
Deep Learning Prototype Domains for Person Re-Identification

Arne Schumann
Fraunhofer IOSB, Karlsruhe, Germany
arne.schumann@iosb.fraunhofer.de

Shaogang Gong
Queen Mary University of London, UK

s.gong@qmul.ac.uk

Tobias Schuchert
Fraunhofer IOSB, Karlsruhe, Germany
tobias.schuchert@iosb.fraunhofer.de

Abstract

Person re-identification (re-id) is the task of matching
multiple occurrences of the same person from different cam-
eras, poses, lighting conditions, and a multitude of other
factors which alter the visual appearance. Typically, this
is achieved by learning either optimal features or matching
metrics which are adapted to specific pairs of camera views
dictated by the pairwise labelled training datasets. In this
work, we formulate a deep learning based novel approach
to automatic prototype-domain discovery for domain per-
ceptive (adaptive) person re-id (rather than camera pair
specific learning) for any camera views scalable to new
unseen scenes without training data. We learn a separate
re-id model for each of the discovered prototype-domains
and during model deployment, use the person probe image
to select automatically the model of the closest prototype-
domain. Our approach requires neither supervised nor un-
supervised domain adaptation learning, i.e. no data avail-
able from the target domains. We evaluate extensively our
model under realistic re-id conditions using automatically
detected bounding boxes with low-resolution and partial
occlusion. We show that our approach outperforms most
of the state-of-the-art supervised and unsupervised methods
on the latest CUHK-SYSU and PRW benchmarks.

1. Introduction
The task of re-identifying the same person across dif-

ferent cameras has attracted much interest in recent years.
Person re-identification is at its core a cross-domain recog-
nition problem. Datasets are usually recorded in a camera
network setting with a fixed set of cameras and viewing an-
gles. Consequently, most approaches interpret each camera
as a separate visual domain and focus on developing fea-
tures or metrics that can robustly recognize a person within
such camera-view-perspective domains. In this work, we

Figure 1. We use the latest PRW [37] (top row) and CUHK-SYSU
[33] (bottom row) datasets as target (test) domains for evaluation,
unavailable to model learning. Both datasets provide many camera
views and unsegmented video frames which requires auto-person-
detection for a more realistic person re-id evaluation.

consider other camera-view-independent factors, such as
pose, illumination, occlusions, and background influence
the visual appearance of a person, and we wish to explore
them as visual domains in constructing camera-view inde-
pendent re-id models for better scalability to unknown cam-
era views.

In this work, we propose a two-stage approach to auto-
matically discover visual domains in large amounts of di-
verse data and use them to learn feature embeddings for
person re-identification (see Figure 1). In the first stage, we
pool data from a large amount of re-identification datasets,
independent from the test domains, to capture a large de-
gree of visual variation in the training data. We then explore
clustering based on feature learning in convolutional neural
networks (CNNs) to automatically discover dominant (pro-
totype) visual domains. In the second stage, we again apply
CNNs to learn feature embeddings in each of the prototype
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domains in order to support domain perceptive (sensitive)
person re-id during testing with automatic domain selection.
We learn one embedding per domain. This allows the model
to learn specific details about each individual prototype do-
main while ignoring others. For example, an embedding
learned for a domain which predominantly contains people
of dark-dress does not need to encode information relevant
to distinguishing a person dressed in light blue colors from
a person dressed in white clothes. By doing so, the domain
perceptive embedding focuses on learning subtle discrimi-
native characteristics among similar visual appearances. On
testing, a probe image is first matched to its most likely do-
main. Then, the feature embedding learned on that domain
is used to perform re-identification. Note, this approach is
purely inductive. It does not require any training data (la-
belled or unlabelled) from the target (test) domains, and the
model is designed to scale to any new target domains. Our
approach is particularly well suited to scenarios in which
no fixed set of camera views is available (i.e. no fixed do-
main borders are specified). We thus evaluate it on the lat-
est CUHK-SYSU and PRW datasets, which contain images
from diverse sources of mobile cameras, movies and fixed
view cameras, with multitude of view angles, backgrounds,
resolutions and poses. Our approach yields the state-of-the-
art accuracy on CUHK-SYSU and is competitive on PRW.
This is without using target domain data in our model train-
ing whilst all other methods compared in the evaluation ex-
ploit target domain data in their model learning.

Our contributions are: (1) We formulate a novel ap-
proach to automatic discovery of prototype-domains, char-
acterising person visual appearance with domain perceptive
awareness. (2) We develop a deep learning model for do-
main perceptive (DLDP) selection and re-id matching in a
single automatic process without any supervised nor unsu-
pervised domain transfer learning. (3) We show the signif-
icant advantage of our model by outperforming the state-
of-the-art on the CUHK-SYSU benchmark [33] with up to
5.6% at Rank-1 re-id, and being competitive on the PRW
benchmark [37] of 45.4% Rank-1 re-id compared to the
47.7% state-of-the-art, notwithstanding that the latter bene-
fited from model learning on target domain data.

