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Abstract—This paper proposes a new spectrum sensing tech-
nique, referred to as autonomous compressive sensing (CS)
augmented spectrum sensing, which can be developed to provide
more efficient spectrum opportunities identification than geo-
location database methods. Firstly, we propose an autonomous
CS-based sensing algorithm that enables the local secondary
users (SUs) to automatically choose the minimum sensing time
without knowledge of spectral sparsity or channel characteris-
tics. The compressive samples are collected block-by-block in
time while the spectral is gradually reconstructed until the
proposed stopping criterion is reached. Moreover, a CS-based
blind cooperating user selection algorithm is proposed to select
the cooperating SUs via indirectly measuring the degeneration of
signal-to-noise ratio (SNR) experienced by different SUs. Numer-
ical and real-world test results demonstrate that the proposed
algorithms achieve high detection performance with reduced
sensing time and number of cooperating SUs in comparison with
the conventional compressive spectrum sensing algorithms.

Index Terms—Compressive sensing, cognitive radio, wideband
spectrum sensing, spectrum access framework.

I. INTRODUCTION

Regulatory bodies worldwide are facing that the rapid
growth of wireless communication industry is overwhelming
current static spectrum supply, and thus encourages an urgent
need for improved spectrum assignment strategy to mitigate
the gap between the available spectrum and the demand [1],
[2]. A key finding of the U.S. 2012 President’s Council of
Advisers on Science and Technology (PCAST) report [3] is
that advanced spectrum sharing technologies have the potential
to “transform spectrum scarcity into abundance” based on the
following two factors: first, it is well recognised that many
licensed frequency bands are under-utilized in practice either
over time or geography locations [4]; second, there have been
some rapid advances towards the development of dynamic
spectrum access such as cognitive radio technology [5]–[7].
To that end, the academia, industry, and regulatory bodies
are closely collaborating to pursue policy and technology
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innovations based on the paradigm of the shared spectrum.
Recently, the 3550-3700 MHz (referred to as 3.5 GHz band)
Citizens Broadband Radio Service (CBRS), is considered for
the spectrum sharing by Federal Communications Commission
(FCC) in the US. Meanwhile, UK Office of Communications
(Ofcom) has published the call for input [8] which considers
the 3.8 GHz to 4.2 GHz as the first band where they apply the
spectrum sharing framework. In order to share the spectrum
efficiently and limit the interference among users, three-tiered
spectrum access framework was introduced in the above-
mentioned shared spectrums [9], [10], where the incumbent
users as the primary users (PUs) operate at the top tier, while
the CBRS users as the secondary users (SUs) operate at the
second or third tiers holding priority access license (PAL) or
generalized authorized access (GAA), respectively. Each tier
accepts interference from tiers above and is protected from
tiers below.

One of the vital important parts of the three-tiered spec-
trum access framework is how to identify available spectrum
bands while protecting the operation of existing users. The
current shared spectrum access systems either utilize geo-
location database to determine which portion of the spectrum
is unoccupied or make use of environmental sensing capability
(ESC) system to sense the presence of the incumbent users [4].
Based on the experience of the TV white space (TVWS)
database operation [11], the existing geo-location database
technology is capable of facilitating the three-tiered access
to the shared spectrum [12]. However, some of the PUs’
spectrum usage information provided by database might be
missed or out of date. Besides, the database only protects
the communication of the PUs. Therefore, both of the PUs
and the SUs may suffer from severe interference and some
spectrum opportunities are not efficiently utilized [13]. ESC
is a group of RF sensors and a decision system deployed in
the coastal areas, which is designed to detect the presence of
the shipborne incumbent users [14]. However, ESC sensors
are normally deployed close to the ocean, which may be far
from many metropolitan areas. Moreover, ESC sensors should
be deployed with a desired level of redundancy to maintain
fault tolerance to sensor outage.

In contrast, the sufficient amount of the CBRS access points
as the SUs are widely deployed to provide secondary spectrum
access in both urban and rural areas, which could be the
nearest infrastructures to most user devices. Therefore, the
Citizens Broadband Service Device (CBSD) sensing network,
which consists of CBRS access points and CBRS users with
sensing capability, is an ideal solution for identifying the
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spectrum opportunities [4]. Remarkably, there are two key
challenges to realize the CBSD sensing network in three-tiered
spectrum sharing framework.

Firstly, to make the best of the shared spectrum, a wide
portion of the spectrum must be sensed (up to 400MHz in UK
spectrum sharing framework [10]). Since the sampling rate of
A/D converters in the SUs should be higher than twice of
spectrum bandwidth due to the Nyquist-Shannon’s sampling
theorem, the A/D converters with very high sampling rate must
be employed and large amounts of spectrum data have to be
processed afterwards, which is unrealistic to be installed in
the commercial SUs with restricted energy resources, e.g.,
mobile sensors and IoT devices. To alleviate the bottleneck
of high rate A/D converters and the massive data processing
burden after sampling, compressive sensing (CS) [15], [16]
was applied to acquire wideband signals using the lower
sampling rates than Nyquist rates by exploiting the sparse
nature of the wideband spectrum as shown in Fig. 1. Due to
the shorter propagation distance as the result of higher central
frequencies (3.5GHz or above) used in three-tiered spectrum
access framework, most spectrum occupancy status varies
with users accessing or releasing the spectrum randomly.
Therefore, the sparsity of the wideband signals is also varying
and unknown [17]. Conventional CS theory requires prior
knowledge of signal sparsity to calculate the sufficient number
of compressive samples for signal reconstruction. Since the
sparsity level is often unknown in practice, most of CS
approaches assume a large sparsity level and choose the excess
number of compressive samples to guarantee the quality of
reconstruction. It turns out that these approaches require more
sensing time or higher sampling rates to collect compressive
samples, which causes larger sensing latency and therefore
loses the advantage of using CS technologies.

