | ≤ 2|V (F )| − 2 for all mixed ∅ 6= F ⊆ E(H), and

(iii) |F | ≤ 2|V (F )| − 3 for all pure ∅ 6= F ⊆ E(H).

This result is the direction-length analogue of a classical result in the the-

ory of bar-and-joint frameworks. Laman [24] showed that a generic length-

pure framework (G, p) is infinitesimally length-rigid if and only if it has a

spanning subgraph H with |E(H)| = 2|V (H)| − 3 and |F | ≤ 2|V (F )| − 3
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for all ∅ 6= F ⊆ E(H). Later, Whiteley showed that Laman’s condition

also characterises infinitesimal direction-rigidity for generic direction-pure

frameworks [40].

4.2 The rigidity matroid

Given a generic realisation p of a direction-length graph G, any row depen-

dencies in R(G, p) are not a result of the specific choice of entries in p, as this

would imply an algebraic dependency in these entries, contradicting the fact

p is generic. Hence whenever a set of rows in R(G, p) is independent, the

corresponding set of edges in G will give an independent row set in R(G, q)

for all generic realisations q. Thus all generic realisations of G have the same

collection I of independent row sets in the rigidity matrix. We use this to

define a matroid R(G) = (E(G), I) on the graph, which we call the rigidity

matroid of G.

In fact, a graph H satisfies conditions (ii) and (iii) of Lemma 4.1.4 if

and only if its edge set E(H) is independent in the rigidity matroid R(G).

And for an infinitesimally rigid graph G, the bases of R(G) are exactly the

subgraphs H which satisfy all three conditions of Lemma 4.1.4. So Lemma

4.1.4, and the definition of matroid rank, give the following characteristion

of infinitesimal rigidity in terms of the rigidity matroid:

Corollary 4.2.1. Let (G, p) be a generic direction-length framework. Then

(G, p) is infinitesimally rigid if and only if r(R(G)) = 2|V (G)| − 2.

This illustrates the fact that many properties in rigidity theory can either

be written as simple conditions on the rigidity matroid, or equivalently, as

more complicated conditions on the graph. Both of these viewpoints shall

be helpful in this thesis.



Chapter 5

Introduction to Algebraic

and Differential Geometry

Most of this thesis focuses on combinatorial results, however in Chapter 8

we shall require a handful of results from geometry. We provide a brief

introduction to the necessary background here.

The two key ideas which shall be useful are, firstly, that the realisation p

of a 2-dimensional framework (G, p) can be thought of as a vector with 2|V |

entries, and thus also as a point in 2|V |-dimensional space. And secondly,

that algebraic independence is an example of matroid independence, and

thus provides an algebraic representation of the rigidity matroid for a graph

G (given a suitable choice of map).

5.1 Differential geometry and the framework space

Here we recall some basic concepts of differential geometry. We refer the

reader to [23] and [26] for a more thorough introduction to this subject.

Let X be a smooth manifold, f : X → Rn be a smooth map, and k be

the maximum rank of its derivative df |y over all y ∈ X. A point x ∈ X

40
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is a regular point of f if rank df |x = k. The Inverse Function Theorem

states that if U is open in Rk, f : U → Rk is smooth, x ∈ U , and the

derivative df |x : Rk → Rk is non-singular, then f maps any sufficiently

small open neighbourhood of x diffeomorphically onto an open subset of Rk.

The following lemma is a simple consequence of this (see [20, Lemma 3.3]).

Lemma 5.1.1. Let U be an open subset of Rm, f : U → Rn be a smooth

map and x ∈ U be a regular point of f . Suppose that the rank of df |x is n.

Then there exists an open neighbourhood W ⊆ U of x such that f(W ) is an

open neighbourhood of f(x) in Rn.

The following function plays an important role in rigidity theory. Let

G = (V ;D,L). For v1, v2 ∈ V with p(vi) = (xi, yi) let lp(v1, v2) = (x1 −

x2)2 + (y1 − y2)2, and sp(v1, v2) = (y1 − y2)/(x1 − x2) whenever x1 6= x2.

Suppose e = v1v2 ∈ E(G). We say that e is vertical in (G, p) if x1 = x2.

The length of e in (G, p) is lp(e) = lp(v1, v2), and the slope of e is sp(e) =

sp(v1, v2), whenever e is not vertical in (G, p). Let V = {v1, v2, . . . , vn}

and E(G) = {e1, e2, . . . , em}. We view p as a point (p(v1), p(v2), . . . , p(vn))

in R2n. Let T be the set of all points p ∈ R2n such that (G, p) has no

vertical direction edges. Then the rigidity map fG : T → Rm is given

by fG(p) = (h(e1), h(e2), . . . , h(em)), where h(ei) = lp(ei) if ei ∈ L and

h(ei) = sp(ei) if ei ∈ D.

The Jacobian of a vector-valued function f : Rn → Rm evaluated at a

point x ∈ Rn, is the matrix of partial derivatives with m rows and n columns

given by

J(f(x1, x2, . . . , xn)) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


.
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For a framework (G, p), the Jacobian of the rigidity map fG(p) has n =

2|V (G)| columns and m = |E(G)| rows. One can verify (see [20]) that

each row in the Jacobian matrix of fG(p) is a non-zero multiple of the

corresponding row in the rigidity matrix, so these matrices have the same

rank. Thus the rigidity matrix achieves its maximum rank when p is a

regular point of the rigidity map. In particular, this is the case when (G, p)

is generic.

We say a framework (G, p), or realisation p : V (G) → R2 is in standard

position if p(v0) = (0, 0) for some v0 ∈ V (G). The framework space SG,p,v0 ⊆

R2|V |−2 consists of all q in standard position with respect to v0 with (G, q)

equivalent to (G, p). We identify the realisation q with the vector in R2|V |−2

obtained by concatenating the vectors q(v) for v ∈ V (G)− {v0}.

5.2 Field extensions and genericity

A mixed framework (G, p) is quasi-generic if it is a translation of a generic

framework. We will be mostly concerned with quasi-generic frameworks

in standard position, i.e. with one vertex positioned at the origin. Such

frameworks are characterised by the following elementary lemma.

Lemma 5.2.1. [18] Let (G, p) be a framework with vertices {v1, v2, ..., vn},

p(v1) = (0, 0) and p(vi) = (p2i−1, p2i) for 2 ≤ i ≤ n. Then (G, p) is quasi-

generic if and only if {p3, p4, . . . , p2n} is algebraically independent over Q.

Given a vector v ∈ Rd, Q(v) denotes the field extension of Q by the

coordinates of v. We say that v is generic in Rd if the coordinates of v are

algebraically independent over Q. Note that this extends the definition of

“generic” which was previously only applied to realisations. In particular,

we can use this definition to describe when the rigidity map fG(p) is generic.
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Given fields K,L with K ⊆ L the transcendence degree td[L : K] of L

overK is the size of the largest subset of L which is algebraically independent

over K. A reformulation of Lemma 5.2.1 is that if (G, p) is a framework with

n vertices, one of which is at the origin, then (G, p) is quasi-generic if and

only if td[Q(p) : Q] = 2n− 2.

Recall that G = (V ;D,L) is independent if D ∪ L is independent in the

rigidity matroid of G, and that fG denotes the rigidity map of G, which

is defined at all realisations (G, p) with no vertical direction edges. The

next result relates the genericity of fG(p) to the genericity of p when G is

independent.

Lemma 5.2.2. [18] Suppose that G is an independent mixed graph and

(G, p) is a quasi-generic realisation of G. Then fG(p) is generic.

It is known that field extensions define a matroid:

Proposition 5.2.3. [28, Theorem 6.7.1] Let E be a finite subset of R. Then

the collection I of subsets of E which are algebraically independent over Q

is the collection of independent sets of a matroid on E.

Let (G, p) be a mixed graph, and letM = (E(G), If ) denote the matroid

given by fG(p), as described in Proposition 5.2.3, where a set {e1, e2, . . . , et} ⊆

E(G) is independent inM if and only if td[Q(h(e1), h(e2), . . . h(et)) : Q] = t.

Lemma 5.2.2 implies that when G = (V,E) is an independent graph, the

rigidity matroid R(G) = (E, I) and the matroid M = (E, If ) conincide.

Or more formally, fG(p) is an algebraic representation of R(G) over Q.

We use K to denote the algebraic closure of a field K. Note that td[K :

K] = 0. We say that G is minimally rigid if it is rigid but G− e is not rigid

for any edge e; equivalently G is both rigid and independent. The following

lemma relates Q(p) and Q(fG(p)) when G is minimally rigid.
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Lemma 5.2.4. [18] Let G be a minimally rigid mixed graph and (G, p) be

a realisation of G with no vertical direction edges and with p(v) = (0, 0) for

some vertex v of G. If fG(p) is generic then Q(p) = Q(fG(p)).

Lemmas 5.2.2 and 5.2.4 imply the following result for rigid mixed graphs.

Corollary 5.2.5. Let G be a rigid mixed graph and (G, p) be a quasi-generic

realisation of G with p(v) = (0, 0) for some vertex v of G. Then Q(p) =

Q(fG(p)).

Proof. Let H be a minimally rigid spanning subgraph of G. By Lemma

5.2.2, fH(p) is generic. Hence Lemma 5.2.4 gives Q(p) = Q(fH(p)). It

is not difficult to see that Q(fH(p)) ⊆ Q(fG(p)) ⊆ Q(p). Thus Q(p) =

Q(fG(p)).



Part II

Global rigidity
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Chapter 6

Introduction to global

rigidity

In Chapter 1, we said a framework is globally rigid if we cannot construct it

differently to obtain a new framework satisfying the same constraints. Here

we formalise this idea.

Given a direction-length framework (G, p), we ask whether there is an-

other realisation q such that (G, p) and (G, q) satisfy the same constraints,

i.e. where a length edge in G is assigned the same length in both frameworks,

and a direction edge is assigned the same slope. If there is such a q, then

(G, p) and (G, q) are equivalent.

Clearly, if we translate (G, p), then all the distances and slopes will be

preserved, so this will give an equivalent framework. Rotating by 180◦ will

also result in a framework with the same assignment of distances and slopes;

although this is not a continuous motion of the framework, as any realisation

qα obtained by rotating p by an angle 0 < α < 180 will assign different slopes

to the direction edges. These methods of obtaining an equivalent framework

are always possible, so we say a framework (G, q) is congruent to (G, p) if it
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Figure 6.1: Two equivalent but non-congruent realisations of a mixed graph.

can be obtained by translating (G, p) and/or rotating it by 180◦.

With these two definitions, we can now define a direction-length frame-

work (G, p) to be globally rigid when every equivalent framework (G, q), is

also congruent to (G, p). Many frameworks are not globally rigid, such as

those in Figure 6.1. A framework which is not globally rigid is said to be

globally flexible.

We say a graph G is globally rigid if every generic realisation of G is

globally rigid, and is globally flexible if every generic realisation is globally

flexible. Since we do not know whether global rigidity is a generic property,

it is possible that there exist graphs G which are neither globally rigid nor

globally flexible i.e. for which there exist non-equivalent generic realisations

p and q for which (G, p) is globally rigid, but (G, q) is globally flexible.

6.1 Pure frameworks

In the theory of bar-and-joint frameworks and parallel drawings, we have

modified definitions of global rigidity. As we observed when discussing rigid-

ity, a length-pure framework can be reflected, rotated and translated with-

out violating the edge constraints. Thus a length-pure framework is globally

length-rigid if all equivalent frameworks can be obtained by a combination of

these moves. Similarly a direction-pure framework is globally direction-rigid
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if all equivalent frameworks can be obtained by translations and dilations.

Note that dilation by −1 is equivalent to a 180◦ rotation.

Whiteley [40] showed that for all d > 0, direction-rigidity and global

direction-rigidity are equivalent. In 2-dimensions, this implies that Laman’s

Theorem [24] characterises global direction-rigidity:

Theorem 6.1.1. Let (G, p) be a generic direction-pure framework. Then

(G, p) is globally direction-rigid if and only if

(i) |E(G)| = 2|V (G)| − 3, and

(ii) |F | ≤ 2|V (F )| − 3 for all ∅ 6= F ⊆ E(G).

The characterisation of global length-rigidity requires more thought.

First observe that if a length-pure framework has a pair of vertices which act

like a hinge in 3-dimensions, then we can reflect one half of the framework

across this pair to obtain an equivalent but non-congruent realisation in the

plane. To avoid this situation, the underlying graph must be 3-connected.

The second necessary property is not obvious: we require that the rigidity

matroid is connected. We say that a graph G is M-connected, when its

rigidity matroid R(G) is connected. Jackson and Jordán showed that these

two connectivity properties determine global length-rigidity:

Theorem 6.1.2. [16] A generic length-pure framework (G, p) is globally

length-rigid if and only if either G is a complete graph on at most 3 vertices,

or G is 3-connected and M-connected.

A property which is very closely related toM-connectivity is redundant

rigidity. Given a direction-length framework (G, p), if (G− e, p) is rigid for

some e ∈ E(G), we say the edge e is redundant in (G, p). If every edge

in (G, p) is redundant, then (G, p) is redundantly rigid. Since rigidity is a
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generic property, redundant rigidity is too. So we say that a graph G is

redundantly rigid if (G, p) is redundantly rigid for some generic realisation

p.

A length-pure framework (G, p) is redundantly length-rigid if (G − e, p)

is length-rigid for all e ∈ E(G). The connection between M-connectivity

and redundant length-rigidity leads to a more intuitive statement of Jackson

and Jordán’s result:

Theorem 6.1.3. [16, Theorem 7.1] A generic length-pure framework (G, p)

is globally length-rigid if and only if either G is a complete graph on at most

3 vertices, or G is 3-connected and redundantly length-rigid.

This statement of Jackson and Jordán’s result was the original version

sought, as it proves a long-standing conjecture of Hendrickson [15]. In that

paper, Hendrickson proved that (d+ 1)-connectivity and redundant length-

rigidity were necessary conditions for global length-rigidity of generic length-

pure frameworks in Rd. It is not too difficult to see that these conditions

are also sufficient when d = 1. When d ≥ 3, there are many examples

which show that these conditions are not sufficient, such as those provided

by Connelly [6]. Theorem 6.1.3 proves the only remaining case: that these

conditions are sufficient when d = 2. However, the alternative statement in

Theorem 6.1.2, shall be more helpful for our purposes.

It is worth noting that Theorem 6.1.3 is not the only known character-

isation of global length-rigidity. Connelly [7] showed that if a length-pure

framework (G, p) in Rd has a “stress matrix” of maximum rank, then (G, p)

is globally length-rigid. Gortler, Healy and Thurston [13] showed that this

stress matrix condition is both necessary for global length-rigidity, and a

generic property. Thus proving that a length-pure graph is globally length-

rigid for all (or any) generic realisations in Rd if and only if its stress matrix
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has maximum rank.

As such, the stress matrix characterises global length-rigidity in a sim-

ilar way to how the rigidity matrix characterises length-rigidity. However,

unlike the rigidity matrix, it is not known how to write this maximum rank

property in terms of properties of the graph. Currently, it is also not known

whether there is an analogue of this stress matrix for direction-length graphs.

Since we are interested in finding a graph theoretic characterisation of global

rigidity for direction-length graphs, these two shortcomings mean that the

stress matrix will be of little use to us in achieving this goal. However,

it is possible that this point of view will be helpful in solving the main

open problem of Chapter 8: whether global rigidity is a generic property of

direction-length graphs in R2.

6.2 Direction-length frameworks

We aim to build on Theorems 6.1.1 and 6.1.3 to obtain a characterisation of

global rigidity for generic direction-length frameworks. These earlier results

suggest that our characterisation will have different conditions for direction

and length edges. However, there are some simple necessary conditions

which treat direction and length edges equally:

Lemma 6.2.1. [17, Lemma 1.6] Let (G, p) be a generic direction-length

framework with at least three vertices. Suppose (G, p) is globally rigid, and

let G = (V ;D,L). Then

(i) G is mixed,

(ii) G is rigid, and

(iii) G is 2-connected.
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The first difference between Theorems 6.1.1 and 6.1.3 is whether the

edges of the graph are redundant. This was a requirement for global length-

rigidity but not global direction-rigidity. If our graph contains exactly one

length edge, then it cannot be redundant: if we delete it, then we can dilate

the remaining direction-pure graph. Servatius and Whiteley [35] showed

that such graphs can still be globally rigid:

Theorem 6.2.2. Let (G, p) be a generic direction-length framework. If

G = (V ;D,L) is rigid and |L| = 1, then (G, p) is globally rigid.

This was the first result on global rigidity for direction-length frame-

works.

Much later, Jackson and Keevash [20] investigated when edge redun-

dancy is necessary for global rigidity. In the following statement, a direction-

length framework (G, p) is unbounded if for all K ∈ R there exists an equiv-

alent framework (G, q) such that for some u, v ∈ V (G), ‖q(u)− q(v)‖ > K.

Lemma 6.2.3. [20, Theorems 1.1 and 1.3] Let (G, p) be a generic direction-

length framework with at least three vertices. Suppose (G, p) is globally rigid,

and let G = (V ;D,L).

(i) If |L| ≥ 2, then G− e is rigid for all e ∈ L.

(ii) If e ∈ D and G − e contains a rigid subgraph on at least 2 vertices,

then G− e is either rigid or unbounded.

The second difference between the conditions in Theorems 6.1.1 and

6.1.3 is 3-connectivity, which is necessary for global length-rigidity but not

global direction-rigidity. This is because in a length-pure framework, we

can reflect a portion of our framework across a 2-vertex-cut to obtain an

equivalent realisation. However, if we reflect a direction edge across a 2-

vertex-cut in a generic framework, this changes its slope, thus violating the
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framework constraints. Hence 3-connectivity is not a necessary condition

for global rigidity of direction-length frameworks: we can have 2-vertex-cuts

so long as both sides of this cut contain a direction edge to make a reflection

impossible.

To formalise this, let G be a graph with a k-vertex-cut X, whose removal

disconnects G into G[V1] and G[V2]. Let Hi be a subgraph of G with vertex

set X ∪ Vi. We say the pair (H1, H2) is a k-separation of G if H1 ∪H2 = G.

The k-separation (H1, H2) is edge disjoint if E(H1) ∩ E(H2) = ∅.

A 2-separation (H1, H2) of a direction-length graphG is direction-balanced

if both E(H1) − EG(X) and E(H2) − EG(X) contain a direction edge,

and is length-balanced if both of these sets contain a length edge. We

say a direction-length graph G is direction-balanced if every 2-separation

of G is direction-balanced, and is direction-unbalanced otherwise. We define

length-balanced and length-unbalanced graphs analogously. A graph is un-

balanced if it is either direction-unbalanced or length-unbalanced. Jackson

and Jordán showed that being direction-balanced is the correct substitution

for 3-connectivity:

Lemma 6.2.4. [17, Lemma 1.6] Let (G, p) be a generic direction-length

framework with at least three vertices. Suppose (G, p) is globally rigid in R2.

Then

(i) G is direction-balanced, and

(ii) the only 2-edge-cuts which can occur in G consist of two direction edges

incident to a common vertex of degree two.

Lemma 6.2.3 implies that globally rigid frameworks may contain edges

which are not redundant. However the relationship betweenM-connectivity

and global rigidity is less clear. A 3-connected length-pure graph G is M-

connected if and only if it is redundantly length-rigid, which made these two
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properties interchangeable in our characterisation of global length-rigidity

(see Theorems 6.1.2 and 6.1.3). However for direction-length frameworks,

anM-connected graph may be redundantly rigid, rigid, or even flexible. So

it is worth investigating the relationship betweenM-connectivity and global

rigidity.

Jackson and Jordán showed that being direction-balanced guarantees

global rigidity for generic realisations of the simplest M-connected graphs:

Theorem 6.2.5. [17, Theorem 6.2] Let (G, p) be a generic realisation of a

mixed graph whose rigidity matroid is a circuit. Then (G, p) is globally rigid

if and only if G is direction-balanced.

This result forms the starting point for our own work.

6.3 Summary of results

The first goal of this thesis is to extend Theorem 6.2.5 to all M-connected

direction-length graphs. To do this, we extend the methods used in [16].

This argument forms the basis of Chapter 7, and culminates in the following

characterisation:

Theorem 7.6.2. Suppose (G, p) is a generic direction-length framework

and G is M-connected. Then (G, p) is globally rigid if and only if G is

direction-balanced.

For generic length-pure frameworks, M-connectivity is a necessary con-

dition for global length-rigidity, and so the analogue to this approach pro-

vided a full characterisation of global length-rigidity. However, this is not

true for direction-length frameworks. We need further tools to characterise

global rigidity when the underlying graph is not M-connected. We tackle

this case in Chapter 8.
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Figure 6.2: The graph G on the left is direction reducible to the subgraph H on the

right in two steps. Since the direction edge v5v7 is contained in the direction-pure circuit

induced by {v4, v5, v6, v7} we can delete v5v7 by (D1). The graph we now obtain by

contracting H to a single vertex is direction-pure and is the union of two edge-disjoint

spanning trees so we can reduce G to H by (D2).

The main tool we use in Chapter 8 are direction reductions, where we

say a graph G = (V ;D,L) admits a direction reduction to a subgraph H if

either:

(D1) H = G − e for some edge e ∈ D which belongs to a direction-pure

circuit in the rigidity matroid of G, or

(D2) ∅ 6= V (H) ⊂ V (G), and the graph G/H obtained by contracting H

to a single vertex (and deleting all edges contained in H) has only

direction edges and is the union of two edge-disjoint spanning trees.

If G has no direction reduction, then we say that G is direction irreducible.

See Figure 6.2 for an example of a direction reduction.

Our first result of Chapter 8 characterises global rigidity for generic

frameworks which admit a direction reduction:

Theorem 8.3.3. Suppose (G, p) is a generic direction-length framework and
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G admits a direction reduction to a subgraph H. Then (G, p) is globally rigid

if and only if (H, p|H) is globally rigid.

We then wish to show that if a generic framework is globally rigid and

direction irreducible, then either it has exactly one length edge (and so is

characterised by Theorem 6.2.2), or it is M-connected (and so is charac-

terised by Theorem 7.6.2). If this were the case, then these three Theorems

would fully characterise global rigidity for generic frameworks.

Unfortunately, there is one final stumbling block: although global rigidity

is a generic property in Theorems 6.2.2 and 7.6.2, we do not know whether

this is true in general. It is possible that there exists a graph G which has

two non-equivalent generic realisations p and q such that (G, p) is globally

rigid, but (G, q) is globally flexible. As such, our methods in handling the

remaining uncharacterised graphs only succeed in showing that such graphs

have some generic realisation which is not globally rigid. This leads to the

following statement:

Theorem 8.5.4. Let G = (V ;D,L) be a direction irreducible mixed graph

with |L| ≥ 2. Then G is globally rigid for all generic realisations if and only

if G is direction-balanced and M-connected.

We conjecture that the word “all” in the above statement can be replaced

by “some”. In other words, if p and q are non-equivalent generic realisations

of G, and (G, p) is globally rigid, then (G, q) must also be globally rigid. If

this were true, then this result would characterise all globally rigid generic

frameworks where the underlying graph is direction irreducible and has at

least two length edges:

Conjecture 6.3.1. Let G = (V ;D,L) be a direction irreducible mixed graph

with |L| ≥ 2, and let p be a generic realisation of G. Then (G, p) is globally

rigid if and only if G is direction-balanced and M-connected.
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If this conjecture is true, it would imply that global rigidity is a generic

property of all direction-length graphs. As this is still unknown, our results

together with Theorem 6.2.2 of Servatius and Whiteley, instead characterise

the graphs which are globally rigid for all generic realisations.

Theorem 8.5.5. A direction-length graph G = (V ;D,L) is globally rigid

for all generic realisations if and only if G is rigid and either |L| = 1 or G

has a rigid, M-connected subgraph which contains all edges in L.

If Conjecture 6.3.1 is correct, then the conditions in Theorem 8.5.5 char-

acterise global rigidity for all generic direction-length frameworks.



Chapter 7

Global rigidity of

M-connected frameworks

7.1 Preliminaries

Recall the definition of the rigidity matroid from Chapter 4. In Section 7.1.1

we rephrase properties of the rigidity matroid R(G) in terms of the graph G,

and use this to obtain some simple technical results for G. Then in Section

7.1.2, we review known methods of inductively constructing globally rigid

graphs.

7.1.1 Critical sets and circuits

If the edge set of the graph G is independent in the rigidity matroid R(G),

then we say that G is independent. Similarly, if the edge set of G is a circuit

in R(G), then we call G a mixed circuit when E(G) contains both length

and direction edges, and a pure circuit otherwise.

In Chapter 4, we noted that Lemma 4.1.4 described the conditions re-

quired for a set of edges to be a basis of R(G). We can easily reformulate
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this lemma to characterise independence instead:

Corollary 7.1.1. [35, Theorem 4] A direction-length graph G = (V ;D,L)

is independent if and only if for all non-empty X ⊆ V ,

(i) i(X) ≤ 2|X| − 2, and

(ii) iD(X) ≤ 2|X| − 3 and iL(X) ≤ 2|X| − 3, whenever |X| ≥ 2.

Condition (i) implies G is loop-free; and this, together with condition

(ii), implies that the pure subgraphs of G are simple. So any pair of vertices

in G are connected by at most two parallel edges: one length edge, and one

direction edge.

In a direction-length graph G = (V ;D,L), let X ⊆ V with |X| ≥ 2 and

G[X] independent. We call X mixed critical if i(X) = 2|X| − 2, or pure

critical if i(X) = 2|X| − 3 and either iL(X) = 0 or iD(X) = 0 (in which

case, we call X direction critical or length critical respectively). We say X

is critical if it is either mixed or pure critical. The following results give

some simple properties of critical sets. See page 25 for the definition of the

function d used below.

Lemma 7.1.2. [17, Lemma 2.4] Let G = (V ;D,L) be an independent mixed

graph.

(i) If X and Y are mixed critical sets with X ∩ Y 6= ∅, then X ∩ Y and

X ∪ Y are both mixed critical and d(X,Y ) = 0.

(ii) If X and Y are both direction (respectively length) critical sets with

|X ∩ Y | ≥ 2, then either

(a) d(X,Y ) = 0 and X ∩ Y , X ∪ Y are both direction (respectively

length) critical, or
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(b) d(X,Y ) = 1, X∪Y is mixed critical and iD(X∪Y ) = 2|X∪Y |−3

(respectively iL(X ∪ Y ) = 2|X ∪ Y | − 3).

(iii) If X is mixed critical and Y is pure critical with |X ∩ Y | ≥ 2, then

X ∪ Y is mixed critical, X ∩ Y is pure critical and d(X,Y ) = 0.

(iv) If X is length critical and Y is direction critical with |X∩Y | ≥ 2, then

X ∪ Y is mixed critical, |X ∩ Y | = 2 and d(X,Y ) = 0.

Lemma 7.1.3. [17, Lemma 2.5] Let G = (V ;D,L) be an independent mixed

graph with mixed critical set X and pure critical sets Y and Z satisfying

|X ∩ Y | = |Y ∩ Z| = |X ∩ Z| = 1 and X ∩ Y ∩ Z = ∅. Then X ∪ Y ∪ Z is

mixed critical and d(X,Y, Z) = 0.

The characterisation given in Corollary 7.1.1 of independent sets in the

rigidity matroid as edge sets of sparse graphs, leads to the following results

characterising circuits in the rigidity matroid:

Lemma 7.1.4. [17, Lemma 3.1] A direction-length graph G = (V ;D,L) is

a mixed circuit if and only if

(i) |D|+ |L| = 2|V | − 1 with D 6= ∅ and L 6= ∅,

(ii) i(X) ≤ 2|X| − 2 for all non-empty X ⊂ V , and

(iii) iD(X) ≤ 2|X| − 3 and iL(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2.

Lemma 7.1.5. [17, Lemma 3.2] A direction-length graph G = (V ;D,L) is

a pure circuit if and only if

(i) |D|+ |L| = 2|V | − 2 and either D = ∅ or L = ∅, and

(ii) i(X) ≤ 2|X| − 3 for all X ⊂ V with |X| ≥ 2.
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Figure 7.1: The two mixed circuits on three vertices, K+
3 and K−3 .

The pure circuit with fewest vertices is a pure K4. The mixed circuits

with fewest vertices are denoted by K+
3 and K−3 , and are obtained from

a length-pure (respectively direction-pure) K3 by adding two direction (re-

spectively length) edges between distinct pairs of vertices, see Figure 7.1.

Servatius and Whiteley [35] characterised rigidity for circuits:

Lemma 7.1.6. [35, Theorems 2, 4] Let G = (V ;D,L) be a circuit. Then

G is (redundantly) rigid if and only if G is mixed.

The following result implies that the union of intersecting mixed circuits

is also rigid:

Lemma 7.1.7. Let G = H1∪H2 be a mixed graph, with V (H1)∩V (H2) 6= ∅.

If H1 and H2 are rigid then G is rigid.

Proof. Let Vi = V (Hi) for i ∈ {1, 2}, and let p be a generic realisation of

G. Then (H1, p|V1) and (H2, p|V2) are generic realisations of H1 and H2

respectively.

Let v ∈ V1 ∩V2. Since H1 is rigid and p|V1 is a generic realisation of H1,

the only motions of (H1, p|V1) are translations. Hence the only motion of

(H1, p|V1) which fixes v is a translation of length zero, i.e. the motion which

fixes all of the vertices in V1.

Similarly, the only motion of (H2, p|V2) which fixes v is the motion which

fixes all of the vertices in V2. This implies that the only motion of the entire
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framework (G, p) which fixes v must fix all the vertices in G. Hence (G, p)

is rigid.

We have the following results on the connectivity of critical sets and

circuits.

Lemma 7.1.8. [17, Lemma 2.3] Let G = (V ;D,L) be a mixed graph and

let X ⊆ V be a critical set. Then

(i) G[X] is 2-edge-connected unless |X| = 2 and i(X) = 1.

(ii) If (H1, H2) is a 1-separation of G[X] then X is mixed critical and

V (H1) and V (H2) are also mixed critical.

Lemma 7.1.9. [17, Lemma 3.3] Let G be a mixed or pure circuit. Then G

is 3-edge-connected and 2-connected.

A trivial, but useful, consequence of Corollary 7.1.1 and Lemma 7.1.9 is

that all circuits have the same minimum degree:

Corollary 7.1.10. Let G be a mixed or pure circuit. Then δ(G) = 3.

7.1.2 Operations preserving global rigidity

Our goal is to characterise global rigidity for all generic direction-length

frameworks with a connected rigidity matroid. We shall do this by induc-

tively constructing all M-connected graphs which are globally rigid for all

generic realisations. To this end, we define the following three recursive op-

erations which are known to preserve global rigidity in generic frameworks.

Given G = (V ;D,L), an edge addition adds a new edge e to G to obtain

the graph G′ = G + e. A 0-extension operation instead adds a new vertex

v to G, along with two new edges vx and vy for some x, y ∈ V , such that
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(a) (b) (c) (d)

Figure 7.2: Graphs obtained from K+
3 by an edge addition (a), 0-extension (b),

direction-pure 0-extension (c), and 1-extension (d).

if x = y then these edges are assigned different types. A 0-extension is

direction-pure if both of the edges added are direction edges.

Finally, a 1-extension operation deletes an edge e = xy of G, and adds

a vertex v to G, along with edges vx, vy and vz for some z ∈ V , such that

at least one of these new edges is of the same type as e. A graph obtained

from G in this manner is denoted Gv. See Figure 7.2 for examples of these

moves.

Lemma 7.1.11. [18, Theorems 1.2 and 1.3] Let (G, p) and (G′, p′) be

generic direction-length frameworks. Suppose that either

(i) (G, p) is globally rigid, and (G′, p′) is obtained from (G, p) by an edge

addition or a direction-pure 0-extension, or

(ii) (G, p) is globally rigid, G− e is rigid for some e ∈ E(G), and (G′, p′)

is obtained from (G, p) by a 1-extension which deletes the edge e.

Then (G′, p′) is globally rigid.

By Theorem 6.2.5 and Lemma 7.1.6, we know that all generic realisations

of the smallest circuits, K+
3 and K−3 , are globally rigid and redundantly

rigid. Hence any graph which can be constructed from these two graphs

by the operations in Lemma 7.1.11 is also globally rigid. In particular, this



CHAPTER 7. M-CONNECTED FRAMEWORKS 63

implies the frameworks in Figures 7.2(a), (c) and (d) are globally rigid. The

framework in Figure 7.2(b) is not globally rigid: if we rotate the new vertex

by 180◦ about its neighbour whilst keeping the rest of the framework fixed,

we obtain an equivalent but non-congruent realisation.

Since we are interested inM-connected graphs, we need to identify which

of the above operations also preserve matroid connectivity. This is the focus

of the next section.

7.2 M-Connected graphs

In Chapter 6, we noted that global rigidity has already been characterised

for graphs which are circuits in the rigidity matroid (see Theorem 6.2.5). In

Chapter 3, we observed that every connected matroidM can be constructed

from a sequence of circuits ofM by an ear decomposition. See Lemma 3.1.1,

and the definition of an ear decomposition in terms of properties (E1), (E2)

and (E3). As such, the key idea in this chapter is to use ear decompositions

to extend the characterisation in Theorem 6.2.5 to allM-connected graphs.

In this section, we first identify some properties of M-connected graphs

in Subsection 7.2.1. Then, in Subsections 7.2.2 and 7.2.3 we show that

some of the operations introduced in Subsection 7.1.2 which preserve global

rigidity, also preserve matroid connectivity. This will imply that all graphs

constructed from K+
3 or K−3 using these moves are both M-connected and

globally rigid.

However, to characterise global rigidity forM-connected graphs, we need

to identify when an M-connected graph can be constructed using these

operations (or equivalently, deconstructed using inverse operations). This is

much harder, and is the topic of Sections 7.3 to 7.6. In the final part of this

section, Subsection 7.2.4, we observe some simple necessary conditions for
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the inverse operations to preserve global rigidity.

7.2.1 Properties of M-connected graphs

Lemma 7.2.1. Let G be a mixed or pure graph. If G is M-connected then

G is 2-connected.

Proof. Assume that G has a 1-separation (H1, H2) and let e ∈ E(H1) and

f ∈ E(H2). Since G is M-connected, the rigidity matroid of G contains a

circuit C such that e, f ∈ C. Lemma 7.1.9 implies that G[C] is 2-connected.

But G[C] intersects both H1 − H2 and H2 − H1, which contradicts that

(H1, H2) is a 1-separation of G.

An ear decomposition can contain both pure and mixed circuits. How-

ever, many of the properties we wish to infer forM-connected mixed graphs

hold for mixed circuits, but not pure circuits. So we need to determine when

the rigidity matroid of anM-connected graph has an ear decomposition us-

ing only mixed circuits. See Figure 7.2.1 for an example of such an ear

decomposition.

Lemma 7.2.2. Let G be an M-connected mixed graph. Then R(G) has an

ear decomposition into mixed circuits.

Proof. Let l1 be a length edge and d1 a direction edge in E(G). Since G is

M-connected, there exists a circuit C1 in R(G) containing both l1 and d1.

Clearly C1 is a mixed circuit.

If G is a circuit, then E(G) = C1 and we are done. So suppose G is not

a circuit. Then by Lemma 3.1.1(ii), it is possible to extend the partial ear

decomposition C1 to a full ear decomposition C1, C2, . . . , Cm of R(G), for

some m ≥ 2. Suppose this decomposition does not consist solely of mixed
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circuits, and let k be the least integer such that Ck is a pure circuit. By

(E2) there exists some edge ek in the lobe of Ck.

Pick e1 ∈ {d1, l1} of opposite type to ek. Since G[
⋃k
i=1Ci] is M-

connected, there exists some circuit C ′k ⊆
⋃k
i=1Ci such that e1, ek ∈ C ′k.

So C ′k is a mixed circuit. Clearly C ′k satisfies (E1) and (E2). Also, since Ck

satisfies (E3) and C̃ ′k ∩ C̃k 6= ∅ we must have C̃ ′k = C̃k, and thus C ′k also

satisfies (E3).

Hence C1, . . . , Ck−1, C
′
k, Ck+1, . . . , Cm is an ear decomposition of R(G)

where any pure circuit Ci in the sequence must have i > k. By iteratively

applying this argument, we generate an ear decomposition consisting of just

mixed circuits.

This result leads to the following characterisation of rigidity and redun-

dant rigidity for M-connected graphs:

Lemma 7.2.3. Let G = (V ;D,L) be an M-connected graph. Then G is

(redundantly) rigid if and only if G is mixed.

Proof. Suppose G is a pure graph. Then any realisation of G can either be

continuously rotated (if G is length-pure) or continuously dilated (if G is

direction-pure) whilst preserving the edge constraints, so G is neither rigid

nor redundantly rigid.

So instead, let G be mixed. Then Lemmas 7.1.6 and 7.2.2 imply that

G is a union of redundantly rigid mixed circuits H1, H2, . . . ,Hm for some

m ≥ 1. Let e ∈ E(G), and Fi = Hi − e for all 1 ≤ i ≤ m. Then G− e is the

union of the rigid subgraphs F1, F2, . . . , Fm. Thus G− e is rigid, by Lemma

7.1.7. Hence G is redundantly rigid.

Lemma 7.2.4. Let G = (V ;D,L) be an M-connected mixed graph and

let H1, H2, . . . ,Hm be the subgraphs of G induced by the mixed circuits
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v1
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v3

v4
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G1
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v4

v5
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Figure 7.3: The ear decomposition of R(G3) into circuits C1, C2, C3 gives the above

sequence of graphs. Each graph Gi is obtained from Gi−1 by taking the union of Gi−1

with Hi = G[Ci]. In each Gi, the subgraph Hi is shown in black, and Gi −Hi in grey. In

the terminology of Lemma 7.2.4, m = 3, X = {v1, v2}, Y = {v6, v7} and C̃3 is the set of

5 edges incident to either v6 or v7.

C1, . . . , Cm of an ear decomposition of R(G), where m ≥ 2. Let Y =

V (Hm)−
⋃m−1
i=1 V (Hi) and X = V (Hm)− Y . Then:

(i) |C̃m| = 2|Y |+ 1;

(ii) either Y = ∅ and |C̃m| = 1 or Y 6= ∅ and every edge e ∈ C̃m is incident

to Y ;

(iii) if Y 6= ∅, then X is mixed critical in Hm;

(iv) If Y 6= ∅ then G[Y ] is connected;

(v) if G is 3-connected, then |X| ≥ 3.

Proof. Let Gj =
⋃j
i=1Hi and Ej =

⋃j
i=1Cj . So E(Gj) = Ej . Lemma

3.1.1(i) implies that Gm−1 is M-connected. By Lemma 7.2.3, both Gm−1

and G are rigid, so Corollary 4.2.1 implies that r(Em−1) = |Em−1| = 2|V −

Y | − 2 and r(E) = |E| = 2|V | − 2. Thus, by Lemma 3.1.1(iii),

|C̃m| = r(E)− r(Em−1) + 1 = (2|V | − 2)− (2|V − Y | − 2) + 1 = 2|Y |+ 1,

which gives part (i). Hence, when Y = ∅ we must have |C̃m| = 1. Suppose

Y 6= ∅, and assume that exactly k edges in E−Em−1 have both endvertices
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in V (Gm−1). Since Hm is a mixed circuit, part (i) and Lemma 7.1.4 imply

iHm(X) = |Cm| − |C̃m|+ k = (2|X ∪Y | − 1)− (2|Y |+ 1) + k = 2|X|+ k− 2.

Since Hm[X] is a proper subgraph of Hm, it must be independent. Thus

k = 0, and X is mixed critical in Hm, proving (ii) and (iii) respectively.

We now consider part (iv). Assume G[Y ] is disconnected. Then G[Y ]

consists of connected components G[Y1], G[Y2], . . . , G[Yk] for some k ≥ 2,

where Y1, Y2, . . . , Yk partitions Y . Since Hm is a circuit, Hm[Yi] is inde-

pendent for all 1 ≤ i ≤ k. Hence, by Lemma 7.1.4, each component of Y

satisfies

iHm(X ∪ Yi)− iHm(X) ≤ (2|X ∪ Yi| − 2)− (2|X| − 2) = 2|Yi|,

which implies that

|C̃m| =
k∑
i=1

(iHm(X ∪ Yi)− iHm(X)) ≤
k∑
i=1

2|Yi| = 2|Y |,

contradicting part (i).

Finally, we consider part (v). Suppose G is 3-connected. If Y 6= ∅, then

X is a vertex-cut of G and so |X| ≥ 3. If Y = ∅, then X is the vertex set of

a mixed circuit. The smallest mixed circuits, K+
3 and K−3 , have 3 vertices.

Hence |X| ≥ 3.

7.2.2 Operations preserving M-connectivity

Here we show that two of the operations from Section 7.1.2 which pre-

serve global rigidity: edge additions and 1-extensions, also preserve M-

connectivity for mixed graphs. We start with edge additions of mixed

graphs.

Lemma 7.2.5. Let G = (V ;D,L) be an M-connected mixed graph and let

G′ be obtained from G by an edge addition. Then G′ is M-connected and

mixed.
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Proof. Since E(G) ⊂ E(G′), G′ is mixed. Denote the edge added in the

edge addition by e. By Lemma 7.2.3, both G and G′ are rigid on the same

vertex set. Hence r(R(G)) = 2|V | − 2 = r(R(G′)). Let B be a maximal

independent set in E(G). Then rG(B) = r(R(G)) = r(R(G′)), so B is also

maximally independent in G′. Hence B+e is dependent in G′, which implies

R(G′) contains a circuit C such that e ∈ C ⊆ B+e. Since |C| ≥ i(K+
3 ) = 5,

we know that C ∩ E(G) 6= ∅. Thus R(G′) is connected by Lemma 3.1.1(i),

and so G′ is M-connected.

Showing that 1-extensions preserveM-connectivity requires more work.

We say that a 1-extension is pure if all the edges added are of the same

type as the edge removed, otherwise it is mixed. We already know that

1-extensions and edge additions preserve M-connectivity in the following

cases:

Lemma 7.2.6. [16, Lemma 3.9] Let G = (V,E) be an M-connected pure

graph and let G′ be obtained from G by either a pure 1-extension or an edge

addition, where in both cases the edges added are of the same type as G.

Then G′ is pure and M-connected.

Lemma 7.2.7. [17, Lemma 3.6] Let G be a mixed circuit and G′ be a 1-

extension of G. Then G′ is a mixed circuit.

We shall extend these results to all M-connected mixed graphs. But to

do this, we need the following lemma, which provides a way of transferring

results for pure 1-extensions to mixed 1-extensions. Recall the definition of

pure and mixed vertices from page 32.

Lemma 7.2.8. Let G = (V ;D,L) be a mixed circuit and let v be a pure

vertex in G. Let G′ be the graph obtained from G by changing the type of at

most two of the edges incident to v. Then G′ is a mixed circuit.
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Proof. Let {vx, vy} be the set of edges whose type was changed. By Corol-

lary 7.1.10, dG(v) ≥ 3, so at least one of the edges terminating at v was

not changed. Hence E(G′) is mixed. Since |E(G′)| = |E(G)| = 2|V | − 1,

we know that E(G′) is dependent, and so there exists some set of edges

C ⊆ E(G′) which is a circuit in the rigidity matroid.

If neither vx nor vy is contained in C, then C ⊂ E(G), which contradicts

that G is a circuit. Hence C must contain at least one of these edges. But

G′[C] is a circuit, so Corollary 7.1.10 implies that C contains at least 3 edges

incident to v. By the construction of G′ from G, this implies that C contains

both a direction and a length edge. Hence C is mixed. If C 6= E(G′) then,

by changing back the types of the edges {vx, vy}, we obtain an edge set

C ′ ⊂ E(G) which is dependent in G, contradicting the fact G is a circuit.

Thus C = E(G′), and G′ is a mixed circuit.

We now show that 1-extensions preserveM-connectivity for mixed graphs:

Lemma 7.2.9. Let G = (V ;D,L) be an M-connected mixed graph and let

G′ be obtained from G by a 1-extension. Then G′ is mixed andM-connected.

Proof. Let the 1-extension used to obtain G′ from G add the vertex v with

neighbourhood {x, y, z} (where potentially x = z) whilst removing an xy-

edge e. We shall use the transitivity of matroid connectivity (see page 30)

to prove that G′ is M-connected, by showing that given some e1 ∈ E(G′),

we can find a circuit containing both e1 and e2 for all e2 ∈ E(G′)− e1.

Suppose x = z. Pick some edge g ∈ E(G) − e of opposite type to e.