Secondly, to overcome the signal-to-noise ratio (SNR)
degeneration caused by multi-path fading, shadowing, and
random noise over wireless channels, cooperative spectrum
sensing (CSS) has been shown to increase the reliability of
sensing by exploiting the spatial diversity across the multiple
SUs [18], [19]. However, a large number of the SUs participat-
ing in CSS network leads to extensive energy consumption and
transmission overhead due to sensing reporting and sensing
decision at the fusion center. Therefore, only the SUs with
high detection capabilities should be selected. It is shown
in [20] that the best detection performance is usually achieved
by cooperating only with the SUs that have the highest SNR
values. In general, the SNRs experienced by the different SUs
are unknown in advance, so that it is hard to identify SUs
which have the best detection capability.

Motivated by the above challenges, the contribution of this
paper is two-fold.

1) Firstly, in order to reduce both the sensing time and
data processing burden, and provide the exact signal
reconstruction without any extra channel assumption
including prior knowledge of sparsity, we propose an
autonomous CS-based sensing algorithm that enables the
local SUs to choose the number of compressive samples
automatically. More specifically, instead of assuming
the upper limit of sparsity level, which would not take
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Fig. 1. The real-time spectrum occupancy recorded at QMUL (51.523021◦N
0.041592◦W). The figure shows that the spectrum is sparsely occupied on
F = [0, 6000] MHz.

the full advantage of CS due to redundant samples
collection, the proposed algorithm can autonomously
terminate the samples acquisition when the proposed
Euclidean distance Dp is smaller than a given threshold.
The proposed algorithm could therefore achieve the
minimum sensing time under the given sampling rate.

2) Secondly, we propose a CS-based blind cooperating
user selection algorithm over wide spectrum without any
prior knowledge of the primary signals, sensor locations.
More specifically, by observing the reconstruction error
of CS is degraded with the SNR experienced by SUs,
i.e., lower SNR leading to larger reconstruction error
under given sampling rate and sensing time, the pro-
posed algorithm employ the same mechanism as the
proposed autonomous CS-based sensing algorithm to
indirectly compare the degenerating of SNRs according
to the approximated reconstruction errors.

Additionally, performance analysis of the proposed au-
tonomous CS augmented spectrum sharing scheme is present-
ed to show its efficiency on dynamic spectrum sharing. Fur-
thermore, the proposed algorithms are tested by the simulated
signals as well as the real-world signals.

The rest of this paper is organized as follows: Section II
discusses the related work on spectrum sensing. In Section III,
the preliminary system and signal model is described. Section
IV introduces the proposed autonomous CS-based sensing
algorithm. Section V develops the proposed blind cooperating
user selection algorithm for selecting SUs with high SNR.
Section VI analyzes and validates the proposed algorithms
over simulated and real-world TVWS signals. Conclusions are
drawn in Section VII.

II. RELATED WORK

Recently, there are some works employing CS into spectrum
sensing. In [21] and [22], novel frequency-domain cyclic pre-
fix (CP) autocorrelation based compressive spectrum sensing
algorithms were proposed to detect PUs in the presence of
noise uncertainty and frequency selectivity. By making use of
sparsity in the spectral domain, CS was utilized to construct
the autocorrelation of the received signal from its subband
sample sequences. In [12] and [23], hybrid frameworks are
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proposed to incorporate the advantages of both geoloca-
tion database and CS-based spectrum sensing. However, the
aforementioned works require the prior knowledge such as
instant sparsity level of the wideband spectrum for signal
reconstruction. Therefore, to eliminate the prior knowledge of
instant spectral sparsity level in CS-based spectrum sensing.
Authors in [24] proposed a sparsity order estimation method
to obtain the minimum sampling rate. To further improve
the sparsity order estimation performance, a dynamic sparsity
upper bound adjustment scheme was proposed in [25] for
obtaining a proper sparsity upper bound. Compared with
these algorithm, the proposed autonomous CS-based sensing
algorithm can automatically choose the number of compressive
samples without any sparsity estimation efforts.

To solving the cooperating SUs selection problem in spec-
trum sharing framework, with the knowledge of the SUs’
locations, the authors in [26] addressed the user selection prob-
lem by selecting a set of SUs which experience uncorrelated
shadow fading. The knowledge of the distance between SUs
and base station is required by those algorithms which also
need the central coordination, i.e., the sensing results should
be sent to the fusion center for selection. In [27], without
the prior knowledge of the SUs’ locations, three methods for
selecting the SUs based on hard local decisions were proposed,
which outperform the purely random selection method of
SUs. Moreover, a correlation-aware user selection scheme was
proposed in [28], which was developed by adaptively selecting
the SUs based on the evaluation of the correlation experienced
by the SUs. However, the aforementioned algorithms are under
the circumstance of narrowband sensing rather than wideband
one and therefore are not suitable for wideband CSS. In [29],
a hybrid double threshold based CSS scheme was proposed,
which could improve the detection performance at SUs by
exploiting both local decisions and global decisions feedback
from the fusion center. Based on order statistic information of
the reporting links between SUs and fusion center, a multi-
selective sensing scheme was proposed in [18]. The links
with high SNRs are selected and the number of selected
links is decided centrally. Although the two schemes could
be applied in wideband CSS, the selection process would be
inefficient since the schemes introduce large latency due to
the sequential manner of sensing. Our proposed blind user
selection algorithm in this paper could capture the whole wide
spectrum at the same time based on CS but utilizes a few
compressive samples to select the SUs with high detection
capabilities.