Since G is M-connected, for all f ∈ E(G)− g, there is a circuit C in R(G)

such that f, g ∈ C. If e 6∈ C then C ⊂ E(G′) and we are done. So instead

assume e ∈ C. Then C is mixed. Since G[C] contains NG′(v) = {x, y}, the

1-extension which builds G′ from G induces a 1-extension G′[C ′] of G[C].
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By Lemma 7.2.7, G′[C ′] is a mixed circuit and contains the edges g, vx, vy

and vz, as well as the edge f (when f 6= e). Hence G′ is M-connected.

So instead suppose x, y and z are distinct. There are two cases to con-

sider: when v is added to G by a pure 1-extension, and when it is added by

a mixed 1-extension.

First, suppose that v is added by a pure 1-extension. Pick some edge

g ∈ E(G) − e which has z as an endvertex. Since G is M-connected, for

all f ∈ E(G)− g there is a circuit C in the rigidity matroid of G such that

f, g ∈ C. If e 6∈ C then C ⊂ E(G′) and we are done. So suppose that e ∈ C.

Since G[C] contains both e and the vertices x, y and z, the 1-extension used

to form G′ from G, is also a pure 1-extension, G′[C ′], of G[C]. Hence, using

Lemma 7.2.7 if C is mixed, or Lemma 7.2.6 if C is pure, G′[C ′] is a circuit

and contains the edges vx, vy and vz as well as the edges f (when f 6= e)

and g as required. Hence G′ is M-connected.

It remains to show that the claim holds when v is added by a mixed

1-extension. Let the graph obtained by this mixed 1-extension be denoted

by G′′. This graph, G′′, can be obtained from the corresponding pure 1-

extension, G′, above, by changing the type of at most two of the edges in

{vx, vy, vz}. Let C ′ be a mixed circuit in E(G′) and suppose G′[C ′] does

not contain v. Then C ′ ⊆ E(G′′)−{vx, vy, vz} and we are done. Otherwise

G′[C ′] contains v, and since circuits have minimum degree 3, this implies

vx, vy, vz ∈ C ′. We can obtain the corresponding edge set C ′′ ⊆ E(G′′)

from C ′ by changing the type of at most two of the edges in {vx, vy, vz},

as determined above. By Lemma 7.2.8, C ′′ is a mixed circuit. Since G′ is

M-connected, and every mixed circuit C ′ in G′ has a corresponding mixed

circuit C ′′ in G′′, Lemma 7.2.2 implies that G′′ is M-connected.
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7.2.3 2-sums: another operation

We have seen that edge additions and 1-extensions preserveM-connectivity.

However, any graph we construct from K+
3 or K−3 with just these opera-

tions will be both direction-balanced and length-balanced. In Lemma 6.2.4

we saw that being direction-balanced is a necessary condition for global

rigidity, but being length-balanced is not. Thus we need a third operation

which will allow use to build length-unbalanced graphs whilst preserving

global rigidity andM-connectivity. A direction-pure 0-extension allows use

to build length-unbalanced graphs, and in Lemma 7.1.11 we saw that this

operation preserves global rigidity. But it does not preserveM-connectivity

as, from Corollary 7.1.10 and Lemma 3.1.1,M-connected graphs have min-

imum degree at least 3.

Here we introduce an operation called a 2-sum. These preserve M-

connectivity and global rigidity whilst allowing us to construct graphs which

are not length-balanced. We show that a 2-sum with a direction-pure K4 is

an operation which preserves both global rigidity and M-connectivity.

Let G1 = (V1;D1, L1) be a mixed graph and G2 = (V2;P ) be a direction-

(respectively length-) pure graph with V1 ∩ V2 = {x, y} and D1 ∩ P = {xy}

(respectively L1 ∩ P = {xy}). The graph G = (V ;D,L) is a 2-sum of G1

and G2, written G = G1 ⊕2 G2, if V = V1 ∪ V2, D = (D1 ∪ P ) − {xy} and

L = L1 (respectively D = D1 and L = (L1 ∪ P )− {xy}). See Figure 7.4 for

an example.

Let G = (V ;D,L) be a mixed or pure graph with an edge-disjoint 2-

separation (H1, H2) on the 2-vertex-cut {x, y} where H2 is pure and G does

not contain an xy-edge of the same type as H2. Then the 2-cleave of G

across the pair {x, y} adds the edge xy of the same type as H2 to both H1

and H2 to form the graphs G1 and G2 respectively, such that G = G1⊕2G2.
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Figure 7.4: A 2-sum between a mixed graph and a direction-pure K3.

When we make a 2-cleave, we often want to ensure we are removing

the fewest possible vertices from our graph, by making V (G2) as small as

possible. To aid our description of this, we introduce the following notation.

Given a graph G = (V ;D,L) and a set X ⊂ V , the neighbourhood of X in

G, is given by NG(X) = {v ∈ V −X : xv ∈ E(G) for some x ∈ X}. When

it is clear which graph we are referring to, we simply write N(X). We call

X ⊂ V an end of G if |N(X)| = 2, V − (X ∪ N(X)) 6= ∅, and for all non-

empty X ′ ⊂ X we have |N(X ′)| ≥ 3. This definition of a neighbourhood

extends that given in Chapter 2, where X was a single vertex.

It is already known that 2-sums and 2-cleaves preserve M-connectivity

for pure and mixed circuits:

Lemma 7.2.10. [2, Lemmas 4.1, 4.2] Let G be a pure graph.

(i) Suppose G is the 2-sum of two pure graphs G1 and G2. If G1 and G2

are circuits then G is a pure circuit.

(ii) Suppose G is a pure circuit with an edge-disjoint 2-separation (H1, H2)

on the 2-vertex-cut {x, y}. Then dG(x), dG(y) ≥ 4 and xy is not an

edge of G. In addition, if we 2-cleave G across {x, y}, we obtain graphs

G1 and G2 from H1 and H2 respectively, such that G1 and G2 are both

pure circuits.

Lemma 7.2.11. [17, Lemma 3.7] Let G be a mixed graph.
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(i) Suppose G is the 2-sum of two graphs G1 and G2. If G1 is a mixed

circuit and G2 is a pure circuit then G is a mixed circuit.

(ii) Suppose G is a mixed circuit and has an edge-disjoint 2-separation

(H1, H2) on the 2-vertex-cut {x, y} with H2 pure. Then dG(x), dG(y) ≥

4 and G does not contain an xy-edge of the same type as H2. In

addition, if we 2-cleave G across {x, y}, we obtain the graphs G1 and

G2 from H1 and H2 respectively, such that G1 is a mixed circuit and

G2 is a pure circuit.

We extend these results to M-connected mixed graphs:

Lemma 7.2.12. Let G be a mixed graph.

(i) Suppose G is the 2-sum of two graphs G1 and G2. If G1 is mixed, G2

is pure and both are M-connected then G is an M-connected mixed

graph.

(ii) Suppose G is anM-connected mixed graph and has an edge-disjoint 2-

separation (H1, H2) on 2-vertex-cut {x, y} with H2 pure. Then dG(x) ≥

4 and dG(y) ≥ 4. Further, if G contains an xy-edge of the same type as

H2 then G−xy is M-connected. Otherwise, we can 2-cleave G across

{x, y} to form the graphs G1 and G2 from H1 and H2 respectively,

where G1 is an M-connected mixed graph and G2 is an M-connected

pure graph.

Proof. First we prove part (i). Let e be the edge removed from both G1 and

G2 by the 2-sum operation and let fi ∈ E(Gi) − {e} for i ∈ {1, 2}. Since

G1 and G2 are both M-connected, their rigidity matroids contain circuits

C1 and C2 respectively such that e, fi ∈ Ci for i ∈ {1, 2}, C2 is pure and

C1 is either mixed, or pure of the same type as C2 (since it contains e).
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Thus, by Lemma 7.2.10(i) or 7.2.11(i) as applicable, C1 ⊕2 C2 is a circuit

in G containing both f1 and f2. Hence, by the transitivity of matroid

connectivity, G is M-connected.

We shall now prove part (ii). Assume G contains the xy-edge e of the

same type as H2. Let fi ∈ E(Hi) − {e} for i ∈ {1, 2}. Since G is M-

connected, R(G) contains a circuit C ⊆ E such that f1, f2 ∈ C. By Lemma

7.2.10(ii) or 7.2.11(ii) as relevant, e 6∈ C. Hence, by the transitivity of

matroid connectivity, G − xy is M-connected. Further, by Lemma 7.1.9,

vertices x and y have degree at least 3 in G[C], but both x and y are also

endvertices of e in G. Hence dG(X), dG(y) ≥ 4.

So instead assume e 6∈ E(G). Then e can be added to both H1 and H2

to form G1 and G2 respectively. Let f1 ∈ E(H1) and f2 ∈ E(H2) as before.

Since G is M-connected, R(G) contains a circuit C such that f1, f2 ∈ C.

Since circuits are 2-connected, both x and y are vertices in G[C]. Thus by

Lemma 7.2.10(ii) or 7.2.11(ii) as relevant, C2 = (C ∩ E(H2)) + e is a pure

circuit in R(G2) and C1 = (C ∩ E(H1)) + e is a pure (resp. mixed) circuit

in R(G1) when C ∩ E(H1) is pure (resp. mixed). So, by the transitivity of

matroid connectivity, G1 and G2 are both M-connected.

Finally, by 7.1.10, we have dGi(x) ≥ 3 and dGi(y) ≥ 3, for i ∈ {1, 2},

since M-connected graphs are the union of circuits. But xy is an edge in

both G1 and G2. Hence dG(x) = (dG1(x) − 1) + (dG2(x) − 1) ≥ 4, and

similarly, dG(y) ≥ 4.

Lemma 7.2.12 tells us that the 2-sum of an M-connected mixed graph

G with a direction-pure K4 on an xy-edge, will be mixed andM-connected.

We need to show the move preserves global rigidity. This 2-sum is equiv-

alent to first performing a direction-pure 0-extension on x and y, followed

by a direction-pure 1-extension on xy. Since G is M-connected and mixed,
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Lemma 7.2.3 implies that deleting the edge xy preserves rigidity. We also

know, by Lemma 7.1.11, that both of these operations preserve global rigid-

ity. This gives us the result we seek:

Lemma 7.2.13. Let G be an M-connected mixed graph which is globally

rigid. Let G′ be obtained from G by a 2-sum with a direction-pure K4. Then

G′ is mixed, M-connected and globally rigid.

7.2.4 Crossing 2-vertex-cuts

Lemma 7.2.13 tells us that a 2-sum with a direction-pure K4 preserves global

rigidity, but we have not considered when the inverse operation, a 2-cleave,

preserves global rigidity. In Lemma 6.2.4, we saw that being direction-

balanced is a necessary condition for global rigidity, so we need to identify

when 2-cleaves preserve being direction-balanced. To do this, we introduce

the idea of “crossing” 2-vertex-cuts.

Let G be a mixed or pure graph with two 2-separations (H1, H2) and

(H ′1, H
′
2) on 2-vertex-cuts {x, y} and {x′, y′} respectively. If x and y are in

different components of G−{x′, y′} then we say that {x, y} crosses {x′, y′}.

It is clear that if {x, y} crosses {x′, y′}, then {x′, y′} crosses {x, y}. Thus we

can refer to {x, y} and {x′, y′} as crossing 2-vertex-cuts, and we say that the

2-separations (H1, H2) and (H ′1, H
′
2) cross. Further, if {x, y} and {x′, y′}

cross, then neither xy nor x′y′ are edges in G, so the 2-separations (H1, H2)

and (H ′1, H
′
2) are both edge-disjoint. See Figure 7.5.

Lemma 7.2.14. Let G be an M-connected mixed graph and let (H1, H2)

and (H ′1, H
′
2) be two 2-separations of G. If H2 is pure then (H1, H2) and

(H ′1, H
′
2) do not cross.

Proof. Assume, for a contradiction, that (H1, H2) and (H ′1, H
′
2) cross, and
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H2 ∩H ′2H1 ∩H ′2

Figure 7.5: Two crossing 2-separations of a graph: (H1, H2) on 2-vertex-cut {x, y}, and

(H ′1, H
′
2) on {x′, y′}.

let their 2-vertex-cuts be {x, y} and {x′, y′} respectively. Since these 2-

vertex-cuts cross, neither xy nor x′y′ are edges in G.

Let e2 be an edge in E(H2), and e1 be an edge of opposite type in

E(H1). Since G is M-connected, there is a mixed circuit C in R(G) such

that e1, e2 ∈ C. By Lemma 7.1.9, G[C] is 2-connected which implies that

x, y, x′ and y′ are all vertices in G[C]. Hence

|C| = |C ∩ E(H1)|+ |C ∩ E(H2) ∩ E(H ′1)|+ |C ∩ E(H2) ∩ E(H ′2)|.

Let VC = V (G[C]), and let Vi = V (Hi) and V ′i = V (H ′i) for i ∈ {1, 2}. Since

H2 is pure, the sparsity conditions for the mixed circuit C give

|C| ≤ (2|VC ∩ V1| − 2) + (2|VC ∩ V2 ∩ V ′1 | − 3) + (2|VC ∩ V2 ∩ V ′2 | − 3)

= 2(|VC |+ |{x, y, y′}|)− 8 = 2|VC | − 2

which contradicts the edge count for a mixed circuit. Hence (H1, H2) and

(H ′1, H
′
2) do not cross.

Lemma 7.2.15. Let G = G1⊕2G2 be a mixed graph with G2 direction-pure.

Then G1 is direction-balanced if and only if G is direction-balanced.
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Proof. The forwards direction is trivial, so we shall only prove the converse.

Let V (G1) ∩ V (G2) = {x, y}. Assume that G1 is not direction-balanced.

Then there is some end X of G1, such that no direction edges in G1 have

an endvertex in X. If X is also an end of G, then this contradicts that G is

direction-balanced. Hence X ∩{x, y} 6= ∅. But xy is a direction edge in G1,

which contradicts our original assumption.

7.3 Admissible nodes in mixed circuits

In the previous section we showed that performing 1-extensions, edge addi-

tions and 2-sums with pure K4’s preservesM-connectivity. So to obtain our

recursive construction of M-connected mixed graphs, it remains show that

everyM-connected mixed graph (other than K+
3 and K−3 ) can be obtained

from a smaller M-connected mixed graph by one of these operations.

Of these three operations, it is most difficult to identify when an M-

connected mixed graph is a 1-extension of another M-connected mixed

graph. In this section, we consider the simplest case of an M-connected

graph: a circuit. We review and extend Jackson and Jordán’s methods in

[17] for identifying when a circuit is a 1-extension of another circuit. We

will then extend these results to all M-connected graphs in Section 7.4.

Given a mixed or pure graph G = (V ;D,L), any vertex of degree three

in G is called a node, and the set of all such vertices is denoted by V3. We call

G[V3] the node subgraph of G. A node of G with degree at most one (exactly

two, exactly three) in G[V3] is called a leaf node (series node, branching node

respectively).

Lemma 7.3.1. [17, Lemma 3.4] Let G = (V ;D,L) be a mixed circuit. Then

G[V3] is a forest.
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Lemma 7.3.2. [17, Lemma 3.5] Let G = (V ;D,L) be a mixed circuit and

X ⊂ V be a mixed critical set. Then G has a node in V −X.

Given any node v in G, the 1-reduction operation at v on edges vx and vy

deletes v and all edges incident to v and adds a new edge xy with the proviso

that if v is a pure node then xy must be of the same type as v. The graph

obtained by this operation is denoted by Gxyv and is called a 1-reduction of

G. The 1-reduction operation is the inverse of the 1-extension operation. A

1-reduction which adds a direction edge to G is called a direction 1-reduction,

and similarly a length 1-reduction adds a length edge to G.

If G is anM-connected mixed (pure) graph, then a 1-reduction is called

admissible if the resulting graph is mixed (pure) andM-connected. A node

v of G is called admissible if there is an admissible 1-reduction at v, and is

non-admissible otherwise. In this section, we consider the special case where

G is a mixed circuit. For mixed (pure) circuits, a 1-reduction is admissible

if it results in a smaller mixed (pure) circuit.

Let G = (V ;D,L) be a mixed circuit with a 1-reduction at v onto the

edge xy. Assume G contains some critical set Z ⊂ V −v such that x, y ∈ Z,

and Z is either mixed, or pure of the same type as the xy-edge added in

the 1-reduction. Then G[Z] + xy is dependent in Gxyv . Since Z 6= V − v,

this implies that Gxyv is not a circuit. So the existence of the critical set

Z prevents this 1-reduction from being admissible. In fact, Jackson and

Jordán [17] have shown that we can determine the admissibility of nodes

in mixed circuits solely by the absence of such sets. However, we need to

avoid different combinations of critical sets, depending on whether the node

is pure or mixed.

Let G be a mixed circuit, and v be a node of G with three distinct

neighbours: r, s and t. Let R,S and T be critical sets in G− v with {s, t} ⊆
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Figure 7.6: Flower formed from vertex sets R,S and T .

R ⊆ V − {v, r}, {r, t} ⊆ S ⊆ V − {v, s} and {r, s} ⊆ T ⊆ V − {v, t} such

that either

(i) R, S and T are all mixed critical,

(ii) v is a pure node, R and S are both mixed critical, and T is pure of

the same type as v, or

(iii) v is a pure node, R is mixed critical, and S and T are pure of the same

type as v.

We say that the triple (R,S, T ) is a strong flower on v if it satisfies (i), or a

weak flower on v if it satisfies (ii), and that (R,S, T ) is a flower if it is either

a strong or a weak flower (see Figure 7.6). If instead (R,S, T ) satisfies (iii),

then we say (R,S, T ) is a clover on v (see Figure 7.7). Flowers and clovers

satisfy the following, very restrictive, properties:

Lemma 7.3.3. [17, Lemma 4.2] Let G = (V ;D,L) be a mixed circuit and

let v be a node of G. Suppose there exists a strong or weak flower (R,S, T )

on v, and let W ∗ = (V − v)−W for all W ∈ {R,S, T}. Then

(i) R ∪ S = S ∪ T = R ∪ T = V − v,

(ii) R ∩ S ∩ T 6= ∅,
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Figure 7.7: Clover formed from vertex sets R,S and T .

(iii) d(R,S) = d(S, T ) = d(R, T ) = 0, and

(iv) {R∗, S∗, T ∗, R ∩ S ∩ T} is a partition of V − v.

Lemma 7.3.4. Let G = (V ;D,L) be a mixed circuit and let v be a pure

node of G with neighbourhood {r, s, t}. Suppose (R,S, T ) is a clover on v

with R mixed critical. Then

(i) |R| ≥ 3,

(ii) R ∪ S ∪ T = V − v,

(iii) |R ∩ S| = |S ∩ T | = |R ∩ T | = 1,

(iv) R ∩ S ∩ T = ∅,

(v) d(R,S, T ) = 0, and

(vi) (G[R], G[S∪T+v]−E(R)) is an unbalanced, edge-disjoint 2-separation

of G on 2-vertex cut {s, t} with G[S ∪ T + v]− E(R) pure.

Proof. This proof closely follows that of Lemma 4.3 in [17]. Let v be a node

of type P ∈ {D,L}. First assume |S∩T | ≥ 2. Then Lemma 7.1.2(ii) implies

iP (S ∪ T ) = 2|S ∪ T | − 3. Since NG(v) ⊆ S ∪ T , this implies G[S ∪ T + v]
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contains a pure circuit of type P , contradicting the fact G is a mixed circuit.

Hence |S ∩ T | = 1, and more specifically, S ∩ T = {r}.

Instead, assume |R ∩ S| ≥ 2. Lemma 7.1.2(iii) implies R ∪ S is mixed

critical with d(R,S) = 0. Since NG(v) ⊆ R ∪ S, this implies G[R ∪ S + v]

contains a circuit. Hence R ∪ S = V − v. Since r, s ∈ T and S ∩ T = {r},

we have that T intersects both R − S and S − R, but does not intersect

R∩S. But nor are there any edges from R−S to S−R, since d(R,S) = 0.

This implies T is disconnected in G, contradicting Lemma 7.1.8(i). So our

assumption is false, and R∩S = {t}. A similar argument gives R∩T = {s}.

Thus proving parts (iii) and (iv).

Lemma 7.1.3 now implies d(R,S, T ) = 0 (part (v)) and that R ∪ S ∪ T

is mixed critical. This in turn implies that R ∪ S ∪ T + v is dependent, and

hence R ∪ S ∪ T = V − v, thus proving part (ii).

We now consider part (i). Since G is a mixed circuit, Lemma 7.1.4

implies it contains at least two edges of opposite type to P . But S and T

only induce edges of type P , and d(R,S, T ) = 0, so this implies all such

edges must be induced by R. Hence |R| ≥ 3, as required.

Finally, since |S∪T | ≥ 3, |R| ≥ 3, R∩(S∪T ) = {s, t} and d(R,S, T ) = 0,

we must have that {s, t} is the 2-vertex-cut of the edge-disjoint 2-separation

(G[R], G[S∪T+v]−E(R)) where G[S∪T+v]−E(R) is pure, hence proving

part (vi).

Using these properties, Jackson and Jordán determined when mixed and

pure nodes of a circuit are admissible:

Lemma 7.3.5. [17, Lemma 4.5] Let G = (V ;D,L) be a mixed circuit such

that G 6∈ {K+
3 ,K

−
3 }, and let v be a mixed node of G. Then exactly one of

the following hold:

(i) v is admissible,
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(ii) v has exactly two neighbours x and y and there exists a length critical

set R and a direction critical set S with R∩S = {x, y}, R∪S = V −v,

d(R,S) = 0 and i(R ∩ S) = 0, or

(iii) there is a strong flower on v in G.

Lemma 7.3.6. [17, Lemmas 4.4, 4.7] Let G = (V ;D,L) be a mixed circuit

and let v be a pure node of G. Then exactly one of the following hold:

(i) v is admissible,

(ii) there is a strong or weak flower on v in G, or

(iii) there is a clover on v in G.

In the next section, we extend these results to all M-connected mixed

graphs by identifying when such a graph contains an admissible node in

the last lobe of its ear decomposition. Lemma 7.2.2, and Lemma 7.2.4(ii)

and (iii), ensure that the last circuit Cm in the ear decomposition of such

a graph G is mixed, and that the lobe is either a single edge, or has vertex

set V (G[Cm])−X for some mixed critical set X in V (G[Cm]). See G2 and

G3 respectively in Figure 7.2.1 for examples of such lobes. Thus it shall

be helpful to determine when a mixed circuit H, with mixed critical set

X ⊂ V (H), has an admissible node in V (H)−X. In the remainder of this

section, we obtain a result which will help us to identify such a node.

Let G = (V ;D,L) be a circuit and v be a node in G with N(v) =

{x, y, z}. If X is a critical set with {y, z} ⊆ X ⊆ V −{v, x} then X is called

a v-critical set. If, in addition, d(x) ≥ 4 then X is called v-node-critical.

Theorem 7.3.7. Let G = (V ;D,L) be a mixed circuit and let X be a mixed

critical set in V . Suppose that either
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(i) there is a non-admissible series node u of G in V −X with exactly one

neighbour r in X, and r is a node, or

(ii) there is a non-admissible leaf node u of G in V −X with |N(u)∩X| ≤ 1.

Then either there exists a mixed node-critical set X∗ with X∗ ⊃ X, or there

exists an edge-disjoint 2-separation (H1, H2) of G with X ⊆ V (H1) and H2

pure.

Proof. Suppose |N(u)| = 2. Then Lemma 7.3.5 implies N(u) = {r, s} is the

2-vertex-cut of an unbalanced, edge-disjoint 2-separation (H1, H2) of G− u

where H1 is direction critical and H2 is length critical. However X is mixed

critical, so G[X] contains both length and direction edges, which implies

that X intersects both V (H1) − V (H2) and V (H2) − V (H1). By Lemma

7.1.8(i), G[X] is connected, thus X intersects V (H1) ∩ V (H2) = {r, s}. In

both cases (i) and (ii), |X ∩N(u)| ≤ 1, so X contains exactly one neighbour

of u, say r. But then {r} is the 1-vertex-cut of the unbalanced 1-separation

(G[X ∩ V (H1)], G[X ∩ V (H2)]) of X, which contradicts Lemma 7.1.8(ii).

Thus we must have |N(u)| = 3. Let N(u) = {r, s, t} and suppose con-

dition (i) holds. Then N(u) ∩X = {r} so, without loss of generality, both

r and s are nodes but t is not. Thus dG(t) ≥ 4. Since u is non-admissible,

Lemmas 7.3.5 and 7.3.6 imply there exists a critical set T such that r, s ∈ T

but t, u 6∈ T . We know that G[V3] is a forest by Lemma 7.3.1. So since r, s

and u are nodes, and ru, su ∈ E, this implies rs 6∈ E. Thus Lemma 7.1.8(i)

implies that G[T ] is 2-edge-connected with |T | ≥ 3. Hence δ(G[T ]) ≥ 2.

Since r ∈ X ∩T is a node and u /∈ X ∪T , in order to satisfy the minimal

degree condition for G[T ] we must have N(r)−{u} ⊆ T . But we also know

G[X] is connected with |X| ≥ 2, so some member of N(r)−{u} must also be

contained in X. Hence |X ∩ T | ≥ 2 and thus, by Lemma 7.1.2, X∗ = X ∪ T

is a mixed u-node-critical set with X ∪ T ⊃ X since s ∈ T −X.
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We now consider case (ii). Since u is non-admissible with |N(u)| = 3,

Lemmas 7.3.5 and 7.3.6 imply that there is either a strong or weak flower

on u, or, if neither of these occur, then there is a clover on u.

Claim 7.3.8. If there is a strong or a weak flower on u then there exists a

mixed node-critical set X∗ with X∗ ⊃ X.

Proof. Assume there exists a strong or weak flower on u with critical sets

R,S and T such that {s, t} ⊆ R ⊆ V − {r, u}, {r, t} ⊆ S ⊆ V − {s, u} and

{r, s} ⊆ T ⊆ V − {t, u}. Since u is a leaf node, we can assume both r and t

are not nodes. The definition of a a flower implies at least one of R and T is

mixed critical so, relabelling if necessary, we can assume T is mixed critical.

Suppose T ∩X = ∅. Since T ∪R = V −u ⊃ X, we must have R ⊇ X, and

hence X∗ = R is a mixed u-node-critical set. Further, since R∩N(u) = {s, t}

but at most one of s and t is in X, we have R ⊃ X as required.

We next suppose |T∩X| ≥ 1 and t 6∈ X. By Lemma 7.1.2(i), X∗ = T∪X

is a mixed u-node-critical set. Additionally, since both r, s ∈ T and at most

one of these is in X, we have that X∗ = T ∪X ⊃ X as required.

It remains to consider the case where |T ∩ X| ≥ 1 and t ∈ X. Since

|X ∩ N(u)| ≤ 1, this implies r, s 6∈ X and |R ∩ X| ≥ 1. If |R ∩ X| ≥ 2,

then Lemma 7.1.2 implies X∗ = R ∪X is u-node-critical with X ∪ R ⊃ X,

since s ∈ R −X. So assume |R ∩X| < 2. Then R ∩X = {t}. By Lemma

7.3.3, we know R ∪ T = V − u and d(R, T ) = 0. So since t ∈ R − T , these

properties imply N(t)−{u} ⊆ R. Also, since G[X] is connected and t ∈ X,

we know X must contain some member of N(t)− {u}. Hence |R ∩X| ≥ 2,

which contradicts our assumption.

Claim 7.3.9. If there is a clover on u, then there exists an edge-disjoint

2-separation (H1, H2) of G with X ⊆ V (H1) and H2 pure.
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Proof. Suppose there is a clover on u. Then u is pure, and by the definition

of a clover, exactly one of R,S and T is mixed critical, and the other two

sets are pure critical of the same type as u. Relabelling if necessary, we can

assume R is mixed. Then (G[R], G[S ∪ T + u] − E(R)) is an edge-disjoint

2-separation of G on 2-vertex-cut {s, t} where G[S ∪ T + u]−E(R) is pure.

Since X is mixed critical, X contains an edge e of opposite type to u. But S

and T only induce edges of the same type as u, so we must have e ∈ E(R).

Hence |X ∩R| ≥ 2.

Assume thatX contains some vertex in (S∪T )−R. SinceX is connected,

and |X ∩ N(u)| ≤ 1, this implies X contains exactly one of the vertices in

the 2-vertex-cut {s, t}. But then this vertex will be a 1-vertex-cut of the

1-separation (G[X ∩R], G[X ∩ (S ∪ T )]) of G[X], which contradicts Lemma

7.1.8(ii). Hence X ⊆ R and (G[R], G[S ∪T +u]−E(R)) is the edge-disjoint

2-separation of G required.

Claims 7.3.8 and 7.3.9, complete our proof of case (ii).

We now use Theorem 7.3.7 to obtain our result on mixed critical sets.

Theorem 7.3.10. Let G = (V ;D,L) be a mixed circuit, and X be a mixed

critical set in G. Suppose V −X contains a vertex which is not a node. Then

either V − X contains an admissible node, or there exists an edge-disjoint

2-separation (H1, H2) of G with X ⊆ V (H1) and H2 pure.

Proof. Let X ′ be a maximal mixed critical set in G such that X ′ ⊇ X and

V − X ′ contains a vertex which is not a node. Lemma 7.3.2 implies that

V − X ′ contains a node. Hence, by Lemma 7.3.1, there exists some node

v ∈ V −X ′ such that v is a leaf in G[V3 −X ′].

If d({v}, X ′) = 3 then X ′ + v would break the sparsity conditions for

circuits, and if d({v}, X ′) = 2 then X ′+v would be a larger critical set such
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that V − (X ′ ∪ {v}) contains a non-node, contradicting the maximality of

X ′. So d({v}, X ′) ≤ 1, and either v is a series node in G with exactly one

neighbour in X ′, which is also a node, or v is a leaf node in G.

If v is admissible then we are done. Otherwise, Theorem 7.3.7 implies

that either G has a node-critical set X∗ such that X∗ ⊃ X ′ or G has an

edge-disjoint 2-separation (H1, H2) with X ′ ⊆ V (H1) and H2 pure. If the

former case holds, then by the definition of node-critical, V −X∗ contains a

vertex which is not a node, which contradicts the maximality of X ′. So the

latter case must hold, as required.

7.4 Constructing M-connected mixed graphs

We extend the results of the previous section to show that anyM-connected

mixed graph G 6∈ {K+
3 ,K

−
3 }, can be obtained from a smaller M-connected

mixed graph by an edge addition, 1-extension, or a 2-sum with a pure K4. To

do this, we consider an ear decomposition of G, and apply our results from

Section 7.3 to the last circuit in the ear decomposition. Jackson and Jordán,

and Berg and Jordán have shown the following results on the existence of

admissible nodes in circuits:

Lemma 7.4.1. [17, Theorem 4.11] Let G = (V ;D,L) be a mixed circuit

with |V | ≥ 4. Then either G can be expressed as a 2-sum of a mixed circuit

with a pure K4, or G has an admissible node.

Lemma 7.4.2. [2, Theorem 3.8] Let G = (V ;D,L) be a 3-connected pure

circuit with |V | ≥ 5. If x, y ∈ V and xy is an edge in G, then G contains at

least two admissible nodes in V − {x, y}.

We extend the idea of admissibility to edges as well as nodes: an edge

e of an M-connected mixed or pure graph G is admissible if G − e is M-
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connected. We know that a pure graph which is both M-connected and

3-connected either contains an admissible edge or an admissible node:

Lemma 7.4.3. [16, Theorem 5.4] Let G = (V ;D,L) be a 3-connected, M-

connected pure graph. Let C1, C2, . . . , Cm be an ear decomposition of R(G)

into pure circuits. Suppose that G − e is not M-connected for all e ∈ C̃m

and for all but at most two edges of Cm. Then V (G[Cm])− V (G[
⋃m−1
i=1 Ci])

contains an admissible node.

In the remainder of this section, we obtain a similar result for admissible

edges and admissible nodes in M-connected mixed graphs.

Consider an ear-decomposition C1, C2, . . . , Cm of the rigidity matroid of

an M-connected graph G. If there is some node v which is admissible in

G[Cm], then, so long as v is in the lobe of G[Cm], and the edge added in

the 1-reduction is not already contained in
⋃m−1
i=1 Ci, the node v will also be

admissible in G. Actually, v needn’t be admissible in Cm for this argument

to work. So long as the following conditions are satisfied, v will be admissible

in G:

Lemma 7.4.4. Let G = (V ;D,L) be an M-connected mixed graph, and

H1, . . . ,Hm be the subgraphs of G induced by ear decomposition C1, . . . , Cm

of R(G) into mixed circuits, where m ≥ 2. Let Gm−1 = G[
⋃m−1
i=1 Ci]. Let

v ∈ V −V (Gm−1) be a node with x, y ∈ N(v) such that we can perform a 1-

reduction at v onto xy. Let C be the unique circuit in the edge set of (Hm)xyv .

If C ∩ E(Gm−1) 6= ∅ and E(Gxyv ) − E(Gm−1) ⊂ C then this 1-reduction is

admissible in G.

The uniqueness of C in this statement is a consequence of circuit axiom

(C3) in [28].

Proof. Since v 6∈ V (Gm−1), we know Gm−1 is a mixed subgraph of Gxyv . So
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Gxyv is mixed. Further, R(Gm−1) has ear decomposition C1, C2, . . . , Cm−1,

so Gm−1 is M-connected by Lemma 3.1.1(i). Since C ∩ E(Gm−1) 6= ∅,

C ∪ E(Gm−1) is connected in R(Gxyv ). But C ⊃ E(Gxyv ) − E(Gm−1), so

E(Gxyv ) = C ∪E(Gm−1). Hence Gxyv isM-connected, and so v is admissible

in G.

In the special case where the node v in our last lobe has exactly two

distinct neighbours, v is always admissible, so long as no edges in G are

admissible:

Lemma 7.4.5. Let G = (V ;D,L) be an M-connected mixed graph, and

let H1, . . . ,Hm be the subgraphs of G induced by the ear decomposition

C1, . . . , Cm of R(G) into mixed circuits, where m ≥ 2. Let Y = V (Hm) −⋃m−1
i=1 V (Hi) and X = V (Hm)− Y .

Suppose no edges in G are admissible, and let v ∈ Y be a node with

|N(v)| = 2. Then v is admissible in G.

Proof. Let N(v) = {x, y}, and assume v is not admissible in G. Since v is

a node, d(v) = 3, so without loss of generality, let vx be a double edge and

vy a single edge. Since vx is a double edge, v must be a mixed node.

Case 1. x, y ∈ X.

Lemma 7.2.4(ii) implies that all xy-edges in G are also edges in Gm−1 =⋃m−1
i=1 Hi. By Lemma 7.2.4(iii), X is mixed critical in Hm, so iHm(X + v) =

(2|X| − 2) + 3 = 2|X + v| − 1, which implies X + v = V (Hm) and hence

Y = {v}.

Assume G contains some xy-edge, e. Since C1, C2, . . . , Cm−1 is an ear

decomposition ofR(Gm−1), we know Gm−1 isM-connected. Add the vertex

v to Gm−1 by a 1-extension which removes the edge e. The resulting graph,

G− e, is M-connected by Lemma 7.2.9. But this means e is an admissible
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edge in G, which contradicts our assumption. Hence G contains no xy-edges,

and so we can perform a 1-reduction at v onto the pair vx, vy to form the

graph Gxyv = Gm−1 + xy. Since Gm−1 is M-connected, and edge additions

preserve M-connectivity by Lemma 7.2.5, Gxyv is M-connected.

Case 2. |{x, y} ∩X| ≤ 1.

By Lemma 7.2.1, G is 2-connected, so |X| ≥ 2 and thus |V (Hm)| ≥ 4. Hence

Hm 6∈ {K+
3 ,K

−
3 }, and so xy is not a double edge in G. If v is admissible

in Hm then (Hm)xyv is a mixed circuit and we are done by Lemma 7.4.4.

So assume that v is not admissible in Hm. Then, by Lemma 7.3.5, there

exists a length critical set A and a direction critical set B with A ∩ B =

{x, y}, A ∪B = V (Hm)− v and dHm(A,B) = 0. By Lemma 7.2.4(iii), X is

mixed critical in Hm. Since v 6∈ X, this implies that X must intersect both

A − B and B − A. But X is connected by Lemma 7.1.8(i), so this implies

|{x, y} ∩X| ≥ 1.

Hence |{x, y} ∩X| = 1, and this vertex is the 1-vertex-cut of the unbal-

anced 1-separation (Hm[X ∩A], Hm[X ∩B]) of X in Hm, which contradicts

Lemma 7.1.8(ii). Thus v must be admissible in Hm, and hence also in G.

We are now in a position to prove our main result on the existence of

admissible nodes and edges in M-connected mixed graphs:

Theorem 7.4.6. Let G = (V ;D,L) be an M-connected mixed graph such

that G 6∈ {K+
3 ,K

−
3 } and G has no admissible edges. Let H1, H2, . . . ,Hm be

the subgraphs of G induced by an ear decomposition C1, C2, . . . , Cm of R(G)

into mixed circuits. Let Ej =
⋃j
i=1Ci, Y = V (Hm) −

⋃m−1
i=1 V (Hi) and

X = V (Hm)− Y . Then either Y contains an admissible node, or G can be

expressed as the 2-sum of an M-connected mixed graph and a pure K4.

Proof. If G is a mixed circuit, or G = F1⊕2 F2 where F2 is a pure K4, then

we are done by Lemmas 7.4.1 and 7.2.12(ii) respectively. So assume that G
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is not a circuit and cannot be expressed as such a 2-sum. Since G has no

admissible edges, Lemma 7.2.4 (ii) and (iii) imply Y 6= ∅ and X is mixed

critical in Hm. Thus Y contains a node by Lemma 7.3.2. Since, by Lemma

7.3.1, the node-subgraph of a mixed circuit is a forest, we can find a node

u ∈ Y such that u is a leaf in G[V3 ∩ Y ].

If |N(u)| = 2, then Lemma 7.4.5 implies u is admissible in G and we are

done. So assume |N(u)| = 3, and let N(u) = {r, s, t}.

Case 1. N(u) ⊆ X.

Since X is mixed critical in Hm, the sparsity conditions imply X + u =

V (Hm), and hence Y = {u}. In order to perform a 1-reduction on u in G,

we first have to make sure that there is a pair of vertices in N(u) that we

can 1-reduce onto i.e. if u is pure of type P ∈ {D,L}, then there must be a

pair of vertices in N(u) which are not connected by an edge of type P ; and

if u is mixed, then there must exist a pair of vertices in N(u) which have at

most one edge between them.

Suppose u is a pure node of type P , and assume G[N(u)] contains two

edges, e and f , of the same type as u. By Lemma 7.2.4(ii) e, f ∈ Em−1.

Since e and f are not parallel, they must cover all three vertices in N(u).

We know G[Em−1] is M-connected, so for all edges g ∈ Em−1 − e there is

some circuit Cg ⊆ Em−1 such that e, g ∈ Cg. If f 6∈ Cg then Cg is a circuit

in R(G − f). Otherwise f ∈ Cg and, by Lemma 7.2.6 when Cg is pure, or

Lemma 7.2.7 when Cg is mixed, the 1-extension, (Cg − f)∪ {ur, us, ut} is a

circuit in R(G−f). So for all edges g in G−f , we can find a circuit in G−f

containing both g and e. Thus, by the transitivity of matroid connectivity,

G− f is M-connected. This contradicts the hypothesis that G contains no

admissible edges, so our assumption must be false, and G must contain at

most one edge of type P in G[N(u)].
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Suppose instead that u is a mixed node, and assume that each pair of

vertices in N(u) is connected by a double-edge. Then G[N(u)] contains

two non-parallel edges e and f such that e ∈ D and f ∈ L. By a similar

argument to the pure case above, we can show that G− f is M-connected,

by considering mixed circuits. Once more, this contradicts or hypothesis.

So N(u) contains a pair of vertices with at most one edge between them.

So regardless of whether u is mixed or pure, we can find some pair of

vertices, say {r, s}, in N(u) such that we can perform a 1-reduction at u

onto rs. The resulting graph,
⋃m−1
i=1 Hi + rs is M-connected, by Lemmas

3.1.1(i) and 7.2.5. Hence u is admissible in G.

Case 2. |N(u) ∩X| = 2.

Let N(u) ∩ X = {r, s}. Since X is mixed critical in Hm, we have no ad-

missible 1-reduction at u onto rs in Hm. If u has an admissible 1-reduction

in Hm onto either rt or st, then u is also admissible in G by Lemma 7.4.4,

and we are done. So suppose u is not admissible in Hm. Then Lemmas

7.3.5 and 7.3.6 imply that there exists a triple (R,S, T ) which is either a

flower or a clover on u in Hm. We may assume that R,S and T are minimal

sets with this property. We also know that X is a mixed critical set with

r, s ∈ X ⊆ V (Hm)−{t, u}, so by the definitions, the triple (X,R, S) is either

a strong or a weak flower, or a clover on u in Hm.

Suppose (X,R, S) is either a strong or a weak flower on u in Hm. Then

Lemma 7.3.3 implies dG(S,X) = 0, so G contains no st-edges. Hence we

can perform a 1-reduction at u onto st. Let C denote the unique circuit in

E((Hm)stu ) formed by this 1-reduction. Since R is a minimal critical set in

Hm which contains both s and t, G[C] must have R as its vertex set. By

Lemma 7.3.3, R ∪X = V (Hm) − u and dHm(R,X) = 0. This implies that

C ⊇ E((Hm)stu )−Em−1. Also, since X ∩R∩S 6= ∅ and s ∈ (X ∩R)−S, we
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have that |R∩X| ≥ 2 which, by Lemma 7.1.2, implies that R∩X is critical

in Hm, and hence has non-empty edge set in Hm. Thus C ∩ Em−1 6= ∅ and

so Lemma 7.4.4 implies that u is admissible in G.

Suppose instead that (X,R, S) is a clover on u in Hm. Then Lemma

7.3.4 implies that Hm has a 2-separation (G[X], G[R∪S+u]−E(X)) where

G[R∪S+u]−E(X) = G[C̃m] is pure. This implies (G[Em−1], G[C̃m]) is an

unbalanced 2-separation of G.

Let (S1, S2) be a 2-separation of G with S2 minimal such that V (S2) ⊆

R ∪ S + u, and let the corresponding 2-vertex-cut be {x, y}. Since G[C̃m]

is pure, S2 is also pure. If G contains an xy-edge, e, of the same type as

S2, then G − e is also an M-connected mixed graph by Lemma 7.2.12(ii),

which contradicts our assumption that G contains no admissible edges. Thus

e 6∈ E(G), and so, by Lemma 7.2.12, G = F1 ⊕2 F2 where F1 and F2 are

M-connected and are formed from S1 and S2 respectively by adding the

xy-edge e. Since S2 is minimal and F2 6= K4, we know that F2 must be a

3-connected, M-connected pure graph on at least 5 vertices. Further, since

S2 ⊆ G[C̃m], Lemma 7.2.11 implies that F2 is a pure circuit.

Hence, by Lemma 7.4.2, F2 has at least two admissible nodes in V (F2)−

{x, y}. Let F ′2 be the graph formed by an admissible 1-reduction at one of

these nodes. Then G′ = F1⊕2F
′
2 is anM-connected mixed graph by Lemma

7.2.12(i), and is a 1-reduction of G. Hence this node is also admissible in G.

Case 3. |N(u) ∩X| ≤ 1.

If u is admissible in Hm, then we are done by Lemma 7.4.4. So suppose

u is not admissible in Hm. Since u is a leaf in G[V3 ∩ Y ], u has some

neighbour in Y which is not a node. Thus, by Theorem 7.3.10, either Y

contains an admissible node v and we are done by the above arguments; or

there is a 2-separation (S1, S2) of Hm such that S2 is pure and X ⊆ V (S1),



CHAPTER 7. M-CONNECTED FRAMEWORKS 93

in which case (S1 ∪ G[Em−1], S2) is an unbalanced 2-separation of G. By

the same argument used in the case where |N(u) ∩ X| = 2 and G had an

unbalanced 2-separation, we can find a 2-separation (S′1, S
′
2) of G on some

2-vertex-cut {x, y}, where S′2 is minimal with S′2 ⊆ S2 and there is a node

in V (S′2)− {x, y} which is admissible in G.

We know, by Lemmas 7.2.5, 7.2.9 and 7.2.12(i), that the inverse of the

operations used in Theorem 7.4.6 preserve M-connectivity. Thus the fol-

lowing inductive construction immediately follows from this result:

Theorem 7.4.7. Let G be a mixed graph. Then G is M-connected if and

only if G can be obtained from K+
3 or K−3 by a sequence of edge additions,

1-extensions and 2-sums with pure K4’s.

7.5 Constructing direction-balancedM-connected

mixed graphs

Here we specialise our inductive construction of all M-connected mixed

graphs from the previous section, to one for all direction-balanced, M-

connected mixed graphs. Recall that a mixed circuit is globally rigid if and

only if it is direction-balanced (Theorem 6.2.5). In Section 7.6, we use the

construction obtained here to show this result extends to all M-connected

graphs, thus characterising global rigidity for M-connected graphs.