III. SYSTEM AND SIGNAL MODELS

In this section, the preliminary system and signal models
of the proposed autonomous CS augmented spectrum sharing
scheme are presented.

A. System Model

In the conventional three-tiered spectrum access framework,
the responsibility of the spectrum access system (SAS) is to
manage all the incumbent and secondary operations based on
the information obtained from the incumbent database and
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Fig. 2. The proposed sensing-augmented spectrum sharing architecture

the incumbent detection, i.e., ESC. The incumbent database
provides all the necessary spectrum usage and operational in-
formation of the incumbent users. ESC detects the presence of
shipborne incumbent users with a group of RF sensors and the
interference from the unregistered users. As shown in Fig. 2,
the proposed scheme adopt the CBSD sensing network that
consists of the CBRS access points and the CBRS users with
sensing capability to identify spectrum opportunities and the
unregistered users operating on the target spectrum. Moreover,
due to the centralized nature of SAS and the availability of the
multiple SUs, the proposed scheme can utilize the CSS scheme
over the SUs within the same secondary access network to deal
with the issues such as multi-path and shadowing, which also
can increase the spatial diversity and reduce the probability of
deep fading across all the SUs.

B. Signal Model

Sensing in the three-tiered spectrum access framework aims
to find the spectrum holes which could be used for secondary
access and identify the unwanted interference event over the
whole shared spectrum. Let x(t) be a real-valued continuous-
time signal received at the RF front end of the local SU, such
that

x(t) =

Nsig∑
i=1

si(t) + n(t), (1)

where Nsig is the number of ongoing transmission signals
which span over the total band of W Hz, si(t) is the i-
th signal and n(t) refers to additive white Gaussian noise
with zero mean and variance σ2

n. In the conventional Nyquist
sampling system, we could obtain a discrete time sequence
x[k] = x( k

fN
), k = 0, 1, . . . , N − 1 by using the Nyquist

sampling rate fN over the total sensing time TN . N is the
number of Nyquist samples as N = fN · T , N ∈ Z.

Based on the Nyquist sampling theory, the sampling rate
fN is required to be higher than 2W samples per second
and therefore a lot of samples would be generated to pro-
cess, which slow down the processing speed and cause large
power consumption. Therefore, such Nyquist sampling rate
schemes over wideband spectrum are likely unrealistic to be
implemented in the commercial SUs. This predicament urges
us to apply CS technologies to reduce the number of samples
while remaining the total bandwidth W unchanged.

In a CS-based spectrum sensing approach, the main task
is to reconstruct x[k] or its discrete Fourier transform (DFT)



4

x = {(x1, x2, . . . , xN )T )| x ∈ RN} from compressive sam-
ples. Specifically, since the wideband spectrum is practically
under-utilized, x(t) typically bears a sparse property in the
frequency domain such that its DFT x ∈ RN is a k-sparse
vector, i.e., |{xi : xi 6= 0}| ≤ s. Therefore, the wideband
spectrum signal acquisition could be accomplished with a sub-
Nyquist sampling rate fs < 2W , resulting in fewer samples,
and x[k] or x could be reconstructed from the compressive
samples [30], which is expressed by the following analytical
model:

y = Φx+ ξ subject to ||x||0 ≤ s, (2)

where Φ ∈ RM×N is the measurement matrix to collect the
compressive samples y ∈ RM from the original signal x,
which could be implemented using sub-Nyquist samplers, e.g.,
random demodulator [31] and modulated wideband convert-
er [32], in which controllable measurement matrices have been
proposed to realize CS. M ∈ Z (with s < M < N ) refers
to the dimension of y, and || · ||0 represents the number of
nonzero elements in the vector, which is also treated as the
measure of sparsity. The compressive ratio in this compressive
signal acquisition is given by ρ = M/N < 1 and total sensing
time Ts = M/fs. ξ ∈ RM is the noise perturbation, whose
magnitude is constrained by an upper bound δ, i.e., ||ξ||2 < δ.

IV. THE PROPOSED AUTONOMOUS CS-BASED SENSING
ALGORITHM

In this section, we present an autonomous CS-based sensing
algorithm applied in local SUs of the CBSD sensing network.

A. Algorithm description

In CS theory, the number of compressive samples M is cho-
sen regarding the sparsity level s of the signal in order to guar-
antee the quality of reconstruction, e.g., M ≥ Cs log(N/s) for
a Gaussian measurement matrix, where C denotes a constan-
t [15]. The sparsity level s of the spectrum is assumed to be
known in most of the CS-based spectrum sensing approach.
These approaches intend to assume a maximum sparsity level
smax to ensure a high successful recovery rate since the sparsity
level is often unknown and fluctuates in practice. Therefore,
the required number of compressive samples is larger than the
necessary amount, which causes unnecessary sensing latency
or higher sampling rate for collecting extra samples.

In contrast, our autonomous CS-based sensing algorithm is
adaptive to actual sparsity level, where the sensing time Ts
is divided into several time intervals and the wideband signal
is acquired block-by-block in time until the stopping criterion
regarding reconstruction accuracy is reached. Therefore, the
waste of samples can be averted and the sensing latency
or sampling rate could be further reduced. Additionally, the
remaining sensing time can be utilized for data transmission.

Specifically, the proposed algorithm divides the total sensing
time Ts into P time intervals where p (p ∈ [1, P ]) refers to
the index of each time intervals. Let yp represents a vector
contains all the samples which are collected until the end of
the p-th time interval, and Mp denotes the number of elements
in vector yp, where 0 < M1 < · · · < Mp. ∆yp and ∆M

represent a vector contain the samples collected during the p-
th time interval and the number of samples collected in each
time interval, respectively, i.e., ∆M = Mp −Mp−1.