To obtain this construction, we show that if a direction-balanced, M-

connected mixed graph G cannot be obtained by a 2-sum with a direction-

pure K4, then G either has an admissible node or an admissible edge, whose

removal preserves being direction-balanced. As such, we define a vertex v

of G to be feasible if there is an admissible 1-reduction at v which preserves

being direction balanced, and define an edge e to be feasible, if it is admissible
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and G− e is direction-balanced.

Before proving this result, we first make the following observations about

graphs with unbalanced 2-separations:

Lemma 7.5.1. Let G = (V ;D,L) be an M-connected mixed graph with an

edge-disjoint 2-separation (H1, H2) on 2-vertex-cut {x, y} with H2 pure. Let

G′ be formed from G by either an edge-deletion or a pure 1-reduction. Then

{x, y} is also a 2-vertex-cut in G′.

Proof. This trivially holds when G′ is formed from G by an edge deletion, so

we only prove the case where G is formed by a 1-reduction. Suppose G′ =

Grsv for some node v ∈ V . By Lemma 7.2.12(ii), dG(x), dG(y) ≥ 4, which

implies v 6∈ {x, y}. So without loss of generality, we can assume v ∈ V (H2)−

V (H1). Since {x, y} is a 2-vertex-cut in G, this implies NG(v) ⊂ V (H2).

Hence (H1, (H2)rsv ) is a 2-separation of G′ on the 2-vertex-cut {x, y}.

Lemma 7.5.2. Let G = (V ;D,L) be a direction-balanced, M-connected

mixed graph and let v be a mixed node of G with N(v) = {r, s, t}, where

potentially t = r. Suppose G′ is the graph formed by an admissible length

1-reduction at v onto the edge l = rs, and that G′ is not direction-balanced

i.e. G′ has a 2-separation (H1, H2) with H2 length-pure. Suppose l ∈ E(H2).

Then either

(i) {r, s} = V (H1) ∩ V (H2). In which case t ∈ V (H2) − V (H1), and G

has admissible direction 1-reductions onto both rt and st; or

(ii) {r, s} intersects V (H2) − V (H1), and G has an admissible direction

1-reduction onto rs.

Proof. Let V1 and V2 denote the vertex sets of H1 and H2 respectively, and

let {x, y} = V1 ∩ V2. Since G is direction-balanced, NG(v) ∩ (V2 − V1) 6= ∅.
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We first consider case (i), where {r, s} = {x, y}. Lemma 7.2.12(ii) implies

G′−l isM-connected. Since NG(v)∩(V2−V1) 6= ∅, we must have t ∈ V2−V1.

But H2 is length-pure, so this implies neither st nor rt are direction edges in

G′ or G. Since edge additions preserveM-connectivity by Lemma 7.2.5, we

can add either of the direction edges st or rt to G′ − l to obtain G∗, which

is a direction 1-reduction at v as required.

We now consider case (ii), where {r, s} 6= {x, y}. Since l ∈ E(H2), this

implies at least one of the endvertices of l, say s, is contained in V2 − V1.

But H2 is length-pure, so rs is not a direction edge in G′ or G. Let G∗ be

the graph obtained from G by a direction 1-reduction onto the edge rs, and

call this direction edge d. It remains to show that G∗ is M-connected.

By construction, we have E(G∗) = E(G′) − l + d. Let f be a direction

edge in E(G∗) ∩ E(G′). Since G′ is M-connected, we know that for all

e ∈ E(G′)− f , there is a circuit C ′ in R(G′) such that e, f ∈ C ′. If l 6∈ C ′,

then C ′ is also a circuit in R(G∗) and we are done. Otherwise l ∈ C ′,

and so C ′ is mixed. In which case, Lemma 7.2.8 implies that the edge set

C∗ = C − l+ d is a mixed circuit in R(G∗) containing f and d (and e, when

e 6= l). Thus, by the transitivity of M-connectivity, G∗ is M-connected.

Hence the direction 1-reduction at v onto rs is admissible.

We now prove the main result of this section:

Theorem 7.5.3. Let G 6∈ {K+
3 ,K

−
3 } be a direction-balanced, M-connected

mixed graph. Suppose G cannot be expressed as the 2-sum of a direction-

balanced mixed graph with a direction-pure K4. Then G has either a feasible

edge or a feasible vertex.

Proof. We proceed by contradiction, i.e. by assuming there exists some

mixed graph G such that all 1-reductions and edge-deletions of G which
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preserve M-connectivity do not preserve being direction-balanced. Theo-

rem 7.4.6 tells us that we are able to construct some smaller M-connected

graph G′ from G, either by deleting an admissible edge, or by performing

an admissible 1-reduction at some node in G. Let

n(G′) = |{v ∈ V (G′) : v ∈ X for some length-pure end X of G′}|.

We assume that out of all choices of admissible edges and nodes in G, the

admissible move which formed G′ is such that n(G′) is minimal. Since we

are also assuming that G has no feasible moves, G′ is not direction-balanced,

and hence n(G′) > 0.

Note that if G′ was formed by a length 1-reduction at v onto the edge

rs, and G also has an admissible direction 1-reduction at v onto rs, then

every length-pure end in the graph Gd formed by the direction 1-reduction

is also a length-pure end in G′. Hence n(Gd) ≤ n(G′), and so we can assume

G′ was chosen to be the direction 1-reduction instead.

Let (H1, H2) be a 2-separation of G′ on some 2-vertex-cut {x, y}, such

that H2 is length-pure, and is minimal with respect to inclusion.

Claim 7.5.4. xy is not a length edge in G′.

Proof. Assume xy is a length edge in G′. Then either xy is also a length edge

in G, or this edge was added in a length 1-reduction of G and so G′ = Gxyv

for some v ∈ V (G).

First, suppose xy is a length edge of G. Then Lemma 7.2.12(ii) implies

G′−xy isM-connected. We can construct G−xy from G′−xy by performing

the inverse operation to that which formed G′ (an edge addition when G′ =

G−e for some e ∈ E(G), or a 1-extension whenG′ = Grsv for some v ∈ V (G)).

By Lemmas 7.2.5 and 7.2.9 respectively, both of these operations preserve

M-connectivity, so G − xy is M-connected. Hence xy is admissible in G.
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But we assumed G had no feasible edges, so G−xy must have a 2-separation

(H ′1, H
′
2) on some 2-vertex-cut {x′, y′} where H ′2 is length-pure and {x′, y′}

separates x and y. Lemma 7.5.1 implies {x′, y′} is also a 2-vertex-cut in

G′ − xy. Thus G′ − xy has two crossing 2-vertex-cuts, {x, y} and {x′, y′},

which contradicts Lemma 7.2.14.

We now consider the second case: that xy was added in a 1-reduction

on v. If v is a pure node, then in order for G to be direction-balanced,

v must have neighbours in both V (H1) − V (H2) and V (H2) − V (H1), in

addition to neighbouring x and y. But this contradicts that dG(v) = 3.

Hence v must be a mixed node. Let NG(v) = {x, y, z}. Lemma 7.5.2 implies

z ∈ V (H2)− V (H1) and that G has a different admissible 1-reduction at v,

which adds the direction edge xz instead, to form the graph G∗.

By our original assumption, G∗ is not direction-balanced, so it has

a 2-separation (H∗1 , H
∗
2 ) on some 2-vertex-cut {x∗, y∗} with H∗2 length-

pure and minimal with respect to inclusion. However, by the construc-

tion above, G∗ = G′ − xy + xz, and so {x, y} is also a 2-vertex-cut in

G∗. Since xz is a direction edge, the 2-separation given by {x, y} in G∗

is direction-balanced. Hence {x, y} 6= {x∗, y∗}. Lemma 7.2.14 now implies

that these two 2-separations of G∗ cannot cross. So either V (H∗2 ) ⊂ V (H1)

or V (H∗2 ) − {x∗, y∗} ⊂ V (H2) − {x, y, z}. In the former case, this implies

V (H∗2 ) − {x∗, y∗} is a length-pure end in G, which contradicts the fact G

is direction-balanced. In the latter case, this gives n(G∗) < n(G′), which

contradicts our choice of G′.

Claim 7.5.4 and Lemma 7.2.12(ii) imply G′ = F1 ⊕2 F2 where F2 is

length-pure, and both F1 and F2 areM-connected and are formed from H1
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and H2 respectively by adding the length edge xy. Let

V ∗ =


V (F2)− {x, y, r, s} if G′ = G− e and e = rs,

V (F2)− {x, y, r, s, t} if G′ = Grsv and NG(v) = {r, s, t},

and

E∗ =


E(F2)− {xy} if G′ = G− e and e = rs,

E(F2)− {xy, rs} if G′ = Grsv and NG(v) = {r, s, t}.

Claim 7.5.5. F2 has no admissible edges f ∈ E∗, and no admissible nodes

w ∈ V ∗.

Proof. We shall show that if such an admissible edge or node exists in F2,

then it is also admissible in G and contradicts our choice of G′.

Assume that F2 has either an admissible edge f ∈ E∗, or an admissible

node w ∈ V ∗ with neighbourhood {m,n, p} such that w has an admissible

1-reduction onto the edge mn. Then F2 − f , respectively (F2)mnw , is M-

connected and contains the length edge xy. Thus by Lemma 7.2.12(i), we

can 2-sum this graph with F1 to obtain

(G′)∗ =


G′ − f = F1 ⊕2 (F2 − f) when f is admissible in F2, or

(G′)mnw = F1 ⊕2 (F2)mnw when w is admissible in F2.

Since 2-sums preserve M-connectivity, the resulting graph (G′)∗ is M-

connected. By the definitions of E∗ and V ∗, we know (G′)∗ either contains

both r and s when G′ = G−e, or contains the vertices r, s, t and the edge rs

when G′ = Grsv . Further, when G′ = G−e then we cannot have e ∈ E((G′)∗),

as this would imply that e was added back to G′ by a 1-reduction at the

length-pure node w; for this to be possible, both endvertices of e must be

in H2, which, since G was direction-balanced, implies that e is a direction

edge, and thus cannot be added by such a 1-reduction.
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Hence we can either add back the edge e to (G′)∗, or perform a 1-

extension on (G′)∗ to add back the vertex v, as relevant. Both of these

operations preserveM-connectivity by Lemmas 7.2.5 and 7.2.9 respectively.

So the resulting graph G∗ (where G∗ = G− f or G∗ = Gmnw respectively) is

M-connected. Thus f (respectively w) is admissible in G.

By our original assumption, G has no feasible nodes or edges. So G∗

must have a 2-separation (H∗1 , H
∗
2 ) on some 2-vertex-cut {x∗, y∗} where H∗2

is length-pure, and is minimal with respect to inclusion. Since F2 is length-

pure, f ∈ E∗ is a length edge (resp. w ∈ V ∗ is a length-pure node). But

G is direction-balanced, so this implies that when G∗ = G − f , the set

{x∗, y∗} separates the endvertices of f in G∗, and when G∗ = Gmnw , the set

{x∗, y∗} separates NG(w) in G∗. Since f ∈ E(H2) in the former case, and

{w} ∪NG(w) ⊆ V (H2) in the latter, this implies {x, y} 6= {x∗, y∗} and that

V (H2)− V (H∗2 ) 6= ∅. Lemmas 7.5.1 and 7.2.14 now imply that both {x, y}

and {x∗, y∗} are 2-vertex-cuts in (G′)∗ and do not cross.

When G′ = G − e, we clearly have V (H∗2 ) ⊂ V (H2). When instead, we

have G′ = Grsv , the fact that G is direction-balanced implies that v is either

a mixed node in G, or NG(v) intersects V (H1)−{x, y}; both of which imply

that v 6∈ V (H∗2 ) and thus V (H∗2 ) ⊂ V (H2). Hence for all choices of G′ and

G∗, V (H∗2 ) ⊂ V (H2). The definition of an end thus implies n(G∗) < n(G′),

which contradicts our choice of G′.

Claim 7.5.5 tells us that all admissible edges or nodes in F2 must be

contained in E(F2) − E∗ or V (F2) − V ∗ respectively. In the remainder of

the proof, we show that whatever the structure of F2, we can find such an

admissible move, and this move will contradict our choice of G′.

Claim 7.5.6. F2 = K4.
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Proof. Assume F2 6= K4. We show that we can either find a feasible move in

G, thus contradicting our original assumption that G has no feasible moves;

or we can find a different admissible move in G which contradicts our choice

of G′. As before, there are two cases to consider: when G′ = G − e, and

when G′ = Grsv .

Case 1. G′ = G− e.

Since G is direction-balanced, at least one of the endvertices of e, say r,

is contained in V (H2) − V (H1), and the other endvertex, s, is either also

contained in V (H2), in which case e must be a direction edge; or in V (H1)−

V (H2) and e can be either a length or a direction edge.

We know F2 is an M-connected length-pure graph. If F2 is a length-

pure circuit, then Lemma 7.4.2 implies F2 contains an admissible node in

V (F2)−{x, y, r}. Otherwise, by Lemma 3.1.1(ii), we can build an ear decom-

position of F2 such that the first circuit in the ear decomposition contains

both the edge xy and some edge incident to r. Lemma 7.4.3 now implies

that F2 contains either an edge other than xy which is admissible, or an

admissible node in V (F2) − {x, y, r}. Thus, in both cases, F2 either con-

tains an admissible edge f ∈ E(F2) − {xy} = E∗, or an admissible node

w ∈ V (F2)− {x, y, r}. Since V ∗ = V (F2)− {x, y, r, s}, and, by Claim 7.5.5,

V ∗ and E∗ contain no admissible nodes or edges respectively, it only remains

to consider the case where s ∈ V (H2)− V (H1) is an admissible node.

Let N(s) = {m,n, p} in F2, and suppose, without loss of generality, that

(F2)mns is M-connected. We can now add the vertex s back to (F2)mns by

performing a 1-extension which deletes the edge mn and adds back the edges

ms, ns and rs = e. The resulting graph, F2−ps, isM-connected by Lemma

7.2.6. Hence ps ∈ E∗ is an admissible edge in F2, contradicting Claim 7.5.5.

Case 2. G′ = Grsv .
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First, suppose the edge, rs, added in the 1-reduction, is contained in E(H1).

By Claim 7.5.4, {r, s} 6= {x, y}, so without loss of generality, r ∈ V (H1) −

V (H2). In order for G to be direction-balanced, we must have t ∈ V (H2)−

V (H1). If F2 is a circuit then, by Lemma 7.4.2, it contains an admissible

vertex in V (H2)− {x, y, t} = V ∗, contradicting Claim 7.5.5. Otherwise, we

can build an ear decomposition of F2 whose first ear contains both xy and

an edge incident to t. Lemma 7.4.3 then implies that there is either an

admissible edge in E(F2) − {xy} = E∗, or an admissible node in V (H2) −

{x, y, t} = V ∗, once more contradicting Claim 7.5.5.

Hence rs ∈ E(H2)−E(H1) and, without loss of generality, r ∈ V (H2)−

V (H1). Since H2 is length-pure, rs is a length edge. If v is a mixed node

in G, then Lemma 7.5.2 implies that G has a direction 1-reduction onto rs.

But this contradicts our choice of G′: that a length 1-reduction at v was

chosen only when G had no direction 1-reduction at v onto the same pair of

vertices. Hence v must be a length-pure node, and thus, since r, s ∈ V (H2),

we must have t ∈ V (H1)− V (H2) in order for G to be direction-balanced.

Suppose F2 is not a circuit. Then we can build an ear decomposition of

F2 such that the first ear contains both the edges xy and rs. Lemma 7.4.3

now implies either E(F2) − {xy, rs} = E∗ contains an admissible edge, or

V (F2) − {x, y, r, s} = V ∗ contains an admissible node, contradicting Claim

7.5.5. Thus F2 must be a length-pure circuit. In which case, Lemma 7.4.2

implies that F2 contains an admissible node in V (F2)−{x, y, r} ⊆ V ∗∪{s}.

By Claim 7.5.5, the only possibility is that s ∈ V (F2)−{x, y} is admissible in

F2. We know e = rs ∈ E(F2). Let m and n denote the other two neighbours

of s in F2.

Relabelling m and n if necessary, s has an admissible 1-reduction onto

either mn or mr. In both cases, we can follow this 1-reduction by a 1-
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(b) Construction of G∗ = Gvms from G′ when s is admissible in G′ onto mr.

Figure 7.8: Constructions of G∗ from G′ = Grsv .

extension to obtain a graph G∗, where G∗ = Gstv or G∗ = Gmrs respectively.

See Figure 7.8. Lemma 7.2.9 implies that G∗ isM-connected in both cases.

Further, since the node s (respectively v) added back to obtain G∗ has

neighbourhood NG∗(s) = {m,n, t} (resp. NG∗(v) = {m, r, t}) where t ∈

V (H1)− V (H2), and either {m,n} ∩ (V (H2)− V (H1)) 6= ∅ in the first case,

or r ∈ V (H2) − V (H1) in the second, we know {x, y} is not a 2-vertex-cut

of G∗.

By our original assumption, G∗ is not direction-balanced. So let (H∗1 , H
∗
2 )

be a 2-separation of G∗ on some 2-vertex-cut {x∗, y∗}, with H∗2 length-pure

and minimal with respect to inclusion. Since G is direction-balanced, the

set {x∗, y∗}, must separate {s, t} from r in G∗ when G∗ = Gstv , and sepa-
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rate {v,m} from n in G∗ when G∗ = Gvms . Since m,n, r, s ∈ V (H2), this

implies V (H2) ∩ V (H∗1 ) 6= ∅ in both cases. But {x, y} and {x∗, y∗} are dis-

tinct 2-vertex-cuts in (G′)∗ and so cannot cross, by Lemma 7.2.14. Hence

{x∗, y∗} ⊂ V (H2), which implies V (H∗2 ) ⊂ V (H2) in both cases. The defi-

nition of an end thus gives n(G∗) < n(G′), which contradicts our choice of

G′.

Claim 7.5.6 tells us that the only case left to consider is when F2 = K4.

We show that this cannot occur.

Claim 7.5.7. F2 6= K4.

Proof. Assume F2 = K4. We shall show that we can find an admissible

move in G which contradicts our choice of G′. As in Claim 7.5.6, there are

two cases to consider: when G′ = G− e and when G′ = Grsv .

Case 1. G′ = G− e.

Since G is direction-balanced, e must have at least one endvertex, say r, in

V (H2)− V (H1). Denote the remaining vertex in V (H2)− {x, y} by z.

There are two possibilities for e: either e = rz, in which case e is a

direction edge in G. Or e 6= rz, in which case e = rs for some s ∈ V (H1).

In both cases we can construct a new graph, G∗, from F1, by performing a

sequence of two 1-extensions. These constructions each give G∗ = G− f for

some f ∈ E(G), as shown in Figure 7.9.

We know F1 is mixed andM-connected, and by Lemma 7.2.9, 1-extensions

preserve these properties. Hence G∗ is mixed andM-connected. By the con-

structions, it is clear that {r, z} is not a length-pure end in G∗, whereas it

was in G′. So any length-pure end of G∗ must be contained in F1, and thus

is also a length-pure end of G′. Hence n(G∗) < n(G′), which contradicts our

choice of G′.
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(b) Construction of G∗ = G − rx when e = rs for some s ∈ V (H1). Where

the type of an edge is not known, it is depicted by a dotted line. Note that this

construction also works in the special case where s ∈ {x, y}.

Figure 7.9: Constructions of G∗ = G− f from F1.

Case 2. G′ = Grsv .

SinceG is direction-balanced, v has at least one neighbour in V (H2)−V (H1).

Denote the remaining vertex in V (H2)−{x, y} by z. We shall show that z is

admissible in G. As before, we can construct anM-connected mixed graph

G∗ from F1 by a sequence of two 1-extensions. But this time, the graph

G∗ obtained is a 1-reduction of G. There are three different constructions,

depending on the structure G′.

First, suppose rs ∈ E(H1). Then we must have t ∈ V (H2) − V (H1).

From Claim 7.5.4, we know that {r, s} 6= {x, y} so without loss of generality,

x 6∈ NG(v). We can then obtain G∗ = Gxyz from F1 by the construction

shown in Figure 7.10(a)

Second, suppose rs ∈ E(H2). If v is mixed, then Lemma 7.5.2, implies

that G has an admissible direction 1-reduction at v onto rs, which contra-

dicts our original choice of G′. Hence v is length-pure, and so, since G is

direction-balanced, t ∈ V (H1)− V (H2). Either both r, s ∈ V (H2)− V (H1),
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(c) Construction of G∗ = Gyrz when G′ = Grsv , s = y and r ∈ V (H2)− V (H1).

Figure 7.10: Constructions of G∗ = Gz from F1.

in which case s = z, and we obtain G∗ = Gyvz by the construction shown

in Figure 7.10(b). Or, relabelling if necessary, r ∈ V (H2) − V (H1) and

s ∈ V (H1) ∩ V (H2), so without loss of generality s = y, and we construct

G∗ = Gyrz as shown in Figure 7.10(c).

In all three cases, V (G∗)−V (F1) is not a length-pure end of G∗, whereas

V (G′) − V (F1) was a length-pure end of G′. So any length-pure end of G∗

is contained in V (F1), and must also be a length-pure end of G′. Thus

n(G∗) < n(G′), which contradicts our choice of G′.
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Clearly Claims 7.5.6 and 7.5.7 cannot both hold. Hence our original

assumption is wrong, and G contains either a feasible edge or a feasible

node.

Theorem 7.5.3, together with the fact that edge additions, 1-extensions,

and 2-sums with direction-pureK4’s preserveM-connectivity (Lemmas 7.2.5,

7.2.9 and 7.2.12(i) respectively), and that these operations also preserve be-

ing direction-balanced, gives us the following inductive construction:

Theorem 7.5.8. Let G be a mixed graph. Then G is a direction-balanced,

M-connected mixed graph if and only if G can be obtained from K+
3 or K−3

by a sequence of edge additions, 1-extensions and 2-sums with direction-pure

K4’s.

7.6 Characterisation of global rigidity

In order for the graphs constructed in Theorem 7.5.8 to be globally rigid,

we need to know that the operations used preserve global rigidity. Lemmas

7.1.11 and 7.2.13 imply that edge additions and 2-sums with direction-pure

K4’s preserve global rigidity, but 1-extensions are more troublesome. By

Lemma 7.1.11, a 1-extension on a graph G which deletes an edge e will

preserve global rigidity so long as G− e is rigid. Fortunately, M-connected

mixed graphs are redundantly rigid, by Lemma 7.2.3, so this condition is

always satisfied in our construction. Hence all graphs described in Theorem

7.5.8 are globally rigid for all generic realisations. This gives us the following

result:

Lemma 7.6.1. Let (G, p) be a generic mixed framework, and suppose G is

M-connected and direction-balanced. Then (G, p) is globally rigid.
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By Lemmas 6.2.1 and 6.2.4, all generic, globally rigid direction-length

frameworks are mixed and direction-balanced. So Lemma 7.6.1 implies that

global rigidity is a generic property ofM-connected direction-length frame-

works. Hence characterising global rigidity for this class:

Theorem 7.6.2. Let p be a generic realisation of an M-connected mixed

graph G. Then (G, p) is globally rigid if and only if G is direction-balanced.

This implies that the inductive construction in Theorem 7.5.8, is also a

construction of the class ofM-connected graphs which are globally rigid for

all generic realisations:

Theorem 7.6.3. Let p be a generic realisation of anM-connected graph G.

Then (G, p) is globally rigid if and only if G can be obtained from K+
3 or K−3

by a sequence of edge additions, 1-extensions and 2-sums with direction-pure

K4’s.

7.7 Closing remarks

Recall from page 47 that a graph G is globally rigid if all generic realisa-

tions of G are globally rigid, and is globally flexible if no generic realisation

is globally rigid. Thus Theorem 7.6.3 characterises the class of globally

rigidM-connected graphs. It is also implies that global rigidity is a generic

property of M-connected direction-length graphs, or equivalently, that ev-

ery M-connected direction-length graph is either globally rigid or globally

flexible.

There exist globally rigid mixed graphs whose rigidity matroid is not

connected, so the results in this chapter do not characterise global rigidity

for all direction-length graphs. In particular, M-connected mixed graphs

satisfy three properties which are not necessary for global rigidity: they
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contain at least two length edges, have minimum degree three, and every

direction edge is redundant.

Servatius and Whiteley’s result (Theorem 6.2.2) shows that the first and

third of these properties are not necessary, whereas the fact direction-pure

0-extensions preserve global rigidity (Lemma 7.1.11(i)) shows that globally

rigid graphs can have vertices of degree 2.

Since Servatius and Whiteley’s result characterises global rigidity for

graphs G = (V ;D,L) with |L| < 2, it remains to characterise it for graphs

with |L| ≥ 2. This chapter succeeds in doing this for a large class of such

graphs, but not all of them.

In the following chapter, we build upon these results to obtain a full

characterisation of globally rigid direction-length graphs. However, we do

not fully characterise globally flexible direction-length graphs. There is one

class of graphs remaining for which it is not known whether global rigidity

is a generic property. We succeed in showing that graphs in this class have

some generic realisation that is not globally rigid, thus proving that such

graphs are not globally rigid. However it is not known whether these graphs

are globally flexible, or equivalently, whether global rigidity is a generic

property for graphs in this class.



Chapter 8

Direction reductions and

irreducible frameworks

8.1 Preliminaries

Recall the definitions of direction reductions and direction irreducible graphs

from Chapter 6. In this first section, we collect tools from diverse areas that

we will use in our proofs.

8.1.1 Circuits and M-components

In Chapter 7, we focused on M-connected graphs. In this chapter, we con-

sider graphs G which are notM-connected. However, it shall be important

to identify the subgraphs of G which are M-connected. As such, we de-

fine a subgraph H of a direction-length graph G to be an M-component of

G if R(H) is connected, and there is no graph H ⊂ H ′ ⊆ G with R(H ′)

connected.

We can use the direct sum decomposition of the rigidity matroid R(G)

to calculate its rank, which we will denote by r(G). Indeed, if G has M-

109
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components H1, . . . ,Hm then the definition of independence in a matroid

implies r(G) =
∑m

i=1 r(Hi), where r(Hi) is 2|V (Hi)|−3 when Hi is pure and

is 2|V (Hi)| − 2 otherwise. We use this fact to show that M-connectivity is

equivalent to redundant rigidity when G is direction irreducible and satisfies

the necessary conditions for generic global rigidity described in Chapter 6

(Lemmas 6.2.1 and 6.2.4).

Lemma 8.1.1. Suppose G is a direction irreducible, 2-connected, direction-

balanced mixed graph. Then G is M-connected if and only if G is redun-

dantly rigid.

Proof. In Chapter 7, Lemma 7.2.3, we proved that redundant rigidity is

a necessary condition for a mixed graph to be M-connected. To prove

sufficiency, we suppose G is redundantly rigid but not M-connected. Let

H1, H2, . . . ,Hm be the M-components of G. Let Vi = V (Hi), Xi = Vi −⋃
j 6=i Vj and Yi = Vi −Xi for all 1 ≤ i ≤ m. Since G is redundantly rigid,

every edge of G is contained in some circuit of R(G) by Lemmas 4.1.4,

7.1.4 and 7.1.5. Hence |Vi| ≥ 3 for all 1 ≤ i ≤ m. Since G is 2-connected,

|Yi| ≥ 2 for all 1 ≤ i ≤ m, and since G is direction-balanced, |Yi| ≥ 3 when

Hi is length-pure. Since G is direction irreducible, no direction edge of G

is contained in a direction-pure circuit. This implies that each of the M-

components is either mixed or length-pure. Without loss of generality, we

may assume that H1, H2, . . . ,H` are length-pure for some 1 ≤ ` ≤ t, and
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H`+1, H`+2, . . . ,Hm are mixed. Then

r(G) =
∑̀
i=1

(2|Vi| − 3) +
m∑

i=`+1

(2|Vi| − 2)

=
∑̀
i=1

(2|Xi|+ 2|Yi| − 3) +
m∑

i=`+1

(2|Xi|+ 2|Yi| − 2)

≥
m∑
i=1

(2|Xi|+ |Yi|),

since |Yi| ≥ 2 for all 1 ≤ i ≤ m, with strict inequality when 1 ≤ i ≤ `.

Since the Xi are all disjoint, we have
∑m

i=1 |Xi| = |
⋃m
i=1Xi|. Also, since

each element of Yi is contained in at least one other Yj with j 6= i, we have∑m
i=1 |Yi| ≥ 2|

⋃t
i=1 Yi|. Thus

r(G) ≥ 2

(∣∣∣∣∣
m⋃
i=1

Xi

∣∣∣∣∣+

∣∣∣∣∣
m⋃
i=1

Yi

∣∣∣∣∣
)

= 2|V |.

This contradicts the fact that r(G) ≤ 2|V | − 2.

8.1.2 Boundedness and global rigidity

Now we recall some results from [19, 20]. A direction-length framework

(G, p) is bounded if there exists a real number K such that ‖q(u)−q(v)‖ < K

for all u, v ∈ V whenever (G, q) is a framework equivalent to (G, p). Our

first result shows that the boundedness of (G, p) is equivalent to the rigidity

of an augmented framework, (G+, p):

Lemma 8.1.2. [19, Theorem 5.1] Let (G, p) be a direction-length framework

and let G+ be obtained from G by adding a direction edge parallel to each

length edge of G. Then (G, p) is bounded if and only if (G+, p) is rigid.

Since rigidity is a generic property (Lemma 4.1.3), Lemma 8.1.2 implies

that boundedness is also a generic property. We say that a mixed graph G is

bounded if some, or equivalently every, generic realisation of G is bounded.

Note that this lemma also implies that every rigid mixed graph is bounded.
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A mixed graph G = (V ;D,L) is direction-independent if D is indepen-

dent in the direction-length rigidity matroid of G, i.e. the rows of the matrix

R(G, p) corresponding to D are linearly independent for any generic p. The

fact that direction-pure circuits are redundantly direction-rigid allows us to

reduce the problem of deciding if a mixed graph is bounded, to the fam-

ily of direction-independent mixed graphs. The following characterisation

of boundedness for direction-independent mixed graphs follows from [19,

Theorem 5.1 and Corollary 4.3].

Lemma 8.1.3. Suppose that G = (V ;D,L) is a direction-independent mixed

graph. Then G is bounded if and only if G/L has two edge-disjoint spanning

trees (where G/L is the graph obtained from G by contracting each edge in L

and keeping all multiple copies of direction edges created by this contraction).

A bounded component of G is a maximal bounded subgraph of G. It is

shown in [19] that each edge e ∈ L lies in a bounded component and that the

vertex sets of the bounded components partition V . The following lemma

is implicit in [19]; for completeness we include a short proof. We will need

the well known result of Nash-Williams [27] that the edge set of a graph H

can be covered by k forests if and only if every non-empty set X of vertices

in H induces at most k|X| − k edges of H.

Lemma 8.1.4. Suppose G = (V ;D,L) is direction-independent and S is

a set of bounded components of G with |S| ≥ 2. Then there are at most

2|S| − 3 edges of G joining distinct components in S.

Proof. Suppose on the contrary that there are at least 2|S|−2 edges ofG that

join distinct components in S. Suppose also that S is minimal with respect

to this property (and the condition that |S| ≥ 2). Let G′ = (V ′;D′, L′) be

the subgraph of G spanned by ∪Ci∈SCi. Let H be a graph with vertex set
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S and exactly 2|S| − 2 edges, each of which corresponds to a distinct edge

of G joining two different components in S. The minimality of S implies

that every non-empty set X of vertices of H induces at most 2|X| − 2 edges

of H and hence, by the above mentioned result of Nash-Williams, H can

be partitioned into two edge-disjoint spanning trees. By Lemma 8.1.3, for

each bounded component Ci = (Vi;Di, Li) ∈ S, Ci/Li has two edge-disjoint

spanning trees. We can combine the edge sets of these trees with the edge

sets of the two edge-disjoint spanning trees of H to obtain two edge-disjoint

spanning trees in G′/L′. Lemma 8.1.3 now implies that G′ is bounded and

hence is contained in a single bounded component of G. This contradicts

the fact that |S| ≥ 2.

These Lemmas lead to the main result of [20], which we previously stated

in Lemma 6.2.3. This result establishes when length-redundancy is a nec-

essary condition for generic global rigidity and takes a step towards under-

standing when direction-redundancy is necessary.

8.1.3 Substitution

The following subgraph substitution operation is an important tool which

we will use throughout this chapter. Suppose G = (V ;D,L) is a mixed

graph, U ⊆ V , H = G[U ] is the subgraph of G induced by U , and H ′ is

another mixed graph with vertex set U . Then the substitution G′ of H by

H ′ in G is obtained from G by deleting all edges of H and adding all edges

of H ′. We record the following properties.

Lemma 8.1.5. If G, H and H ′ are rigid then G′ is rigid.

Proof. The ranks of the rigidity matroids of G and G′ are both equal to the

rank of the matroid of the graph obtained from G by joining all pairs of

vertices of H by both a direction and a length edge.
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Lemma 8.1.6. Suppose p : V → R2 is such that (G, p) and (H ′, p|U ) are

both globally rigid. Then (G′, p) is globally rigid.

Proof. Let (G′, q) be an equivalent framework to (G′, p). Since (H ′, p|U ) is

globally rigid, q|U is congruent to p|U . In particular, (H, q|U ) and (H, p|U )

are equivalent. But G and G′ agree on all edges not induced by U , so

(G, q) and (G, p) are equivalent. Since (G, p) is globally rigid, q and p are

congruent. Hence (G′, p) is globally rigid.

8.1.4 Equivalent realisations

Recall the definitions of field extensions, algebraic closures, and framework

spaces from Chapter 5. The below lemmas shall be helpful when analysing

frameworks which may not be globally rigid.

The proof of the following lemma is the same as that of [20, Theorem

1.3], omitting the part that proves −p0 /∈ C, as this is now an assumption.

Lemma 8.1.7. Suppose (G, p) is a generic direction-length framework, e

is a direction edge of G, G is rigid, and H = G − e is bounded and not

rigid. Let v0 be a vertex of G, let p0 be obtained from p by translating v0

to the origin, and let C be the connected component of the framework space

SH,p,v0 containing p0. Then C is diffeomorphic to a circle. Furthermore, if

−p0 /∈ C then (G, p) is not globally rigid.

Note that since −p0 is obtained from p0 by a rotation by 180◦ about the

origin, the realisations −p0, p0 and p are equivalent and congruent.

We also need the following lemma, which implies that every realisation

of a rigid mixed graph which is equivalent to a generic realisation is quasi-

generic.

Lemma 8.1.8. [18] Let (G, p) be a quasi-generic realisation of a rigid mixed
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graph G. Suppose that (G, q) is equivalent to (G, p) and that p(v) = (0, 0) =

q(v) for some vertex v of G. Then Q(p) = Q(q), so (G, q) is quasi-generic.

8.2 Realisations of graphs with given direction con-

straints

Here we give a result concerning the realisation of a graph as a direction-

pure framework with given directions for its edges. We need the following

concepts, introduced by Whiteley in [39]. A frame is a graph G = (V,E)

together with a map q : E → R2. The incidence matrix of the frame (G, q) is

an |E|× 2|V | matrix I(G, q) defined as follows. We first choose an arbitrary

reference orientation for the edges of E. Each edge in E corresponds to a row

of I(G, q) and each vertex of V to two consecutive columns. The submatrix

of I(G, q) with row labeled by e = uv ∈ E and pairs of columns labeled

by x ∈ V is q(e) if x = u, is −q(e) if x = v, and is the 2-dimensional zero

vector otherwise. It is known (see [39]) that when q is generic, I(G, q) is a

linear representation of M2(G) (the matroid union of two copies of the cycle

matroid of G). Thus we may use the characterisation of independence in

M2(G) given by Nash-Williams [27] to determine when I(G, q) has linearly

independent rows.

Theorem 8.2.1. Suppose G = (V,E) is a graph and q : E → R2 is generic.

Then the rows of I(G, q) are linearly independent if and only if iG(X) ≤

2|X| − 2 for all ∅ 6= X ⊆ V .

We can use this result to show that a graph G = (V,E) satisfying

iG(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2 can be realised as a direction-

pure framework with a specified algebraically independent set of slopes for

its edges, and that this realisation is unique up to translation and dilation
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when |E| = 2|V | − 3. The problem of realising direction-pure frameworks

was studied in detail in [36], where they are instead called “direction net-

works”. Note that given any realisation of G, we can always translate a

specified vertex z0 to (0, 0) and dilate to arrange any specified distance t

between a specified pair of vertices x, y.

Theorem 8.2.2. Let G = (V,E) be a graph such that iG(X) ≤ 2|X|− 3 for

all X ⊆ V with |X| ≥ 2. Let s be an injection from E to R such that {se}e∈E

is generic. Suppose x0, y0, z0 ∈ V and t 6= 0 is a positive real number.

Then there exists an injection p : V → R2 such that ‖p(x0) − p(y0)‖ = t,

p(z0) = (0, 0) and, for all e = uv ∈ E, p(u)− p(v) ∈ 〈(1, se)〉. Furthermore,

if |E| = 2|V | − 3, then p is unique up to rotation by 180◦ about the origin.

Proof. We will construct p as a combination of vectors in the nullspaces of

certain frames. First consider a generic frame q onG such that q(e) is a scalar

multiple of (−se, 1) for every e ∈ E. Then for any p in the nullspace of I(G, q)

and e = uv ∈ E we have p(u) − p(v) ∈ 〈(1, se)〉. However, p need not be

injective. To address this issue, we instead choose a pair of vertices x, y ∈ V ,

and consider the graph H obtained by adding the edge f = xy to G (which

may be parallel to an existing edge). Now let (H, q) be a generic frame such

that q(e) is a scalar multiple of (−se, 1) for every edge e of G, and q(f) is

chosen arbitrarily (subject to the condition that q should be generic). For all

X ⊆ V with |X| ≥ 2, we have iH(X) ≤ iG(X) + 1 ≤ 2|X|−2 by hypothesis.

Theorem 8.2.1 now implies that the incidence matrix I(H, q) has linearly

independent rows. Thus rank I(H, q) = rank I(G, q|E) + 1. Writing ZH for

the null space of I(H, q) and ZG for the null space of I(G, q|E), we have

dimZG = dimZH + 1, so we can choose pf ∈ ZG \ZH . Then we necessarily

have pf (x) 6= pf (y). Taking a suitable linear combination of the vectors pf ,

for all possible new edges f = xy, for x, y ∈ V , we may construct a vector p
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in ZG with p(x) 6= p(y) for all x, y ∈ V . Since pf (u) − pf (v) ∈ 〈(1, se)〉 for

each f we also have p(u) − p(v) ∈ 〈(1, se)〉. Furthermore, as noted before

the proof, we can translate and dilate to satisfy the other conditions, thus

constructing the required map p.

We next show uniqueness when |E| = 2|V |−3. We have dimZG = 2|V |−

rank I(G, q|E) = 2|V | − |E| = 3. Define p1, p2 : V → R2 by p1(v) = (1, 0)

and p2(v) = (0, 1) for all v ∈ V . Note that p1, p2 ∈ ZG. Also, p, p1, p2 are

linearly independent, since p(z0) = (0, 0), p1(z0) = (1, 0) and p2(z0) = (0, 1),

so {p, p1, p2} is a basis for ZG. Now suppose that p′ : V → R2 has the

properties described in the first part of the theorem. Then p′ ∈ ZG so

p′ = ap + bp1 + cp2 for some a, b, c ∈ R. Since p′(z0) = p(z0) = (0, 0) we

have b = c = 0. Since ‖p′(x0) − p′(y0)‖ = t = ‖p(x0) − p(y0)‖ we have

p′ ∈ {p,−p}.

Given a graph G which satisfies the hypotheses of Theorem 8.2.2, and

a quasi-generic realisation p of G, Lemma 5.2.2 implies that the rigidity

map fG(p) is also generic. This, together with the uniqueness part of The-

orem 8.2.2, gives the following two results of Whiteley, and Servatius and

Whiteley.

Lemma 8.2.3. [40] Suppose that (G, p) is a generic direction-pure frame-

work. Then (G, p) is direction globally rigid if and only if it is direction-rigid.

Lemma 8.2.4. [35] Suppose that (G, p) is a generic realisation of a mixed

graph G = (V ;D,L). If G is rigid and |L| = 1, then (G, p) is globally rigid.

8.3 Direction reductions

In this section we prove the first main result of this chapter, Theorem 8.3.3,

namely, that we can reduce the problem of characterising global rigidity to
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the class of irreducible graphs. To do this, we deal with the two direction

reduction operations, (D1) and (D2), separately in the following two lemmas:

Lemma 8.3.1. Suppose (G, p) is a generic realisation of a mixed graph

G = (V ;D,L) and that e = uv ∈ D belongs to a direction-pure circuit

H = (U ;F, ∅) of G. Then (G, p) is globally rigid if and only if (G− e, p) is

globally rigid.

Proof. If (G − e, p) is globally rigid then (G, p) is clearly globally rigid.

Conversely, suppose that (G, p) is globally rigid and (G−e, q) is equivalent to

(G−e, p). Since H is a direction-pure circuit, both (H, p|U ) and (H−e, p|U )

are direction-rigid. Hence (H − e, p|U ) is globally direction-rigid by Lemma

8.2.3. Thus q(u)−q(v) is a scalar multiple of p(u)−p(v), and hence (G, q) is

equivalent to (G, p). Since (G, p) is globally rigid, q is congruent to p. This

shows that (G− e, p) is globally rigid.

Lemma 8.3.2. Let (G, p) be a quasi-generic realisation of a rigid mixed

graph G = (V ;D,L). Suppose that G has a proper induced subgraph H =

(U ;F,L) such that the graph G/H obtained by contracting H to a single

vertex (deleting all edges contained in H and keeping all other edges, possibly

as parallel edges) has only direction edges and is the union of two edge-

disjoint spanning trees. Then (G, p) is globally rigid if and only if (H, p|H)

is globally rigid.

Proof. First suppose that (H, p|H) is globally rigid. Let G′ be constructed

from G by substituting H by a minimally rigid graph H ′ = (U ;F ′, {l}) with

exactly one length edge, l. Then G′ is rigid by Lemma 8.1.5. Since G′ is

rigid and has exactly one length edge, (G′, p) is globally rigid by Lemma

8.2.4. Thus (G, p) is globally rigid by Lemma 8.1.6.

Conversely, suppose that (H, p|H) is not globally rigid. Then there exists
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an equivalent but non-congruent framework (H, q̃). Without loss of gener-

ality we may suppose that p(u) = (0, 0) = q̃(u) for some u ∈ V (H). Let

D∗ = D − F be the set of edges of G/H and m be the number of vertices

of G/H. Then |D∗| = 2m − 2, as G/H is the union of two edge-disjoint

spanning trees. Since G is rigid we have

2|V | − 2 = r(G) ≤ |D∗|+ r(H) ≤ 2m− 2 + 2|V (H)| − 2 = 2|V | − 2.

Thus equality must hold throughout. In particular, r(H) = 2|V (H))| − 2,

so H is rigid.

We again consider the rigid mixed graph G′ = (V ;D′, L′) with exactly

one length edge defined in the first paragraph of the proof. Since G′ has

|D∗|+ 2|V (H)|−2 = 2|V |−2 edges, it is minimally rigid. We will construct

a framework (G, q) which is equivalent to (G, p) and has q|H = q̃ by applying

Theorem 8.2.2 to G′.

Define s : D′ ∪L′ → R by s(e) = sq̃(e) for e ∈ F ′, s(e) = lq̃(e) for e ∈ L′,

and s(e) = sp(e) for e ∈ D∗. We will use Theorem 8.2.2 to construct a

framework (G′, q) such that sq(e) = s(e) for all edges e of G′. To do this,

we first need to show that s|D′ is generic. We will prove the stronger result

that s is generic by showing that td[Q(s) : Q] = |D′|+ |L′| = 2|V | − 2. We

have td[Q(p) : Q] = 2|V | − 2, as p is quasi-generic and p(u) = (0, 0), so it

suffices to prove that Q(s) = Q(p). Since G is rigid, Corollary 5.2.5 gives

Q(fG(p)) = Q(p). Also, s is obtained from fG(p) by replacing the values

fH(p|U ) by the values fH′(q̃), so we need to show that these generate the

same algebraic closure over Q. Since (H, q̃) is equivalent to (H, p|U ), Lemma

8.1.8 gives Q(q̃) = Q(p|U ). Since p|U is quasi-generic, it follows that q̃ is

quasi-generic. Then, since H and H ′ are rigid, two applications of Corollary

5.2.5, give Q(fH(p|U )) = Q(p|U ) and Q(fH′(q̃)) = Q(q̃). Putting these three
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equalities together gives

Q(fH′(q̃)) = Q(q̃) = Q(p|U ) = Q(fH(p|U )),

which is what we needed to prove Q(s) = Q(p). Therefore s is generic. Now

we can apply Theorem 8.2.2, with x0y0 equal to the unique length edge of

G′, to obtain a realisation (G′, q) with fG′(q) = s. By construction (H ′, q|U )

is equivalent to (H ′, q̃). But H ′ is globally rigid by Lemma 8.2.4, so q|U is

congruent to q̃. Hence we can apply a translation, and possibly a dilation

by −1, to obtain q|U = q̃.