The collected samples vector yp could be utilized for signal
reconstruction by solving the l1-norm minimization problem:

arg min
xp∈RN

||xp||1 subject to ||Φpxp − yp||22 ≤ δ, (3)

where Φp denotes a Mp × N matrix and xp is the re-
constructed signal from yp. The original wideband spectrum
signals tend to be compressible rather than sparse in the real-
world environment, which can be well approximated by sparse
signals, but the reconstruction errors can only be diminished
but not vanished [33]. Therefore, we utilize a proper constant
parameter λ ∈ R+ to balance the objective of minimizing
the reconstruction error and the solution sparsity according to
the Lagrange multiplier theorem, such that the problem (3)
could be equivalently solved by the following unconstrained
optimization problem:

arg min
xp∈RN

||Φpxp − yp||22 + λ||xp||1. (4)

In addition, the choice of λ depends on the noise level of the
original signal, e.g., the value of λ should be increased when
the noise floor is higher [34].

As the fewer measurements are usually required for the
lν-norm minimization approach compared with the l1-norm
minimization approach [35], we consider the approximation
of the l0-norm by the lν-norm instead of the l1-norm in (4):

arg min
xp∈RN

||Φpxp − yp||22 + λ||xp||νν . (5)

In contrast to the l1-norm, the lν-norm with 0 < ν < 1 is
nonconvex. As convex optimization techniques are no longer
applicable, the global minimizer is not guaranteed and general
NP-hard due to the nonconvexity of the lν-norm minimization.
To that end, iterative reweighted least square (IRLS) algorithm
was proposed to solve this problem by solving a sequence of
the approximation subproblems [36]. The solution sequence
generated by the IRLS algorithm converges to the local min-
imum as the sparsest solution which is also the actual global
lν-norm minimizer under certain assumptions such as the null
space property (NSP) on Φp [35]. However, the computational
burden of lν-norm minimization is higher than that of l1-
norm minimization. To reduce the iterations and speed up
the convergence of reconstruction, we adopt the adaptively
regularized iterative reweighted least square (AR-IRLS) recon-
struction algorithm [37] which moves the estimated solutions
along an exponential-linear path by regularizing the weights
in each iteration with a series of non-increasing penalty terms.
Specifically, the iterative estimates {x(l)

p }∞l=1 of xp is given
by

x(l)
p := arg min

xp∈RN
||Φpxp − yp||22 + λ||xp||

2(w(l)
p )

2 ,

w(l)
p := (w

(l)
p(1), ..., w

(l)
p(N)),

(6)

where ||x||2(w)
2 denotes

∑N
i=1 wix

2
i and w(l)

p(j) is defined as

w
(l)
p(j) =

((
x

(l−1)
p(j)

)2

+ ε

) ν
2−1

0 < ν < 1. (7)
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Algorithm 1 Autonomous CS-based sensing algorithm
Require: Equally divide the total spectrum sensing time Ts

into P time intervals and set the start time interval index
p = 1. Sampling rate fs, number of samples ∆M
collected in each time interval and the reconstruction error
threshold κ.

Ensure: The reconstructed signal x∗

1: for p = 1, . . . , P do
2: Sampling the wideband signal using fs till the time

interval p + 1 so as to obtain the compressive samples
vector yp and the samples ∆yp+1 collected in time
interval p+ 1.

3: Reconstruct the spectral from yp by utilizing AR-IRLS
algorithm to solve the lν-norm minimization problem

arg min
xp∈RN

||Φpxp − yp||22 + λ||xp||νν ,

which leads to a spectral reconstruction xp.
4: Calculate the proposed Euclidean distance

Dp = ||Φ∆Mxp −∆yp+1||22
5: if Dp smaller than threshold κ is true
6: Terminate the signal acquisition process.
7: else
8: p = p+ 1
9: end if

10: end for

After convergence, x(l−1)
p will be sufficiently close to x(l−1)

p ,

so that ||xp||
2(w(l)

p )

2 =
∑N
j=1 w

(l)
p(j)x

2
p(j) =

∑N
j=1((x

(l−1)
p(j) )2 +

ε)
ν
2−1 · x2

p(j) would be close to ||xp||vv . In order to provide
stability and ensure that a zero-valued component in x(l)

p does
not strictly prohibit a nonzero estimate at the next iteration,
ε > 0 [38] is adopted to regularize the optimization problem
in (7). To simplify the illustration of the proposed algorithm,
we define a function Fν as

Fν(x,Φ,w) :=

[
1

2
||Φx− y||22 + λ

N∑
i=1

w(i)x
2
(i)

]
, (8)

Therefore, the estimate in each iteration is equal to

x(l)
p := arg min Fν(xp,Φp,w

(l)), (9)

which requires solving a least squares problem that can be
expressed in this matrix form:

x(l)
p = W (l)

p Φp
t
(
ΦpW

(l)
p Φp

t + λI
)−1

yp, (10)

where W (l)
p is the N × N diagonal matrix with 1/w

(l)
p(i) as

the i-th diagonal element and Φt
p refers to the transpose of

the sensing matrix Φp. Once x(l)
p is obtained, we then update

the weights accordingly. Repeating the whole procedure of
signal acquisition and reconstruction, a sequence of spectrum
reconstruction by increasing the number of time intervals,
i.e., x1,x2, . . . ,xp, would be obtained. We now analyze the
stopping criterion of signal acquisition.