Since (H, q̃) is equivalent to (H, p|H) and sq(e) = s(e) = sp(e) for all

e ∈ D∗, (G, q) is equivalent to (G, p) and satisfies q|U = q̃. Since (H, q̃) is

not congruent to (H, p|U ), (G, q) is not congruent to (G, p). Thus (G, p) is

not globally rigid.

Our first main result in this chapter follows immediately from Lemmas

8.3.1 and 8.3.2. Namely

Theorem 8.3.3. Suppose (G, p) is a generic direction-length framework and

G admits a direction reduction to a subgraph H. Then (G, p) is globally rigid

if and only if (H, p|H) is globally rigid.

8.4 Direction irreducible mixed graphs

Theorem 8.3.3 enables us to reduce the problem of characterising globally

rigid generic direction-length frameworks to the case when the underlying

graph is direction irreducible. In this section we prove a structural lemma

for direction irreducible mixed graphs which have a globally rigid generic

realisation even though they are not redundantly rigid. This will be used in

the next section to construct two equivalent but non-congruent generic real-



CHAPTER 8. DIRECTION REDUCTIONS 121

isations of a mixed graph which is direction irreducible but not redundantly

rigid.

Lemma 8.4.1. Let G = (V ;D,L) be a direction irreducible mixed graph

which has |L| ≥ 2 and is not redundantly rigid. Suppose that (G, p) is a

globally rigid generic realisation of G. Then

(i) G− e is bounded for all e ∈ D,

(ii) r(G− e) = r(G)− 1 for all e ∈ D, and

(iii) every length edge of G belongs to a length-pure circuit of G.

Proof. (i). First note that G is direction-independent, since G is direction

irreducible. Now suppose for a contradiction that G − e is not bounded

for some e ∈ D. We will show that G has a direction reduction. Let

H1, H2, . . . ,Hm be the bounded components of G − e. Then each length

edge of G is contained in one of the subgraphs Hi. Let D∗ ⊆ D be the

set of all edges of G joining distinct subgraphs Hi, and H be the graph

obtained from G by contracting each Hi to a single vertex. Since G is rigid,

G is bounded. Since G is direction-independent, Lemma 8.1.3 now implies

that the graph G/L obtained from G by contracting each length edge has

two edge-disjoint spanning trees. Since H can be obtained from G/L by

contracting a (possibly empty) set of direction edges, H also has two edge-

disjoint spanning trees. In particular, |D∗| ≥ 2m − 2. On the other hand,

Lemma 8.1.4 implies that |D∗ − e| ≤ 2m− 3. Thus e ∈ D∗, |D∗| = 2m− 2,

and H is the union of two edge-disjoint spanning trees. Since G is rigid,

Corollary 4.2.1 implies

2|V |−2 = r(G) ≤ |D∗|+
m∑
i=1

r(Hi) ≤ 2m−2 +

m∑
i=1

(2|V (Hi)|−2) = 2|V |−2.
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Thus equality must hold throughout. In particular, r(Hi) = 2|V (Hi)| − 2

for each i, so each subgraph Hi is rigid.

Let G′ = (V ;D′, L′) be obtained from G by substituting each non-trivial

subgraph Hi by a minimally rigid graph H ′i with exactly one length edge.

Each framework (H ′i, p|H′i) is globally rigid by Lemma 8.2.4. Thus repeated

applications of Lemma 8.1.6 imply that (G′, p) is globally rigid. On the other

hand, |D′| + |L′| = |D∗| +
∑m

i=1 r(Hi) = 2m − 2 +
∑m

i=1(2|V (Hi)| − 2) =

2|V |− 2, so G′ is minimally rigid. Theorem 6.2.3(i) now implies that G′ has

exactly one length edge. Since H ′i contains a length edge whenever Hi is

non-trivial, G − e has exactly one non-trivial bounded component, H1 say.

Since G/H1 = H and H is the union of two edge-disjoint spanning trees,

G is direction reducible to H1. This contradicts the hypothesis that G is

direction irreducible.

(ii). Suppose that r(G − e) = r(G) for some e ∈ D. Then e is contained

in a circuit H of G. Since G is direction-independent, H must be a mixed

circuit. Since G is not redundantly rigid, there exists some f ∈ E(G) such

that G − f is not rigid. By Theorem 6.2.3(i), every such f ∈ D. Clearly f

is not an edge of H and hence H is a non-trivial rigid subgraph of G − f .

Theorem 6.2.3(ii) now implies that G− f is unbounded, contradicting (i).

(iii). Choose e ∈ L. Then e belongs to a circuit H of G by Theorem 6.2.3(i).

By (ii), H cannot be a mixed circuit. Hence H is length-pure.

8.5 Characterisation of globally rigid graphs

Every generic realisation of a direction irreducible, 2-connected, direction-

balanced, redundantly rigid graph is globally rigid by Theorem 7.6.2 and

Lemma 8.1.1. To prove Theorem 8.5.4, we first show that these conditions
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are also necessary for direction irreducible graphs G = (V ;D,L) which are

globally rigid for all generic realisations and have |L| ≥ 2.

If G is such a graph, then G is 2-connected and direction-balanced by

Lemmas 6.2.1 and 6.2.4 respectively. We complete the proof by applying

Theorem 8.5.1 below to deduce that G must also be redundantly rigid. The

proof idea is to show that if G is not redundantly rigid, then for any given

generic realisation (G, p), we can construct a sequence of generic realisations

q0, q1, . . . , qt such that t ≤ |D| and (G, qt) is not globally rigid. We construct

this sequence from (G, p) by first reflecting (G, p) in the x-axis to obtain

(G, q0), and then recursively “correcting” the changed direction constraints

back to their original value in (G, p). Every time we “correct” a direction

constraint, we obtain a new realisation in our sequence.

Theorem 8.5.1. Let G = (V ;D,L) be a direction irreducible mixed graph

with |L| ≥ 2 such that G is not redundantly rigid. Then some generic

realisation of G is not globally rigid.

Proof. We proceed by contradiction. Assume that all generic realisations of

G are globally rigid. By Lemma 8.4.1(ii) and (iii), every length edge of G

is contained in a length-pure circuit in the rigidity matroid of G, and no

direction edge of G is contained in any circuit. Let D = {d0, d1, . . . , dk}, let

G1 = (V1; ∅, L1) be a non-trivial M-component of G and let v0 ∈ V1.

Let (G, p) be a quasi-generic realisation of G with p(v0) = (0, 0) and let

(G, q0) be the quasi-generic realisation obtained by reflecting (G, p) in the

x-axis. Then (G − D, p) is equivalent to (G − D, q0). In addition we have

sq0(di) = −sp(di) for all di ∈ D, so (G, p) and (G, q0) are not equivalent.

Claim 8.5.2. For all j ∈ {0, 1, . . . , k+1} there exists a quasi-generic frame-

work (G, qj) with qj(v0) = (0, 0), rigidity map fG(qj) = (hqj (e))e∈E given



CHAPTER 8. DIRECTION REDUCTIONS 124

by

hqj (e) =


sq0(e) when e ∈ {dj , dj+1, . . . , dk}

hp(e) otherwise,

and with the property that that (G1, qj |V1) can be obtained from (G1, q0|V1)

by a rotation about the origin.

Proof. We proceed by induction on j. If j = 0 then the claim holds trivially

for (G, q0). Hence suppose that the required framework (G, qj) exists for

some 0 ≤ j < k + 1. The quasi-generic framework (G − dj , qj) is bounded

but not rigid by Lemma 8.4.1(i) and (ii) (since boundedness and rigidity are

generic properties). Since (G, qj) is globally rigid by assumption, Lemma

8.1.7 implies that we can continuously move (G−dj , qj) to form (G−dj ,−qj)

whilst keeping v0 fixed at the origin and maintaining all edge constraints.

During this motion, the direction of the missing edge dj = ujvj changes

continuously from qj(vj)−qj(uj) to −(qj(vj)−qj(uj)), a rotation by 180◦. So

at some point in this motion we must pass through a realisation (G−dj , qj+1)

at which the slope of this missing edge is sp(dj). We can now add the edge dj

back to this realisation to obtain the desired framework (G, qj+1). Note that

since G1 is a length rigid subgraph of G− dj and the motion of (G− dj , qj)

is continuous and keeps v0 fixed at the origin, (G1, qj+1|V1) can be obtained

from (G1, qj |V1) by a rotation about the origin.

It remains to show that (G, qj+1) is quasi-generic. Let H be a minimally

rigid spanning subgraph of G. Since hqj+1(e) = ±hp(e) for all e ∈ E(G)

we have Q(fH(qj+1)) = Q(fH(p)). Since fH(p) is generic by Lemma 5.2.2,

Lemma 5.2.4 implies that

td[Q(qj+1) : Q] = td[Q(fH(qj+1)) : Q] = td[Q(fH(p)) : Q] = 2|V | − 2.

We can now use Lemma 5.2.1 to deduce that (H, qj+1), and hence also
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(G, qj+1), are quasi-generic.

Applying Claim 8.5.2 with j = k+1, we obtain a quasi-generic realisation

qk+1 of G which is equivalent to (G, p), has qk+1(v0) = (0, 0), and is such

that (G1, qk+1|V1) can be obtained from (G1, q0|V1) by a rotation about the

origin. Since q0 was obtained from p by reflecting G across the x-axis, we

have

qk+1(v) = RZp(v) for all v ∈ V1

whereR and Z are the 2×2 matrices representing this rotation and reflection.

Since (G1, p|V1) is a quasi-generic framework with at least four vertices and

RZ acts on R2 as a reflection in some line through the origin, we have

qk+1(v) 6= ±p(v) for some v ∈ V1. Hence qk+1|V1 is not congruent to p|V1 ,

and qk+1 is not congruent to p. This implies that (G, p) is not globally rigid

and contradicts our initial assumption that all generic realisations of G are

globally rigid.

Theorem 8.5.1 and our above discussion immediately implies the follow-

ing result:

Corollary 8.5.3. Let G = (V ;D,L) be a direction irreducible mixed graph

with |L| ≥ 2. Then G is globally rigid for all generic realisations if and only

if G is 2-connected, direction-balanced and redundantly rigid.

Lemma 8.1.1 implies that we can replace redundant rigidity with M-

connectivity in the above statement. Since 2-connectivity is a property of

M-connected graphs (see Lemma 7.2.1), we can remove this condition from

our statement. This gives us the result sought:

Theorem 8.5.4. Let G = (V ;D,L) be a direction irreducible mixed graph

with |L| ≥ 2. Then G is globally rigid for all generic realisations if and only

if G is direction-balanced and M-connected.
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With this result, we can finally prove our characterisation of global rigid-

ity for direction-length graphs:

Theorem 8.5.5. A direction-length graph G = (V ;D,L) is globally rigid

for all generic realisations if and only if G is rigid, and either |L| = 1 or

G has a direction-balanced, M-connected mixed subgraph which contains all

edges in L.

Proof. We first prove the forwards direction. Suppose G is globally rigid

for all generic realisations. Then Lemma 6.2.1 implies G is rigid. If |L| =

1, we are done. So suppose |L| ≥ 2. If G is direction irreducible, then

Theorem 8.5.4 implies G is direction-balanced and M-connected; hence G

is the subgraph required. The only remaining case is when |L| ≥ 2 and G

admits a direction reduction. In this case, by definition, G has a direction

irreducible subgraph H whose edge set contains L. Since G is globally rigid,

Theorems 8.3.3 and 8.5.4 imply H is direction-balanced, mixed and M-

connected. Thus H is the subgraph sought, completing the proof of the

forwards direction.

We now consider the backwards direction. Suppose G is rigid. If |L| = 1,

then G is globally rigid by Lemma 6.2.2. So suppose |L| ≥ 2, and G has a

direction-balanced,M-connected mixed subgraph containing all edges in L.

Let H be a maximal subgraph of G satisfying these conditions. There are

two cases to consider based on whether or not G has a direction reduction:

Case 1. G is direction irreducible.

Suppose H 6= G. Since L ⊆ E(H), this implies E(G) − E(H) 6= ∅ is

direction-pure. Let D∗ = E(G)−E(H), and let d ∈ D∗. Since G is direction

irreducible, d is contained in no direction-pure circuit. Further, since H

is maximal and L ⊆ E(H), d is contained in no mixed circuits. Thus

r(G) = r(H) + |D∗|. By our hypothesis and Lemma 7.2.3 respectively, G
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and H are rigid. Hence

|D∗| = r(G)− r(H) = 2|V (G)| − 2|V (H)|.

This implies that the graph G/H = (U ;D∗, ∅) obtained from G by contract-

ing H to a single vertex, and deleting all edges H; has r(G/H) = |D∗| =

2|U | − 2. By [27], the edge set of G/H consists of two spanning trees. This

contradicts condition (D2) of a direction irreducible graph. Hence H = G.

Thus G is direction-balanced and M-connected, and so, by Theorem 8.5.4,

G is globally rigid.

Case 2. G admits a direction reduction.

Since G is rigid, it has a spanning, minimally rigid subgraph G′. Suppose

e ∈ E(G)− (E(G′)∪E(H)). Then e is a direction edge. Since e 6∈ E(G′), e

is contained in some circuit C ⊂ E(G). If C is mixed, then C ∩ E(H) 6= ∅

and C − E(H) is direction-pure, which implies H + C is M-connected and

direction-balanced, thus contradicting the fact H is maximal. Hence C is

direction-pure, and e can be removed by (D1).

We repeat this argument for all such edges, until the graph remaining

is H ∪ G′. Since H is rigid and G′ is minimally rigid, |E(G′) − E(H)| =

2|V (G)−V (H)|. Thus, by [27], G′/H consists of two direction-pure spanning

trees. Hence G′ ∪H can be reduced to H by (D2). So G can be reduced to

H by a sequence of direction reductions. Since H is direction irreducible, it

is globally rigid by the argument in Case 1. Thus, by Theorem 8.3.3, G is

globally rigid.

8.6 Closing remarks

We conjecture that the properties in Theorem 8.5.5 actually characterise

global rigidity for all generic direction-length frameworks:
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Conjecture 8.6.1. A generic direction-length framework (G, p) on under-

lying graph G = (V ;D,L) is globally rigid if and only if G is rigid, and

either |L| = 1 or G has a direction-balanced, M-connected mixed subgraph

which contains all edges in L.

In other words, we conjecture that both global rigidity and global flexi-

bility are generic properties of direction-length graphs. From Theorems 7.6.2

and 6.2.2, we know global rigidity is a generic property for graphs which are

M-connected or have exactly one length edge. Similarly, Lemmas 6.2.1 and

6.2.4 imply that global flexibility is a generic property of graphs which are

not 2-connected, not rigid or not direction-balanced (as generic realisations

of such graphs are never globally rigid). So, by Theorem 8.3.3, the only

class of graphs for which we do not know whether global rigidity (or global

flexibility) is a generic property, are the direction irreducible graphs which

are not redundantly rigid. In other words, if we could adapt our proof of

Theorem 8.5.1 to show that no generic realisation of these graphs is globally

rigid, then we would have succeeded in proving that such graphs are globally

flexible, thus proving our conjecture.

In the remainder of this section, we consider the special case where the

set of length edges induces a length-rigid subgraph, and show that such

graphs are globally flexible. First we need the following technical Lemma:

Lemma 8.6.2. Let G = (V ;D,L) be a rigid mixed graph, H = (U ; ∅, L)

be the length-pure subgraph induced by L, and u ∈ U . Suppose that H is

length-rigid, r(G − e) = r(G) − 1 for all e ∈ D, and G − e0 is bounded for

some e0 ∈ D. Let (G, p) be a quasi-generic framework with p(u) = (0, 0)

and C be the connected component of the configuration space SG−e0,p,u which

contains p. Then −p ∈ C.

Proof. The idea is to rotate (H, p|U ) by θ radians about p(u) = (0, 0) and
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use Theorem 8.2.2 to show that, for almost all values of θ, we can extend the

resulting framework (H, qθ) to a framework (G−e0, pθ) which is equivalent to

(G−e0, p). To apply Theorem 8.2.2, we construct G′ from G by substituting

a minimally rigid graph H ′ with exactly one length edge for H and then

show that the required set of edge slopes for (G′ − e0, pθ) is algebraically

independent over Q.

Let H ′ = (U ;D′, L′) be a minimally rigid graph on the same vertex

set as H with exactly one length edge and let G′ be obtained from G by

replacing H by H ′. We first show that G′ − e0 is minimally rigid. Since G

is rigid, H is length-rigid and r(G − e) = r(G) − 1 for all e ∈ D, we have

|D| = 2|V | − 2− (2|U | − 3) and hence |D − e0| = 2|V | − 2|U |. Since H ′ has

2|U | − 2 edges, this implies that G′ has 2|V | − 2 edges. It remains to show

that G′ − e0 is rigid. Since G− e0 is bounded, (G− e0)+ is rigid by Lemma

8.1.2. Since G′ − e0 can be obtained from (G − e0)+ by substituting H+

with H ′, it is rigid by Lemma 8.1.5. Therefore G′ − e0 is minimally rigid.

For each θ ∈ [0, 2π) let qθ : U → R2 be the configuration obtained

by an anticlockwise rotation of p|U through θ radians about (0, 0). Write

B = {qθ : θ ∈ [0, 2π)}, and let B∗ be the set of all configurations qθ ∈ B

such that the set of slopes {sp(e)}e∈D−e0 ∪ {sqθ(e)}e∈D′ is defined and is

algebraically independent over Q. We claim that B∗ is a dense subset of B.

First we note that q0 = p|U ∈ B∗, as G′−e0 is independent, so Lemma 5.2.2

implies that fG′(p) is generic. To see the effect of a rotation by θ, consider

an edge e = v1v2 in D′ and let (x1, y1) and (x2, y2) be the co-ordinates of v1

and v2 in p. Co-ordinates in qθ are obtained by applying the transformation

Rθ =

 cos θ − sin θ

sin θ cos θ

, so we have

sq0(e) = sp(e) =
y1 − y2

x1 − x2
and sqθ(e) =

(x1 − x2) sin θ + (y1 − y2) cos θ

(x1 − x2) cos θ − (y1 − y2) sin θ
, so
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sqθ(e) = r(sp(e), tan θ), where r(s, t) =
t+ s

1− st
.

Consider any non-zero polynomial z with rational coefficients and |D −

e0| + |D′| variables, labeled as s = (se : e ∈ D − e0) and s′ = (s′e : e ∈ D′).

Substituting s = (sp(e) : e ∈ D − e0) and s′ = (sqθ(e) : e ∈ D′) into

z gives a rational function z∗ in (sp(e) : e ∈ (D − e0) ∪ D′) and tan θ.

Note that z∗ is not identically zero, as it is non-zero when θ = 0 by the

hypothesis that p is quasi-generic. Thus there are only a finite number of

values of θ ∈ [0, 2π) for which z∗ is zero. Furthermore, the number of such

polynomials z is countable, so there are only countably many θ for which

{sp(e)}e∈D−e0∪{sqθ(e)}e∈D′ is algebraically dependent over Q. Thus B−B∗

is countable, so in particular B∗ is a dense subset of B.

For each qθ ∈ B∗, we can apply Lemma 8.2.2 to obtain a configuration

pθ : V → R2 such that lpθ(e1) = lp(e1), where e1 is the unique length

edge of G′, pθ(u) = (0, 0), spθ(e) = sp(e) for e ∈ D − e0 and spθ(e) =

sqθ(e) for e ∈ D′. Since (H ′, qθ) is globally rigid we have pθ|U ∈ {qθ,−qθ}.

Hence (G − e0, pθ) is equivalent to (G − e0, p). Replacing pθ by −pθ if

necessary, we may suppose that pθ|U = qθ; this determines pθ uniquely by

Lemma 8.2.2. Now note that the defining conditions of pθ are polynomial

equations with coefficients that are continuous functions of θ, except at

a finite set of exceptional values for θ corresponding to vertical edges in

pθ. Since B∗ is a dense subset of B, it follows that {pθ : qθ ∈ B∗} all

belong to the same component of the framework space SG−e0,p,u, which is

C, since q0 = p|U ∈ B∗. Now note that qπ ∈ B∗, as sqπ(e) = −sp(e) for

e ∈ D′, so {sp(e)}e∈D−e0 ∪ {sqπ(e)}e∈D′ generates the same extension of Q

as {sp(e)}e∈D−e0 ∪ {sp(e)}e∈D′ . Therefore pπ ∈ C. Since pπ = −p by the

uniqueness property noted above, −p ∈ C.

Theorem 8.6.3. Let (G, p) be a globally rigid generic realisation of a di-
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rection irreducible mixed graph G = (V ;D,L) with at least two length edges.

Suppose that G[L] is length-rigid. Then (G, p) is redundantly rigid.

Proof. We proceed by contradiction. Suppose G is not redundantly rigid.

Since G is direction irreducible, Lemma 8.4.1, implies that G−e is bounded

and r(G− e) = r(G)− 1 for all e ∈ D.

Let H denote G[L] = (U ; ∅, L). Assume there exists some d ∈ D such

that d is an edge in G[U ]. Since H is length-rigid, this implies H + d is

rigid. If d is the only direction edge in G, then reflecting (G, p) across the

line through d would give an equivalent but non-congruent realisation of G,

contradicting the fact G is globally rigid. Hence there exists some d′ ∈ D−

{d}, and the graph G−d′ contains the rigid subgraph H+d. Lemma 6.2.3(ii)

then implies that G − d′ is either rigid or unbounded, which contradicts

Lemma 8.4.1 (ii) and (i) respectively. Hence our initial assumption was

wrong, and G[U ] contains no direction edges. Or equivalently, H = G[L] =

G[U ] is an induced subgraph of G.

Choose u ∈ U and e0 ∈ D. By translation we can replace the assumption

that (G, p) is generic by the assumption that (G, p) is quasi-generic and

p(u) = (0, 0). Let H ′ = (U ;D′, L′) be a minimally rigid graph on the same

vertex set as H with exactly one length edge, f , and let G′ be obtained from

G by substituting H by H ′. We can show that G′ is minimally rigid as in

the proof of Lemma 8.6.2.

Let (H ′, q) be obtained from (H ′, p|U ) by reflection in the x-axis. Then

sq(e) = −sp(e) for all e ∈ D′. Since {sp(e)}e∈D−e0 ∪ {sp(e)}e∈D′ is generic,

{sp(e)}e∈D−e0 ∪ {sq(e)}e∈D′ is generic. Thus we can apply Lemma 8.2.2 to

obtain p′ : V → R2 such that lp′(f) = lp(f), p′(v) = (0, 0), sp′(e) = sp(e)

for e ∈ D − e0 and sp′(e) = sq(e) for e ∈ D′. We have Q(fG′−e0(p′)) =

Q(fG′−e0(p)), so p′ is quasi-generic by Lemma 5.2.4. Now consider (G−e0, p
′)
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Figure 8.1: A direction irreducible mixed graph which is not redundantly rigid. We

know it has a globally flexible generic realisation by Theorem 8.5.1, but do not know

whether it has a globally rigid generic realisation.

and let C be the connected component of the framework space SG−e0,p′,u

which contains p′. By Lemma 8.6.2, we have −p′ ∈ C.

The remainder of the proof is similar to that of [20, Theorem 1.3]. Let

e0 = u0v0. For any p′′ ∈ C let F (p′′) = (p′′(u0)− p′′(v0))/‖p′′(u0)− p′′(v0)‖

be the unit vector in the direction of p′′(u0) − p′′(v0); this is well-defined

since we never have p′′(u0) = p′′(v0) by [18, Lemma 3.4]. Consider a path

P in C from p′ to −p′. Then F (p′′) changes continuously from F (p′) to

−F (p′) along P . By the intermediate value theorem there must be some

p′′ ∈ P such that F (p′′) is either F (p) or −F (p). Then (G, p′′) is equivalent

to (G, p). On the other hand p′′ is not congruent to p since p′′|U is obtained

from p|U by a reflection (as well as a translation and a rotation). It follows

that (G, p) is not globally rigid.

Theorem 8.6.3 shows that if a graph satisfies the hypotheses of Theorem

8.5.1, and also satisfies the additional property that its length edges induce

a length-rigid subgraph, then generic realisations of this graph are never

globally rigid, or equivalently, the graph is globally flexible. This supports

our conjecture that no graph satisfying the hypotheses of Theorem 8.5.1 has

a globally rigid generic realisation.

The smallest graph for which we do not know whether global rigidity is
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a generic property is depicted in Figure 8.1. Conjecture 8.6.1 requires that

generic realisations of this graph are never globally rigid.



Part III

Symmetry
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Chapter 9

Introduction to

symmetry-forced rigidity

In the final part of this thesis, we consider symmetric direction-length frame-

works (G, p) in R2. Intuitively, these are frameworks where the positions of

the vertices given by p, and the resulting locations and types of the edges in

G, result in a symmetric drawing of the graph in the plane. See Figure 9.1.

This is defined more formally in Chapter 10. For now, observe that since

the coordinates of the vertices must obey our chosen symmetry, p cannot

be generic. This means our characterisations of rigidity and global rigidity

for generic frameworks may not apply. In fact, it is easy to construct sym-

metric frameworks which do not satisfy these generic results. For example,

the graph in Figure 9.2 is rigid for generic realisations, but is flexible in this

symmetric realisation.

The symmetries we shall consider are the planar point groups. Namely,

(i) the trivial group, I = {I}, where I denotes the identity;

(ii) the reflection group, Cs = 〈σ〉 = {I, σ}, generated by the single reflec-

tion σ across the y-axis;

135
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Figure 9.1: A C3-symmetric direction-length framework. All edges should be straight

lines, however we have drawn parallel edges as curves to make them easier to see. We can

always do this in such a way that it preserves the symmetry.

Figure 9.2: A Cs-symmetric direction-length framework. The mirror is denoted by a

dotted line. Since the two direction edges that cross the mirror are parallel, we can slide

the vertices along the corresponding rays to obtain a non-trivial motion.

(iii) the k-fold rotation group, Ck = 〈ck〉 = {ck, c2
k, . . . , c

k−1
k , ckk = I} where

k ≥ 2, and cik denotes a rotation about the origin by 2πi/k; and

(iv) the dihedral groups, Dk = 〈σ1, ck〉 = {σ1, ck, σ2, c
2
k, . . . , σk, c

k
k = I}

where k ≥ 2. The element σi denotes reflection across the line through

the origin at angle πi/k.

Technically, Cs = D1. However, Cs is the only dihedral group which con-

tains no non-trivial rotations. As a result, it behaves differently to the other

dihedral groups. We use different notation to emphasise this distinction.

We say a framework is Γ-symmetric if it is symmetric under point group

Γ. Characterising rigidity is harder for symmetric direction-length frame-
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works than in the generic case, so before asking whether a framework has

any non-trivial motions, we first ask whether it has any non-trivial motions

which preserve the symmetry. If not, we say it is symmetry-forced rigid.

A (trivial) motion is called a (trivial) symmetric motion when it preserves

the symmetry of the framework. When all the symmetric infinitesimal mo-

tions of a framework are trivial, we say the framework is symmetry-forced

infinitesimally rigid. These definitions are formalised in Chapter 10.

For pure frameworks, the definitions of symmetric direction-pure frame-

works and symmetric length-pure frameworks are the natural analogues of

the above. The definition of a symmetric motion does not change in this

context. However, remember that pure frameworks have extra trivial mo-

tions. Thus a symmetric length-pure framework is symmetry-forced length-

rigid if its only symmetric motions are rotations and translations, whereas a

symmetric direction-pure framework is symmetry-forced direction-rigid if its

only symmetric motions are translations and dilations. Symmetry-forced in-

finitesimal length-rigidity and symmetry-forced infinitesimal direction-rigidity

are defined analogously.

In Section 9.1, we provide a brief overview of past work in symmetry-

forced rigidity, focussing on the tools used to obtain these results. Then,

in Section 9.2, we explain how we extend these methods to direction-length

frameworks. We also summarise our results from the following Chapters.

9.1 Symmetric pure frameworks

Schulze and Whiteley [32] showed that by exploiting the symmetry of a Γ-

symmetric length-pure framework (G, p), we can delete rows and columns

from its rigidity matrix R(G, p) to obtain an orbit matrix. The vectors

in the kernel of this orbit matrix correspond exactly to the symmetric in-
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finitesimal motions of the framework. So we can use the orbit matrix to

define symmetry-forced infinitesimal length-rigidity in the same way that

the rigidity matrix defines infinitesimal length-rigidity.

Ross [29] introduced gain graphs (defined in Chapter 2) to the theory of

periodic length-pure frameworks. These were later applied to length-pure

graphs under point group symmetries, where it was found that gain graphs

illustrate the combinatorics of the orbit matrix in a similar way to how the

original graph reflected properties of the rigidity matrix.

In 2016, Jordán, Kaszanitzky and Tanigawa [22] used inductive construc-

tions of gain graphs and the orbit matrix to characterise symmetry-forced

infinitesimal length-rigidity in the plane under reflection and rotation sym-

metry. See Theorem 10.3.2. Their methods give a characterisation for Γ-

generic symmetric length-pure frameworks (i.e. frameworks which are as

generic as possible subject to the imposed symmetry group Γ) in terms of

symmetry-adapted edge counts on the corresponding gain graph.

Characterising symmetry-forced rigidity of length-pure frameworks un-

der dihedral symmetry is more difficult, and the methods in [22] only give a

complete characterisation under odd dihedral symmetry (Theorem 10.3.3).

For dihedral groups Dk, where k ≥ 2 is even, the edge sparsity counts in The-

orem 10.3.3 are known to be necessary conditions for Dk-generic symmetry-

forced infinitesimal rigidity, but are not sufficient. Figure 9.3 shows a well-

known example of a D2-symmetric length-pure framework which satisfies

the requirements of Theorem 10.3.3, but has a symmetric motion. Until a

characterisation is known for this case, it will not be possible to characterise

symmetry-forced rigidity for direction-length frameworks under even dihe-

dral symmetry. As such, we frequently restrict our consideration to just the

rotation and single reflection groups in the following chapters.
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Figure 9.3: The D2-symmetric Bottema mechanism.

Using a different method, Tanigawa [37] characterised Γ-generic symmetry-

forced infinitesimal direction-rigidity. This result covers all point group sym-

metries Γ in all dimensions d ≥ 1. When we restrict our consideration

to the plane, these conditions again correspond to symmetry-adapted edge

counts on the corresponding gain graph (see Theorem 10.3.1). In particular,

symmetry-forced rigidity under even dihedral symmetry has a simple char-

acterisation for direction-pure frameworks. If we replace every length edge

in Figure 9.3 with a direction edge, the resulting direction-pure framework

has no non-trivial symmetric motions.

9.2 Summary of results

The characterisations for pure frameworks obtained in [22] and [37] give

counting conditions on gain graphs. However, each paper used a completely

different approach to achieve this. Here, we extend the inductive construc-

tion and orbit matrix methods used in [22], to the direction-length case.

We consider Γ-symmetric direction-length frameworks which are as generic

as possible. Our main result, Theorem 12.2.1, is a characterisation of

symmetry-forced infinitesimal rigidity for such frameworks when Γ is the

single reflection group. We also obtain a partial result when Γ is a rotation

group or odd dihedral group (Theorem 12.2.2).

As this thesis forms the first work on symmetric direction-length frame-
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works, before tackling these results, we must first develop all necessary the-

ory and tools from scratch. This is the main task of Chapter 10, which

culminates in a proof that the direction-length version of the orbit matrix

defines symmetry-forced infinitesimal rigidity (Theorem 10.2.3). This, to-

gether with the known characterisations for pure frameworks (Theorems

10.3.1, 10.3.2 and 10.3.3), lead to our first main result: a set of necessary

conditions for a Γ-symmetric direction-length framework, which is as generic

as possible, to be symmetry-forced infinitesimally rigid (Theorem 10.3.4).

Ideally, we wish to show that the necessary conditions given in Theorem

10.3.4 are also sufficient. The example in Figure 9.3 suggests this fails for

even dihedral symmetry, but for other symmetry groups we suspect it is true.

We know symmetry-forced infinitesimal rigidity is defined by orbit matrix

rank, and all Γ-generic realisations of a given Γ-symmetric graph G give an

orbit matrix with the same rank. This implies that row independence in the

orbit matrix for Γ-generic realisations of G defines independence for an orbit

matroid on G. So proving that the necessary conditions in Theorem 10.3.4

are also sufficient, is equivalent to proving that these conditions characterise

the bases of the orbit matroid (for given |V (G)| and Γ).

This is difficult to do directly. Instead, in Chapter 11 we segue into graph

theory, and show that the necessary conditions from Theorem 10.3.4 define a

matroid on a direction-length gain graph, which we call the sparsity matroid.

We then show that when Γ ∈ {Cs, Ck≥2}, we can inductively construct all

direction-length gain graphs which satisfy these conditions for our chosen

Γ. This is proven in Theorems 11.2.9 and 11.3.28 respectively. This chapter

is particularly technical, so we simplify our arguments by only considering

rotation and reflection symmetry. We conjecture that our methods in this

chapter can be extended to dihedral symmetry.
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The final step to obtain the characterisation sought, is to show that when

Γ is not an even dihedral group, the sparsity matroid and orbit matroid

coincide. In Chapter 12, we prove this is true when Γ = Cs, by showing

that the inductive moves of Theorem 11.2.9 preserve row independence in

the orbit matrix.

To obtain a characterisation for Γ = Ck≥2, it remains to extend the

methods of Chapter 12 to show that the additional inductive moves from

Theorem 11.2.9 also preserve independence in the orbit matrix. We conjec-

ture that this is possible. In comparison, to obtain a similar characterisation

for odd dihedral symmetry, we must extend the methods from both Chap-

ters 11 and 12, to odd dihedral groups. Although we conjecture that this

too is possible, it is a much greater endeavour.



Chapter 10

Necessary conditions for

symmetry-forced

infinitesimal rigidity

10.1 Preliminaries

We start by reviewing key ideas from group theory in Section 10.1.1, before

formally defining symmetric direction-length frameworks in Section 10.1.2.

We then review known results for gain graphs in Section 10.1.3. Lastly,

in Section 10.1.4, we extend standard definitions from symmetric rigidity

theory to direction-length frameworks.

10.1.1 Symmetry

The symmetry groups we consider are the point group symmetries of R2

which fix the origin: I, Cs, Ck≥2 and Dk≥2. The elements of these groups

each induce an action on the plane which can be represented by a matrix.

142
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The identity element I is represented by the identity matrix:

I =

 1 0

0 1

 ,

whereas rotation in R2 by θ about the origin, and reflection in R2 across the

line at angle θ through the origin are represented by the respective matrices cos(θ) − sin(θ)

sin(θ) cos(θ)

 and

 cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 .

For a general group element g, we shall denote its matrix representation in

R2 by gµ. The only exception to this rule is the identity matrix, which we

denote by I instead of Iµ. Note that for the point groups Γ we consider, the

corresponding matrices are always orthogonal. So (g−1)µ = (gµ)−1 = (gµ)T

for all g ∈ Γ. Thus the matrix group Γµ = {gµ : g ∈ Γ} is a subgroup of the

orthogonal group in 2-dimensions.

10.1.2 Symmetric direction-length frameworks

Let G = (V ;D,L) be a direction-length graph. A graph automorphism of G

is a permutation Φ : V → V which preserves edges. In other words, a pair

of vertices u, v ∈ V are joined by the direction edge {u, v} ∈ D if and only

if {Φ(u),Φ(v)} ∈ D; and similarly for length edges, {u, v} ∈ L if and only if

{Φ(u),Φ(v)} ∈ L.

We say that Φ fixes a vertex v if Φ(v) = v, and fixes an edge {u, v} if

{u, v} = {Φ(u),Φ(v)}. The set of all graph automorphisms of G forms the

automorphism group of G, denoted Aut(G).

Given a group Γ, an action π of Γ on a direction-length graph G is an

injective group homomorphism π : Γ→ Aut(G). The action π is free if for all

non-identity g ∈ Γ, the permutation π(g) fixes no vertices. We simplify our

notation in the same manner we used for matrix representations, by letting
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gπ denote π(g) for all g ∈ Γ, and Γπ = {gπ : g ∈ Γ} be the corresponding

permutation group.

A direction-length graph G is (Γ, π)-symmetric if Γ acts on G by π. We

extend this definition to frameworks: (G, p) is a (Γ, π)-symmetric framework

if G is a (Γ, π)-symmetric direction-length graph, and for all g ∈ Γ,

p(gπv) = gµp(v). (10.1)

Figure 10.1 shows some examples of symmetric frameworks under different

actions.

G1

1

2 3

4

G2

1

2

3

4

G3

1

2 3

4

Figure 10.1: Three direction-length frameworks which are symmetric across a vertical

mirror, shown as a dotted line. Each graph Gi is (Cs, πi)-symmetric, where π2(σ) =

(24)(1)(3) fixes the vertices 1 and 3 of G2; and π1(σ) = π3(σ) = (14)(23) is a free action

which fixes the edges {1, 4} and {2, 3} of G1, and fixes no edges of G3.

10.1.3 Γ-gain graphs

Recall the definitions of walks, directed graphs, edge-labellings and gain

graphs from Chapter 2. One of our main tools for analysing symmetry-forced

infinitesimal rigidity are direction-length gain graphs (H,ψ), where H =

(V ;D,L) is a direction-length multigraph, whose edges are each assigned an

orientation; and ψ labels each oriented edge of H with an element of some

point group Γ. We call such a graph (H,ψ) a Γ-gain graph. Figure 10.2

shows some examples of C3-gain graphs. Our choice of orientation is largely
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arbitrary: given any edge {u, v}, the labelling ψ(−→uv) = g is equivalent to

ψ(←−uv) = g−1.

Let (H,ψ) be a Γ-gain graph, and let W = v0, e1, v1, . . . , vk−1, ek, vk be

a walk in H, where vi ∈ V (H) and ei ∈ E(H). The gain of the walk is

ψ(W ) = θ(e1) · θ(e2) · · · θ(ek),

where θ(ei) = ψ(ei) if ei = −−−→vi−1vi, and θ(ei) = ψ(ei)
−1 if ei =←−−−vi−1vi .

Given F ⊆ E(H) and v ∈ V (F ), we let 〈F 〉ψ,v denote the group with

generating set

{ψ(W ) : W is a closed walk starting at v and only using edges from F},

and say that 〈F 〉ψ,v is the subgroup of Γ induced by F relative to v. This

definition suggests there are two choices which may change the gain of a

closed walk: starting the walk at a different vertex in the sequence, or

changing the gains on the edges. The first of these choices does not change

the structure of the group induced by the edges:

Proposition 10.1.1. [14, 42] Let (H,ψ) be a Γ-gain graph, and let F ⊆

E(H) such that H[F ] is connected. Let u, v ∈ V (F ), then 〈F 〉ψ,u is conjugate

to 〈F 〉ψ,v.

However, we need to be more careful when changing the gains on the

edges. Given a vertex v ∈ V (H) and a group element g ∈ Γ, a switching

operation at v with g changes the gains at all edges incident to v to obtain

a new gain function ψ′ on H, where

ψ′(e) =



gψ(e)g−1 if e is a loop incident to v,

ψ(e)g−1 if e is not a loop, and is directed towards v,

gψ(e) if e is not a loop, and is directed from v, and

ψ(e) otherwise.
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We say that two gain functions ψ and ψ′ on a graph H are equivalent

if ψ′ can be obtained from ψ by a sequence of switching operations. Figure

10.2 shows an example of two equivalent gain functions.

(H,ψ1)

x

y z

c3

c3

I

c3

I (c3)−1

(H,ψ2)

x

y z

c3

c3

I

I

(c3)−1 I

Figure 10.2: Two equivalent gain functions on a C3-gain graph H. The function ψ2 is

obtained from ψ1 by a switching operation at x with gain c3.

For a closed walk W starting at v0, a switching operation performed at

any vertex other than v0 leaves the gain of W unchanged. This observation,

together with Proposition 10.1.1 leads to the following result.

Proposition 10.1.2. [22, Proposition 2.2] Let (H,ψ) be a Γ-gain graph,

and let ψ′ be equivalent to ψ. Then for any F ⊆ E(H) and v ∈ V (H),

〈F 〉ψ,v is conjugate to 〈F 〉ψ′,v.

Let Γ be a group with subgroups S1 and S2 conjugate under some g ∈

Γ. When Γ is a 2-dimensional point group, the conjugacy transformation

Tg : S1 → S2 given by Tg(x) = gxg−1 has Tg(x) as the identity (a rotation,

a reflection) in Γ if and only if x is the identity (a rotation, a reflection

respectively). So for a Γ-gain graph (H,ψ) and a set of edges F ⊆ E(H),

Propositions 10.1.1 and 10.1.2 imply that the group 〈F 〉ψ′,v has the same

structure for all choices of v ∈ V (F ), and all choices of ψ′ equivalent to ψ.

This allows us to simplify our notation, and refer to 〈F 〉ψ when discussing

properties which hold for all choices of v ∈ V (F ) and all equivalent ψ′.
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When the gain function is clear from the context, we omit this too, and

refer simply to 〈F 〉.

These observations lead to the following useful results.

Proposition 10.1.3. [22, Proposition 2.3] Let (H,ψ) be a Γ-gain graph.

Then for any forest F ⊆ E(G), there is a gain function ψ′ equivalent to ψ

such that ψ′(e) = I for all e ∈ F .

Proposition 10.1.4. [22, Lemma 2.4] Let (H,ψ) be a connected Γ-gain

graph. Let T ⊆ E(H) be a spanning tree of H with ψ(e) = I for all e ∈ T .

Let F ⊆ E(H) with H[F ] is connected. Then 〈F 〉ψ = 〈ψ(e) : e ∈ F − T 〉.

Since the group 〈F 〉ψ has the same structure for all equivalent ψ′, it is

helpful to define this structure as a property of the underlying edge set F .

We say F is balanced if 〈F 〉 = 〈I〉 = I, and F is unbalanced otherwise.

Similarly, F is cyclic if F = 〈γ〉 for some I 6= γ ∈ Γ, and more specifically F

is reflectional or rotational when γ is respectively a reflection or a non-trivial

rotation. Finally, F is dihedral if 〈F 〉 = Dk for some k ≥ 2.

Note that each non-empty edge set F ⊆ E(H) of a Γ-gain graph (H,ψ)

lies in exactly one of the following four categories: balanced, rotational,

reflectional, or dihedral. This classification is key to the combinatorial char-

acterisations in Section 10.3 and Chapter 12. Here it allows us to extend

Propositions 10.1.3 and 10.1.4 to the following structural results:

Lemma 10.1.5. [22, Lemma 2.5] Let Γ be a point group and (H,ψ) be a

Γ-gain graph. Let X,Y ⊆ E(H) with H[X] and H[Y ] connected. Suppose

the subgraph (V (X) ∩ V (Y ), X ∩ Y ) is connected.

(i) If X and Y are balanced, then X ∪ Y is balanced

(ii) If X is balanced, then 〈X ∪ Y 〉 = 〈Y 〉.
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(iii) If X,Y and X∩Y are unbalanced and cyclic, then X∪Y is unbalanced

and cyclic.

Lemma 10.1.6. [22, Lemma 2.6] Let (H,ψ) be a Γ-gain graph. Let X,Y ⊆

E(H) be balanced with H[X] and H[Y ] connected. If (V (X)∩V (Y ), X ∩Y )

contains exactly two connected components, then X ∪ Y is either balanced

or cyclic.

10.1.4 Covering frameworks and quotient frameworks

Let G = (V ;D,L) be a (Γ, π)-symmetric direction-length graph and Γπ be

the corresponding permutation group on V . The quotient graph of G is the

Γ-gain graph (G/Γπ, ψ), where G/Γπ = (V/Γπ;D/Γπ, L/Γπ) has vertex set

consisting of the vertex orbits Γπv for v ∈ V , and edge set consisting of

the edge orbits of G; and such that if {u, gπv} ∈ D (or {u, gπv} ∈ L), then

the quotient graph G/Γπ contains the directed edge (Γπu,Γπv) in D/Γπ

(respectively in L/Γπ) with gain ψ(
−−−−−−→
Γπu,Γπv) = g.

If G is a (Γ, π)-symmetric direction-length graph and π is a free action,

then for a given choice of vertex orbit representatives, the corresponding

quotient graph (H,ψ) is unique. A different choice of vertex orbit represen-

tatives will give a quotient graph (H,ψ′) where ψ′ is equivalent to ψ. See

Figure 10.3.

Conversely, given a Γ-gain graph (H,ψ), there is a unique (Γ, π)-symmetric

direction-length graph G for which (H,ψ) is its quotient graph and π is a

free action. We call this graph G the covering graph of (H,ψ).

We extend these definitions to frameworks. A Γ-gain framework (H,ψ, q)

is a Γ-gain graph (H,ψ) together with a realisation q : V (H)→ R2. Given a

(Γ, π)-symmetric direction-length framework (G, p) with free action π, and

a choice of vertex orbit representatives V ′ = {v1, v2, . . . , vm}, the unique
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quotient framework of (G, p) with respect to V ′ is the Γ-gain framework

(H,ψ, p̃), where (H,ψ) has vertex set {Γv1,Γv2, . . . ,Γvm}, and the realisa-

tion p̃ satisfies

p̃(Γvi) = p(vi)

for all 1 ≤ i ≤ m. See Figure 10.3 for an example of how to obtain a quotient

framework from a symmetric framework.

v1

v2

v3

(G, p)

v′1

v′2

v′3

Csv1

Csv2

Csv3

(G/Cs, ψ, p̃)
σ

σ

I

I
I

I

Figure 10.3: A Cs-symmetric framework (G, p) under free action π with π(σ) =

(v1, v
′
1)(v2, v

′
2)(v3, v

′
3); and its quotient framework (G/Cs, ψ, p̃) under the choice of orbit

representatives v1, v2, v3.

Conversely, the covering framework of Γ-gain framework (H,ψ, p̃) is a

(Γ, π)-symmetric direction-length framework (G, p) where π is a free action,

G is the covering graph of (H,ψ), and for some choice of orbit representa-

tives u1, u2, . . . , um for the respective vertices Γv1,Γv2, . . . ,Γvm of H, the

realisation p satisfies

p(gπui) = gµp(ui) = gµp̃(Γvi)

for all vertices gπui ∈ V (G).
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10.2 Symmetry-forced rigidity

First, we introduce symmetric infinitesimal motions and symmetry-forced

infinitesimal rigidity. Then, in Section 10.2.1, we show that we can define

an orbit matrix for any given (Γ, π)-symmetric framework (G, p); and that

this matrix and the corresponding quotient framework, are the correct tools

to determine whether (G, p) is symmetry-forced infinitesimally rigid.

Given a (Γ, π)-symmetric direction-length framework (G, p), an infinites-

imal motion m : V (G)→ R2 of our framework is symmetric if for all g ∈ Γ

and v ∈ V (G)

m(gπv) = gµm(v). (10.2)

A trivial symmetric infinitesimal motion of (G, p) is a trivial infinitesimal

motion which is symmetric under this definition. We denote the space of

all trivial symmetric infinitesimal motions of a (Γ, π)-symmetric framework

(G, p) by trivΓ(G, p). A (Γ, π)-symmetric framework is symmetry-forced in-

finitesimally rigid if all of its symmetric infinitesimal motions are trivial.

As explained in Chapter 4, a motion of a framework must maintain the

constraints imposed by the edges. This leads to the following characterisa-

tion of symmetric infinitesimal motions:

Lemma 10.2.1. Suppose Γ is a point group. Let (G, p) be a (Γ, π)-symmetric

direction-length framework with infinitesimal motion m : V → R2. Then m

is a symmetric infinitesimal motion of (G, p) if and only if

(i) 〈p(vi)− gµp(vj),m(vi)− gµm(vj)〉 = 0 for all {vi, gπvj} ∈ L, and

(ii) 〈(p(vi)− gµp(vj))⊥,m(vi)− gµm(vj)〉 = 0 for all {vi, gπvj} ∈ D,

where vi and vj are vertex orbit representatives of V (G)/Γπ, g ∈ Γ and( x
y

)⊥
=
(

y
−x
)
.
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Proof. By definition, m is an infinitesimal motion of (G, p) if and only if it

lies in the kernel of the rigidity matrix R(G, p). In other words,

〈p(u)− p(v),m(u)−m(v)〉 = 0 for all {u, v} ∈ L, and

〈(p(u)− p(v))⊥,m(u)−m(v)〉 = 0 for all {u, v} ∈ D.

Since G is (Γ, π)-symmetric, we know u ∈ Γπvi and v ∈ Γπvj for some pair

of vertex orbit representatives vi and vj . Hence u = fπvi and v = hπvj

for some f, h ∈ Γ. Further, (G, p) is a (Γ, π)-symmetric framework so the

realisation p satisfies

p(u) = p(fπvi) = fµp(vi) and p(v) = p(hπvj) = hµp(vj). (10.3)

By the definition of a symmetric infinitesimal motion, m is symmetric if and

only if, for all g ∈ Γ and vk ∈ V (G), we have

m(gπvk) = gµm(vk). (10.4)

Substituting (10.3) and (10.4) into the definition of an infinitesimal motion

gives that m is a symmetric infinitesimal motion of (G, p) if and only if the

following system of equations is satisfied:

〈fµp(vi)− hµp(vj), fµm(vi)− hµm(vj)〉 = 0 for all {fπvi, hπvj} ∈ L, and

〈(fµp(vi)− hµp(vj))⊥, fµm(vi)− hµm(vj)〉 = 0 for all {fπvi, hπvj} ∈ D.

Since Γ is a point group, we know that the matrices in Γµ are orthogonal.

Hence fTµ = f−1
µ , and these equations can be rewritten as

〈p(vi)− f−1
µ hµp(vj),m(vi)− f−1

µ hµm(vj)〉 = 0 for all {vi, f−1
π hπvj} ∈ L,

〈(p(vi)− f−1
µ hµp(vj))

⊥,m(vi)− f−1
µ hµm(vj)〉 = 0 for all {vi, f−1

π hπvj} ∈ D.

Simplifying notation by setting g = f−1h gives the system of equations

sought.
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Lemma 10.2.1 shows that when m is a symmetric infinitesimal motion

of a (Γ, π)-symmetric framework (G, p), and e ∈ E(G), every edge in the

orbit Γπe imposes an identical constraint. Thus we can replace this set of

identical constraints by a single constraint for Γπe. We apply this constraint

to the corresponding edge in the quotient framework:

Corollary 10.2.2. Suppose Γ is a point group. Let (G, p) be a (Γ, π)-

symmetric direction-length framework, and let V ′ be a set of orbit represen-

tatives of V (G)/Γπ. Let (H,ψ, p̃) be the quotient framework of (G, p) with

respect to V ′. Then m is a symmetric infinitesimal motion of (G, p) if and

only if whenever e = (Γπvi,Γπvj) ∈ E(H) with gain ψ(
−−−−−−−→
Γπvi,Γπvj) = g, we

have

(i) 〈p(vi)− gµp(vj),m(vi)− gµm(vj)〉 = 0 if e is a length edge, and

(ii) 〈(p(vi)− gµp(vj))⊥,m(vi)− gµm(vj)〉 = 0 if e is a direction edge.

10.2.1 The orbit matrix

Recall that in the theory of non-symmetric frameworks, we construct a rigid-

ity matrix from the edge constraints of our framework, and use this analyse

the framework’s infinitesimal motions. This was described in detail in Chap-

ter 4. Here we adapt this method to analyse the symmetric infinitesimal

motions of symmetric frameworks, by instead constructing an orbit matrix.

This tool was first introduced by Schulze and Whiteley [32] in the context

of length-pure frameworks.

Given a (Γ, π)-symmetric direction-length framework (G, p) and a set of

vertex orbit representatives V ′, we first construct the quotient framework

(H,ψ, p̃), with respect to V ′. Corollary 10.2.2 then gives us a system of

equations for the quotient framework, which we use to construct the orbit
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matrix, O(H,ψ, p̃). When π is a free action, this matrix has |E(H)| rows and

2|V ′| columns. If π is not free, then the number of columns in this matrix

is reduced (see [32]), however we do not consider this case. For the point

groups Γ we consider, the matrices in Γµ are orthogonal, which simplifies

the matrix entries.

A non-loop edge e = (Γπvi,Γπvj) ∈ E(H) with i 6= j and gain g gives

the following rows in the orbit matrix

vi︷ ︸︸ ︷ vj︷ ︸︸ ︷( )
0 · · · 0 (p(vi)− gµp(vj))T 0 · · · 0 −(g−1

µ (p(vi)− gµp(vj)))T 0 · · · 0

( )
0 · · · 0 ((p(vi)− gµp(vj))⊥)T 0 · · · 0 −(g−1

µ (p(vi)− gµp(vj))⊥)T 0 · · · 0

when e is a length or direction edge respectively.

For loop edges in the quotient graph, the constraints simplify yet fur-

ther. If a loop edge has identity gain, then the equations in Corollary 10.2.2

simplify to give 〈0, 0〉 = 0, which trivially holds for all m. Hence the cor-

responding row in the orbit matrix has zero entries throughout. Perhaps

surprisingly, we also obtain a trivial equation, 〈0,m(vi)〉 = 0, for direction

loops (Γπvi,Γπvi) ∈ E(H) with reflection gain g. Such an edge restricts

the motions of the symmetric graph G, to those which keep the endvertices

p(vi) and p(gπvi) on a line perpendicular to the mirror given by g. By defi-

nition, all symmetric infinitesimal motions satisfy this property, so this edge

imposes no additional constraint.

In the remaining cases, a loop edge l = (Γπvi,Γπvi) ∈ E(H) with gain g

corresponds to the following rows in the orbit matrix

vi︷ ︸︸ ︷( )
0 · · · 0 ((I − g−1

µ )(p(vi)− gµp(vi)))T 0 · · · 0

( )
0 · · · 0 ((I − g−1

µ )(p(vi)− gµp(vi))⊥)T 0 · · · 0
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when l is a length edge with non-identity gain, or a direction edge with

non-trivial rotation gain respectively.

Thus for point groups Γ, Corollary 10.2.2 is equivalent to saying that m

is a symmetric infinitesimal motion of the (Γ, π)-symmetric direction-length

framework (G, p) if and only if m|V ′ is in the kernel of O(H,ψ, p̃). Hence

(G, p) is symmetry-forced infinitesimally rigid if and only if for some choice

of vertex orbit representatives V ′,

dim(ker(O(G/Γπ, ψ, p̃))) = dim(trivΓ(G, p)).

Using the rank-nullity formula, this gives us the following characterisation

of symmetry-forced infinitesimal rigidity:

Theorem 10.2.3. Suppose Γ is a point group. Let (G, p) be a (Γ, π)-

symmetric direction-length framework under free action π, and with vertex

orbit representatives V ′. Let (H,ψ, p̃) be the quotient framework of (G, p)

with respect to V ′. Then (G, p) is symmetry-forced infinitesimally rigid if

and only if

rank(O(H,ψ, p̃)) = 2|V ′| − dim(trivΓ(G, p)).

For direction-length frameworks, the only trivial infinitesimal motions

are the translations. Hence for symmetric direction-length frameworks, the

trivial symmetric infinitesimal motions are those translations which also

preserve the symmetry. If Γ ∈ {Ck≥2,Dk≥2}, all symmetric infinitesimal

motions must keep the origin fixed, and so the only possible translation is

the translation by 0, which gives dim(trivΓ(G, p)) = 0. If Γ = Cs, then trans-

lating along the mirror preserves the symmetry, so dim(trivCs(G, p)) = 1.

When Γ = I, no symmetric constraints are imposed on the trivial infinites-

imal motions so dim(trivI(G, p)) = 2. Using these observations, we can

rewrite Theorem 10.2.3 as follows:
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Corollary 10.2.4. Suppose Γ is a point group. Let (G, p) be a (Γ, π)-

symmetric direction-length framework under free action π, and with vertex

orbit representatives V ′. Let (H,ψ, p̃) be the quotient framework of (G, p)

with respect to V ′. Then (G, p) is symmetry-forced infinitesimally rigid if

and only if

rank(O(H,ψ, p̃)) = 2|V ′| −


0 if Γ ∈ {Ck≥2,Dk≥2},

1 if Γ = Cs, and

2 if Γ = I.

We say that a (Γ, π)-symmetric direction-length framework (G, p) is

minimally symmetry-forced infinitesimally rigid if it is symmetry-forced in-

finitesimally rigid, but when we delete all edges in the edge orbit Γπe for

any e ∈ E(G), the remaining (Γ, π)-symmetric framework (G − Γπe, p) is

not symmetry-forced infinitesimally rigid. We can rephrase this in terms of

the orbit matrix:

Corollary 10.2.5. Suppose Γ is a point group. Let (G, p) be a (Γ, π)-

symmetric direction-length framework under free action π, and with vertex

orbit representatives V ′. Let (H,ψ, p̃) be the quotient framework of (G, p)

with respect to V ′. Then (G, p) is minimally symmetry-forced infinitesimally

rigid if and only if

|E(H)| = rank(O(H,ψ, p̃)) = 2|V ′| −


0 if Γ ∈ {Ck≥2,Dk≥2},

1 if Γ = Cs, and

2 if Γ = I.

As with non-symmetric frameworks, algebraic dependencies in the non-

zero entries of the matrix can cause additional row dependencies, and hence

reduce the rank. However, unlike non-symmetric frameworks, these entries
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are defined in terms of both the realisation, and the matrix representation

of our group. Let QΓ denote the smallest extension field of Q which contains

the entries of every matrix in Γµ. Since we only consider point groups Γ, we

only need to adjoin finitely many real numbers to Q to form QΓ. We say

that a realisation p̃ of a Γ-gain graph is generic over QΓ if the coordinates

in p̃ are algebraically independent over QΓ.

We say a (Γ, π)-symmetric framework (G, p) is Γ-generic when some (or

equivalently all) quotient frameworks of (G, p) are generic over QΓ. A (Γ, π)-

symmetric graph G is (minimally) symmetry-forced infinitesimally rigid if

all Γ-generic (Γ, π)-symmetric frameworks (G, p) are (minimally) symmetry-

forced infinitesimally rigid. Corollary 10.2.5 thus implies the following nec-

essary condition for minimal symmetry-forced infinitesimal rigidity:

Corollary 10.2.6. Suppose Γ is a point group. Let G be a (Γ, π)-symmetric

direction-length graph under free action π, and with vertex orbit representa-

tives V ′. Let (H,ψ) be the quotient graph of G with respect to V ′. If G is

minimally symmetry-forced infinitesimally rigid then

|E(H)| = 2|V (H)| −


0 if Γ ∈ {Ck≥2,Dk≥2},

1 if Γ = Cs, and

2 if Γ = I;

and for all ∅ 6= F ⊆ E(H)

|F | ≤ 2|V (F )| −


0 if 〈F 〉 ∈ {Ck≥2,Dk≥2},

1 if 〈F 〉 = Cs, and

2 if 〈F 〉 = I.
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10.3 The orbit matroid

Given Γ-gain graph (H,ψ) with realisation p̃ generic over QΓ, the fact p̃

introduces no additional row dependencies to the orbit matrix means two

things. Firstly, the rank of the orbit matrix for (H,ψ) is maximised at p̃;

and secondly, for any other realisation q̃ of (H,ψ) generic over QΓ, the orbit

matrices O(H,ψ, p̃) and O(H,ψ, q̃) have the same collection of independent

row sets. Thus we can define a matroid on the edge set of the graph (H,ψ),

which we call the orbit matroid of (H,ψ), denoted O(H,ψ); where the in-

dependent sets of O(H,ψ) correspond to the linearly independent row sets

of O(H,ψ, p̃).

Rephrasing Corollary 10.2.5 in matroid terminology: a Γ-symmetric

graph G is minimally symmetry-forced infinitesimally rigid if and only if the

matroid of its corresponding quotient graph, O(H,ψ), has rank(O(H,ψ)) =

|E(H)|. The inequalities in Corollary 10.2.6 provide necessary conditions

for this to hold.

The orbit matrix and orbit matroid also feature in the study of symmetry-

forced rigidity of pure frameworks. However, in these cases the rows in the

orbit matrix all corresponded to edges of the same type, either direction or

length. Thus results characterising symmetry-forced direction-rigidity and

symmetry-forced length rigidity give additional necessary conditions for a

pure edge set F to be independent in the orbit matroid.

In Subsection 10.3.1, we summarise these results for pure frameworks.

Then, in Subsection 10.3.2, we collate these with the sparsity conditions from

Corollary 10.2.6 to obtain our set of necessary conditions for independence

in the orbit matroid.
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10.3.1 Pure frameworks under symmetry

Recall that a length-pure framework has no constraints on its orientation,

and so can be continuously rotated; whereas a direction-pure framework has

no constraints on its size, and thus can be continuously dilated. When we

restrict our consideration to only length-pure frameworks, or only direction-

pure frameworks, these extra motions are trivial motions of the relevant

pure framework. As such, our definition of infinitesimal rigidity for pure

frameworks changes accordingly.

We say a (Γ, π)-symmetric direction-pure framework (length-pure frame-

work) is symmetry-forced infinitesimally direction-rigid (symmetry-forced in-

finitesimally length-rigid) if its only symmetric infinitesimal motions are

trivial motions for direction-pure frameworks (length-pure frameworks).

For length-pure frameworks, it is known that symmetry-forced length-

rigidity and symmetry-forced infinitesimal length-rigidity are equivalent for

Γ-generic realisations (see Corollary 4.8 of [30]). The analogous properties

are also equivalent for direction-pure frameworks (the argument in Remark

4.1.5 of [40] is unaffected by symmetry). Thus the results here also char-

acterise symmetry-forced length- and direction-rigidity. However, as we are

interested in the consequences for the orbit matrix, we state them in terms

of infinitesimal motions.

Direction-pure frameworks

In Corollary 6.4 of [37], Tanigawa characterised symmetry-forced infinites-

imal direction-rigidity under point groups Γ in all dimensions d ≥ 1. The

statement of the general version of this result involves counting connected

components of induced subgraphs, and evaluating the trace of the matrix gµ

for every g ∈ Γ. However, when we restrict our consideration to the plane,
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these conditions simplify to the following edge counts for reflection, rotation

and dihedral symmetry:

Theorem 10.3.1. Suppose Γ is a point group. Let (G, p) be a (Γ, π)-

symmetric direction-pure framework. Suppose p : V (G) → R2 is Γ-generic,

and π is a free action. Then (G, p) is symmetry-forced infinitesimally direction-

rigid if and only if the quotient Γ-gain graph contains a spanning subgraph

(H,ψ) such that

|E(H)| = 2|V (H)| −


1 if Γ ∈ {Ck≥2,Dk≥2},

2 if Γ = Cs, and

3 if Γ = I;

and for all ∅ 6= F ⊆ E(H) we have

|F | ≤ 2|V (F )| −


1 if 〈F 〉 ∈ {Ck≥2,Dk≥2},

2 if 〈F 〉 = Cs, and

3 if 〈F 〉 = I.

Length-pure frameworks

For length-pure frameworks, symmetry-forced infinitesimal length-rigidity

was characterised under reflection and rotation symmetry by Jordán, Kaszan-

itzky and Tanigawa:

Theorem 10.3.2. [22, Theorem 6.3] Let Γ ∈ {Cs, Ck} where k ≥ 2. Let

(G, p) be a Γ-generic (Γ, π)-symmetric length-pure framework in the plane

with free action π. Then (G, p) is symmetry-forced infinitesimally length-

rigid if and only if the quotient Γ-gain graph contains a spanning subgraph

(H,ψ) such that

|E(H)| = 2|V (H)| − 1,
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and for all ∅ 6= F ⊆ E(H) we have

|F | ≤


2|V (F )| − 3 if F is balanced,

2|V (F )| − 1 otherwise.

As noted in Chapter 9, for dihedral symmetry Dk≥2, the methods in [22]

only give a complete characterisation when k is odd:

Theorem 10.3.3. [22, Theorem 8.2] Let Dk be a dihedral group with k ≥ 3

odd. Let (G, p) be a Dk-generic (Dk, π)-symmetric length-pure framework

under free action π. Then (G, p) is symmetry-forced infinitesimally length-

rigid if and only if the quotient Dk-gain graph contains a spanning subgraph

(H,ψ) such that

|E(H)| = 2|V (H)|,

and for all ∅ 6= F ⊆ E(H) we have

|F | ≤


2|V (F )| − 3 if F is balanced,

2|V (F )| − 1 if F is unbalanced and cyclic,

2|V (F )| otherwise.

For dihedral groups Dk, where k ≥ 2 is even, the edge sparsity counts in

Theorem 10.3.3 are known to be necessary conditions for symmetry-forced

infinitesimal length-rigidity, but not sufficient. See Lemma 8.1 in [22]. Thus

we have the necessary conditions sought for all planar point groups, despite

not having a complete characterisation in this case.

10.3.2 Necessary conditions for minimal symmetry-forced in-

finitesimal rigidity

The inequalities in Theorems 10.3.1, 10.3.2 and 10.3.3 give additional nec-

essary conditions for the orbit matroid O(H,ψ) of the direction-length gain
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graph (H,ψ) to have E(H) independent. Thus, they provide extra neces-

sary conditions for minimal symmetry-forced infinitesimal rigidity. Adding

these conditions to those in Corollary 10.2.6 gives us the main result of this

chapter:

Theorem 10.3.4. Suppose Γ is a point group. Let G be a (Γ, π)-symmetric

direction-length graph under free action π, and with vertex orbit representa-

tives V ′. Let (H,ψ) be the quotient graph of G with respect to V ′. If G is

minimally symmetry-forced infinitesimally rigid then for all ∅ 6= F ⊆ E(H)

we have

|F | ≤ 2|V (F )| −


0 if 〈F 〉 ∈ {Ck≥2,Dk≥2},

1 if 〈F 〉 = Cs, and

2 if 〈F 〉 = I;

where equality holds in the above when F = E(H). Further, for all direction-

pure ∅ 6= F ⊆ E(H),

|F | ≤ 2|V (F )| −


1 if 〈F 〉 ∈ {Ck≥2,Dk≥2},

2 if 〈F 〉 = Cs, and

3 if 〈F 〉 = I;

and for all length-pure ∅ 6= F ⊆ E(H),

|F | ≤ 2|V (F )| −


0 if 〈F 〉 = Dk≥2,

1 if 〈F 〉 ∈ {Ck≥2, Cs}, and

3 if 〈F 〉 = I.

In order for the edge sparsity conditions in this Theorem to characterise

minimal symmetry-forced rigidity, they would have to be enough to guar-

antee the independence of E(H) in the orbit matroid. If this were true,
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Theorem 10.3.4 would characterise the graphs (H,ψ) for which E(H) is

maximally independent, given |V (H)| and Γ.

Unfortunately, these conditions are not sufficient when Γ is even dihe-

dral. The length-pure Bottema mechanism from Figure 9.3 provides one

counterexample. Despite having no direction edges, it satisfies the con-

ditions of Theorem 10.3.4, but is not symmetry-forced rigid. Figure 10.4

depicts its quotient framework.

c2

I

σ1

σ2

Figure 10.4: The quotient framework of the Bottema mechanism.

We can obtain a mixed counterexample by replacing the edges of the

Bottema mechanism with a combination of direction and length edges. See

Figure 10.5.

Figure 10.5: Two realisations of a D2-symmetric direction-length graph. There is a

continuous symmetric motion from one realisation to the other.

This suggests that it is not only our count conditions for length-pure

subgraphs which are insufficient under even dihedral symmetry, but also

those for mixed subgraphs. So, at best, we can hope the necessary conditions

in Theorem 10.3.4 are sufficient when Γ is cyclic or odd dihedral. In Chapter
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11 we show that these inequalities define independence in a matroid, which

we call the sparsity matroid, when Γ is cyclic. Then, in Chapter 12, we show

that when Γ is the single reflection group, the sparsity matroid and orbit

matroid coincide.



Chapter 11

The sparsity matroid

The first aim of this chapter is to show that the inequalities in Theorem

10.3.4 define independence in a matroid on the edge set of a Γ-gain graph

(H,ψ), which we call the sparsity matroid of (H,ψ). We prove this in Section

11.1, where we first define the sparsity function based on these inequalities,

and then use this function to construct the sparsity matroid.

Our second aim is to show that the edge set of a Γ-gain graph (H,ψ)

is independent in the sparsity matroid, and maximal given |V (H)| and Γ,

if and only if we can inductively construct (H,ψ) from a set of base graphs

using a handful of simple moves. Our methods succeed in proving this for

cyclic Γ. We achieve partial results when Γ is dihedral.

In Section 11.2 we define our base graphs and inductive moves, and

show that any Γ-gain graph (H,ψ) which can be constructed in this way is

maximally independent in the sparsity matroid (given |V (H)| and any point

group Γ). It remains to prove the converse of this statement. This requires

showing that if (H,ψ) has a maximally independent edge set and is not a

base graph, then we can remove some vertex, v, using the inverse of one of

our inductive moves. We prove this in Subsection 11.2.4 for the cases where

164
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dH(v) ≤ 3. However, when dH(v) = 4, this is much more complicated. In

Section 11.3, we restrict to considering degree 4 vertices in Ck≥2-gain graphs,

and break this problem down into multiple subcases based on the structure

of the graph.

Our main results, Theorems 11.2.9 and 11.3.28, provide a constructive

characterisation of all maximally Γ-sparse graphs when Γ is respectively a

reflection or rotation group.

11.1 The sparsity function and sparsity matroid

We first rephrase the sparsity conditions from Theorem 10.3.4 as a function

on Γ-gain graphs. Given a point group Γ, and Γ-gain graph (H,ψ), we define

the sparsity function s on E(H) by

s(E′) = 2|V (E′)| − 3 + α(E′) + β(E′)

for all ∅ 6= E′ ⊆ E(H), where

α(E′) =


0 if 〈E′〉 = I,

1 if 〈E′〉 = Cs,

2 otherwise;

and

β(E′) =


0 if E′ is length-pure with 〈E′〉 ⊆ Ck, or E′ is direction-pure,

1 otherwise.

We define s(∅) = 0.

An edge set F in (H,ψ) is sparse if |F ′| ≤ s(F ′) for all F ′ ⊆ F ; and is

tight if F is sparse with |F | = s(F ). Further, F is maximal tight in (H,ψ)

if there is no tight set E′ ⊆ E(H) with F ⊂ E′. We extend these definitions
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to graphs, by saying that H[F ] is sparse (tight, maximal tight) whenever F

is. The following result follows immediately from Proposition 10.1.2.

Lemma 11.1.1. Let (H,ψ) be a Γ-gain graph, and suppose ψ′ is equivalent

to ψ. Then (H,ψ) is sparse if and only if (H,ψ′) is sparse.

We aim to understand the relationship between edge sparsity in a Γ-

gain graph and independence in the orbit matroid. From Theorem 10.3.4,

we know that edge sparsity is a necessary condition for independence in the

orbit matroid:

Corollary 11.1.2. Suppose Γ is a point group. Let (H,ψ) be a Γ-gain graph

with realisation p̃ generic over QΓ. If O(H,ψ, p̃) is row independent, then

E(H) is sparse.

However, the converse of this statement is not true in general. See Figure

9.3 for a counterexample when Γ is an even dihedral group. So instead, we

restrict our consideration to when Γ is a cyclic group.

For a Γ-gain graph (H,ψ), let S(H,ψ) = (E(H), E), where E is the

collection of sparse sets of E(H). We shall prove that S(H,ψ) is a matroid

on E(H), using a method found in [16, 22] amongst others. This approach

relies on partitioning sparse edge sets into families of tight sets. We first

introduce some properties of tight sets.

11.1.1 Tight sets

The following basic properties of tight sets shall be used frequently. The

proof of this result is almost identical to that of Lemma 7.1 in [22].

Proposition 11.1.3. Let Γ be a point group, and let (H,ψ) be a tight Γ-gain

graph with |V (H)| ≥ 2.
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(i) Either every vertex in H is incident to at least two edges, or (H,ψ) is

the pure, balanced graph consisting of a single edge.

(ii) If (H,ψ) is pure and balanced, then (H,ψ) is 2-connected.

(iii) If (H,ψ) has |E(H)| ≤ 2|V (H)| − 1, then (H,ψ) is connected.

(iv) If (H,ψ) has 2 ≤ |E(H)| ≤ 2|V (H)| − 2, then (H,ψ) is 2-edge-

connected.

Proof. Let E = E(H). First, consider the special case where |E| = 1. We

know (H,ψ) is tight and |V (H)| ≥ 2, hence (H,ψ) consists of a single edge

between two distinct vertices. Thus (H,ψ) satisfies (i), (ii). and (iii).

For the remainder of the proof, suppose |E| ≥ 2. Assume for a contra-

diction that there exists a vertex v ∈ V (H) incident to exactly one edge, e.

For γ ∈ {α, β} we know γ(F ′) ≤ γ(F ) whenever F ′ ⊆ F . This, and the fact

(H,ψ) is sparse give

|E| − 1 ≤ s(E − e) ≤ 2|V (H)− {v}| − 3 + α(E) + β(E) = s(E)− 2.

Which implies |E| < s(E), contradicting the fact (H,ψ) is tight. Hence (i)

holds.

Suppose instead that (H,ψ) is pure and balanced. Then α(E) +β(E) =

0, and H contains no loops. Assume for a contradiction that (H,ψ) is

not 2-connected. Then there exists a partition of E into {E1, E2} such

that |V (E1) ∩ V (E2)| = 1. Whenever F ⊆ E and γ ∈ {α, β}, we know

γ(F ) ≤ γ(E). This implies α(Ei) = β(Ei) = 0, and hence

|E| = |E1|+ |E2| ≤ 2|V (E1)| − 3 + 2|V (E2)| − 3 = 2|V (H)| − 4 < s(E).

This contradicts the fact (H,ψ) is tight. Hence (ii) holds.

Next, suppose |E| = 2|V (H)| − k for some k ≥ 1. Assume for a con-

tradiction that V (H) can be partitioned into {V1, V2} such that there is no
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path from V1 to V2 in H. Since (H,ψ) is sparse this implies

|E| = |E(V1)|+ |E(V2)| ≤ 2|V1| − k + 2|V2| − k = 2|V (H)| − 2k < |E|.

This again gives a contradiction. Hence proving (iii).

Finally, we consider part (iv). Since 2 ≤ |E| ≤ 2|V (H)|−2, and (H,ψ) is

Γ-tight, we know (H,ψ) is loop-free and satisfies the conditions for part (iii).

Hence (H,ψ) is connected and, by part (i), every vertex is incident to at least

two edges. Assume for a contradiction that (H,ψ) is not 2-edge-connected.

Since H is connected, there exists a 1-edge-cut of H which partitions V (H)

into {V1, V2}. Since (H,ψ) is loop-free and δ(H) ≥ 2, we know |V1|, |V2| ≥ 2.

Let |E| = 2|V (H)| − k for some k ≥ 2. Since (H,ψ) is Γ-tight, this implies

|E(Vi)| ≤ 2|Vi| − k for i ∈ {1, 2}. Hence

2|V (H)| − k = |E| = |E(V1)|+ |E(V2)|+ 1 ≤ 2|V (H)| − 2k + 1.

This contradicts the fact k ≥ 2.

A key requirement in our later proof that S(H,ψ) is a matroid, is that

the union of intersecting tight sets is itself tight. We first prove this in some

special cases.

Lemma 11.1.4. Let Γ be a point group, and let (H,ψ) be a sparse Γ-gain

graph. Let E1, E2 ⊆ E(H) be tight edges sets with E1 ∩ E2 6= ∅. Suppose

that either

(i) the subgraph (V (E1) ∩ V (E2), E1 ∩ E2) is connected, or

(ii) maxi∈{1,2} α(Ei) + maxi∈{1,2} β(Ei) = 3.

Then E1 ∩ E2 and E1 ∪ E2 are tight.
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Proof. Trivially |E1 ∪ E2| + |E1 ∩ E2| = |E1| + |E2|. Since E1 and E2 are

tight, and E1 ∩ E2 and E1 ∪ E2 are sparse, this gives

s(E1 ∪ E2) + s(E1 ∩ E2) ≥ |E1 ∪ E2|+ |E1 ∩ E2| = s(E1) + s(E2). (11.1)

Our condition E1 ∩ E2 6= ∅ ensures the above sets are non-empty. Hence,

the definition of s gives

α(E1 ∪ E2) + β(E1 ∪ E2) + α(E1 ∩ E2) + β(E1 ∩ E2)

≥ α(E1) + β(E1) + α(E2) + β(E2), (11.2)

Note that equality holds in (11.2) if and only if equality holds in (11.1); in

other words, if and only if both E1 ∩ E2 and E1 ∪ E2 are tight.

By the definition of s, we know

γ(E1 ∪ E2) ≥ max
i∈{1,2}

γ(Ei) for γ ∈ {α, β}. (11.3)

We use this inequality to split the remaining proof into three cases: when

(11.3) holds with equality for both α and β, when (11.3) is a strict inequality

for β, and when it is strict for α but not β. Note that if hypothesis (ii) holds,

then (11.3) holds with equality for both α and β, and so we are in the first

of these three cases. Hence we can assume hypothesis (i) in the second and

third cases.

Case 1. γ(E1 ∪ E2) = maxi∈{1,2} γ(Ei) for γ ∈ {α, β}.

Then (11.2) simplifies to

α(E1 ∩ E2) + β(E1 ∩ E2) ≥ min
i∈{1,2}

α(Ei) + min
i∈{1,2}

β(Ei).

However, since γ(F ) ≥ γ(F ′) whenever F ⊇ F ′, we know that γ(E1 ∩E2) ≤

mini∈{1,2} γ(Ei), so this must hold with equality. Thus both E1 ∪ E2 and

E1 ∩ E2 are tight.
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Case 2. β(E1 ∪ E2) > maxi∈{1,2} β(Ei), and hypothesis (i) holds.

By definition β(F ) ∈ {0, 1} for all F ⊆ E(H). Hence β(E1 ∪ E2) = 1 and

β(E1) = β(E2) = β(E1∩E2) = 0. So E1 and E2 are pure. Since E1∩E2 6= ∅

and β(E1 ∪E2) = 1, this implies E1 ∪E2, and all of its subsets, are length-

pure. By hypothesis (i) and Lemma 10.1.5, these values of β imply that E1

and E2 are rotational, E1 ∩E2 is balanced, and E1 ∪E2 is dihedral. Hence

α(E1) + β(E1) + α(E2) + β(E2) = 2 + 0 + 2 + 0 = 4,

α(E1 ∪ E2) + β(E1 ∪ E2) + α(E1 ∩ E2) + β(E1 ∩ E2) = 2 + 1 + 0 + 0 = 3.

These equations contradict (11.2). Hence this case cannot occur.

Case 3. α(E1 ∪E2) > maxi∈{1,2} α(Ei), β(E1 ∪E2) = maxi∈{1,2} β(Ei) and

hypothesis (i) holds.

Then α(Ei) ≤ 1, so E1 and E2 are either balanced or reflectional. Since

hypothesis (i) holds and α(E1∪E2) > α(Ei), Lemma 10.1.5(ii) implies both

Ei are reflectional. Hence, by Lemma 10.1.5(iii), E1 ∩ E2 is balanced and

E1 ∪ E2 is dihedral. This gives

α(E1) + α(E2) = 1 + 1 = 0 + 2 = α(E1 ∩ E2) + α(E1 ∪ E2).

This, and the fact β(E1 ∪ E2) = maxi∈{1,2} β(Ei), reduces (11.2) to

β(E1 ∩ E2) ≥ min
i∈{1,2}

β(Ei).

By definition, β(E1 ∩E2) ≤ mini∈{1,2} β(Ei). Thus (11.2) holds with equal-

ity, and so both E1 ∪ E2 and E1 ∩ E2 are tight.

We now extend the above result to all intersecting tight edge sets.

Lemma 11.1.5. Let Γ be a point group, and let (H,ψ) be a sparse Γ-gain

graph. Let E1, E2 ⊆ E(H) be tight edge sets with E1∩E2 6= ∅. Then E1∪E2

is tight.
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Proof. If maxi∈{1,2} α(Ei) + maxi∈{1,2} β(Ei) = 3, or the subgraph (V (E1)∩

V (E2), E1∩E2) is connected, then we are done by Lemma 11.1.4. So suppose

neither of these hold. Let {F1, . . . , Ft} be a partition of E1 ∩ E2 such that

H[Fj ] is a connected component of H[E1 ∩E2]. Since H is sparse, we know

0 < |Fj | ≤ s(Fj). Hence

|E1 ∩ E2| =
t∑

j=1

|Fj | ≤
t∑

j=1

(2|V (Fj)| − 3 + α(Fj) + β(Fj)) .

We know γ(Fj) ≤ γ(E1∩E2) for γ ∈ {α, β}. Let U denote the set of iso-

lated vertices in (V (E1)∩V (E2), E1∩E2). Then {U, V (F1), V (F2), . . . , V (Ft)}

is a partition of V (E1)∩V (E2). Using these two facts in the above inequality,

we obtain

|E1 ∩ E2| ≤ 2|V (E1) ∩ V (E2)| − 2|U | − t(3− α(E1 ∩ E2)− β(E1 ∩ E2)).

Substituting this into |E1 ∪E2| = |E1|+ |E2| − |E1 ∩E2|, and using the fact

E1 and E2 are tight, gives

|E1 ∪ E2| ≥ 2|V (E1) ∪ V (E2)| − 6 + α(E1) + β(E1) + α(E2) + β(E2)

+ 2|U |+ t(3− α(E1 ∩ E2)− β(E1 ∩ E2)). (11.4)

However, (H,ψ) is sparse, so 2|V (E1)∪V (E2)| ≥ |E1∪E2|. Clearly γ(Ei) ≥

γ(E1 ∩ E2) for γ ∈ {α, β}. These observations reduce (11.4) to the simpler

inequality

0 ≥ 2|U |+ (t− 2)(3− α(E1 ∩ E2)− β(E1 ∩ E2)). (11.5)

Since E1 and E2 do not satisfy condition (ii) of Lemma 11.1.4, we know

3−α(E1 ∩E2)− β(E1 ∩E2) > 0. So for (11.5) to hold, we must have t ≤ 2.

Since E1 ∩ E2 6= ∅ and (V (E1) ∩ V (E2), E1 ∩ E2) is not connected, this

implies t ≥ 1 and |U | + t ≥ 2. So there are exactly two cases to consider:

either t = 2 and |U | = 0, or t = |U | = 1.
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First suppose t = 2 and |U | = 0. Since γ(Ei) ≥ γ(E1∩E2) for γ ∈ {α, β},

(11.4) implies |E1 ∪ E2| ≥ 2|V (E1) ∪ V (E2)| ≥ s(E1 ∪ E2). But E(H) is

sparse, so this must hold with equality. Hence E1 ∪ E2 is tight.

Suppose instead t = |U | = 1. Since γ(Ei) ≥ γ(E1 ∩ E2) for γ ∈ {α, β},

(11.4) implies

|E1 ∪ E2| ≥ 2|V (E1) ∪ V (E2)| − 1 + max
i∈{1,2}

α(Ei) + max
i∈{1,2}

β(Ei). (11.6)

Hence maxi∈{1,2} α(Ei) + maxi∈{1,2} β(Ei) ≤ 1; and if this holds with equal-

ity, then E1 ∪E2 is tight. Suppose maxi∈{1,2} α(Ei) + maxi∈{1,2} β(Ei) = 0.

Then both E1 and E2 are balanced and pure. Since E1 ∩ E2 6= ∅, E1 ∪ E2

is also pure, and by Lemma 10.1.6, 〈E1 ∪ E2〉 is either balanced or cyclic.

Hence s(E1 ∪E2) ≤ 2|V (E1)∪ V (E2)| − 1. Since H is sparse, this, together

with (11.6) implies s(E1 ∪ E2) = |E1 ∪ E2| = 2|V (E1) ∪ V (E2)| − 1. Thus

E1 ∪ E2 is tight, as required.

We require one further structural result.

Lemma 11.1.6. Let Γ be a point group, and let (H,ψ) be a Γ-gain graph.

Let E1, E2 be edge sets with ∅ 6= E1 ⊆ E2 ⊆ E(H), such that for each i ∈

{1, 2}, either s(Ei) = 2|V (Ei)|, or H[Ei] is connected. Let e ∈ E(H)− E2.

If s(E1) = s(E1 + e), then s(E2) = s(E2 + e).

Proof. Since s(E1) = s(E1 + e), the definition of s implies V (E1 + e) =

V (E1), α(E1 + e) = α(E1) and β(E1 + e) = β(E1). As both endvertices of e

are contained in V (E1) and V (E1) ⊆ V (E2), this gives V (E2 + e) = V (E2).

So to prove that s(E2 + e) = s(E2), it suffices to show

γ(E2 + e) = γ(E2) for γ ∈ {α, β}. (11.7)

The functions α and β are non-decreasing, so if they obtain their maximal

values on E2, then (11.7) holds. So it only remains to consider the cases

(11.7) where α(E2) + β(E2) ≤ 2.
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Suppose α(E2) + β(E2) ≤ 2. Since E1 ⊆ E2, this implies α(E1) +

β(E1) ≤ α(E2) + β(E2) ≤ 2. Hence, by our hypothesis, H[E1] and H[E2]

are connected. Let T1 be a spanning tree of H[E1], and extend this to a

spanning tree T2 of E2. By Propositions 10.1.3 and 10.1.4, there is a gain

function ψ′ equivalent to ψ such that for all F ⊆ E2 + e we have

〈F 〉 = 〈ψ′(f) : f ∈ F − T2〉. (11.8)

First, suppose α(E2) ≤ 1. Since E1 ⊆ E2, this implies α(E1) = α(E1 +

e) ≤ 1. Thus E1 and E1 + e are either both balanced or both reflectional,

giving 〈E1〉 = 〈E1+e〉. Hence, by the definition of ψ′, we have ψ′(e) ∈ 〈E1〉 ⊆

〈E2〉, which in turn implies 〈E2 + e〉 = 〈E2〉. Hence α(E2 + e) = α(E2), as

required. If β(E2) = 1, then trivially β(E2 + e) = β(E2). So suppose

β(E2) = 0. Then β(E1 + e) = β(E1) = 0. Thus E1, E2 and e are pure of

the same type. Since 〈E2 + e〉 = 〈E2〉, this implies β(E2 + e) = β(E2).

Instead, suppose α(E2) = 2 and β(E2) = 0. Then trivially α(E2 + e) =

α(E2) = 2, so it just remains to show β(E2 + e) = β(E2). Since E1 ⊆ E2

and β is increasing, we know β(E2) = β(E1) = β(E1 + e) = 0. Hence

E1, E2 and e are pure of the same type. If E2 + e is direction-pure, then

β(E2 + e) = β(E2) = 0 and we are done. So suppose E2 + e is length-

pure. Since α(E2) = 2 and β(E2) = 0, E2 is rotational. Thus E1 is either

rotational or balanced. Since β(E1 + e) = β(E1), (11.8) implies ψ′(e) is

either a rotation or the identity. Hence, applying (11.8) once more, E2 + e

is rotational, and so β(E2 + e) = 0 = β(E2) as required.

11.1.2 The sparsity matroid

Now we know the technical results hold, the proof of the following Theorem

is identical to that of Theorem 7.4 in [22]. We include it for completeness.

There is one further definition we require. For a Γ-gain graph (H,ψ), and



CHAPTER 11. THE SPARSITY MATROID 174

edge set E′ ⊆ E(H), we say F is maximal sparse in E′ if F is sparse, F ⊆ E′,

and there exists no sparse set F ′ with F ⊂ F ′ ⊆ E′.

Theorem 11.1.7. Let Γ be a point group, and (H,ψ) a Γ-gain graph. Then

S(H,ψ) = (E(H), E) is a matroid with rank function given by

rank(E′) = min

{
t∑
i=1

s(E′i) : {E′1, . . . , E′t} is a partition of E′

}

for all ∅ 6= E′ ⊆ E(H).

Proof. Recall E is the family of sparse sets in E(H). To prove (E(H), E) is

a matroid, it suffices to show it satisfies the three matroid axioms: (I1), (I2)

and (R3), of Lemma 3.0.2.

The definition of s immediately gives (I1) and (I2), so it only remains to

prove (R3). Let E′ ⊆ E(H), and let F be a maximal sparse set in E′.

A non-loop edge e ∈ E(H) always forms a tight, pure, balanced set {e}.

Since F is sparse, each loop edge e ∈ F is either a length edge with non-

trivial gain, or a direction edge with reflection gain; in both cases {e} is a

tight, pure, cyclic set. Hence {e} is tight for all e ∈ F . By Lemma 11.1.5,

maximal tight sets do not intersect. So, by taking unions of these tight,

single edge sets, we obtain a partition {F1, F2, . . . , Ft} of F into maximal

tight sets. Hence |F | =
∑t

i=1 |Fi| =
∑t

i=1 s(Fi).