After each signal reconstruction process, the proposed algo-
rithm decides whether the reconstruction of the original signal
is accurate enough or not. If the reconstructed signal does not
satisfy certain accuracy requirement of spectral detection, the
algorithm should require more time intervals until the accuracy
requirement is met. However, since the original signal x is
unknown before the reconstruction in real-world, the exact
reconstruction error e = ||x−xp||22, could not be obtained to
determine how accuracy the reconstructed signal is. Therefore,
we measure the reconstruction error e indirectly and set
stopping criterion in such a practical way. As the compressive
samples vector yp could be treated as the linear projection of
the original signal x during the sampling process in (2), the
Euclidean distance Dp between the sampling result obtained
by applying the same linear function, i.e., sensing matrix, to
the reconstructed signal, and the actual compressive samples
should not be too far, otherwise we shall tell the reconstructed
signal xp is quite different from the original signal x with high
probability. Specifically, the proposed Euclidean distance Dp

is defined as

Dp = ||Φ∆Mxp −∆yp+1||22, (11)

and ∆yp+1 is obtained by

∆yp+1 = Φ∆Mx+ ξ, (12)

where Φ∆M denotes a ∆M × N matrix. The Johnson-
Lindenstrauss Lemma presented in [39] asserts that a high-
dimensional space can be projected into a low-dimensional sig-
nal, where the dimension is equal or larger than O(ζ−2logN)
so that all distances are preserved up to a multiplicative factor
between 1 − ζ and 1 + ζ with 0 < ζ ≤ 1/2. Therefore, we
demonstrate the rigorous relationship between the proposed
Euclidean distance Dp and the actual reconstruction error
e by proving the point that e = ||x − xp||22 calculated in
high-dimensional, i.e., dimension of xp, could be projected
into Dp calculated in low-dimensional, i.e., dimension of
∆yp+1, within the boundary factor of 1± ζ in Theorem 1. If
the proposed Euclidean distance Dp is larger than the given
threshold, the algorithm would continue the signal acquisition,
otherwise the acquisition is terminated. For a given threshold
κ which is predefined according to the reconstruction accuracy
requirement, the minimum sensing time of the wideband
signals would adapt to the actual sparsity levels of the spec-
trum. The outline of the proposed algorithm is summarized in
Algorithm 1.

B. Theoretical guarantee
In theorem 1, we prove that the actual reconstruction error

e could be estimated by the proposed Euclidean distance Dp

within the boundary factor of 1± ζ.

Theorem 1. Given multiplicative factor ζ ∈ (0, 1/2], γ ∈
(0, 1) and ∆M ≤ Cζ−2log(1/2γ), we have

Prob
[

Dp

(1 + ζ)
≤ e ≤ Dp

(1− ζ)

]
≥ 1− γ, (13)

where the parameter C depends on the concentration property
of random variables in measurement matrix Φ∆M [39]. Dp

and e are defined as before.
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Proof. With the aid of Johnson-Lindenstrauss Lemma, if
the number of row r in Φ∆M is equal or larger than
Cζ−2log(1/2γ), we have

(1− ζ)||X||22 ≤ ||Φ∆MX||22 ≤ (1 + ζ)||X||22, (14)

where ζ ∈ (0, 1/2] and γ ∈ (0, 1). Then we replace X in (14)
by x− xp and obtain

(1− ζ)||x− xp||22 ≤ ||Φ∆M (x− xp)||22
≤ (1 + ζ)||x− xp||22.

(15)

Since measurement matrix Φ∆M could be seen as a linear
projection from RN to R∆M , we can transform (15) into

(1− ζ)||x− xp||22 ≤ ||Φ∆Mxp −∆yp+1||22
≤ (1 + ζ)||x− xp||22.

(16)

Finally, to obtain the observation that e = ||x−xp||22 could be
bounded and estimated by Dp = ||Φ∆Mxp −∆yp+1||22, we
change the (16) to another form (17) and simplify it to (18):

1

(1 + ζ)
||Φ∆Mxp −∆yp+1||22 ≤ ||x− x||22

≤ 1

(1− ζ)
||Φ∆Mxp −∆yp+1||22,

(17)
Dp

(1 + ζ)
≤ e ≤ Dp

(1− ζ)
. (18)

Therefore, when the row number ∆M in Φ∆M is equal or
larger than Cζ−2log(1/2γ), the distance between Dp and
e could be bounded up to a multiplicative factor between
1 − ζ and 1 + ζ. Hence, we could state that the actual
reconstruction error e could be estimated by the proposed
Euclidean distance Dp when ∆M is larger than a lower bound
and Dp could be utilized as the stopping criterion of the
algorithm. See Appendix for The proof of that (17) is satisfied
with probability larger than 1− γ.

V. CS-BASED THE PROPOSED BLIND COOPERATING USER
SELECTION ALGORITHM

In this section, we present a CS-based blind cooperating
user selection algorithm applied in the CBSD sensing network
for selecting the SUs with high SNR in the proposed scheme
without the degradation of the detection performance by
utilizing fewer SUs.

A. Algorithm description

In a CBRS sensing network, not every SU could produce
informative spectrum sensing results due to the different
deployment scenarios of the SUs. Moreover, as the number of
cooperating SUs grows, the energy efficiency of the network
decreases [40] and the sensing performance of the network
only marginally increases once the number of cooperating
SUs is sufficiently large [41]. Therefore, it is not an optimal
choice to cooperate all SUs no matter whether they have high
detection capability or not. The optimal performance could
be achieved by selectively cooperating among SUs with high
sensing performance of the transmission signals [42] where
the sensing performances of SUs are fundamentally limited

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SNR (dB)

0.10.20.30.40.50.60.70.80.91.0 Actual Reconstruction ErrorThe Proposed Euclidean Distance

Fig. 3. r-MSE vs. average SNR between the actual reconstruction error and
the estimated reconstruction error.

by the signal transmission channels since the reconstruction
accuracy would be effected by the SNR of received signals.