We extend this partition to a partition of E′. Let e ∈ E′−F . Since F is a

maximal sparse set in E′, we know F+e is not sparse. So there exists a tight

set X ⊆ F such that X+e 6∈ E . Since s is non-decreasing, this gives |X+e| =

|X| + 1 > s(X + e) ≥ s(X) = |X|, and thus s(X + e) = s(X). By Lemma

11.1.5, X ⊆ Fi for some 1 ≤ i ≤ t. Since X is tight, either s(X) = 2|X|,

or H[X] is connected by Proposition 11.1.3 (iii). Similarly, either s(Fi) =

2|V (Fi)|, or H[Fi] is connected. Thus, X and Fi satisfy the hypotheses of

Lemma 11.1.6, which implies s(Fi + e) = s(Fi) = |Fi|. By repeating this
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argument for all e ∈ E′−F , we obtain a partition {E1, E2, . . . , Et} of E′ such

that Ei ⊇ Fi and s(Ei) = s(Fi) for all 1 ≤ i ≤ t. Hence |F | =
∑t

i=1 s(Ei).

But F is sparse, so

|F | ≤ min

{
t′∑
i=1

s(E′i) : {E′i} is a partition of E′

}
≤

t∑
i=1

s(Ei).

Since equality holds throughout, this implies

|F | = min

{
t′∑
i=1

s(E′i) : {E′i} is a partition of E’

}
,

thus proving (R3).

We refer to S(H,ψ), as the sparsity matroid of (H,ψ), or simply as

the sparsity matroid when the relevant graph is clear from the context.

Following standard matroid terminology, a set E′ ⊆ E is independent in

(E, E) if E′ ∈ E and dependent otherwise. So Theorem 11.1.7 proves that

sparsity is equivalent to independence in the sparsity matroid.

11.2 Inductive constructions

In the previous section, we introduced the sparsity matroid for Γ-gain graphs.

Here we consider the class of sparse graphs (H,ψ), which have the maximum

number of edges given |V (H)| and Γ. We call such graphs Γ-tight.

More precisely, given n ∈ N and a point group Γ, let (HΓ,n, ψ
′) be the

Γ-gain graph on n vertices where for every pair of vertices u, v ∈ V (HΓ,n),

and every g ∈ Γ, HΓ,n contains both a direction and a length −→uv-edge with

gain g. A Γ-gain graph (H,ψ) on n vertices is Γ-tight if E(H) is tight with

〈E(H)〉 ⊆ Γ and s(E(H)) = s(E(HΓ,n)). Note this is different from the

definition of maximal tight sets of the previous section.

We wish to show that, for a given Γ, we can inductively construct all

Γ-tight graphs from a handful of base graphs, using a small set of moves.
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In this Chapter, we shall obtain such inductive constructions when Γ is a

reflection group or a rotation group, and obtain some partial results for

dihedral groups.

We first introduce the base graphs for each Γ in Subsection 11.2.1. We

then introduce our six inductive graph moves, and show that these preserve

sparsity in Subsection 11.2.2. Finally, we consider when a Γ-tight graph can

be obtained from a smaller Γ-tight graph using one of our inductive moves.

For three of our moves, this is quite involved, and so these cases are dealt

with separately in Section 11.3.

The remaining three moves are considered in Subsection 11.2.4, leading

to a characterisation of the Cs-tight graphs in Subsection 11.2.5, and of the

Ck-tight graphs in Subsection 11.3.5.

11.2.1 Base graphs

For a point group Γ, the Γ-base graphs are the Γ-tight graphs on exactly one

vertex. The reflection group Cs has a unique base graph, see Figure 11.1(a).

For rotation groups, Ck≥2, the base graph is unique up to the choice

of gains, see Figure 11.1(b). A Ck-tight gain graph need not be connected,

however its connected components must be Ck-tight. So we instead construct

each Ck-tight graph from a graph whose connected components are each a

Ck-base graph.

A Dk≥2-tight gain graph can also be disconnected, in which case it is not

constructible from a single Dk-base graph. So we must consider building

such graphs from one whose connected components are each Dk-base graphs.

Figure 11.2 shows the three different types of Dk-base graph. Note that the

edge set of these base graphs need not induce a dihedral group (Figure

11.2(b)), and could be length-pure (Figure 11.2(c)).
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σ

(a) The unique Cs-base graph; 〈σ〉 =

Cs.

c

c′

(b) A Ck-base graph. The gains c and

c′ are non-trivial rotations in Ck.

Figure 11.1: Base graphs for Cs and Ck.

σ

c

(a) A mixed Dk-base

graph which induces a

dihedral group.

c

c′

(b) A mixed Dk-base

graph which induces a

rotational group.

σ

g

(c) A length-pure Dk-

base graph which in-

duces a dihedral group.

Figure 11.2: The three types of Dk-base graphs for k ≥ 2. The gains c and c′ are

non-trivial rotations, σ is a reflection, and g 6= σ is either a reflection or a non-trivial

rotation in Dk.

11.2.2 Extensions

Here we define a set of moves which each add one vertex to a Γ-tight gain

graph. In Subsection 11.2.3, we shall prove that these moves preserve spar-

sity. The definition of the sparsity function implies the following result:

Proposition 11.2.1. Let Γ be a point group, and (H,ψ) be a Γ-tight gain

graph.

(i) If (H,ψ) is Cs-tight, then H has a vertex of degree 2 or 3.

(ii) If (H,ψ) is Ck≥2-tight or Dk≥2-tight, then H has a vertex of degree 2,

3 or 4.
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This Proposition implies that in order to construct all Γ-tight gain

graphs, we need only consider inductive moves which add a vertex of degree

2, 3 or 4. Let (H,ψ) be a Γ-gain graph. The first three moves we define add

a vertex of degree 2 or 3.

A 0-extension adds a single vertex v to (H,ψ), incident to two non-loop

edges e1 = −→vv1 and e2 = −→vv2 for some v1, v2 ∈ V (H). See Figure 11.3.

Sparse graphs cannot have duplicate edges, so if v1 = v2 and the edges

ei are the same type, our gain assignment ψ must satisfy ψ(e1) 6= ψ(e2).

This caveat (that parallel edges must either have different gains or different

types) applies to every extension we define. However, for brevity, we shall

not repeat it.

(H,ψ)

x

y

(H1, ψ1)

x

y

vg1

g2

or

(H2, ψ2)

x

y

v
g1

g2

Figure 11.3: Two different 0-extensions which construct (Hi, ψi) from (H,ψ). In

(H2, ψ2), the 0-extension adds two parallel direction edges, so g1 6= g2.

A loop 0-extension adds a vertex v to (H,ψ) incident to two edges: a

loop l with non-identity gain, and some non-loop edge −→vv1 where v1 ∈ V (H).

If l is a direction loop, then its gain is a non-trivial rotation. See Figure

11.4.

A 1-extension on (H,ψ) first deletes some edge e = −−→v1v2 ∈ E(H) with

gain g, and then adds a vertex v incident to three non-loop edges −→vv1, −→vv2

and −→vv3 for some v3 ∈ V (H). At least one of these edges is of the same

type as e, and the gain assignment ψ satisfies ψ(−→v1v)ψ(−→vv2) = ψ(−−→v1v2). See

Figures 11.5 and 11.6.
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(H,ψ)

x

(H1, ψ1)

x
v

g1

g2

or

(H2, ψ2)

x
v

g1

g2

Figure 11.4: Two different loop 0-extensions which construct (Hi, ψi) from (H,ψ). In

(H2, ψ2), the loop is a direction edge, so g2 is a non-trivial rotation.

(H,ψ)

x

y

g

(H1, ψ1)

x

y v

g1

g2

g3

or

(H2, ψ2)

x

y v

g1

g2

g3

or

(H3, ψ3)

x

y v

g1

g2

g3

Figure 11.5: Three different 1-extensions on a loop edge. In each of these extensions

g−1
1 g2 = g. Our parallel gain condition requires g1 6= g2 in (H1, ψ1) and (H2, ψ2), and

g2 6= g3 in (H3, ψ3).

The final three moves each add a vertex of degree 4.

A loop 1-extension is identical to a 1-extension, except that instead of

adding a third non-loop edge −→vv3, we add a loop at v. The gain on this loop

satisfies the usual rules: it is non-trivial on length loops, and a non-trivial

rotation on direction loops. See Figure 11.7.

A loop-to-loop extension deletes a loop with gain g at some vertex v1,

then adds a vertex v by a 0-extension, incident to two edges −→vv1 and −→vv2

for some v2 ∈ V (H) with gains g1 and g2 respectively. Finally, it adds a

loop at v with gain g1gg
−1
1 . As with a 1-extension, at least one of the three

edges added must be the same type as the deleted loop. Additionally, if g is

a reflection, then the loop added at v must be a length loop (since g1gg
−1
1

is a reflection if and only if g is). See Figure 11.8. Observe that the graphs
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(H,ψ)

x

y

z g

(H1, ψ1)

x

y

z

v

g1

g2

g3 or

(H2, ψ2)

x

y

z

v

g1

g2

g3 or

(H3, ψ3)

x

y

z

v

g1

g2

g3

Figure 11.6: Three different 1-extensions on a non-loop edge. In each (Hi, ψi) we have

g−1
1 g2 = g.

(H1, ψ1)

x

y
g

(H ′1, ψ
′
1)

v
x

y

g1

g2

g3 (H2, ψ2)

x

g

(H ′2, ψ
′
2)

v

x
g2

g1

g3

Figure 11.7: Two loop 1-extensions which form the graphs (H ′i, ψ
′
i) from (Hi, ψi) by

deleting a non-loop edge and a loop respectively. In both cases g−1
1 g2 = g; and in (H ′2, ψ

′
2),

we have g1 6= g2.

(H ′i, ψ
′
i) in Figures 11.7 and 11.8, differ only in their gain assignment.

(H1, ψ1)

x
y

g
(H ′1, ψ

′
1)

v

x
y

g1

g2

g1gg
−1
1 (H2, ψ2)

x

g

(H ′2, ψ
′
2)

v

x
g2

g1

g1gg
−1
1

Figure 11.8: Two examples of loop-to-loop extensions. The only restriction on g1 and

g2 is that when they appear on parallel edges of the same type, as in (H ′2, ψ
′
2), we have

g1 6= g2.

Finally, a 2-extension deletes two edges e = −−→v1v2 and f = −−→v3v4 in (H,ψ),

and then adds a vertex v incident to four edges: ei = −→vvi for 1 ≤ i ≤ 4. The

gains are assigned so that ψ−1(e1)ψ(e2) = ψ(e) and ψ−1(e3)ψ(e4) = ψ(f).

We also restrict the types of the added edges: either at least one of e1, e2 is

assigned the same type as e, and at least one of e3, e4 is the same type as f ;
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or e1, e2 and f are all the same type, and e3, e4 and e are all the other. This

peculiar constraint on edge types results from the simpler restriction in our

definition of a 1-extension. Namely, to guarantee our 2-extension maintains

sparsity, we must ensure that for every choice of three added edges, the

corresponding 1-extension is valid. For example, for the choice e1, e3, e4;

the corresponding 1-extension is that which deletes f , and so at least one

of e1, e3, e4 must be the same type as f . Figure 11.9 illustrates possible

2-extensions given different relative positions and types of the deleted edges

e and f .

(H1, ψ1)
g

h

(H ′1, ψ
′
1)

v

g2g1

h2 h1

(H2, ψ2)

g

h

(H ′2, ψ
′
2)

v

g1g2

h2 h1

(H3, ψ3)

hg

(H ′3, ψ
′
3)

v

g1

h1
h2

g2

(H4, ψ4)

hg

(H ′4, ψ
′
4)

v

h1g1

g2
h2

(H5, ψ5)

h

g

(H ′5, ψ
′
5)

v

h1

g1

g2

h2

(H6, ψ6)

g

h

(H ′6, ψ
′
6)

v

g1

g2
h1

h2

(H7, ψ7)

g

h

(H ′7, ψ
′
7)

v

g1

g2

h1

h2

Figure 11.9: Seven different 2-extensions. In each case, h−1
1 h2 = h and g−1

1 g2 = g.

To the best of our knowledge, the loop-to-loop extension is a new addition
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to the literature, and allows us to significantly reduce the number of base

graphs we consider. The other moves are direction-length analogues of ones

seen in [22], although we use a slightly different naming convention. Here the

number corresponds to the number of edges deleted during the extension,

and the addition or omission of the word “loop” identifies whether or not we

add a loop incident to our new vertex. We refer to these moves collectively

as extensions.

11.2.3 Extensions preserve sparsity

The following Lemma shows that all of our defined extensions preserve spar-

sity. Note that when (H,ψ) is a Γ-gain graph, we have 〈E(H)〉ψ ⊆ Γ. In

other words, the edge set of the graph may not induce the entire group Γ.

Lemma 11.2.2. Let Γ be a point group, and (H,ψ) be a sparse Γ-gain

graph. Performing an extension on (H,ψ), which adds edges with gains in

Γ, results in a sparse Γ-gain graph (H ′, ψ′) with |V (H ′)| = |V (H)|+ 1 and

|E(H ′)| = |E(H)|+ 2.

Proof. Each (loop) k-extension adds a vertex v to (H,ψ) incident to k + 2

edges, and then deletes k edges between the neighbours of v. When k = 1

this also describes a loop-to-loop extension. So the definition of our exten-

sions immediately gives |V (H ′)| = |V (H)| + 1 and |E(H ′)| = |E(H)| + 2.

Since all added edges have gains in Γ, we also know 〈E(H ′)〉ψ′ ⊆ Γ, and

hence (H ′, ψ′) is a Γ-gain graph. It remains to prove that (H ′, ψ′) is sparse.

Let ∅ 6= F ′ ⊆ E(H ′). We define a corresponding edge set F ∈ E(H) as

follows: when (H ′, ψ′) is formed by a (loop) 0-extension then F = F ′∩E(H).

When (H ′, ψ′) is formed by a (loop) 1-extension or a loop-to-loop extension
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which deletes an edge e, and adds the edges e1, e2, e3 then

F =


(F ′ ∩ E(H)) ∪ {e} if F ′ ⊇ {e1, e2, e3},

F ′ ∩ E(H) otherwise.

Finally, when (H ′, ψ′) is formed by a 2-extension which deletes e and f , and

replaces them with the respective pairs of edges {e1, e2} and {f1, f2}, then

F =



(F ′ ∩ E(H)) ∪ {e, f} if F ′ ⊇ {e1, e2, f1, f2},

(F ′ ∩ E(H)) ∪ {e} if e1, e2 ∈ F ′ and |{f1, f2} ∩ F ′| = 1,

(F ′ ∩ E(H)) ∪ {f} if f1, f2 ∈ F ′ and |{e1, e2} ∩ F ′| = 1,

F ′ ∩ E(H) otherwise.

Claim 11.2.3. 〈F ′〉ψ′ ⊇ 〈F 〉ψ.

Proof. By the definitions above, we know 0 ≤ |F − F ′| ≤ 2. First, suppose

|F − F ′| = 0. Then F ⊆ F ′, and so trivially 〈F 〉ψ ⊆ 〈F ′〉ψ′ .

Instead, suppose |F − F ′| = 1. Let e = −−→v1v2 denote the unique edge in

F − F ′, where v1, v2 need not be distinct. Suppose (H ′, ψ′) was formed by

a loop-to-loop extension. Then e is a loop with gain g, and our choice of F

ensures that F ′ − F ⊇ {e1, e2, e3}, where e1 is a −→vv1-edge with gain g1 and

e3 is a loop at v with gain g1gg
−1
1 . Let C be a closed walk in F containing

e, and let C ′ be the corresponding closed walk in F ′ which replaces every

occurrence of v1ev1 with the walk v1e1ve3ve1v1. Our choice of gains gives

ψ′(C ′) = ψ(C). Hence 〈F ′〉ψ′ ⊇ 〈F 〉ψ. In all other types of extension, our

choice of F ensures H contains a pair of edges e1 = −→vv1 and e2 = −→vv2 such

that (ψ′)−1(e1)ψ′(e2) = ψ(e). Let C be a closed walk in E(H) containing e,

and let C ′ be the corresponding closed walk in E(H ′) which replaces every

occurrence of v1ev2 with the path v1e1ve2v2. Our choice of gains again gives

ψ′(C ′) = ψ(C). Hence 〈F ′〉ψ′ ⊇ 〈F 〉ψ.
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Finally, suppose |F−F ′| = 2. Then (H ′, ψ′) was formed by a 2-extension,

which replaced e = −−→v1v2 and f = −−→u1u2 with the respective pairs of edges

ei = −→vvi, and fi = −→vui for i ∈ {1, 2}, such that ψ(e) = (ψ′)−1(e1)ψ′(e2)

and ψ(f) = (ψ′)−1(f1)ψ′(f2). Our choice of F ensures e1, e2, f1, f2 ∈ F ′

and e, f ∈ F . Let C be a closed walk in E(H). We form a corresponding

closed walk C ′ in E(H ′) by replacing every occurrence of v1ev2 in C with

v1e1ve2v2, and every occurrence of u1fu2 with u1f1vf2u2. Our choice of

gains on these edges ensures ψ′(C ′) = ψ(C). Hence 〈F ′〉ψ′ ⊇ 〈F 〉ψ.

Assume for a contradiction that F ′ is not sparse. If F ′ contains no edges

incident to v, then F ′ ⊆ E(H), and so F ′ is sparse since (H,ψ) is. Hence

v ∈ V (F ′). The definition of F then implies V (F ) = V (F ′)− {v}. Since F ′

is not sparse, we have

|F ′| > s(F ′) = 2|V (F ′)| − 3 + α(F ′) + β(F ′).

Claim 11.2.3 implies α(F ′) ≥ α(F ). The restrictions on the types of edges

added in extensions, and the definition of F , ensures that whenever F −

F ′ contains a length (direction) edge, then F ′ − F also contains a length

(direction) edge. Hence β(F ′) ≥ β(F ). Substituting these bounds into the

above inequality gives

|F ′| > 2|V (F ′)| − 3 + α(F ) + β(F ).

Since (H,ψ) is sparse, we know s(F ) ≥ |F |. Substituting this into the above

inequality, and using the fact |V (F ′)| = |V (F )|+1 gives |F ′| > |F |+2, which

contradicts our choice of F . Hence F ′ is sparse for all ∅ 6= F ′ ⊆ E(H ′), and

so (H ′, ψ′) is also sparse.

The following is an immediate consequence of Lemma 11.2.2.
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Corollary 11.2.4. Let Γ be a point group. Let (H,ψ) and (H ′, ψ′) be Γ-

gain graphs such that (H ′, ψ′) was formed from (H,ψ) by an extension which

adds edges with gains in Γ. If (H,ψ) is Γ-tight, then (H ′, ψ′) is Γ-tight.

It is more difficult to show the converse of this result. Namely, that a

maximal Γ-tight gain graph can be deconstructed using these moves until

only disjoint Γ-base graphs remain. This is the topic of the remainder of

this Chapter.

11.2.4 Reductions at vertices of degree 2 or 3

Let (H,ψ) and (H ′, ψ′) be two Γ-gain graphs for some point group Γ, and

suppose (H ′, ψ′) was obtained from (H,ψ) by an extension. Then we can

reconstruct (H,ψ) from (H ′, ψ′) by performing the inverse of this move.

We refer to the inverse of an extension as a reduction. More specifically,

the inverse of a loop k-extension, k-extension, and loop-to-loop extension is

respectively a loop k-reduction, k-reduction and loop-to-loop reduction. A

reduction of a sparse Γ-gain graph is said to be admissible if it results in

another sparse Γ-gain graph. Otherwise, it is inadmissible.

If (H ′, ψ′) is obtained from a Γ-gain graph (H,ψ) by a 0-reduction or

loop 0-reduction, then (H ′, ψ′) ⊆ (H,ψ), and so (H ′, ψ′) is also Γ-sparse.

This implies the following result:

Proposition 11.2.5. Let Γ be a point group, and (H,ψ) a sparse Γ-gain

graph. Let v ∈ V (H) be incident to exactly two edges.

(i) If neither of these edges are loops, then v can be removed by an ad-

missible 0-reduction.

(ii) If exactly one of these edges is a loop, then v can be removed by an

admissible loop 0-reduction.
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The argument for 1-reductions is more involved and uses properties of

the matroid closure from Chapter 3.

Lemma 11.2.6. Let Γ be a point group, and (H,ψ) a sparse Γ-gain graph.

Let v ∈ V (H) be a vertex of degree 3, which is not incident to any loop.

Then there is an admissible 1-reduction at v.

Proof. Denote the three edges incident to v by ei = vvi where i ∈ {1, 2, 3}.

Note the vertices v1, v2 and v3 need not be distinct. Without loss of gen-

erality, we can assume each ei is oriented towards v, and ψ(−→viv) = gi for

some gi ∈ Γ. Each possible 1-reduction at v deletes v and all edges incident

to it, and then adds exactly one edge −−→vivj with gain ψ(−−→vivj) = gig
−1
j where

i, j ∈ {1, 2, 3}. If v is pure, then the added edge −−→vivj must be of the same

type as the edges deleted, otherwise −−→vivj could be either a direction or a

length edge.

Let Y denote the set of all possible edges that could be added in a

1-reduction at v, and let Y ∗ = Y ∪ {e1, e2, e3}. From the definition of a

1-extension, the gains on the edges in Y are dictated by the gains on e1, e2

and e3: if e ∈ Y is a −−→vivj-edge which replaces the pair {ei, ej}, then the gain

on e is gig
−1
j .

Let (H∗, ψ∗) denote the Γ-gain graph obtained from (H,ψ) by adding all

of the edges in Y . Recall that the sparsity matroid S(H∗, ψ∗) = (E∗, E∗) has

E∗ = E(H∗), and E∗ as the collection of sparse edge sets in E∗. Assume for

a contradiction that no 1-reduction at v is admissible. Then for all e ∈ Y ,

the set E(H−v)∪{e} is not sparse, and so by Proposition 3.0.3(ii) and (iv),

Y ⊆ cl(E(H − v)). We shall use the properties of matroid closure to obtain

our contradiction.

Claim 11.2.7. If v is pure, then there exists a sparse set Y ′ ⊆ Y ∗ − {e1}

such that Y ∗ contains no larger sparse set X with X ⊃ Y ′.
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Proof. Since v is pure, Y = {e12, e23, e31} where eij = −−→vivj is an edge of the

same type as those incident to v, with gain gig
−1
j .

Suppose |N(v)| = 3. Then, by Proposition 10.1.3 and Lemma 11.1.1, we

may assume ψ(e1) = ψ(e2) = ψ(e3) = I, which in turn implies ψ(eij) = I

for all eij ∈ Y . Hence Y ∗ is a pure, balanced K4, and thus Y ′ = Y ∗ − {e1}.

Suppose |N(v)| = 2. Without loss of generality, let v2 = v3. By Propo-

sition 10.1.3 we can assume ψ(e1) = ψ(e2) = I and ψ(e3) = g for some

non-identity g ∈ Γ. Hence ψ(e12) = I, ψ(e31) = g and e23 is a loop with

ψ(e23) = g. This implies 〈Y ∗〉 = 〈g〉, and so Y ∗ is pure and cyclic. If

Y ∗ is direction-pure and reflectional then Y ′ = Y ∗ − {e23, e1}, otherwise

Y ′ = Y ∗ − {e1}.

Suppose |N(v)| = 1. Then all three edges at v are parallel. Since

v is pure, each ei has a different gain. Hence {e1, e2, e3} is either rota-

tional or dihedral. By Proposition 10.1.3, we can assume ψ(e1) = I. If

〈e1, e2, e3〉 is dihedral and v is length-pure, then Y ′ = {e2, e3, e1,2, e3,1}; oth-

erwise there exists some i, j for which gig
−1
j is a rotation, and we can take

Y ′ = {e2, e3, eij}.

Claim 11.2.8. If v is mixed, then there exists a set Y ′ ⊆ Y ∗ − {e1} which

is maximal sparse in Y ∗.

Proof. Since v is mixed, Y = {d12, d23, d31, l12, l23, l31} where dij and lij are

respectively a direction and length −−→vivj edge with gain gig
−1
j .

Suppose |N(v)| = 3. As in the pure case above, Proposition 10.1.3 means

we can assume every edge in Y ∗ has identity gain. Hence Y ∗ is mixed and

balanced, which gives Y ′ = {e2, e3, l12, l23, d12, d23}.

Suppose |N(v)| = 2, and without loss of generality v2 = v3. Then by

Proposition 10.1.3 we can assume ψ(e1) = ψ(e2) = ψ(l12) = ψ(d12) = I

and all other edges in Y ∗ have gain g. This implies 〈Y ∗〉 = 〈g〉 for some
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g ∈ Γ. If g = I, then Y ∗ is balanced and mixed, which gives Y ′ =

{e2, e3, d12, l12}. So suppose g 6= I. Then Y ∗ is mixed and cyclic. If Y ∗

is reflectional, then Y ′ = {e2, e3, d12, d13, l23}; otherwise Y ∗ is rotational

and Y ′ = {e2, e3, d12, d13, l12, l23}.

Suppose |N(v)| = 1. Then e1, e2 and e3 are parallel, so at least one of

these edges has non-identity gain. Thus Y ∗ is unbalanced. By Proposition

10.1.3, we can assume ψ(e1) = I. There are three cases to consider. Firstly,

suppose 〈Y ∗〉 is reflectional. Then for some pair i, j, the gain gig
−1
j is a re-

flection, and we choose Y ′ = {e2, e3, lij}. Secondly, suppose 〈Y ∗〉 is dihedral

and both e2 and e3 have reflection gain. Then g2 6= g3, and thus g2g
−1
3 is a

non-trivial rotation. Hence Y ′ = {e2, e3, l23, d23}. Finally, suppose neither

of these cases hold. Then some ej ∈ {e2, e3} has non-trivial rotational gain.

In which case, Y ′ = {e2, e3, l1j , d1j}.

Claims 11.2.7 and 11.2.8 imply that in all cases there exists some Y ′ ⊆

Y ∗−{e1} such that Y ′ is sparse but Y ′ ∪{e1} is not. Hence by Proposition

3.0.3(ii) and (iii) respectively, e1 ∈ cl(Y ′) ⊆ cl(Y ∗ − {e1}) ⊆ cl(E(H∗) −

{e1}). Our original assumption that no 1-reduction at v is admissible, and

Proposition 3.0.3(iii), give Y ⊆ cl(E(H) − {e1, e2, e3}) ⊆ cl(E(H) − {e1}).

Since E(H∗) − {e1} = (E(H) − {e1}) ∪ Y , Proposition 3.0.3(iv) implies

cl(E(H∗) − {e1}) = cl(E(H) − {e1}). Hence e1 ∈ cl(E(H) − {e1}). The

definition of closure thus implies that rank(E(H) − {e1}) = rank(E(H)).

Since (H,ψ) is sparse, this implies |E(H) − {e1}| = |E(H)|, giving the

contradiction sought.

11.2.5 Construction of Cs-tight graphs

The results in this section lead to a characterisation of Cs-tight graphs:
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Theorem 11.2.9. Let (H,ψ) be a Cs-gain graph. Then (H,ψ) is a Cs-tight

graph if and only if (H,ψ) can be constructed from the Cs-base graph by

a sequence of 0-extensions, loop 0-extensions and 1-extensions which add

edges with gains in Cs.

Proof. We first prove the forwards direction. Suppose (H,ψ) is a Cs-tight

graph with |V (H)| = n. Let Hn = H. We shall show that we can construct a

sequence of Cs-tight graphs (Hi, ψi) for 1 ≤ i ≤ n−1 such that (Hi+1, ψi+1) is

obtained from (Hi, ψi) by one of these extensions, |V (Hi)| = i, and (H1, ψ1)

is the unique Cs-base graph.

If (H,ψ) is the unique Cs-base graph, then we are done, so suppose not.

Let (Hi, ψi) be a Cs-tight gain graph with i ≥ 2. Propositions 11.1.3 and

11.2.1(i) imply that Hi has a vertex v of degree 2 or 3 which is incident

to at least one non-loop edge. If v is incident to exactly two edges, then

Proposition 11.2.5 implies that v can be removed by either a 0-reduction or

loop 0-reduction to give a Cs-tight graph (Hi−1, ψi−1). Otherwise, dH(v) =

3, and v is incident to exactly 3 non-loop edges, and so by Lemma 11.2.6

we can remove v by a 1-reduction to give a Cs-tight graph (Hi−1, ψi−1). If

i − 1 = 1, then since (Hi−1, ψi−1) is Cs-tight it must be the unique Cs-base

graph. Otherwise, we repeat this argument for (Hi−1, ψi−1).

We now prove the converse. Suppose {(Hi, ψi)}1≤i≤n is a set of graphs

such that (H1, ψ1) is the unique Cs-base graph, Hi is obtained from Hi−1

by a (loop) 0-extension or 1-extension, and (Hn, ψn) = (H,ψ). We wish to

show (Hi, ψi) is Cs-tight for all i. Clearly this holds when i = 1. Suppose

(Hi−1, ψi−1) is Cs-tight. Then Lemma 11.2.2 implies that (Hi, ψi) is sparse

with |E(Hi)| = 2|V (Hi)| − 1. Further, our restriction on edge gains ensures

ψi(e) ∈ Cs for all e ∈ E(Hi). Thus every closed walk C in Hi has ψi(C) ∈ Cs,

which implies 〈E(Hi)〉 ⊆ Cs. Hence (Hi, ψi) is Cs-tight for all i. In particular,
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this holds when i = n, thus proving our result.

Graphs which are Ck≥2-tight or Dk≥2-tight may contain no vertices of

degree 2 or 3. So to obtain a similar construction for graphs in these classes,

we must prove that we can find a reduction on some vertex of degree 4 in

such a graph. This is the topic of the next section.

11.3 Reductions in 4-regular graphs

In the previous section, we showed that if a Γ-tight graph has a vertex of

degree 2 or 3, then there is an admissible reduction at this vertex. However,

Ck≥2 and Dk≥2-tight graphs may have no such vertices. In these cases,

the definition of the sparsity function implies that our graphs satisfy the

hypotheses of the following graph-theoretic result:

Proposition 11.3.1. Let H = (V,E) be a multi-graph with |E| = 2|V |, and

iH(X) ≤ 2|X| for all X ⊆ V . If H has no vertices of degree 2 or 3, then

every vertex has degree 4.

A graph in which every vertex has degree 4 is said to be 4-regular. So

to find an inductive construction of all Ck and Dk-tight graphs, we only

need to consider reductions at degree 4 vertices in 4-regular graphs. The

hand-shaking lemma implies the following useful relationship:

Proposition 11.3.2. Let H = (V,E) and X ⊆ V . Then
∑

x∈X dH(x) =

2iH(X) + dH(X,V −X).

Proposition 11.3.2 immediately implies the following result for 4-regular

graphs.

Corollary 11.3.3. Let H = (V,E) be 4-regular. Then iH(X) = 2|X| −
1
2dH(X,V − X) for all ∅ 6= X ⊆ V . In addition, if H is connected and

X 6= V , then iH(X) ≤ 2|X| − 1.
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Using these properties, we first show, in Subsection 11.3.1, that if a 4-

regular graph contains a loop, then it has an admissible reduction. It is

more difficult to identify when a 2-reduction is admissible. To simplify our

arguments, we restrict to considering 2-reductions in 4-regular, loop-free,

Ck-gain graphs. In Subsection 11.3.2 we state some necessary conditions for

a 2-reduction to be admissible. In Section 11.3.3, we show that when the

graphs we consider are close to being disconnected, we can always find an

admissible 2-reduction. Finally, in Subsection 11.3.4, we prove that we can

find an admissible 2-reduction in the remaining cases.

11.3.1 4-regular graphs with loops

Lemma 11.3.4. Let Γ = Ck or Γ = Dk for some k ≥ 2. Let (H,ψ) be

a connected, 4-regular, Γ-tight graph. Let v ∈ V (H) be incident to exactly

one loop, and two non-loop edges. Then there is either an admissible loop

1-reduction at v, or an admissible loop-to-loop reduction at v, and the graph

obtained by this admissible reduction is connected.

Proof. Denote the non-loop edges incident to v by ei = −→vvi for i ∈ {1, 2},

where potentially v1 = v2. By Proposition 10.1.3, we can assume ψ(e1) = I.

Let ψ(e2) = g2, and let the loop incident to v be denoted by e and have gain

g 6= I.

A loop 1-reduction at v adds a −−→v1v2 edge to (H − v, ψ) with gain g2. We

denote this edge by l12 or d12 when it is respectively a length or direction

edge. A loop-to-loop reduction at v adds a loop to H − v which is either

incident to v1 with gain g, or incident to v2 with gain g2gg
−1
2 . When this

loop is incident to vi, we denote it by li or di when it is respectively a

length or a direction loop. Let Y denote the set of all edges that could be

added in either a loop 1-reduction or loop-to-loop reduction at v, and let
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Y ∗ = Y ∪ {e1, e2, e}. Let (H∗, ψ∗) be the graph obtained from (H,ψ) by

adding every edge in Y .

Assume, for a contradiction, that none of these reductions results in a

sparse graph. Then for all f ∈ Y , the set E(H − v) ∪ {f} is not sparse.

So in the sparsity matroid S(H∗, ψ∗) = (E∗, E∗), we have E(H − v) ∈ E∗

but E(H − v) ∪ {f} 6∈ E∗. Hence, by Proposition 3.0.3 (ii), we have Y ⊆

cl(E(H−v)) = cl(E(H)−{e, e1, e2}). We shall use properties of the closure

to obtain a contradiction.

Claim 11.3.5. If v is pure, then there exists Y ′ ⊆ Y ∗−{e} which is maximal

sparse in Y ∗.

Proof. Let t = d or t = l when v is respectively direction or length pure.

Then Y = {t12, t1, t2}. Note that if v is direction-pure, then e is a direction

loop with gain g, and so g is a rotation.

First consider the case where v1 = v2. Then Y consists of three loops at

v1. Since e1 and e2 are parallel edges of the same type we must have g2 6= I.

Suppose 〈g, g2〉 is cyclic. Then either v is length-pure, or v is direction-pure

with 〈g, g2〉 rotational. In both cases Y ′ = {e1, e2, t1}. Suppose instead that

〈g, g2〉 is dihedral. Then g 6= g2 and Y ′ = {e1, e2, t1} when v is direction-

pure, and Y ′ = {e1, e2, t1, t12} when v is length-pure.

Now consider the case where v1 6= v2. By performing a switching op-

eration at v2, we can assume g2 = I, which implies g2gg
−1
2 = g. Hence

Y ′ = {e1, e2, t1, t2, t12} in maximal sparse in Y ∗.

Claim 11.3.6. If v is mixed, then there exists Y ′ ⊆ Y ∗ − {e} which is

maximal sparse in Y ∗.

Proof. First consider the case where v1 = v2. Then Y = {d12, l12, d1, l1, d2, l2},

and every edge in Y is a loop at v1. Since g 6= I, 〈g, g2〉 is unbalanced. Sup-
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pose 〈g, g2〉 is reflectional. Then g2 ∈ {I, g} and e is a length loop. Since

v is mixed, {e1, e2} contains a direction edge. Hence Y ′ = {e1, e2, l1} is

mixed and maximal sparse in Y ∗. Suppose instead that 〈g, g2〉 is rotational,

then Y ′ = {e1, e2, d1, l1} is mixed and maximal sparse. Finally, suppose

〈g, g2〉 is dihedral. If g is a reflection, then e is a length loop, and {e1, e2}

contains a direction edge; hence Y ′ = {e1, e2, l1, l12}. If g is rotation, then

Y ′ = {e1, e2, d1, l12}.

Now consider the case where v1 6= v2. Then Y = {d12, l12, d1, l1, d2, l2}.

By performing a switching operation at v2, we can assume g2 = I, and

thus g2gg
−1
2 = g. Hence 〈g, g2〉 is non-trivial cyclic. If g is a reflec-

tion, then Y ′ = {e1, e2, l12, d12, l1}. If instead g is a rotation, then Y ′ =

{e1, e2, l12, d12, l1, d2}.

Claims 11.3.5 and 11.3.6 imply that in all cases there exists some Y ′ ⊆

Y ∗ − {e} which is maximal sparse in Y ∗. A similar argument to that in

Lemma 11.2.6 gives e ∈ cl(E(H) − {e}). So, by the definition of closure,

rank(E(H)) = rank(E(H)− {e}). Since (H,ψ) is sparse, Proposition 3.0.1

gives |E(H)− {e}| = |E(H)|, a contradiction.

Thus at least one of these reductions results in a sparse graph (H ′, ψ′).

Suppose for a contradiction that (H ′, ψ′) is disconnected. Then there exists

a partition of V (H ′) into V1, V2 such that vi ∈ Vi. But then dH(Vi, V (H)−

Vi) = 1, so Corollary 11.3.3 implies iH(Vi) = 2|Vi| − 1
2 , which is clearly

impossible as iH(Vi) is an integer. Hence (H ′, ψ′) is connected.

The only remaining step in obtaining our constructive characterisation

for Γ-tight graphs, is to show that 4-regular, loop-free graphs have an admis-

sible 2-reduction. Unfortunately, this is not always true when Γ = Dk≥2. For

an example, see Figure 11.10 which illustrates an example from [22]. Thus,

in the remainder of this section, we only consider 2-reductions of Ck≥2-gain
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σ1

I

σ1

I
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Figure 11.10: A length-pure D2-tight graph with no admissible 2-reductions. Every

2-reduction either results in a pair of parallel edges with the same gain, or in a graph

(H ′, ψ′) with 〈E(H ′)〉 = 〈σ1〉. The gains σ1 and σ2 are reflections across perpendicular

mirrors, and c2 is the rotation by π.

graphs.

Let Fk denote the class of Ck-tight graphs (H,ψ) where H is connected,

4-regular and loop-free. We shall show there is always some vertex in H at

which we can perform an admissible 2-reduction to give a connected graph.

First we prove some structural results.

11.3.2 Tight and near-tight sets

A reduction is inadmissible if the resulting Γ-gain graph is no longer sparse.

With a 2-reduction, there are two ways this can occur: by adding an edge to

a tight subgraph, or by adding two edges e1, e2 to a subgraph (V ′, E′) such

that E′ + ei is tight for some i. In the latter case, we say that the graph

(V ′, E′) and the edge set E′ are near-tight, as adding a single edge gives a

tight graph.

Note that an edge set may be both tight and near-tight. For example,

suppose we have a mixed edge set F which is balanced, tight, and contains

exactly one direction edge d. Deleting d gives the near-tight edge set F − d;

however, this set is also length-pure and balanced with |F − d| = |F | − 1 =
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2|V (F )| − 3, making it tight.

The following is an immediate consequence of Proposition 11.1.3(iv).

Corollary 11.3.7. Let Γ be a point group. Let (H,ψ) be Γ-tight, and e ∈

E(H). If s(E(H)) ≤ 2|V (H)| − 2 and E(H − e) 6= ∅, then the near-tight

graph (H − e, ψ) is connected.

The next result formalises the relationship between sets which are tight

or near-tight, and inadmissible 2-reductions. Recall the definition of Fk from

page 194.

Lemma 11.3.8. Let (H ′, ψ′) be connected and formed from some (H,ψ) ∈

Fk by a 2-reduction which removes a vertex v ∈ V (H) and adds the edges

e1 = v1v2 and e2 = v3v4. Suppose this 2-reduction is inadmissible. Then

there exists F ⊆ E(H ′) such that |F | > s(F ), and either F is balanced with

(i) {e1, e2} ∩ F = {e1} and F − e1 is tight,

(ii) {e1, e2} ∩ F = {e2} and F − e2 is tight, or

(iii) {e1, e2} ⊆ F and F − {e1, e2} is near-tight;

or

(iv) F = E(H ′) is pure.

Proof. Since v is inadmissible, (H ′, ψ′) is not sparse. So there exists some

minimal F ⊆ E(H ′) with |F | > s(F ). Since E(H) is sparse, we know

F ∩ {e1, e2} 6= ∅.

Suppose |F ∩ {e1, e2}| = 1, and consider the case where F ∩ {e1, e2} =

{e1}. Then v1, v2 ∈ V (F ). Since F − e1 is sparse and F is not, we have

|F | > s(F ) ≥ s(F − e1) ≥ |F − e1| = |F | − 1. Thus F − e1 is tight.

Since dH({v}, V (F )) ≥ 2, Corollary 11.3.3 implies |F | ≤ 2|V (F )| − 1. Thus
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s(F ) ≤ 2|V (F )| − 2. Since Γ = Ck, this implies F is balanced. Hence

F satisfies (i). If F ∩ {e1, e2} = {e2}, then a similar argument implies F

satisfies (ii).

Suppose instead that F ⊇ {e1, e2}. By our choice of F , every proper

subset of F is sparse. In particular, |F −e1| = |F |−1 ≤ s(F −e1) ≤ s(F ) <

|F |. Hence F − e1 is tight, and so, by definition, F − {e1, e2} is near-tight.

First consider the case where |F | ≤ 2|V (F )| − 1. Then F − e1 is tight

with |F − e1| ≤ 2|V (F )| − 2. Thus F − e1 is balanced. Since |F | > s(F ),

the definition of the sparsity function implies F is also balanced. Hence F

satisfies (iii). So instead, consider the case where |F | = 2|V (F )|. Since F is

minimal with |F | > s(F ), this implies F is pure and cyclic. Since e1, e2 ∈ F ,

we know NH(v) ⊆ V (F ) and |F − {e1, e2}| = 2|V (F )| − 2. Hence Corollary

11.3.3 implies F = E(H ′), giving case (iv).

To simplify our later arguments, we refer to an edge set F in (H ′, ψ′)

which satisfies (i) or (ii) of Lemma 11.3.8 as a I-block of (H ′, ψ′) on e1 or e2

respectively. If F satisfies (iii), we say it is a II-block of (H ′, ψ′) on {e1, e2}.

We refer to I-blocks and II-blocks on edges in {e1, e2} collectively as blocks

of (H ′, ψ′) on {e1, e2}, or more generally, as blocks. Note that a block is

always balanced.

In this terminology, Lemma 11.3.8 says that if a 2-reduction of (H,ψ)

which adds some pair of edges {e1, e2} is inadmissible, then either the re-

sulting graph is pure, or it contains a block on {e1, e2}.

11.3.3 Admissible 2-reductions for graphs in Fk with low

connectivity

Unlike the reduction proofs in Section 11.2.4, our argument for 2-reductions

varies considerably with the structure of (H,ψ) and the choice of v. Here we
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show that if a graph in Fk is close to being disconnected, then it contains a

vertex with an admissible 2-reduction.

Recall the ideas of k-connectivity and k-edge-connectivity from Chapter

2. We shall show that if a graph (H,ψ) ∈ Fk has a cut-vertex or a 2-

edge-cut, then it contains a vertex at which we can perform an admissible

2-reduction.

Lemma 11.3.9. Let (H,ψ) ∈ Fk be connected but not 2-connected, and

suppose |V (H)| ≥ 2. Then there exists some v ∈ V (H) at which we can

perform an admissible 2-reduction such that the resulting graph is connected.

Proof. We shall show that there is some cut-vertex of H at which we can

perform an admissible 2-reduction. We first prove some properties of cut-

vertices.

Claim 11.3.10. Suppose u is a cut-vertex of H, and let {X,Y } be a parti-

tion of V (H)− {u} such that H − u contains no edge from X to Y . Then

(i) H[X] and H[Y ] are connected,

(ii) dH({u}, X) = dH({u}, Y ) = 2, and

(iii) |X|, |Y | ≥ 2.

Proof. Since H is connected, Corollary 11.3.3 implies that for every con-

nected component H[U ] in H − u, dH(U, {u}) is a positive even number.

Since dH(u) = 4, this implies dH({u}, X) = dH({u}, Y ) = 2, and so both

H[X] and H[Y ] are connected. Assume |X| = 1. Then Corollary 11.3.3

implies iH(X) = 1, and so the single vertex in X is incident to a loop.

This contradicts the fact H is loop-free. Hence |X| ≥ 2, and similarly,

|Y | ≥ 2.
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(H,ψ)

v1

u
v2

H[X] H[Y ]

I I

c2 c2

Figure 11.11: A C2-gain graph with cut-vertex u. Parallel edges of the same type

cannot be assigned the same gain, so we cannot perform a 2-reduction at u which adds

a pair of parallel −−→v1v2 edges. So the only possible 2-reduction at u adds a pair of length

loops at v1 and v2, thus disconnecting the graph.

If a vertex is pure and incident to two sets of parallel edges, it is possible

that every admissible 2-reduction which removes this vertex also disconnects

the graph. See Figure 11.11. We next show that H contains a cut-vertex

which does not fit this description.