As shown in Fig. 3, if the sampling rate is fixed and
sufficient for signal reconstruction, reconstruction performance
would be affected by the SNR of the transmission signal,
which is likely caused by the channel fading, i.e., shadowing
and multi-path. Therefore, CS could be utilized for cooper-
ating user selection and the proposed autonomous CS-based
spectrum sensing scheme could perform user selection without
extra SNR estimation algorithms. The SUs with high SNR,
could be selected by utilizing the proposed Dp to approximate
the unknown reconstruction error. Specifically, the compressed
samples vector y is divided into two vectors yr (yr ∈ Rr×1)
and yv (yv ∈ Rv×1) for estimating the reconstruction error.
According to the acquisition model in (2), these two vectors
can be expressed as yr = Φrx + ξ and yv = Φvx + ξ,
respectively, where x ∈ RN×1, Φr ∈ Rr×N and Φv ∈ Rv×N .
Parameter r as the number of compressed measurements in yr,
is determined to ensure the successful reconstruction, and v
is set to guarantee the sufficient accuracy of reconstruction
error estimation as illustrated in Theorem 1. To select the
suitable cooperating SUs, one can compare the estimated
reconstruction error e∗ with a predefined threshold which
could be determined according to the detection capability
requirement of SUs. Moreover, without the effort of signal
reconstruction, only the locally collected samples should be
sent to the fusion center for SUs selection under the centralized
manner or be passed to other SUs under the distributed manner
of the distributed CSS network.

VI. EXPERIMENTAL RESULTS

As a proof of concept for the proposed scheme, we verify
the effectiveness of the proposed algorithms using both simu-
lated signals and real-world signals in this section.

A. Experiment Setups and Performance Measures

Consider the simulated wideband signal x(t) ∈ F =
[0, 500] MHz, whose DFT is denoted as xsim

0 which contains
up to k active channels:

x(t) =

k∑
i=1

√
EiBisinc(Bi(t− ti))ej2πfit + n(t), (19)
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(b)

(c)(a)

Fig. 4. (a) The outdoor antenna. (b) The RFeye node. (c) The captured power
spectrum density at Queen Mary University of London [43].

where sinc(x) = sin(πx)/(πx), Ei, ti and fi represent the
energy, the time offset, and the central frequency of the i-
th sub-band and n(t) denotes the noise. The i-th sub-band
covers the frequency range [fi − Bi

2 , fi + Bi
2 ]. Typically, the

critical influences of a signal transmission channel consist of
path loss, small-scale fading, e.g., multi-path, and large-scale
fading, e.g., shadowing [26]. In each CBSD sensing network,
the path loss could be approximately the same for all SUs
since the maximum distance among SUs are assumed to be
much smaller than the distance between the PUs and the SUs.
For the fading effects, the multi-path effect exhibits a Rayleigh
distribution, which could cause random variations in the SNR
at the SUs, while the shadowing effect could be viewed as
extra losses via a series of obstacles which is notoriously hard
to model accurately and its statistics can vary widely with the
deployment environments [41]. Therefore, we assume the SNR
is varying in some channels for the different SUs in order to
model both the large-scale and the small-scale fading effects.

To demonstrate the effectiveness of the proposed scheme
over the wideband spectrum with the varying bandwidths
and power levels of primary signals, the bandwidths Bi of
i-th primary signal is varying from 5 to 20 MHz and the
corresponding central frequency fi is randomly located in
[Bi2 ,W−

Bi
2 ]. The total sensing time is assumed as T = 10µs,

and thus the number of samples collected by the Nyquist sam-
pling rate could be calculated as N = T · fNYQ. Rather than
using the Nyquist sampling rate fNYQ ≥ 2W = 1000 MHz,
we adopt the sub-Nyquist sampling rate fs < 2W which
is depended on the maximum sparsity level smax that can
be estimated by long-term spectral observations. In the con-
ventional CS approaches, the number of compressive samples
M = T · fs = K0smaxlog(N/smax) [15] should be determined
by the worst case of sparsity level smax to guarantee a very high
acceptable reconstruction frequencies over the total sensing
time T since the actual sparsity level is unknown in the real-
world. In the proposed scheme, the total sensing time T is
divided into P = T · fs/∆M time intervals, where P ∈ Z+.
The signal acquisition process would be terminated once the
stopping criterion is reached. Therefore, the actual sensing

time of the proposed scheme is equal or lower than T . The rest
of sensing time could be utilized for data transmission besides,
the shorter sensing time would prevent the further interference
to the PUs.

The real-world signals xreal
0 are received by an RFeye node,

which is an intelligent spectrum monitoring system that can
provide real-time 24/7 monitoring of the radio spectrum [44].
As shown in Fig. 4, the RFeye node is located at Queen Mary
University of London (51.523021◦N 0.041592◦W), and the
antenna height is about 15 meters above ground.

To measure the reconstruction accuracy, we present the
reconstruction error ||x∗ − x0||22 by the conventional average
relative mean square error (r-MSE):

r-MSE =
||x∗ − x0||22
||x0||22

, (20)

where x∗ denotes the reconstructed signal, x0 = xsim
0 in the

simulation mode and x0 = xreal
0 in the real-time mode. To

quantify the detection performance we compute the detection
probability, i.e., the fraction of occupied channels correctly
being reported as occupied. The estimated active channel set
is compared against the original signal support to compute the
detection probability under 2000 trials.

B. Results over Simulated Signals

To prove the effectiveness of the proposed scheme and
verify the theoretical results in Theorem 1, we compare
the actual reconstruction error and the proposed Euclidean
distance Dp which is referred as stopping criterion with the
different number of time intervals in Fig. 5. It shows that
the original signal is successfully reconstructed and the signal
acquisition could be terminated at the time interval p = 10,
rather than p = 50 (total sensing time) by the conventional
CS-based algorithms. Since the proposed Euclidean distance
Dp become very close to the actual reconstruction error when
the actual reconstruction error becomes sufficiently small,
Dp could be utilized as the stopping criterion to terminate
the signal acquisition process as presented in Theorem 1.
Moreover, Fig. 5 shows that the reconstruction accuracy could
not be significantly improved by collecting additional samples.
Therefore, the proposed scheme utilizes less sensing time than
that of conventional CS approaches with the same sub-Nyquist
sampling rate. The remaining sensing time can be utilized
for future data transmission, besides, the shorter sensing time
would prevent the further interference to the PUs.

Since the PUs and the SUs could randomly enter or leave the
shared spectrum, the sparsity levels of the received wideband
signals in practice are unknown and fluctuant. A practical CS-
based sensing algorithm should be robust against different
signal sparsity levels. Therefore, in Fig. 6, we demonstrate
the performance of the proposed scheme under the different
sparsity levels with a fix sampling rate fs = 0.5fNYQ.
From Fig. 6, it can be observe that the proposed scheme
could successfully reconstruct the signals and terminate the
sensing process at the time interval p = 8, 15, 20 under the
sparsity levels s = 0.05N, 0.10N, 0.15N , where the higher
sparsity levels of the signals would lead to the more time
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0 5 10 15 20 25 30 35 40 45 50Number of Time Intervals00.0050.0100.015
r-MSE

Actual reconstruction errorStopping criterion

Fig. 5. r-MSE vs. number of time intervals between the actual reconstruction
error and the stopping criterion Dp when sparsity level is fixed as s = 0.1N
for the proposed scheme.

0 5 10 15 20 25 30 35 40 45 50Number of Time Intervals00.0050.0100.0150.020 Sparsity level = 0.05NSparsity level = 0.10NSparsity level = 0.15N

Fig. 6. r-MSE vs. number of time intervals under different sparsity levels
s = 0.05N, 0.10N, 0.15N for the proposed scheme.
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Fig. 7. Average sensing time (µs) vs. the sparsity level (N ) between the
proposed scheme and other CS-based spectrum sensing algorithms.

intervals needed for guaranteeing the reconstruction accuracy.
Therefore, without the prior knowledge of the actual spectral
sparsity, the proposed scheme can autonomously adopt a
proper number of time intervals for signal reconstruction.

In Fig. 7, we present the comparison among the two-step
CS-based spectrum sensing scheme [24] (termed two-step
CS-based scheme), the conventional compressive spectrum
sensing scheme [45] (termed traditional CS-based scheme)
and the proposed scheme. We use the average sensing time
in µs instead of the number of time intervals to measure the
reduction of the sensing cost, since only the proposed scheme
needs to divide the total sensing time into multiple small time
intervals. Without loss of generality, we test different schemes
with a fixed sampling rate fs = 0.5fNYQ. To illustrate the
impact of adopting different step lengths ∆M , the proposed
scheme is tested with both the large step length and with the
small step length, which adopts ∆M = 500 and ∆M = 50,
respectively. It is shown in Fig. 7 that the performance of
the proposed scheme is influenced by the step length ∆M .

0 0.05 0.10 0.15 0.20 0.25 0.30Sparsity Level00.20.40.60.81.0
Proposed scheme with user selection (200MHz)Proposed scheme without user selection (200MHz)Proposed scheme with user selection (400MHz)Proposed scheme without user selection (400MHz)

Fig. 8. Detection probability vs. the sparsity level (N ) between the pro-
posed algorithm with and without cooperating user selection under different
sampling rates = 200MHz and 400MHz.

If the ∆M is too large, the proposed scheme will lose its
advantage and be worse than the two-step CS-based scheme.
To understand this, we consider an extreme setting: the total
number of time intervals is set to 1 and thus the step length
become ∆M = M = T · fs, where the proposed scheme is
degraded to the conventional compressive spectrum sensing
scheme which could not work with unknown sparsity levels
efficiently. Therefore, ∆M should not be too large in order
to keep the effectiveness of the proposed scheme. However, if
∆M is too small, it will require many steps, e.g., maximum
250 time intervals are required if ∆M = 20 in this simulation,
although it is more likely to reach the minimum sensing
time. Therefore, there is a trade-off need to be balanced
between computational complexity and the effectiveness of the
proposed scheme.

To illustrate the functionality of the proposed CS-based
blind cooperating user selection algorithm, we show the detec-
tion probability against the sparsity level between the proposed
scheme with and without cooperating user selection under
different sampling rates (200 MHz and 400MHz) in Fig. 8.
In the proposed scheme, we select half of the SUs to perform
CSS for demonstration purpose. The maximum number of the
cooperating SUs could be set according to the capacity in the
practical network environment. It is shown that the detection
probability of the proposed scheme with user selection is
always higher than or equal to that of the proposed scheme
without user selection. Therefore, there is no degeneration of
the detection probability when cooperating with fewer SUs.
Moreover, the detection probability is improved when sparsity
level of the wideband spectrum is high, i.e., higher occupancy
ratio, under different sampling rates. That is because the
proposed cooperating user selection scheme could take out the
SUs with bad detection results, e.g., malicious users, which
could affect the overall detection performance.