Claim 11.3.11. There exists a cut-vertex u of H such that |NH(u)| ≥ 3.

Proof. Let u be a cut-vertex in H which partitions V (H)−{u} into X and Y

such that dH(X,Y ) = 0 and X is minimal with respect to inclusion. Assume

for a contradiction that u does not satisfy the Claim. By Claim 11.3.10, u

sends exactly two edges to each of X and Y . Since |NH(u)| ≤ 2, u has

exactly one neighbour in each of X and Y , and sends a pair of parallel edges

to each of these neighbours. But this implies that the neighbour x ∈ X of u

is a cut-vertex of H which partitions V (H)−{x} into X−{x} and Y ∪{u}.

This contradicts the fact X was chosen to be minimal. Hence u satisfies the

Claim.

By Claim 11.3.11, H contains a cut-vertex v with |NH(v)| ≥ 3. Let X

and Y denote the vertex sets of the two connected components of H − v,

and label the four edges incident to v by ei = −→vvi with gain gi for 1 ≤ i ≤ 4;

v1, v2 ∈ X; and v3, v4 ∈ Y . Without loss of generality v2, v3 and v4 are
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distinct. Let (H ′, ψ′) be formed by a 2-reduction at v which adds the edges

f1 = −−→v1v3 and f2 = −−→v2v4. If v is a mixed vertex, we choose {f1, f2} to be

mixed.

Suppose this 2-reduction is inadmissible. By Claim 11.3.10, and our

positioning of f1 and f2, (H ′, ψ′) is connected. If v is pure, then the sparsity

function implies H − v contains an edge of opposite type to v; if v is mixed,

we choose {f1, f2} to be mixed. In both cases, this implies (H ′, ψ′) is mixed.

Hence Lemma 11.3.8 implies (H ′, ψ′) contains a block F on {f1, f2}. Since

H − v is disconnected, F ∩ E(H) = (F ∩ E(X)) ∪ (F ∩ E(Y )). Further, by

the definition of a block, F −{fi} is tight for some i. Hence, by Proposition

11.1.3(i), every vertex in V (F ) is incident to at least two edges in F −{fi}.

Since fi has an endvertex in each of X and Y , this implies F ∩ E(X) 6= ∅

and F ∩ E(Y ) 6= ∅. Hence

|F ∩ E(H)| ≤ s(F ∩ E(X)) + s(F ∩ E(Y )) ≤ 2|V (F )| − 6 + 2β(F ).

Since β(F ) ≤ 1 and |F − E(H)| ≤ 2, this gives

|F | ≤ |F ∩ E(H)|+ 2 ≤ 2|V (F )| − 3 + β(F ) = s(F ),

a contradiction.

Lemma 11.3.12. Let (H,ψ) ∈ Fk and suppose H is 2-connected but not 3-

edge-connected. Then there exists some v ∈ V (H) at which we can perform

an admissible 2-reduction such that the resulting graph is connected.

Proof. Since H is 2-connected, it is 2-edge-connected. As H is not 3-edge-

connected, there exists a partition {X,Y } of V (H) such that dH(X,Y ) = 2.

Since H is 2-edge-connected, H[X] and H[Y ] are connected. Let e1 = −−→x1y1

and e2 = −−→x2y2 denote the two edges with xi ∈ X and yi ∈ Y . Since H has

no cut-vertices, we know x1 6= x2 and y1 6= y2. Since H ∈ Fk, the definition
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of the sparsity function implies H is mixed. So at least one of the graphs

H−x1, H−x2, H−y1 or H−y2 is mixed. Relabelling if necessary, suppose

H − x1 is mixed. We shall show that there is an admissible 2-reduction at

x1.

Since H is 4-regular and loop-free, x1 is incident to exactly four edges.

One of these is e1 = −−→x1y1. Denote the other three edges by ei1 = −−→vix1 for

i ∈ {1, 2, 3}. Note these vi need not be distinct. However, since {e1, e2} is a

2-edge-cut, we know vi ∈ X for all i. Hence y1 6∈ {v1, v2, v3}.

Consider the graph (H − e1, ψ). In this graph, x1 in incident to exactly

three non-loop edges. So, by Lemma 11.2.6, there exists an admissible 1-

reduction at x1. Without loss of generality, suppose this 1-reduction adds

the edge f1 = −−→v1v2. To extend this to a 2-reduction, (H ′, ψ′) of H, it remains

to add an edge f2 = −−→v3y1 with gain ψ′(f2) = ψ(−→e31)ψ(e1).

Suppose for a contradiction that this 2-reduction is not admissible. Since

(H ′ − f2, ψ
′) was formed by an admissible 1-reduction, it is sparse and con-

nected. So (H ′, ψ′) is connected; and since H − x1 is mixed, so is H ′. Thus

Lemma 11.3.8 implies that f2 is contained in some block F of (H ′, ψ′). Since

F − {f2} is tight, Proposition 11.1.3(i) implies every vertex in V (F ) is in-

cident to at least two edges in F − {f2}. Since {f2, e2} is a 2-edge-cut in

(H ′, ψ′), this implies F ∩ EH′(X) 6= ∅ and F ∩ EH′(Y ) 6= ∅. Hence

|F | = |F ∩ E′H(X)|+ |F ∩ E′H(Y )|+ |F ∩ {e2, f2}|

≤ (2|V (F ) ∩X| − 3 + β(F )) + (2|V (F ) ∩ Y | − 3 + β(F )) + 2

≤ 2|V (F )| − 4 + 2β(F ).

By definition β(F ) ≤ 1. So this gives |F | ≤ s(F ), a contradiction.
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11.3.4 Admissible 2-reductions for graphs in Fk

Corollary 11.3.3 implies that a minimal edge-cut in a 4-regular graph must

contain an even number of edges. So any 3-edge-connected, 4-regular graph

is also 4-edge-connected. This fact, together with Lemmas 11.3.9 and 11.3.12

mean it only remains to find admissible 2-reductions in 2-connected, 4-edge-

connected graphs (H,ψ) ∈ Fk. We do this by considering a mixed vertex

v ∈ V (H), and then proving that for each value of |NH(v)|, we can find

an admissible 2-reduction of (H,ψ). We first prove some properties of tight

sets in such graphs.

Lemma 11.3.13. Let (H,ψ) ∈ Fk be 2-connected and 4-edge-connected,

and let v ∈ V have at least two distinct neighbours v1, v2. Let (H1, ψ1) and

(H2, ψ2) be formed from (H,ψ) by inadmissible 2-reductions at v which add

the edge pairs {e1, f1} and {e2, f2} respectively. Suppose f1 and f2 are both

−−→v1v2-edges, and that for i ∈ {1, 2}, (Hi, ψi) contains a I-block Fi on fi. Let

ψi(fi) = gi. Then

(i) g1 = g2, and

(ii) if {f1, f2} is mixed, then there exists a set E′ ⊆ E(H − v) such that

E′ + fi is a mixed I-block of (Hi, ψi) on fi for i ∈ {1, 2}.

Proof. Suppose F1 and F2 are the minimal such sets which satisfy these

hypotheses. For ease of notation, let Ei = Fi ∩ E(H − v), and Vi = V (Ei).

Assume for a contradiction that g1 6= g2. Since Fi is a I-block, Ei is tight.

So by Proposition 11.1.3(iii), each Ei is connected, and thus contains a path

Pi from v1 to v2. Since Fi ⊇ Ei is balanced and fi ∈ Fi, we know ψ(
−−−−→
v1Piv2) =

gi. Hence E1 ∪ E2 is unbalanced, as it contains the closed walk v1P1v2P2v1

with gain g1g
−1
2 6= I. Lemma 10.1.5 thus implies (V1 ∩ V2, E1 ∩ E2) is not

connected. If E1∩E2 6= ∅, then either (V1∩V2, E1∩E2) contains an isolated



CHAPTER 11. THE SPARSITY MATROID 202

vertex, or, by Proposition 11.1.3(iii) and Corollary 11.3.7, E1∩E2 is neither

tight nor near-tight. In both cases this implies |E1 ∩ E2| ≤ 2|V1 ∩ V2| − 4.

Trivially, this inequality also holds when E1 ∩ E2 = ∅. Hence, in all cases

we have

|E1 ∪E2| = |E1|+ |E2|− |E1 ∩E2| ≥ 2|V1 ∪V2|− 2 +β(E1) +β(E2). (11.9)

Suppose Ei is mixed for some i. Then β(Ei) = 1, and (11.9) implies

|E1∪E2| ≥ 2|V1∪V2|−1. Since v 6∈ V1∪V2, Corollary 11.3.3 implies this holds

with equality, and dH(V1 ∪ V2, V (H)− (V1 ∪ V2)) = 2. But this contradicts

the fact H is 4-edge-connected. Hence both Ei are pure, β(Ei) = 0, and

(11.9) becomes

|E1 ∪ E2| ≥ 2|V1 ∪ V2| − 2. (11.10)

Since v 6∈ V1 ∪ V2 and H is 4-edge-connected, Corollary 11.3.3 again

implies (11.10) holds with equality. In particular, this gives |E1 ∩ E2| =

2|V1 ∩ V2| − 4. Since (V1 ∩ V2, E1 ∩E2) is disconnected, pure, balanced and

sparse, this implies E1∩E2 = ∅ and V1∩V2 = {v1, v2}. Since H is 4-regular

and v1, v2 ∈ NH(v), we know dH[E1](vi) + dH[E2](vi) ≤ 3 for both vi. But

this implies that either dH[E1](vi) ≤ 1 or dH[E2](vi) ≤ 1, which contradicts

Proposition 11.1.3(i). Hence part (i) holds.

We now prove part (ii). Suppose {f1, f2} is mixed. Then without loss of

generality f1 and f2 are respectively a length and a direction edge. If some

Ei is mixed, then E′ = Ei and we are done. So suppose this is not the case.

Then E1 is length-pure and E2 direction-pure. Hence E1 ∩ E2 = ∅, and so

|E1 ∪E2| = |E1|+ |E2| = (2|V1 ∪ V2| − 2) + (2|V1 ∩ V2| − 4) ≥ 2|V1 ∪ V2| − 2.

Since H is 4-edge-connected and v 6∈ V1 ∪ V2, Corollary 11.3.3 implies this

holds with equality, and so V1∩V2 = {v1, v2}. Both F1 and F2 are balanced,
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so every path from v1 to v2 in E1 and E2 has gain g1 = g2. Thus F1 ∪ F2 is

balanced, and so E′ = E1 ∪ E2 satisfies (ii).

Lemma 11.3.14. Let (H,ψ) ∈ Fk, and let v ∈ V have at least three distinct

neighbours v1, v2, v3. For i ∈ {1, 2} let (Hi, ψi) be formed from (H,ψ) by

an admissible 2-reduction at v which adds a pair of edges {ei, fi} where

fi = −−→viv3. Suppose each (Hi, ψi) contains a I-block Fi on fi. Let Ei =

Fi ∩ E(H − v).

(i) If E1 ∩ E2 6= ∅, then E1 ∪ E2 is balanced and tight.

(ii) If E1 ∩ E2 = ∅, then for some i ∈ {1, 2}, V (Ei) = {vi, v3} and Ei

consists of a single −−→viv3-edge with the same gain and type as fi.

Proof. Let Vi = V (Ei). Since F1 and F2 are I-blocks, both Ei are tight and

balanced, so

|E1 ∪E2|+ |E1 ∩E2| = (2|V1 ∪ V2| − 3 + β(E1)) + (2|V1 ∩ V2| − 3 + β(E2)).

Since dH(V1∪V2, {v}) ≥ 3, Corollary 11.3.3 implies |E1∪E2| < 2|V1∪V2|−1.

Combining this with the above equation gives

|E1 ∩ E2| > 2|V1 ∩ V2| − 5 + β(E1) + β(E2). (11.11)

First suppose E1∩E2 6= ∅. Assume for a contradiction that (V1∩V2, E1∩

E2) is disconnected. Then either (V1 ∩ V2, E1 ∩ E2) contains an isolated

vertex, or H[E1 ∩E2] is disconnected. In both cases, this gives |E1 ∩E2| ≤

2|V1 ∩ V2| − 5 + β(E2) which contradicts (11.11). Thus (V1 ∩ V2, E1 ∩E2) is

connected, and Lemmas 10.1.5(i) and 11.1.5 imply E1 ∪E2 is balanced and

tight, hence proving (i).

So instead, suppose E1 ∩ E2 = ∅. We know v3 ∈ V1 ∩ V2, and since H

is 4-regular, dH−v(v3) ≤ 3. If |Vi| ≥ 3 for some i ∈ {1, 2}, then Proposition
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11.1.3(i) implies dH[Ei](v3) ≥ 2. Since E1∩E2 = ∅, this cannot hold for both

E1 and E2. Hence for some j ∈ {1, 2}, Vj = {vj , v3}. Since Fj is balanced,

it is loop-free; so this implies Fj consists of two parallel −−→vjv3-edges of the

same gain and type, thus proving (ii).

We use these two structural Lemmas to show that, given a 2-connected,

4-edge-connected graph (H,ψ) ∈ Fk, and a mixed vertex v ∈ V (H), we can

always perform an admissible 2-reduction on some vertex in (H,ψ). Our

argument uses the structure of the graph around v, and so we consider each

value of |NH(v)| separately, starting with |NH(v)| = 1.

Lemma 11.3.15. Let (H,ψ) ∈ Fk be connected, and let v be a mixed vertex

in H with |NH(v)| = 1. Then there is an admissible 2-reduction at v such

that the resulting graph is also connected.

Proof. Since H is connected and 4-regular, the only possibility is that V (H)

consists of exactly two vertices, u and v, with four parallel edges between

them. We label these −→uv edges by ei where 1 ≤ i ≤ 4, and ψ(ei) = gi. Since v

is mixed, a 2-reduction adds both a direction loop and a length loop at u with

respective gains gD = gig
−1
j , and gL = gkg

−1
l , where {i, j, k, l} = {1, 2, 3, 4}.

See (H7, ψ7) in Figure 11.9. For this to be a 2-reduction we must have

gD, gL 6= I, so it just remains to show that such an assignment is always

possible.

First suppose gi = gj for some i 6= j. By performing switching operations

we can assume gi = gj = I. Since parallel edges of the same gain have

different type, one of these is a length edge, and one a direction edge. The

same observation implies the two remaining edges, ek and el, have non-

identity gain. So the choice gD = gk and gL = gl gives an admissible

2-reduction.
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Instead, suppose g1, g2, g3 and g4 are distinct. Then gig
−1
j 6= I for all

i 6= j. Since v is mixed, we can assume, relabelling if necessary, that e1 is

a direction edge and e2 is a length edge. In which case, setting gD = g1g
−1
3

and gL = g2g
−1
4 gives an admissible 2-reduction.

Lemma 11.3.16. Let (H,ψ) ∈ Fk be 2-connected and 4-edge-connected.

Let v be a mixed vertex in H with |NH(v)| = 2. Then there is an admissible

2-reduction at v such that the resulting graph is also connected.

Proof. Since H is 2-connected, H − v is connected. So all 2-reductions

result in a connected graph. It remains to show that some 2-reduction also

preserves sparsity.

Denote the neighbours of v by v1 and v2. Then v is incident to some

pair of edges e1 = −→vv1 and e2 = −→vv2. By Lemma 10.1.3, we can assume

ψ(e1) = ψ(e2) = I. Since H is 4-regular and loop-free, there are two other

edges incident to v, e3 and e4, with gains ψ(e3) = g3 and ψ(e4) = g4. We

assume both of these edges are oriented away from v. Since |NH(v)| = 2,

there are two cases to consider: either e3 and e4 are parallel to e1 and e2

respectively, or, relabelling if necessary, both e3 and e4 are parallel to e2.

Suppose the latter case holds. Since H is 4-regular, and contains three

−→vv2-edges, v2 is incident to exactly one further edge f whose other end-

vertex is in V (H) − {v, v2}. But then the pair {e1, f} forms a 2-edge-cut

of H, which disconnects {v, v2} from V (H) − {v, v2}. This contradicts the

fact H is 4-edge-connected. Hence the former case must hold: e1 is parallel

to e3, and e2 is parallel to e4.

First, suppose g3 = g4 = I. Since loops cannot have identity gain, the

only possible 2-reduction at v is that which adds two −−→v1v2 edges f1 and

f2, both with identity gain, to (H − v, ψ) to form (H ′, ψ′). Hence {f1, f2}

is mixed. Assume for a contradiction that this 2-reduction is inadmissible.
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Then, by Lemma 11.3.8, (H ′, ψ′) has some block F on {f1, f2}. Let E′ =

F ∩ E(H − v). Then V (E′) ⊇ {v1, v2}. If F is a I-block, then E′ is tight.

Otherwise, F is a II-block, and since {f1, f2} is mixed, E′ is near-tight

with |F | = 2|V (F )| − 3. In both cases, this implies (H,ψ) contains the

balanced set F ′ = E′∪{e1, e2, e3, e4} with |F ′| ≥ 2|V (F ′)|−1 > s(F ′). This

contradicts the fact (H,ψ) is sparse. Hence this 2-reduction is admissible.

Second, consider the case where neither g3 nor g4 is the identity. We

conider the 2-reduction which forms (H ′′, ψ′′) from (H − v, ψ) by adding

loops f1 and f2 at v1 and v2 with gains g3 and g4 respectively. Since v is

mixed, and (H,ψ) is rotational, we can choose these loops to be of different

types. Since balanced sets cannot contain loops, (H ′′, ψ′′) has no block on

{f1, f2}. Hence Lemma 11.3.8 implies this 2-reduction is admissible.

Finally, consider the case where g3 6= g4, and exactly one of these gains

is the identity. Then any 2-reduction at v must add two −−→v1v2 edges, f1

and f2, with ψ(f1) = g3 and ψ(f2) = g4. When fi is a length or direction

edge, we refer to it as li or di respectively. Let (H1, ψ1) and (H2, ψ2) denote

the graphs obtained from (H − v, ψ) by adding the respective edge pairs

R1 = {l1, d2} and R2 = {d1, l2}.

Assume for a contradiction that neither of these 2-reductions is admissi-

ble. Since in both cases Ri is mixed and unbalanced, Lemma 11.3.8 implies

that for i ∈ {1, 2}, (Hi, ψi) has a I-block Fi on Ri. Since l1, d1, l2 and d2 are

distinct, Lemma 11.3.13(ii) implies that there exists a set E′ ⊆ E(H − v)

such that for some i ∈ {1, 2}, E′+ li and E′+ di are mixed I-blocks in their

respective graphs. Relabelling if necessary, suppose this holds for i = 1. If

ψ(f1) = I, then (H,ψ) contains the balanced edge set F ′ = E′∪{e1, e2, e3}.

Otherwise, we have ψ(f2) = I, and the set F ′ = E′ ∪ {e1, e2, e4} is balanced

in (H,ψ). In either case, E(H) contains a set F ′ with |F ′| = 2|V (F ′)| − 1 >
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s(F ′), a contradiction. Hence at least one of these 2-reductions is admissi-

ble.

Lemma 11.3.17. Let (H,ψ) ∈ Fk be 2-connected and 4-edge-connected.

Let v be a mixed vertex in H with |NH(v)| = 3. Then there exists a vertex

in {v} ∪ NH(v) which can be removed by an admissible 2-reduction, such

that the resulting graph is connected.

Proof. Since (H,ψ) is 2-connected, H − u is connected for all u ∈ V (H).

So every 2-reduction results in a connected graph. It remains to find an

admissible 2-reduction.

Denote the neighbours of v by v1, v2 and v3, and let ei = −→vvi. By

Proposition 10.1.3, we can assume ψ(e1) = ψ(e2) = ψ(e3) = I. Since H

is 4-regular, there is one further edge e4 at v with gain g. Relabelling if

necessary, e4 = −→vv2. In the 2-reductions we consider, let fij and f ′ij denote

a −−→vivj edge with gain I or g respectively. When fij is a length or direction

edge, we denote it by lij or dij respectively. Similarly, f ′ij becomes l′ij or d′ij .

Claim 11.3.18. If g = I, then there is an admissible 2-reduction at either

v or v3.

Proof. Since e2 and e4 are parallel with the same gain, they must consist of

a direction and a length edge. Let R1 = {l12, d32} and R2 = {d12, l32}. For

i ∈ {1, 2}, let (Hi, ψi) be the graph formed from (H,ψ) by the 2-reduction

which deletes v then adds the edge set Ri.

If one of these (Hi, ψi) is sparse, we are done. So suppose not. Since

both Ri are mixed, Lemma 11.3.8 implies that for both i, (Hi, ψi) contains

a block Fi on Ri. Let Ei = Fi ∩ E(H − v).

Suppose that for some i, Fi is a II-block on Ri. Then Ei is balanced and

near-tight. Since Ri is mixed, this implies |Ei| = 2|V (Ei)| − 3. Hence the
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set F ′ = Ei ∪ {e1, e2, e3, e4} in E(H) is balanced with |F ′| = 2|V (F ′)| − 1 >

s(F ′), a contradiction. Suppose instead that for some i, Fi is a mixed I-block

on lj2 (and thus also on dj2) where j ∈ {1, 3}. Then (H,ψ) contains the

balanced edge set F ′ = Ei ∪ {ej , e2, e4} with |F ′| = 2|V (F ′)| − 1 > s(F ′),

again a contradiction. Hence, neither (H1, ψ1) nor (H2, ψ2) contains a II-

block or mixed I-block on the corresponding Ri. Thus F1 and F2 are pure

I-blocks.

By Lemma 11.3.13(ii), one of {F1, F2} is a block on a −−→v1v2 edge, and

the other on a −−→v2v3 edge. Suppose E1 ∩ E2 6= ∅. Then Lemma 11.3.14(i)

implies E1 ∪ E2 is pure, balanced and tight. Hence E1 ∪ E2 ∪ R1 and

E1 ∪ E2 ∪ R2 are II-blocks in (H1, ψ1) and (H2, ψ2) respectively, which, as

we saw in the previous paragraph, cannot occur. Thus E1 ∩ E2 = ∅. Since

v2 ∈ V (E1) ∩ V (E2) and dH−v(v2) = 2, Proposition 11.1.3(i) implies either

E1 ∪ E2 = {l12, l23}, or E1 ∪ E2 = {d12, d23}. In both cases, this implies

E1 ∪ E2 ∪ {e1, e2, e3, e4} is mixed, balanced and tight. We shall show that

we can remove v3 by an admissible 2-reduction.

We know v3 is incident to both e3, and some edge f23 ∈ {l23, d23} with

identity gain. Since H is 4-regular and loop-free, v3 is incident to two further

edges, e∗1 = −−→v3u1 and e∗2 = −−→v3u2 in H. We know v is incident to e1, e2, e3 and

e4; and v2 is incident to e2, e4, and the pair of edges in E1 ∪ E2. Since H

is 4-regular, this implies u1, u2 ∈ V (H)− {v, v2, v3}, although these ui need

not be distinct. Let ψ(e∗i ) = gi. Let R3 = {f∗1 , f∗2 } where f∗1 = −→vu1 has gain

g1, f∗2 = −−→v2u2 has gain g2; and if v3 is mixed, we choose {f∗1 , f∗2 } to be mixed.

Let (H3, ψ3) denote the graph formed from (H,ψ) by the 2-reduction which

deletes v3 and adds the edge set R3. If (H3, ψ3) is sparse, we are done. So

assume not.

Since E(H − v3) contains the mixed set {e2, e4}, Lemma 11.3.8 implies
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(H3, ψ3) has some block, F3, on {f∗1 , f∗2 }. Let E3 = F3 ∩ E(H). By Propo-

sition 11.1.3(iii) and Corollary 11.3.7, E3 is connected. Since H is 4-regular

and 4-edge-connected, either u1, u2 ∈ V (H)−{v, v1, v2, v3}, or we are in the

special case where u1 = u2 = v1 and V (H) = {v, v1, v2, v3}. In the latter

case, since E1∪E2∪{e1, e2, e3, e4} is mixed, balanced and tight, and (H,ψ)

is sparse, the two −−→v3v1-edges, e∗1 and e∗2, must have non-identity gain. See

Figure 11.12. Hence g1, g2 6= I, and so the 2-reduction which adds f∗1 = vv1

and f∗2 = v2v1 is admissible.

v

v3

v2

v1 II

I I

I I

g1

g2

Figure 11.12: The graph (H,ψ) in the special case where u1 = u2 = v. Dotted lines

depict edges which could be of either type.

So suppose instead that u1, u2 ∈ V (H)− {v, v1, v2, v3}. Then {v1, v3} is

a 2-vertex-cut of H, and H − {v1, v3} has connected components H[X] and

H[Y ], where X = {v, v2} and Y = V (H) − {v, v1, v2, v3} ⊇ {u1, u2}. Since

V (E3) intersects both X and Y , and E3 is connected, v1 is a cut-vertex of

H[E3]. Hence |V (E3)| ≥ 3.

Suppose F3 is a I-block on some f∗i in (H3, ψ3). Then E3 is balanced

and tight. The fact v1 is a cut-vertex of H[E3] implies E3 is mixed by

Proposition 11.1.3(ii). Hence

|E3| ≤ |EH(X) ∩ E3|+ |EH(Y ) ∩ E3|+ dH(v1)

≤ (2|V3 ∩X| − 2) + (2|V3 ∩ Y | − 2) + 4 = 2|V3| − 2.
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Since E3 is tight, equality holds throughout. In particular, this implies

E3 contains EH(X) and all four edges incident to v1 in (H,ψ). So E3 ⊃

{e1, e2, e4, f12}. Hence H contains the balanced set F ′ = E3 ∪ {e3, f23, e
∗
i }

with |F ′| = 2|V (F ′)| − 1 > s(F ′), a contradiction.

Finally, suppose F3 is a II-block on R3. Then E3 ∪ f∗i is balanced and

tight for some f∗i ∈ R3. So Proposition 11.1.3(i) implies that E3 contains

edges incident to each of v and v2. Hence E3 contains a path with identity

gain from v to v2 (either ve2v2, ve4v2 or ve1v1f12v2). Thus F ′ = E3 ∪

{e3, f23, e
∗
1, e
∗
2} is balanced. Since we chose {f∗1 , f∗2 } to be mixed whenever

v3 was, this implies |F ′| = 2|V (F ′)| − 2 + β(F3) > s(F ′), a contradiction.

Hence our assumption was wrong, and at least one of (H1, ψ1), (H2, ψ2) and

(H3, ψ3) is sparse.

For the remainder of the proof, we proceed by contradiction. Assume

(H,ψ) has no admissible 2-reduction at v. Then Claim 11.3.18 implies g 6=

I. We consider three different 2-reductions at v. These form the graphs

(H1, ψ1), (H2, ψ2) and (H3, ψ3) by adding the respective mixed edge pairs

R1 = {f13, f
′
22}, R2 = {f ′12, f32} and R3 = {f12, f

′
32} to H − v. Recall fij

and f ′ij denote a −−→vivj edge with gain I or g respectively.

By our assumption, all of these 2-reductions are inadmissible. Since H1,

H2 and H3 are mixed, Lemma 11.3.8 implies each (Hi, ψi) contains a block

Fi on Ri. Let Ei = Fi ∩E(H − v). Since R1 contains a loop, F1 is a I-block

on f13; whereas since R2 and R3 are mixed, F2 and F3 are either I-blocks

or mixed II-blocks. Note that V (Fi) = V (Ei), in the rest of the proof we

denote this set by Vi.

Claim 11.3.19. Let i, j ∈ {1, 2, 3} be distinct. If Fi is a I-block and Fj is

a II-block, then Ei ∪ Ej = E(H − v), Ei ∩ Ej = ∅ and |Vi ∩ Vj | = 2.



CHAPTER 11. THE SPARSITY MATROID 211

Proof. Let f = −→xy denote the non-loop edge blocked by Fi. By Proposi-

tion 11.1.3(iii) and Corollary 11.3.7 respectively, both Ei and Ej are con-

nected. Since Fj is a II-block, we know it is mixed and NH(v) ⊆ Vj .

Hence x, y ∈ Vi ∩ Vj . Since Ei and Ej are connected, they contain −→xy-

paths Pi and Pj respectively, with ψ(Pi) = ψi(f) 6= ψ(Pj). This implies

Ei ∪ Ej is unbalanced, and so, by Lemma 10.1.5, (Vi ∩ Vj , Ei ∩ Ej) is not

connected. Proposition 11.1.3(iii) and Corollary 11.3.7 thus imply either

|Ei∩Ej | ≤ s(Ei∩Ej)− 2, or Ei∩Ej = ∅ and V1∩V2 = {x, y}. Suppose the

former holds. Since E1 ∩E2 is balanced, s(Ei ∩Ej) ≤ 2|Vi ∩Vj | − 3 +β(Ei).

Hence

|Ei ∪ Ej | = |Ei|+ |Ej | − |Ei ∩ Ej | ≥ 2|Vi ∪ Vj | − 1.

This contradicts Corollary 11.3.3 as dH(Vj , {v}) = 4. So instead, we must

have Vi ∩ Vj = {x, y} and Ei ∩ Ej = ∅. This implies

|Ei ∪ Ej | = |Ei|+ |Ej | = 2|Vi ∪ Vj | − 2 + β(Ei).

As dH(Vj , {v}) = 4, Corollary 11.3.3 implies β(Ei) = 0 and V (H) − {v} =

Vi ∪ Vj . Hence Ei ∪ Ej = E(H − v).

Claim 11.3.20. F1, F2 and F3 are I-blocks.

Proof. Recall that if F2 and F3 are not I-blocks, then they are mixed II-

blocks. Also recall that F1 is a I-block on f13.

First suppose both F2 and F3 are II-blocks. By Corollary 11.3.7, each Ei

contains a −−→v1v2 path Pi. Since E2 ∪{f ′12} and E3 ∪{f12} are both balanced,

ψ(P2) = g 6= I = ψ(P3). Hence E2 ∪ E3 is not balanced, and so Lemma

10.1.5(i) implies (V2∩V3, E2∩E3) is not connected. Since |V2∩V3| ≥ 3, and

E1∩E2 is balanced, this gives |E2∩E3| ≤ 2|V2∩V3|−4. Using this, and the

fact |Ei| = 2|Vi| − 3 for i ∈ {2, 3}, gives |E2 ∪E3| ≥ 2|V2 ∪V3| − 2. However,
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since dH(V2 ∪ V3, {v}) = 4, Corollary 11.3.3 implies E2 ∪ E3 = E(H − v).

But E1 6= ∅, so E1 ∩ (E2 ∪ E3) 6= ∅, which contradicts Claim 11.3.19.

Instead, suppose exactly one of F2 and F3 is a I-block. Relabelling if

necessary, F2 is a I-block on R2 and F3 is a II-block on R3. Claim 11.3.19

then implies E1 ∪ E3 = E2 ∪ E3 = E(H − v), E1 ∩ E3 = E2 ∩ E3 = ∅ and

|V1 ∩ V3| = 2. But this implies E1 = E2, which in turn gives V1 = V2 ⊇

{v1, v2, v3}, contradicting the fact |V1 ∩ V3| = 2.

Claim 11.3.21. F1, F2 and F3 are pure I-blocks, and if i 6= j, then the pair

of edges blocked by Fi and Fj are not parallel.

Proof. Claim 11.3.20 implies F1, F2 and F3 are I-blocks. By definition of

the edge sets Ri, F1 blocks a −−→v1v3-edge, which is not parallel to any edge in

R2 ∪ R3. Since g 6= I, Lemma 11.3.13 implies F2 and F3 are not blocks on

a pair of parallel edges. So either F2 blocks a −−→v1v2-edge, and F3 blocks a

−−→v3v2-edge or vice versa; and both of these blocked edges have the same gain.

It remains to show that all three of these blocks are pure.

Suppose that for some i ∈ {1, 2, 3}, Fi is mixed. If Ei ∩Ej 6= ∅ for some

j 6= i, then Lemma 11.3.14(i) implies that E′ = Ei ∪ Ej is mixed, balanced

and tight. Otherwise, Ei ∩ Ej = ∅ for both j 6= i, and Lemma 11.3.14(ii)

implies E′ = E1 ∪E2 ∪E3 is mixed, balanced and tight. The edges blocked

by F2 and F3 both either have gain I or g. And so E(H) contains a mixed

balanced set F ′ where either F ′ = E′ ∪ {e1, e3, e2} or F ′ = E′ ∪ {e1, e3, e4},

when the sets F2 and F3 block a pair of edges with gain I or g respectively.

But |F ′| = 2|V (E′)∪{v}|−1, thus contradicting the fact (H,ψ) is sparse.

Claim 11.3.22. F1, F2 and F3 are pure I-blocks of the same type, P ∈

{D,L}. The vertex v is incident to exactly three edges of type P in (H,ψ):

e1, e2 and e3.
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Proof. Claim 11.3.21 implies F1, F2 and F3 are pure I-blocks, and for i ∈

{1, 2, 3}, no (Hi, ψi) contains a mixed I-block on any edge in Ri. Lemma

11.3.13 thus implies that for every distinct pair vi, vj ∈ {v1, v2, v3}, all blocks

on a −−→vivj-edge are pure and have the same gain on −−→vivj . In particular, this

implies that each (Hi, ψi) contains I-blocks on exactly one of the edges fi in

Ri, and these blocks are pure.

Let R∗i denote the pure set formed from Ri by replacing fi with the

parallel edge f∗i which has the same gain as fi, but opposite type. For

i ∈ {1, 2, 3} let (H∗i , ψ
∗
i ) denote the graph formed from (H−v, ψ) by adding

the edge set R∗i . Note that the move which forms (H∗i , ψ
∗
i ) from (H,ψ) may

not be a 2-reduction, as the types of the edges in R∗i may not satisfy the

requirements in the definition.

Since Ei and R∗i are of opposite type, and Ei ⊆ E(H − v), we know

E(H − v) ∪ R∗i is mixed. Since E1, E2, E3 ⊆ E(H − v), Claim 11.3.21 and

Lemma 11.3.13 implies that, for all i ∈ {1, 2, 3}, (H∗i , ψ
∗
i ) has no block on

the edges in R∗i . If the move which forms (H∗i , ψ
∗
i ) from (H,ψ) was a 2-

reduction, then Lemma 11.3.8 would imply this 2-reduction is admissible,

contradicting our assumption. Thus, for all i ∈ {1, 2, 3}, the types of the

edges in R∗i do not satisfy the requirements for a 2-reduction. This implies

that the definition of a 2-reduction allowed us to add the edge fi, but not the

edge f∗i . Since the only difference between these two edges is their type, this

implies v is incident to exactly three edges, e1, e3 and ej (where j ∈ {2, 4}),

of the same type, P ∈ {D,L}. By performing a switching operation at v2,

and relabelling, we can assume j = 2. This implies our I-blocks F1, F2 and

F3 are of type P on the respective edges f13, f32 and f12, also of type P ,

and with identity gain.

Suppose Ei ∩ Ej 6= ∅ for some distinct i, j ∈ {1, 2, 3}. Then Lemma
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11.3.14(i) implies Ei ∪Ej is pure, balanced and tight. Hence F ′ = Ei ∪Ej ∪

{e1, e2, e3} is pure and balanced with |F ′| = 2|V1 ∪ V2 ∪ {v}| − 2 > s(F ′),

contradicting the fact (H,ψ) is sparse.

So instead, suppose Ei ∩ Ej = ∅ for all distinct i, j ∈ {1, 2, 3}. Then

Lemma 11.3.14(ii) implies that at least two of these Ei consist of a single

edge with identity gain, and so E1 ∪ E2 ∪ E3 is pure, balanced and tight.

Hence F ′ = E1 ∪ E2 ∪ E3 ∪ {e1, e2, e3} is pure and balanced with |F ′| =

2|V (F ′)| − 2 > s(F ′), a contradiction. Thus our assumption is false, and H

contains an admissible 2-reduction.

Lemma 11.3.23. Let (H,ψ) ∈ Fk be 2-connected and 4-edge-connected.

Let v be a mixed vertex in H with |NH(v)| = 4. Then there is an admissible

2-reduction at v such that the resulting graph is connected.

Proof. Let NH(v) = {v1, v2, v3, v4}, and let ei = −→vvi. By Proposition 10.1.3,

we can assume that E(H) contains a spanning tree with edge set T such

that ψ(t) = I for all t ∈ T , and e1, e2, e3, e4 ∈ T . Let fij denote an edge

−−→vivj with identity gain. We consider the three 2-reductions at v which form

the graphs (H1, ψ1), (H2, ψ2) and (H3, ψ3) from (H − v, ψ) by adding the

respective edge pairs R1 = {f23, f14}, R2 = {f13, f24} and R3 = {f12, f34}.

Since v is mixed, we can, and do, choose each Ri to be mixed. Since H−v is

connected, this implies every Hi is both mixed and connected. Assume for a

contradiction that (H,ψ) has no admissible 2-reduction at v. Then Lemma

11.3.8 implies that every (Hi, ψi) has a block Fi on Ri. Let Ei = Fi∩E(H),

and Vi = V (Ei). Note that V (Ei) = V (Fi).

Claim 11.3.24. For i ∈ {1, 2, 3}, (Hi, ψi) has no II-blocks on Ri.

Proof. Suppose this claim is false. Then, relabelling if necessary, we can

assume F3 is a II-block on R3. Since R3 is mixed, this implies E3 is balanced
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with |E3| = 2|V3| − 3. But V3 ⊇ NH(v), so i(V3 ∪ {v}) ≥ |E3| + 4 = 2|V3 ∪

{v}| − 1. Since H is 4-edge-connected, Corollary 11.3.3 implies V3 ∪ {v} =

V (H), and E(H − v) = E3 ∪ {e} for some edge e. Note that since H is

4-edge-connected, we can assume e 6∈ T .

Hence the graph (V −{v}, T∩E3) has exactly four connected components

(Uj , Tj) for j ∈ {1, 2, 3, 4}, such that vj ∈ Uj , and either H[Tj ] is a tree,

or Tj = ∅ and Uj = {vj}. Consider the partition {X12, X34} of V − {v},

where Xjk = Uj ∪ Uk. Since F3 = E3 ∪ {f12, f34} is balanced, and every

edge in T ∪ {f12, f34} has identity gain, we know that every edge −→xy ∈ E3

has identity gain, unless x ∈ X12 and y ∈ X34, in which case ψ(−→xy) = g for

some fixed g ∈ Ck.

If g = I then F ′ = E3 ∪ {e1, e2, e3, e4} is balanced in (H,ψ) with |F ′| =

2|V (F ′)| − 1 > s(F ′), a contradiction. Hence g 6= I. By the definition of R1

and R2, there exists some j ∈ {1, 2} such that e is not parallel to any edge

in Rj . Since Fj is a block, Proposition 11.1.3(iii) or Corollary 11.3.7 imply

that Ej is connected. Hence Ej contains a path P from X12 to X34 with

ψ(P ) = I. Since every edge from X12 to X34 in E(H − v) − {e} has gain

g 6= I, this implies e ∈ P is an edge from X12 to X34 with ψ(e) = I. But

Fj is balanced, so the set of all edges in Fj from X12 to X34 with identity

gain form an edge-cut of H[Fj ], which partitions Vj into {X ′, Y ′}. Since e

is not parallel to any edge in Rj , and is the only edge with identity gain

from X12 to X34 in (H − v, ψ), Proposition 11.1.3(i) implies |X ′|, |Y ′| ≥ 2.

Hence, since Ej is balanced and sparse, this gives

|Fj | = |Ej ∩ EH(X ′)|+ |Ej ∩ EH(Y ′)|+ |Fj ∩Rj |+ |Fj ∩ {e}|

≤ 2|Vj | − 5 + 2β(Fj) + |Rj ∩ Fj |.

Since Fj is a block, we must have s(Fj) < |Fj |; so this implies β(Fj) = 1

and |Rj ∩ Fj | = 2. Hence Fj is a mixed II-block. Since Ej is connected
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and every edge in H[X12] ∪ H[X34] has identity gain, H[Ej ] contains a

−−→vkvl-path with identity gain for all distinct vk, vl ∈ NH(v). Hence F ′ =

Ej∪{e1, e2, e3, e4} is balanced with |F ′| = 2|V (F ′)|−1 > s(F ′), contradicting

the fact (H,ψ) is sparse.

Claim 11.3.25. For i ∈ {1, 2, 3}, (Hi, ψi) has no mixed I-block on any edge

in Ri.

Proof. By Claim 11.3.24, we know F1, F2 and F3 are I-blocks. Suppose for

a contradiction that the claim is false. Then without loss of generality, F1

is a mixed I-block.

Suppose E1∩Ei 6= ∅ for some i ∈ {2, 3}. Then Lemma 11.3.14(i) implies

that E1∪Ei is mixed, balanced and tight, and E1∪Ei∪{fjk, fkl} is balanced

for some distinct j, k, l ∈ {1, 2, 3, 4}. Hence F ′ = E1 ∪ Ei ∪ {ej , ek, el} is

balanced in (H,ψ) with |F ′| = 2|V (F ′)| − 1 > s(F ′), contradiction.

So instead suppose E1 ∩ E2 = E1 ∩ E3 = ∅. Since F1 is mixed, Lemma

11.3.14(ii) implies |E2| = |E3| = 1 and the unique edge in each of these sets

is identical in gain, type and location to some edge fjk ∈ R2 and fkl ∈ R3

respectively. Hence V2 = {vj , vk} and V3 = {vk, vl}. If vk ∈ V1, then

Proposition 11.1.3(i) implies E1 contains at least two edges incident to vk.

But dH−v(vk) = 3, so this implies E1 intersects E2 ∪ E3, a contradiction.

Hence vk 6∈ V1, and so F1 is a block on fjl ∈ R1. Hence (H,ψ) contains the

balanced set F ′ = E1 ∪E2 ∪E3 ∪ {ej , ek, el} on vertex set V ′ = V1 ∪ {v, vk}

with |F ′| = 2|V ′| − 1 > s(F ′), a contradiction.

Claims 11.3.24 and 11.3.25, imply that F1, F2 and F3 are pure I-blocks.

Suppose Fi blocks the edge fi ∈ Ri, and let f ′i denote the edge obtained

from fi by swapping its type. Let R′i = Ri − fi + f ′i , and let (H ′i, ψ
′
i) be the

graph formed from (H − v, ψ) by adding R′i. Note that unlike (Hi, ψi), the
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graph (H ′i, ψ
′
i) is not necessarily formed by a 2-reduction of (H,ψ).

Claim 11.3.26. For i ∈ {1, 2, 3}, (H ′i, ψ
′
i) has no II-blocks on R′i.

Proof. Assume for a contradiction that for some i, F ′i is a II-block on R′i.

Then |F ′i | > s(F ′i ). Let E′i = F ′i ∩ E(H) and V ′i = V (E′i).

Claim 11.3.24 implies that |E′i ∪ Ri| ≤ s(E′i ∪ Ri), and thus E′i ∪ R′i is

pure. Hence |E′i| = 2|V ′i | − 4. By Claim 11.3.25, Ei and E′i are both pure of

opposite type. Hence Ei ∩ E′i = ∅, and so

|Ei ∪ E′i| = (2|Vi ∪ V ′i | − 3) + (2|Vi ∩ V ′i | − 4).

Since F ′i is a II-block, |Vi∩V ′i | ≥ 2. If this inequality is strict, then |Ei∪E′i| ≥

2|Vi∪V ′i |−1, which contradicts Corollary 11.3.3 as dH(v, Vi∪V ′i ) = 4. Hence

|Vi ∩ V ′i | = 2, and so |Ei ∪ E′i| = 2|Vi ∪ V ′i | − 3.

Recall R′i = Ri−fi+f ′i . Suppose fi is an −→xy-edge. Then Vi∩V ′i = {x, y},

and every −→xy-path in Ei has identity gain. Since F ′i blocks the −→xy-edge f ′i

with identity gain, the same holds for E′i. Thus Fi ∪ E′i is balanced and a

II-block on Ri, contradicting Claim 11.3.24.

We are now in a position to prove our result. Since v is a mixed vertex,

it is incident to both direction and length edges. We use this to split the

remaining argument into two cases. In what follows, dij and lij denote

respectively a direction and length edge −−→vivj with identity gain.

Case 1. v is incident to exactly two length edges and two direction edges.

Since v is incident to exactly two edges of each type, there are no restrictions

on the types of edges we can add in a 2-reduction. Consider the set of 2-

reductions of (H,ψ) which add a −−→v1v2 and −−→v3v4 edge. Namely, these are the

2-reductions which add R∗1 = {d12, d34}, R∗2 = {d12, l34}, R∗3 = {l12, d34} and

R∗4 = {l12, l34}. We let (H∗i , ψ
∗
i ) denote the graph formed by the 2-reduction

which adds R∗i .
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By Claims 11.3.24 and 11.3.25, no (H∗i , ψ
∗
i ) contains a mixed block on R∗i .