C. Analysis on Real-world Signals

To analyze the performance of the proposed scheme with
real-world signals over the different spectrums, e.g., TVWS
spectrum and 3.5GHz spectrum in the UK, we compare the
r-MSE of the proposed scheme against the two-step CS-based
spectrum sensing scheme with the same sampling rate in
Fig. 9. It is shown that the proposed scheme not only can
work properly in the 3.5GHz shared spectrum, but also can
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deal with the TVWS spectrum. Particularly, as the real-world
3.5GHz spectrum is much sparser than the TVWS spectrum
in the UK, the required sensing time of the 3.5GHz spectrum
is less than that of the TVWS spectrum. The proposed method
outperforms the two-step CS in terms of sensing time under
give sampling rate since the adopted AR-IRLS reconstruction
algorithm requires fewer compressive samples to achieve the
same reconstruction accuracy compared with the basis pursuit
denoising (BPDN) reconstruction algorithm adopted in two-
step CS [37]. The proposed scheme is suitable for the practical
measurements and can be extended to other shared spectrums
like TVWS and the bands with the higher central frequencies.

VII. CONCLUSION

In this paper, we have proposed an autonomous CS aug-
mented spectrum sharing scheme to provide more efficient
spectrum opportunities identification within the CBSD sensing
network. In order to tackle the challenges of realizing the
CBSD sensing network, firstly we proposed an autonomous
CS-based sensing algorithm which enables the local SUs to
automatically choose the minimum sensing time while guar-
anteeing the exact wideband signal reconstruction. To enhance
the detection performance and use fewer SUs in each CBSD
sensing network, a CS-based blind cooperating user selection
algorithm is proposed to select the SUs which could produce
informative spectrum sensing results according to the detection
SNR of the transmission signals. The robust performance of
the proposed CS-based autonomous sensing scheme has also
been validated over both simulated signals and real-world
signals recorded by the RFeye node at QMUL. Numerical
analysis and experimental results have shown that the proposed
scheme could not only adaptively select an appropriate number
of time intervals without the estimation of sparsity level but
also offer exact signal reconstruction for varying bandwidth
of channels and power levels under different unknown sparsity
levels. In comparison with conventional compressive spectrum
sensing schemes and two-step CS-based spectrum sensing
schemes, it is shown that the proposed scheme can achieve
the better detection performance as well as the shorter sensing
time and fewer number of cooperating SUs. Additionally, the
remaining sensing time can be utilized for data transmission
and avoiding the further interference to the ongoing primary
transmissions. These benefits enable the proposed scheme to
be implementable for spectrum sharing, especially over the
3.5GHz spectrum and the higher frequencies. Moreover, we
shall extend the proposed scheme with advanced detector such
as frequency domain autocorrelation [22] and maximum -
minimum energy detection sensing algorithm [46] to further
enhance the ability against the noise uncertainty and frequency
selective channel in future work.

APPENDIX
PROOF OF THE THEOREM 1

Let X ∈ Rn be an arbitrary fixed unit vector, i.e., ||X||22 =
1 for simplicity, and the linear projection X → Y is defined
by

Y(i) =

n∑
j=1

A(ij)X(j), i = 1, 2, . . . , r, (21)

0 1 2 3 4 5 6 7 8 9 10Sensing Time00.0050.0100.0150.020 Proposed scheme over 3.5GHz spectrumTwo-step CS-based scheme over 3.5GHz spectrumProposed scheme over TVWS spectrumTwo-step CS-based scheme over TVWS spectrum

Fig. 9. r-MSE vs. the sensing time (µs) over different real-world spectrum
signals.

where A(ij) are independent random variables with E[A(ij)] =
0 and Var[A(ij)] = 1, which has an uniform sub-Gaussian tail.
Since Y could be seen as a linear combination of the A(i)

which is the i-th row of A, Y(i) has an uniform sub-Gaussian
tail as well. Therefore, according to the Proposition 3.2 in [39],
we could define a random variable as

Z =
1√
r

(Y 2
(1) + · · ·+ Y 2

(r) − r), (22)

where Z has a sub-Gaussian tail up to
√
r. Therefore, ||Y ||22−

1 is distributed as Z/
√
r and we can get

Prob[||Y ||2 ≥ 1 + ζ] = Prob[||Y ||22 ≥ 1 + ζ2 + 2ζ]

≤ Prob[||Y ||22 ≥ 1 + 2ζ]

= Prob[Z ≥ 2ζ
√
r].

(23)

As ζ ∈ (0, 1/2], by utilizing the Chernoff-type inequality, we
have

Prob[Z ≥ 2ζ
√
r] ≤ exp−a(2ζ

√
r)2 = exp−4aζ2Cζ−2log(2/γ) ≤ γ

2
(24)

for C ≥ 1/2a. Applying the same principle and the similar
calculation as above, Prob[||Y ||2 ≤ 1 − ζ] ≤ γ/2 could be
demonstrated as well. Therefore, we can get the conclusion
that

Prob
[
(1− ζ)||X||22 ≤ ||AX||22 ≤ (1 + ζ)||X||22

]
≥ 1− γ.

(25)
Then we replace X in (25) by x− xp to obtain (26). As A
refer to the linear projection X → Y , we could get (27) and
its another form (28), shown below:

Prob
[
(1− ζ)||x− xp||22 ≤ ||Φ∆M (x− xp)||22

≤ (1 + ζ)||x− xp||22
]
≥ 1− γ,

(26)
Prob

[
(1− ζ)||x− xp||22 ≤ ||Φ∆Mxp −∆yp+1||22

≤ (1 + ζ)||x− xp||22
]
≥ 1− γ,

(27)

Prob
[

1

(1 + ζ)
||Φ∆Mxp −∆yp+1||22 ≤ ||x− x∗||22

≤ 1

(1− ζ)
||Φ∆Mxp−∆yp+1||22

]
≥ 1− γ.

(28)
Finally, we shall simplify (28) to the result

Prob
[

Dp

(1 + ζ)
≤ e ≤ Dp

(1− ζ)

]
≥ 1− γ. (29)
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