And so, by Lemma 11.3.13(ii), we cannot have both a length-pure I-block

and a direction-pure I-block on any −−→vivj . So in order for the 2-reductions

which add R∗2 = {d12, l34} and R∗3 = {l12, d34} to be inadmissible, Lemma

11.3.8 implies that the corresponding graphs (H∗i , ψ
∗
i ) contain pure I-blocks

F ∗i of the same type: one of which blocks a −−→v1v2-edge, and the other blocks

a −−→v3v4-edge. Without loss of generality, suppose F ∗2 and F ∗3 are direction-

pure I-blocks on d12 and d34 respectively. Then H − v contains direction

edges. Suppose the 2-reduction which adds R∗4 = {l12, l34} is inadmissible.

Then Lemma 11.3.8 implies (H∗4 , ψ
∗
4) either contains a length-pure II-block

on this set, which contradicts Claim 11.3.26, or it contains a length-pure

I-block on one of −−→v1v2 or −−→v3v4, which contradicts Claim 11.3.25 by Lemma

11.3.13. Hence for some i ∈ {1, 2, 3, 4}, (H∗i , ψ
∗
i ) is formed by an admissible

2-reduction.

Case 2. v is incident to exactly three edges of the same type.

Without loss of generality, suppose e1, e2 and e3 are length edges, and e4

is a direction edge. Then any 2-reduction at v adds two edges −−→vivj , and

−−→vkv4 to (H − v, ψ), where {i, j, k} = {1, 2, 3}. In order to fit our definition

of a 2-reduction, the added −−→vivj-edge must be a length edge, whereas the

−−→vkv4-edge can be of either type.

Consider the three 2-reductions introduced at the start of the proof.

These created the graphs (H1, ψ1), (H2, ψ2) and (H3, ψ3) by adding the

respective mixed edge sets R1, R2 and R3 to (H − v, ψ). Our observation

on the types of edges added in 2-reductions implies R1 = {l23, d14}, R2 =

{l13, d24} and R3 = {l12, d34}. Recall that each (Hi, ψi) has a pure I-block,

Fi, on some edge in Ri.

Suppose that for some i ∈ {1, 2, 3}, Fi blocks the edge di4 ∈ Ri. Then
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Fi is a direction-pure I-block. Consider the graph (H ′i, ψ
′
i) obtained from

(H,ψ) by a 2-reduction which deletes v and adds the edges R′i = {ljk, li4},

where {i, j, k} = {1, 2, 3}. Since E(H ′i) ⊇ Ei ∪ R′i, it is mixed; so Lemma

11.3.8 implies that (H ′i, ψ
′
i) has a block F ′i on R′i. Claims 11.3.24, 11.3.25 and

11.3.26 imply F ′i is a length-pure I-block. Further, since Fi is a direction-

pure I-block on di4, Lemma 11.3.13 and Claim 11.3.25 imply that F ′i is a

length-pure I-block on the edge ljk.

Hence for all i, either Fi or F ′i is a length-pure I-block on ljk where

{i, j, k} = {1, 2, 3}. For ease of notation, let F ∗i denote this block for each i,

and let E∗i = F ∗i ∩ E(H).

Suppose E∗i ∩E∗j 6= ∅ for some i 6= j. Then E∗i ∪E∗j is pure, balanced and

tight by Lemma 11.3.14(i). Since F ∗i ∪F ∗j = E∗i ∪E∗j ∪{ljk, lik} is balanced,

the set F ′ = E∗i ∪ E∗j ∪ {e1, e2, e3} is length-pure and balanced in (H,ψ)

with |F ′| = |E∗i ∪ E∗j |+ 3 = 2|V (F ′)| − 2 > s(F ′), a contradiction.

So suppose instead that E∗1 ∩ E∗2 = E∗1 ∩ E∗3 = E∗2 ∩ E∗3 = ∅. Then

Lemma 11.3.14(ii) implies that at least two of these E∗i consist of a single

length edge −−→vjvk with identity gain, where {i, j, k} = {1, 2, 3}. Without loss

of generality, suppose this occurs for i = 1 and i = 2. Proposition 11.1.3(i)

implies that either E∗3 consists of a single −−→v1v2 length edge with identity

gain, or every vertex in V ∗3 is incident to at least two edges in E∗3 . In the

former case, this implies E∗1 ∪E∗2 ∪E∗3 is a length-pure cycle on {v1, v2, v3},

which is balanced and tight. In the latter case, since dH−v(v3) = 3, and

E∗3 is disjoint from the pair of edges in E∗1 ∪ E∗2 incident to v3, this implies

v3 6∈ V ∗3 . Hence E∗1 ∪ E∗2 ∪ E∗3 is length-pure, balanced and tight on vertex

set V ∗3 ∪ {v3}.

In both cases, this implies E∗1 ∪ E∗2 ∪ E∗3 ∪ {l12, l23, l13} is balanced.

Hence, in both cases (H,ψ) contains the length-pure, balanced set F ′ =
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E∗1 ∪E∗2 ∪E∗3 ∪{e1, e2, e3} with |F ′| = 2|V (F ′)|−2 > s(F ′), a contradiction.

Thus for some i ∈ {1, 2, 3}, at least one (Hi, ψi) and (H ′i, ψ
′
i) is formed by

an admissible 2-reduction.

11.3.5 Construction of Ck-tight graphs

Here we use the results from this and the previous Section to obtain an

inductive construction which characterises the Ck-tight graphs. We first

prove a special case.

Lemma 11.3.27. Let (H,ψ) be a connected, 4-regular, Ck-tight graph. If

|V (H)| ≥ 2, then there is a vertex in V (H) which can be removed by an

admissible reduction such that the resulting graph is connected.

Proof. If H contains a vertex v incident to a loop, then Lemma 11.3.4 implies

we can remove v by either a loop 1-reduction or a loop-to-loop reduction

such that the resulting graph is connected and Ck-tight.

Suppose instead that H is 4-regular and loop-free. If H contains either

a cut-vertex or a 2-edge-cut, then Lemmas 11.3.9 and 11.3.12 imply that

there is some 2-reduction of H which results in a connected, Ck-tight graph.

Suppose neither of these cases hold. Then H is loop-free, 2-connected

and 4-edge-connected, by Corollary 11.3.3; and the sparsity counts imply H

is mixed. Thus H contains a mixed vertex v incident to exactly four edges.

In which case, Lemmas 11.3.15, 11.3.16, 11.3.17 and 11.3.23 imply that there

is a 2-reduction at v which results in a connected, Ck-tight graph.

Theorem 11.3.28. Let (H,ψ) be a Ck-gain graph. Then (H,ψ) is Ck-tight if

and only if it can be constructed from a graph (Hm, ψm) on m vertices whose

connected components are Ck-base graphs, by a sequence of 0-extensions, loop

0-extensions, 1-extensions, loop 1-extensions, loop-to-loop extensions and 2-

extensions; which add edges with gains in Ck.
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Proof. We first prove the forwards direction. Suppose |V (H)| = n, and

let (H,ψ) = (Hn, ψn). We shall show that we can construct a sequence

of Ck-tight graphs (Hi, ψi) for m ≤ i ≤ n − 1 such that (Hi+1, ψi+1) is

obtained from (Hi, ψi) by an extension. We do this in reverse, by performing

admissible reductions.

If the connected components of (Hi, ψi) are Ck-base graphs, then we are

done; so suppose not. Then Hi contains some connected component, Hi[F ],

on at least two vertices. Propositions 11.2.1(ii) and 11.3.1 imply that either

V (F ) contains a vertex v of degree 2 or 3 in Hi, or Hi[F ] is 4-regular. In the

former case, Proposition 11.2.5 and Lemma 11.2.6 imply that we can remove

v from (Hi, ψi) by either a 0-reduction, loop 0-reduction or 1-reduction to

obtain a Ck-tight graph (Hi−1, ψi−1). Otherwise, Hi[F ] is 4-regular, and

Lemma 11.3.27 implies that (Hi, ψi) has an admissible reduction at some

vertex in V (F ) which forms a Ck-tight graph (Hi−1, ψi−1).

We now prove the converse. Suppose {(Hi, ψi) : m ≤ i ≤ n} is a set of

graphs such that |V (Hi)| = i, (Hi, ψi) is obtained from (Hi−1, ψi−1) by an

extension, (Hn, ψn) = (H,ψ), and the connected components of (Hm, ψm)

are Ck-base graphs. We wish to show (Hi, ψi) is Ck-tight for all i. Clearly

this holds when i = m. Suppose (Hi−1, ψi−1) is Ck-tight. Then Lemma

11.2.2 implies that (Hi, ψi) is sparse with |E(Hi)| = 2|V (Hi)|. Further, our

restriction on edge gains ensures ψi(e) ∈ Ck for all e ∈ E(Hi). Thus every

closed walk C in Hi has ψi(C) ∈ Ck, which implies 〈E(Hi)〉 ⊆ Ck. Hence

(Hi, ψi) is Ck-tight, thus proving our result.

One shortcoming of Theorem 11.3.28, is that it does not give a value

for m. Lemma 11.3.27 implies that whenever a 4-regular Ck-tight graph

has an admissible reduction, it also has an admissible reduction which does

not increase the number of connected components. Unfortunately, this is
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Figure 11.13: A C4-tight graph with no reduction which preserves connectivity.

not true in general. For example, consider the graph in Figure 11.13. The

only admissible reduction here is a 0-reduction at v, but this increases the

number of connected components by 1.

We suspect that 0-reductions are the only moves where it may be un-

avoidable to increase the number of connected components. It is trivial that

loop 0-reductions can never increase the number of connected components,

and Lemma 11.3.27 implies that in 4-regular graphs, we can always find a

move which does not increase this number. So to prove this conjecture, it

only remains to extend Lemma 11.2.6 to prove that such graphs always have

an admissible 1-reduction which does not increase the number of connected

components. If this were true, then the number of 0-extensions used in the

construction of (H,ψ) in Theorem 11.3.28 would provide an upper bound

for m+ 1.



Chapter 12

Characterisation of

symmetry-forced rigidity for

Cs

In Section 12.1, we show that our three simplest inductive moves: 0-extensions,

loop 0-extensions and 1-extensions, preserve the dimension of the kernel of

the orbit matrix for all point groups Γ we consider. These are the only moves

required to inductively construct all Cs-tight graphs (Theorem 11.2.9). In

Section 12.2 we use this construction to obtain a characterisation of minimal

symmetry-forced rigidity for Cs-symmetric frameworks which are as generic

as possible (Theorem 12.2.1). These three moves are not sufficient to con-

struct all Ck≥2-tight or Dk≥2-tight graphs, as observed in Chapter 11, so we

obtain a partial result for these cases. In Section 12.3 we explain the steps

required to extend this partial result.

223
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12.1 Extensions preserve row independence in the

orbit matrix

We first prove some preliminary results. Namely, we show that switching

operations on Γ-gain graphs, and reorienting edges and inverting the gain,

both preserve the rank of the orbit matrix. This means that when we con-

sider our inductive moves later in this section, we can reduce the problem

to the case where the edge gains are easiest to deal with.

Note that for any
( x
y

)
∈ R2, we can write

( x
y

)
= I
( x
y

)
and

( x
y

)⊥
= P

( x
y

)
where I is the 2-dimensional identity matrix and P =

(
0 1
−1 0

)
corresponds

to a rotation by −π/2 about the origin. This allows us to simplify the orbit

matrix entries in the following proofs.

Lemma 12.1.1. Let Γ be a point group, and let (H,ψ, q) be a Γ-gain frame-

work. Suppose (H,ψ′, q) is obtained from (H,ψ, q) by reversing some edge e

of H and inverting the gain. Then ker(O(H,ψ, q)) = ker(O(H,ψ′, q)).

Proof. Let e = −−→v1v2 for some v1, v2 ∈ V (H), and suppose ψ(−−→v1v2) = g. Then

ψ′(←−−v1v2) = g−1. Let T0 = I or T0 = P when e is respectively a length or a

direction edge. First suppose e is not a loop. Then the row corresponding

to e in O(H,ψ, q) is given in block matrix form by

v1 v2( )
0 (T0(q(v1)− gµq(v2)))T 0 −(g−1

µ T0(q(v1)− gµq(v2))T 0
;

whereas the corresponding row in O(H,ψ′, q) is

v1 v2( )
0 −(gµT0(q(v2)− g−1

µ q(v1)))T 0 (T0(q(v2)− g−1
µ q(v1)))T 0

,
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which can be rewritten as

v1 v2( )
0 (gµT0g

−1
µ (q(v1)− gµq(v2)))T 0 −(T0g

−1
µ (q(v1)− gµq(v2)))T 0

.

When T0 = I, it is clear that this row is identical to the original row in

O(H,ψ, q). However, when T0 = P , we have to be slightly more careful. If

g is a rotation or the identity, then Pg−1
µ = g−1

µ P , and so once more, these

rows are identical. If instead, g is a reflection, then Pg−1
µ = −g−1

µ P , and

so the original row in O(H,ψ, q) can be obtained by multiplying the row in

O(H,ψ′, q′) by −1. This operation does not change the kernel of the matrix.

Hence ker(O(H,ψ, q)) = ker(O(H,ψ′, q)).

When e is a loop, we apply the same argument. In this case if e is a

direction loop with reflection gain, then the corresponding rows in O(H,ψ, q)

and O(H,ψ′, q) are the zero vector. In all other cases T0gµ = gµT0, and so

the corresponding rows are identical. Hence, once more, ker(O(H,ψ, q)) =

ker(O(H,ψ′, q)).

Lemma 12.1.2. Let Γ be a point group, and let (H,ψ, q) be a Γ-gain frame-

work. Suppose (H,ψ′) is obtained from (H,ψ) by a switching operation

with gain h at some vertex v, and let q′ be a realisation of (H,ψ′) such

that q′(u) = q(u) for all u ∈ V (H) − {v}, and q′(v) = hµq(v). Then

rank(O(H,ψ, q)) = rank(O(H,ψ′, q′)).

Proof. Since q′(u) = q(u) for all u ∈ V (H)−{v}, and the switching operation

only changes the gains on edges incident to v, the matrices O(H,ψ, q) and

O(H,ψ′, q′) differ only in the rows corresponding to edges incident to v.

Such edges fall into three classes: loops at v, non-loops oriented towards v,

and non-loops oriented away from v. By Lemma 12.1.1, we can assume that

all non-loop edges are oriented towards v. Thus we only need to consider
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the first two cases.

First suppose −→uv is a non-loop edge, with ψ(−→uv) = g. Then ψ′(−→uv) =

gh−1, and the corresponding row in O(H,ψ′, q′) in block matrix form is

u v( )
0 (T1(q′(u)− gµh−1

µ q′(v)))T 0 −((gµh
−1
µ )−1T1(q′(u)− gµh−1

µ q′(v)))T 0

where T1 ∈ {I, P}. Using the fact q′(u) = q(u) and q′(v) = hµq(v), we can

rewrite this as

u v( )
0 (T1(q(u)− gµq(v)))T 0 −(hµg

−1
µ T1(q(u)− gµq(v)))T 0

.

This row only differs from the corresponding row in O(H,ψ, q), in that the

pair of columns for v are multiplied on the right by hTµ .

Next suppose l is a loop at v with gain ψ(l) = f . After switching, we

have ψ′(l) = hfh−1. So the corresponding row in O(H,ψ′, q′) is

v( )
0 ((I − (hfh−1)−1

µ )T2(I − (hfh−1)µ)q′(v))T 0

where T2 ∈ {I, P}. Once more, using q′(v) = hµq(v), we can rewrite this as

v( )
0 (hµ(I − f−1

µ )h−1
µ T2hµ(I − fµ)q(v))T 0

.

When T2 = P and h is a reflection we have T2hµ = −hµT2, otherwise

T2hµ = hµT2. Hence h−1
µ T2hµ is −T2 or T2 respectively, and so we can

obtain this row from the corresponding row in O(H,ψ, q) by multiplying on

the right by −hTµ or hTµ respectively.

Thus we can obtain O(H,ψ′, q′) from O(H,ψ, q) by multiplying every

row vector in the pair of columns corresponding to v by hTµ on the right,
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and then, if h is a reflection, multiplying the rows corresponding to any

direction loops at v by −1. This is equivalent to performing a sequence of

column and row operations. Since such operations preserve rank, we have

rank(O(H,ψ′, q′)) = rank(O(H,ψ, q)).

In Lemma 12.1.2, q′ is algebraically independent over QΓ if and only if

q is. Further, for a given Γ-gain graph, the orbit matrix attains maximum

rank at realisations which are generic over QΓ. Hence Lemma 12.1.2 implies

that the switching operation preserves the rank of such frameworks:

Corollary 12.1.3. Let Γ be a point group, and let (H,ψ, q) be a Γ-gain

framework with q generic over QΓ. If (H,ψ′) is obtained from (H,ψ) by a

sequence of switching operations, then rank(O(H,ψ, q)) = rank(O(H,ψ′, q)).

12.1.1 0-extensions and loop 0-extensions

We now show that 0-extensions and loop 0-extensions preserve row indepen-

dence in the orbit matrix:

Theorem 12.1.4. Let Γ be a point group, and let (H,ψ) and (H ′, ψ′) be Γ-

gain graphs such that (H ′, ψ′) is obtained from (H,ψ) by either a 0-extension

or a loop 0-extension which adds a vertex v incident to some set of vertices

X ⊆ V (H).

Suppose q is a realisation of (H,ψ) such that O(H,ψ, q) is row indepen-

dent and q is generic over QΓ. Let q′ be a realisation of (H ′, ψ′) which is

generic over QΓ with q′|V (H) = q. Then O(H ′, ψ′, q′) is row independent.

Proof. By Lemma 12.1.1, we can assume our two new edges are oriented

away from v. We split the remainder of the proof into two cases depending

on whether the inductive move is a 0-extension or loop 0-extension.
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Case 1. v is added by a 0-extension.

Suppose the edges added are −→vv1 and −→vv2 for some {v1, v2} ⊆ V (H) which

may not be distinct, and let ψ′(−→vv1) = g and ψ′(−→vv2) = h. Then, reordering

the rows and columns as necessary, the orbit matrix of (H ′, ψ′, q′) can be

written in block form as

v V (H)


−→vv1 (T1(q′(v)− gµq′(v1)))T ∗
−→vv2 (T2(q′(v)− hµq′(v2)))T ∗

E(H) 0 O(H,ψ, q)

where T1, T2 ∈ {I, P}. Since O(H,ψ, q) is row independent, and the first

two columns of O(H ′, ψ′, q′) have zeroes in all rows except the first two,

O(H ′, ψ′, q′) will be row independent if and only if the vectors T1(q′(v) −

gµq
′(v1)) and T2(q′(v)− hµq′(v2)) are linearly independent.

Assume for contradiction that these vectors are linearly dependent. Then

there exists some non-zero λ ∈ R such that

(T1 − λT2)q′(v)− T1gµq
′(v1) + λT2hµq

′(v2) = 0.

Since q′ is generic over QΓ, this can only hold when the coefficients of the

coordinates for distinct vertices is zero. Since v is distinct from {v1, v2},

this implies λ = 1 and T1 = T2. Which in turn implies h = g and v1 = v2.

In other words −→vv1 and −→vv2 are parallel edges of the same type and with

the same gain. This contradicts the definition of a 0-extension. Hence

O(H ′, ψ′, q′) is row independent.

Case 2. v is added by a loop 0-extension.

Suppose the non-loop edge added terminates at v1 ∈ V (H) and suppose

the gains on the two new edges are ψ′(−→vv) = g and ψ′(−→vv1) = h for some
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g, h ∈ Γ. Then the orbit matrix for (H ′, ψ′, q′) can be written in block form

as

v V (H)


−→vv1 (T1(q′(v)− hµq′(v1)))T ∗
−→vv ((I − g−1

µ )T2(I − gµ)q′(v))T 0

E(H) 0 O(H,ψ, q)

where T1, T2 ∈ {I, P}. As in Case 1, O(H ′, ψ′, q′) is row independent if

and only if the vectors in the first two columns of the first two rows are

independent. Assume for a contradiction that they are not. Then there

exists some non-zero λ ∈ R such that

(T1 + λ(I − g−1
µ )T2(I − gµ))q′(v)− T1hµq

′(v1) = 0.

Since q′ is generic over QΓ and v 6= v1, for this to hold the coefficients of

q′(v) and q′(v1) must both be zero. But this is impossible for q′(v1). Hence

O(H ′, ψ′, q′) is row independent.

12.1.2 1-extensions

Before we tackle 1-extensions, there is one further tool we require, which is

that of limit matrices:

Proposition 12.1.5. [33] Let mi,j : R→ R be a continuous function for all

integers 1 ≤ i ≤ n and 1 ≤ j ≤ m, and let Mt be an n×m matrix with i, j

entry given by mi,j(t). Suppose limt→∞Mt = M . Then there exists some

N such that for all t ≥ N , rank(Mt) ≥ rank(M).

The following argument for 1-extensions is based on that in [35], but

extended to deal with symmetry. Roughly the argument takes the following

form: if our 1-extension adds a vertex v by deleting some edge e = −−→v1v2 and
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adding edges ei = −→vvi for i ∈ {1, 2, 3}, we first perform a 0-extension to add

edges e2 and e3, and then show that we can find a special position for v such

that the rows indexed by e, e1 and e2 are linearly dependent. This allows

us to delete e and add e1 whilst preserving the rank.

Theorem 12.1.6. Let Γ be a point group. Let (H,ψ) and (H ′, ψ′) be Γ-

gain graphs such that (H ′, ψ′) is obtained from (H,ψ) by a 1-extension which

deletes some edge e ∈ E(H) and adds a vertex v.

Suppose q is a realisation of (H,ψ) such that O(H,ψ, q) is row indepen-

dent and q is generic over QΓ. Then there exists a realisation q′ of (H ′, ψ′)

with q′|V (H) = q such that O(H ′, ψ′, q′) is row independent.

Proof. Let e = −−→v1v2 have gain g. By Lemma 12.1.1, we can assume the

extension adds three edges ei = −→vvi where the vertices v1, v2, v3 ∈ V (H) are

not necessarily distinct. Let gi denote ψ′(ei). The definition of a 1-extension

requires g = g−1
1 g2. By Corollary 12.1.3, it suffices to find a realisation q′

when g1 = I and g2 = g.

Let (H∗, ψ∗) be the graph obtained from (H,ψ) by a 0-extension which

adds the vertex v and the edges e2 and e3 with gains g and g3 respectively.

To construct (H ′, ψ) from (H∗, ψ∗), it only remains to delete the edge e and

add the edge e1 with gain ψ′(e1) = I. So to prove our result, it suffices to

find a realisation q′ for which O(H∗, ψ∗, q′) is row independent, and replacing

the row for e with that for e1 maintains row independence.

When e is not a loop, the row corresponding to e in O(H,ψ, q′) is given

by

v1 v2 V (H)− {v1, v2}( )
(T0(q′(v1)− gµq′(v2)))T −(g−1

µ T0(q′(v1)− gµq′(v2)))T 0
,

where T0 = I or T0 = P when e is respectively a length or a direction edge.
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If e is a loop, then v1 = v2, and the block corresponding to this vertex is

the sum of the above blocks for v1 and v2.

Similarly, the row in the orbit matrix O(H ′, ψ′, q′) corresponding to each

non-loop edge ei incident to v is given by

v vi V (H)− {vi}( )
(Ti(q

′(v)− (gi)µq
′(vi)))

T −((gi)
−1
µ Ti(q

′(v)− (gi)µq
′(vi)))

T 0

where Ti = I or Ti = P when ei is respectively a length or direction edge.

For clarity, we allocate distinct columns in the block matrices to each of

v, v1, v2 and v3. This implicitly assumes that v1, v2 and v3 are distinct, which

is not always true. If any of combination of these vertices are identified, then

the correct matrix can be obtained by summing the corresponding column

blocks. In the following two claims, we prove some useful properties of these

block matrices.

Claim 12.1.7. There is no k ∈ R such that

q(v1)− gµq(v2) = k(q(v1)− (g3)µq(v3)). (12.1)

Proof. Assume for a contradiction that equation (12.1) holds for some k.

Then the points q(v1), gµq(v2) and (g3)µq(v3) are collinear. Since Γ is a point

group and q is algebraically independent over QΓ, this implies v1 = v2 = v3

and g ∈ {I, g3}. If g = I, then e is a loop with identity gain, whereas if

g = g3, then e2 and e3 are parallel edges with the same gain and same type.

In both cases, this contradicts the definition of a direction-length Γ-gain

graph.

Claim 12.1.8. Suppose T2 6= T3, and that there is some k ∈ R such that

T2(q(v1)− gµq(v2)) = kT3(q(v1)− (g3)µq(v3)). (12.2)

Then k 6= 0, v1 = v2 = v3 and gµ = −(g3)µ.
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Proof. Since q is generic over QΓ, for (12.2) to hold, the coefficients of dis-

tinct q(vi) must be zero. This implies that v2 is not distinct from {v1, v3},

and, since T2 6= T3, v1 is also not distinct from {v2, v3}. Hence v1 = v2.

Suppose k = 0. Then (12.2) gives gµ = I, which implies e is a loop with

identity gain, hence contradicting our definition of a Γ-gain graph. Thus

k 6= 0, which in turn implies v1 = v2 = v3. Since {T2, T3} = {I, P}, we know

T−1
2 T3 ∈ {±P}. So we can rewrite (12.2) as

(q(v1)− gµq(v1)) = ±k(q(v1)− (g3)µq(v1))⊥.

Since k 6= 0, (12.2) has a solution if and only if the two vectors q(v1)−gµq(v1)

and q(v1)− (g3)µq(v1) are perpendicular at q(v1). Since Γ is a point group,

this implies (g3)µq(v1) can be obtained from gµq(v1) by a rotation of 180◦

about the origin. In other words (g3)µ = P 2gµ = −gµ as required.

In the remainder of the proof, our choice of realisation is dependent on

the values of T0, T1 and T2, so we consider each of the following three cases

separately: T0 = T1 = T2 (i.e. both e1 and e2 are of the same type as e),

T1 6= T2 (e1 is of different type to e2), and T0 6= T1 = T2 (neither e1 nor e2

is of the same type as e). Note that the definition of a 1-extension requires

that at least one of e1, e2 and e3 is of the same type as e, so in this third

case, e3 must be of the same type as e. To simplify our block matrix entries,

let A = q(v1)− gµq(v2) and B = q(v1)− (g3)µq(v3).

Case 1. T0 = T1 = T2.

Let λ ∈ R, and qλ be a realisation of (H∗, ψ∗) with qλ|V (H) = q and

qλ(v) = (1− λ)q(v1) + λgµq(v2).

Let (H∗ + e1, ψ
∗) denote the graph formed from (H∗, ψ∗) by adding e1 and

extending ψ∗ by allocating ψ∗(e1) = I. The orbit matrix for (H∗+e1, ψ
∗, qλ)
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is given in block form by:

v v1 v2 v3



e1 − λ(T0A)T λ(T0A)T 0 0 0

e2 (1− λ)(T0A)T 0 −(1− λ)(g−1
µ T0A)T 0 0

e3 (T3(B − λA))T 0 0 −((g3)−1
µ T3(B − λA))T 0

e 0 (T0A)T −(g−1
µ T0A)T 0 0

0 O(H − e, ψ, q)

We wish to find a realisation qλ such that O(H∗, ψ∗, qλ) is row indepen-

dent. This is guaranteed when the blocks corresponding to v for the edges

e2 and e3 are linearly independent. If T0 = T3, then this holds by Claim

12.1.7. So suppose instead that T0 6= T3. Then T−1
3 T0 ∈ {±P} and so these

blocks are dependent if and only if there exists some k ∈ R such that

B = λA+ kA⊥.

Since A and A⊥ are linearly independent, there are unique values λ = λ∗ and

k = k∗ which satisfy this equation. Assume that our choice of qλ is such that

λ 6= λ∗. Then these rows are independent and rank(O(H∗ + e1, ψ
∗, qλ)) ≥

rank(O(H∗, ψ∗, qλ)) = |E(H)|+ 2.

If we multiply the rows for e1, e2 and e by 1
λ , 1

1−λ and −1 respectively,

then the sum of the resulting rows gives the zero vector. Hence deleting the

row corresponding to e from O(H∗ + e1, ψ
∗, qλ) does not reduce the rank.

Deleting this row gives the orbit matrix of (H ′, ψ′, qλ), so this implies that

for all λ ∈ R− {0, 1, λ∗},

rank(O(H ′, ψ′, qλ)) = rank(O(H∗ + e1, ψ
∗, qλ)) = |E(H)|+ 2 = |E(H ′)|.

Hence O(H ′, ψ′, qλ) is row independent for all λ ∈ R− {0, 1, λ∗}.

Case 2. T1 6= T2.

By Lemma 12.1.1 reorienting e and inverting its gain does not change the
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rank of the orbit matrix. So without loss of generality, we can assume

T0 = T2. This case is the most subtle of the three, as it is possible for T3B

and T0A to be linearly dependent. As such, we split our argument into two

subcases.

Subcase 2(a). There is no k ∈ R such that T3B = kT0A.

For λ ∈ R, let qλ be a realisation of (H∗, ψ∗) with qλ|V (H) = q and

qλ(v) = (I − λP )q(v1) + λPgµq(v2).

Letting A = λPA, the orbit matrix for (H∗ + e1, ψ
∗, qλ) is given in block

form by

v v1 v2 v3



e1 − (T1A)T (T1A)T 0 0 0

e2 (T0(A−A))T 0 −(g−1
µ T0(A−A))T 0 0

e3 (T3(B −A))T 0 0 −((g3)−1
µ T3(B −A))T 0

e 0 (T0A)T −(g−1
µ T0A)T 0 0

0 O(H − e, ψ, q)

Let Mλ denote the matrix formed from O(H∗ + e1, ψ
∗, qλ) by multiply-

ing the row corresponding to e1 by 1
λ . Then for all λ 6= 0, rank(Mλ) =

rank(O(H∗ + e1, ψ
∗, qλ)). Let M = limλ→0Mλ, then M is given in block

form by

v v1 v2 v3



e1 − (T1PA)T (T1PA)T 0 0 0

e2 (T0A)T 0 −(g−1
µ T0A)T 0 0

e3 (T3B)T 0 0 −((g3)−1
µ T3B)T 0

e 0 (T0A)T −(g−1
µ T0A)T 0 0

0 O(H − e, ψ, q)

By our assumption, the rows in M for the edges e2 and e3 are independent

in the columns corresponding to v. Thus rank(M) ≥ rank(O(H,ψ, q)) +



CHAPTER 12. CHARACTERISATION FOR CS-SYMMETRY 235

2 = |E(H ′)|. Since {T0, T1} = {I, P}, we know T1P = ±T0. Hence the

rows of M indexed by e1, e2 and e are linearly dependent. So deleting

the row corresponding to e does not change the rank. Let M∗ and M∗λ

denote the matrices formed from M and Mλ respectively by deleting the

row corresponding to e. Then Proposition 12.1.5 implies that for small

enough λ

rank(O(H∗+e1−e, ψ∗, qλ)) = rank(M∗λ) ≥ rank(M∗) = rank(M) ≥ |E(H ′)|.

But (H∗ + e1 − e, ψ∗) = (H ′, ψ′), and |E(H ′)| is the number of rows of

O(H ′, ψ′, qλ). So this holds with equality, and thus O(H ′, ψ′, qλ) is row

independent for small enough λ.

Subcase 2(b). There is some k ∈ R such that T3B = kT0A.

By Claim 12.1.7 we must have T3 6= T0. Thus T1 = T3 6= T2 = T0. Claim

12.1.8 now implies that k 6= 0, v1 = v2 = v3, and (g3)µ = −gµ. We define qλ

as we did in Case 1, by letting qλ|V (H) = q and

qλ(v) = (1− λ)q(v1) + λgµq(v2).

The orbit matrix for (H∗ + e1, ψ
∗, qλ) is given by

v v1 V (H)− v1



e1 − λ(T1A)T λ(T1A)T 0

e2 (1− λ)(T0A)T −(1− λ)(g−1
µ T0A)T 0

e3 (T1(B − λA))T (g−1
µ T1(B − λA))T 0

e 0 ((I − g−1
µ )T0A)T 0

0 O(H − e, ψ, q)

where A = (I − gµ)q(v1) and B = (I + gµ)q(v1).

Let Mλ be the matrix obtained by multiplying the rows for e1 and e2 by

1
λ and 1

1−λ respectively. Our argument now diverges depending on whether

g is a reflection or a rotation. When g is a reflection, we consider the matrix
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M = limλ→0Mλ. When g is a rotation, we multiply the row for e3 in Mλ by

1
λ to obtain the matrix Nλ, and then consider the matrix N = limλ→∞Nλ.

First suppose g is a reflection. Then g−1 = g, and e is a length loop.

Hence T0 = I and T1 = P . This implies g−1
µ T0A = g−1

µ (I − gµ)q(v1) = −A,

and (I − g−1
µ )T0A = (2I − gµ− g−1

µ )q(v1) = 2A. Using these properties, and

the fact that T1B = kT0A, we can write M as

v v1 V (H)− v1



e1 − (PA)T (PA)T 0

e2 AT AT 0

e3 AT −AT 0

e 0 2AT 0

0 O(H − e, ψ, q)

Since PA is perpendicular to A, the rows for e1 and e3 are linearly indepen-

dent in the columns corresponding to v. Hence rank(M) ≥ rank(O(H,ψ, q))+

2 = |E(H ′)|. Further, the rows for e2, e3 and e are linearly dependent, so

deleting the row for e does not change the rank. Let M∗ and M∗λ be the

matrices obtained from M and Mλ respectively by deleting the row corre-

sponding to e. Then by Proposition 12.1.5, for small enough λ

rank(O(H ′, ψ′, qλ)) = rank(M∗λ) ≥ rank(M∗) = |E(H ′)|.

Hence O(H ′, ψ′, qλ) is row independent for such λ.

Suppose instead that g is a rotation. Then T0gµ = gµT0, and, using the

structure of a rotation matrix given on page 143, we have gµ+g−1
µ = 2 cos(θ)I

when g is a rotation by θ about the origin. Hence

(I − g−1
µ )T0A = (2I − gµ − g−1

µ )T0q(v1) = 2(1− cos(θ))T0q(v1).

Also, since T1B = kT0A, {T0, T1} = {I, P} and P−1 = −P , we have that
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kT1A = −T0B. Using these properties, we can write N as

v v1 V (H)− v1



e1 (T0B)T −(T0B)T 0

e2 (T0A)T −(g−1
µ T0A)T 0

e3 (T0B)T (g−1
µ T0B)T 0

e 0 (T0q(v1))T 0

0 O(H − e, ψ, q)

Since T1B = kT0A, the vectors T0A and T0B are perpendicular, hence the

rows for edges e2 and e3 are linearly independent in the columns correspond-

ing to v. Thus rank(N) ≥ rank(O(H,ψ, q)) + 2 = |E(H ′)|. However, if we

subtract the row for e1 from the row for e3, the columns corresponding to v

cancel, and in the columns corresponding to v1 we obtain

(I + g−1
µ )T0B = (2I + gµ + g−1

µ )T0q(v1) = 2(1 + cos(θ))T0q(v1).

Hence the rows for e1, e3 and e form a linearly dependent set, and deleting

the row corresponding to e from N does not change the rank. Let N∗ denote

the matrix formed from N when this row is deleted, then by Proposition

12.1.5, for large enough λ

rank(O(H ′, ψ′, qλ)) = rank(N∗λ) ≥ rank(N∗) = |E(H ′)|

as required.

Case 3. T1 = T2 6= T0 = T3.

Let λ ∈ R, and qλ be a realisation of (H∗, ψ∗) with qλ|V (H) = q and

qλ(v) = (I − λP )q(v1) + λPgµq(v2).

Substituting these equations into the orbit matrix O(H∗ + e1, ψ
∗, qλ), gives

exactly the same rows for e and e1 as we had in Subcase 2(a), whereas for e2

we need to replace T0 with T1, and for e3 we replace T3 by T0 throughout.
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Let Mλ denote the matrix formed by taking O(H∗ + e1, ψ
∗, qλ), and

multiplying the rows for e1, e2 and e3 by − 1
λ , 1

λ and 1
λ respectively, and let

M = limλ→∞Mλ. The limit matrix M is given in block form by

v v1 v2 v3



e1 (T1PA)T −(T1PA)T 0 0 0

e2 −(T1PA)T 0 (g−1
µ T1PA)T 0 0

e3 −(T0PA)T 0 0 −((g3)−1
µ T0PA)T 0

e 0 (T0A)T −(g−1
µ T0A)T 0 0

0 O(H − e, ψ, q)

Since {T1, T0} = {I, P} and A 6= 0, the vectors T1PA and T0PA are

non-zero and orthogonal, and hence the rows corresponding to e2 and e3 in

M are linearly independent. Thus

rank(M) ≥ rank(O(H − e, ψ, q)) + 2 = |E(H ′)|.

Further, since T1P = ±T0, the rows in M indexed by e1, e2 and e are linearly

dependent. Hence deleting the row for e does not reduce the rank. Let M∗

and M∗λ denote the matrices formed from M and Mλ respectively by deleting

the row corresponding to e. Deleting this same row from O(H∗+ e1, ψ
∗, qλ)

gives O(H ′, ψ′, qλ). Proposition 12.1.5 implies that for large enough λ, we

have

rank(O(H ′, ψ′, qλ)) = rank(M∗λ) ≥ rank(M∗) = |E(H ′)|.

But O(H ′, ψ′, qλ) has exactly |E(H ′)| rows, so this must hold with equality,

and thus O(H ′, ψ′, qλ) is row independent for such λ.

12.2 Characterisation for Cs

The results from the preceding chapters culminate in the following result:
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Theorem 12.2.1. Let (G, p) be a Cs-generic (Cs, π)-symmetric direction-

length framework under free action π. Let V ′ be a set of vertex orbit rep-

resentatives of G, and let (H,ψ, p̃) be the quotient framework of (G, p) with

respect to V ′. Then (G, p) is minimally symmetry-forced infinitesimally rigid

if and only if (H,ψ) is Cs-tight.

Proof. The forwards direction is given by Theorem 10.3.4. So suppose (H,ψ)

is Cs-tight. Then Theorem 11.2.9 implies that (H,ψ) can be inductively con-

structed from the unique Cs-base graph shown in Figure 12.1 by a sequence

of 0-extensions, loop 0-extensions and 1-extensions.

Csv1

σ

Figure 12.1: The unique Cs-base graph.

Let (Hi, ψi) denote the graph on i vertices which appears in this con-

struction sequence, and consider the realisation p̃|V (Hi)
of this graph. Since

p̃(Csv1) = p(v1), the orbit matrix for the realisation p̃|{Csv1} of the base

graph (H1, ψ1) is

O(H1, ψ1, p̃|{Csv1}) = (2(I − σµ)p(v1))T .

Since p is Cs-generic, the unique row of this matrix is non-zero. Hence

O(H1, ψ1) is row independent. Theorems 12.1.4 and 12.1.6 thus imply

that for every graph (Hi, ψi) in our construction sequence, the orbit ma-

trix O(Hi, ψi, p̃|V (Hi)
) is row independent. In particular, when i = |V (H)|,

this implies O(H,ψ, p̃) is row independent. Since (H,ψ) is Cs-tight, this

means |E(H)| = 2|V (H)| − 1 = rank(O(H,ψ, p̃)). Thus (G, p) is minimally

symmetry-forced infinitesimally rigid by Corollary 10.2.5.



CHAPTER 12. CHARACTERISATION FOR CS-SYMMETRY 240

We also obtain the following partial result for rotational and dihedral

symmetry:

Theorem 12.2.2. Let Γ ∈ {Ck≥2,Dk≥2}. Let (G, p) be a Γ-generic (Γ, π)-

symmetric direction-length framework on connected graph G under free ac-

tion π. Let V ′ be a set of vertex orbit representatives of G, and (H,ψ, p̃) be

the quotient framework of (G, p) with respect to V ′. If (H,ψ) can be con-

structed from a Γ-base graph by a sequence of 0-extensions, loop 0-extensions

and 1-extensions, then (G, p) is minimally symmetry-forced infinitesimally

rigid.

Proof. Let m = |V (H)|, and {(Hi, ψi)}1≤i≤m denote the sequence of Γ-gain

graphs in the construction, where i = |V (Hi)|, (H1, ψ1) is a Γ-base graph and

(Hm, ψm) = (H,ψ). The possible Γ-base graphs (Bj , φj) where 1 ≤ j ≤ 4

are shown in Figure 12.2.

(B1, φ1)

v1

c′

c

(B2, φ2)

v1

σ

c

(B3, φ3)

v1

σ

c

(B4, φ4)

v1

σ

σ′

Figure 12.2: The four Γ-base graphs when Γ is a rotational or dihedral group. Here

c and c′ denote non-trivial rotations which need not be distinct, and σ and σ′ denote

distinct reflections.

Claim 12.2.3. If p′ : {vi} → R2 is generic over QΓ, then O(Bj , φj , p
′) is

row independent for 1 ≤ j ≤ 4.

Proof. Using properties of the matrix representatives for reflections and ro-

tations, and row operations on the orbit matrices, we can rewrite each orbit
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matrix O(Bj , φj , p
′) as the matrix Oj , where

O1 =

 p′(v1)T

p′(v1)⊥T

 , O2 =

((I − σµ)p′(v1))T

p′(v1)⊥T

 , O3 =

((I − σµ)p′(v1))T

p′(v1)T



and O4 =

((I − σµ)p′(v1))T

((I − σ′µ)p′(v1))T

 .

The rows of O1 are two perpendicular non-zero vectors, so O1 is clearly row

independent. Suppose O2 is not row independent. Then the line through

p′(v1) and σµp
′(v1) is perpendicular to the line through p′(v1) and the origin.

Since Γ is a point group and p′(v1) 6= ( 0
0 ), this implies σ = I, a contradiction.

Similarly, if the rows of O3 are linearly dependent then p′(v1), σµp
′(v1) and

the origin are collinear, implying σµ ∈ {I, c2}, a contradiction. Finally

suppose the rows of O4 are linearly dependent. Then p′(v1), σµp
′(v1) and

σ′µp
′(v1) are collinear, which implies σ = σ′, again a contradiction.

In our inductive construction, our first framework (H1, ψ1, p̃|V (H1)) has

(H1, ψ1) ∈ {(Bj , φj)}1≤j≤4. Since p̃ is generic over QΓ, Claim 12.2.3 im-

plies O(H1, ψ1, p̃|V (H1)) is row independent. Theorems 12.1.4 and 12.1.6,

then imply O(Hi, ψi, p̃|V (Hi)
) is row independent for all 1 ≤ i ≤ m. Thus

by Lemma 11.2.2, rank(O(H,ψ, p̃)) = |E(H)| = 2|V (H)|. Hence (G, p) is

minimally symmetry-forced infinitesimally rigid by Corollary 10.2.5.

12.3 Further work

For rotational symmetry, the only remaining step required to extend The-

orem 12.2.2 to a full characterisation is to show that the inductive moves

which add degree 4 vertices: loop 1-extensions, loop-to-loop extensions and

2-extensions; preserve row independence in the orbit matrix, when the gains
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on any added edges are from Ck. This would require building on our methods

from Section 12.1.

Dihedral symmetry requires more work. As well as extending the orbit

matrix arguments from Section 12.1, we also need to prove an equivalent

result to Theorem 11.3.28 for dihedral groups (that for all k, we can char-

acterise the class of Dk-tight graphs by a inductive construction). For the

orbit matrix arguments, examples like the Bottema mechanism (see Figures

9.3 and 10.5) suggest that 2-extensions do not always preserve row inde-

pendence when the gains are from an even dihedral group, even when the

realisation is as generic as possible. So we could only hope to extend the

arguments from Section 12.1 to extensions which add degree four vertices

when the symmetry group is odd dihedral.

In Chapter 11, we have already completed many of the steps required to

characterise the class of Dk-tight graphs in terms of an inductive construc-

tion. However, it remains to extend the results of Section 11.3 to the dihedral

case. In other words, to show that when a Dk-tight gain graph is 4-regular

and loop-free, then it has a vertex which can be removed by an admissible

2-reduction. In Section 11.3 we tackled this problem for Ck-tight graphs by

introducing the idea of blocks, and showing that a 2-reduction is admissible

if the resulting graph is mixed and has no blocks (Lemma 11.3.8). For Ck-

tight graphs these blocks were always balanced, however for Dk-tight graphs

we need to consider unbalanced blocks too. A inadmissible 2-reduction in

a Dk-tight graph could create a subset of edges which is direction-pure, re-

flectional, and not sparse. So to extend the arguments of Section 11.3 to

dihedral groups, we would need to adapt our proofs to account for direction-

pure, reflectional blocks. This would make our arguments significantly more

complex.
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