2. Related Work
Most re-id approaches can be grouped into two cat-

egories: feature based approaches and metric based ap-
proaches. The former type aims to develop a robust feature
representation. The latter approach focuses on optimizing
a distance metric that, given any feature, yields small dis-
tances for matching person images and large distances of
images of different people. In recent years, deep learn-
ing methods have gained significant advantages on image
classification, and have been applied to person re-id. Many
deep learning approaches focus on feature learning. Yi et

al. [35] split person images into three regions and learn sep-
arate feature maps which are combined into a final feature
through a fully connected layer. Cosine distance is used to
perform re-id. Ding et al. [7] apply a triplet loss in order
to train a feature whose Euclidean distance of a matching
image pair is smaller than that of a pair of images of differ-
ent people. Xiao et al. [32] propose to use dataset specific
dropout to learn features over multiple smaller datasets si-
multaneously. Cheng et al. [4] propose an improved triplet
loss function which emphasises small distances for simi-
lar image pairs. We et al. [31] combine hand-crafted fea-
tures with CNN features for re-id metric learning. Other
deep learning approaches focus on studying network layers
specifically designed for person re-id. Li et al. [18] describe
a filter pairing network to model translation, occlusion and
background clutter in its architecture. Ahmend et al. [1]
introduce a neighborhood matching layer for improving ro-
bustness to translation and pose change. This layer is also
applied by Wu et al. [30] to train an end-to-end re-id net
which directly outputs a (dis-) similarity decision without
relying on a separate distance function. Xiao et al. [33]
propose an approach which combines person detection and
re-id into a single CNN for simultaneous person detection
and computing re-id feature for each detection.

A few studies have addressed cross-domain re-id by us-
ing target domain data for supervised [16, 23, 29] or unsu-
pervised [22, 25] domain adaptation. Others have evaluated
their models on datasets without any adaptation to the tar-
get domain [12, 24, 35]. To our knowledge, the proposed
model in this work, for the first time, does not rely on do-
main adaptation using target domain data whilst learning
domain perceptive re-id for unknown target domains.

3. Methodology
The central objective of our approach is to learn a do-

main adaptive re-id model (domain perceptive) which is
scalable to new and unseen data without requiring any man-
ual labelling for model training on the new target domains.
We propose a two-stage approach to achieve this: (1) In
the first stage, characteristic and dominant (prototype) do-
mains are automatically discovered in large amounts of di-
verse data (Section 3.1.2); (2) In the second stage, this in-
formation is used to train a number of domain specific em-
beddings by deep learning for person re-id (Section 3.2.2).
An overview of our approach is given in Figure 2.

3.1. Automatic Domain Discovery

3.1.1 Divergent Data Sampling

A key requirement for a meaningful domain discovery is di-
vergent data sampling which aims to provide a large range
of realistic visual variation. In order to achieve such a high
degree of variation, we pool a number of publicly available
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Figure 2. Overview of DLDP. During training we discover domains in a large pooled dataset. For each domain a domain-specific re-id
model is trained. At deployment, the query image is used to identify the closest matching domain and use the corresponding domain-
specific model to rank the gallery.

Persons Cameras M-BBoxes A-BBoxes
HDA [9] 85 13 850 -
GRID [21] 250 8 500 -
3DPeS [2] 200 8 1,012 -
CAVIAR4REID [5] 72 2 1,221 -
i-LIDS [38] 119 2 476 -
PRID [11] 200 2 400 -
VIPeR [10] 632 2 1,264 -
SARC3D [3] 50 1 200 -
CUHK2 [17] 1,816 10 7,264 -
CUHK3 [18] 1,360 6 14,096 14,097
Total 4,786 54 27,283 14,097

Table 1. Ten sources for the DLDP re-id domain discovery dataset.
The data consists of manually labelled bounding boxes (M-
BBoxes) as well as person detections (A-BBoxes).

person re-identification datasets into a new, large dataset for
domain discovery, called DLDP domain discovery dataset1.
We combine 10 datasets which together contain images of
4,786 different persons with a total of 41,380 bounding
boxes. Of these bounding boxes 27,283 are manually an-
notated and 14,097 are obtained by a person detector. Ta-
ble 1 shows the sources used to construct the DLDP do-
main discovery dataset. We resize all bounding boxes to
a uniform size of 160 × 80 pixels. This DLDP divergent
data sampling allows us to discover domains which cover a
large and diverse spectrum of possible variation in person
visual appearance. We show in our experiments its suitabil-
ity for generalisation to person re-id in new/unseen camera
domains.

1The DLDP dataset will be made publically available.

3.1.2 Prototype-Domain Discovery

We wish to explore deep learning based clustering to dis-
cover dominant (prototype) visual domains from the multi-
source pooled DLDP dataset. In particular, we exploit the
concept of unsupervised deep embedding space learning
proposed in [34], but importantly, adopted to utilise the
available person id labels from the re-id datasets. Our su-
pervised deep learning clustering model alternates between
(1) training a CNN to learn a feature embedding from the
re-id image datasets and (2) applying conventional k-means
clustering in the embedding space to find clusters. To ini-
tialize the weights of our feature embedding CNN, we train
the model using the person ID labels available in the data.
Our model architecture is given in Table 2 (Section 3.2.2 for
more details). We set the last, fully connected layer of the
network to 4,786 dimensions and train using person ID la-
bels in a one-hot encoding and a softmax loss for person ID
classification. The multi-source dataset ensures that the in-
fluence of any particular dataset’s bias on the initial feature
embedding is reduced. Moreover, we apply data augmen-
tation by cropping and flipping the images, and also ensure
unbiased sampling by selecting images from different data
sources in DLDP with equal frequency. Image cropping is
performed by resizing an image to 30 × 10 pixels larger
than the net requires and randomly cropping it down to the
correct size. Through data augmentation, the hypothetical
data pool size is increased by a factor of 600. We ensure
unbiased sampling by selecting images from different data
sources in DLDP with equal frequency. This results in more
data augmentation on the smaller data sources (among the
ten sources in the DLDP dataset) so to prevent the CNN



from overfitting to the larger data sources. For the domain
discovery part (k-means clustering) the person ID softmax
loss layer is replaced by a softmax loss which corresponds
to the number of clusters, set to eight in our current model2.
Thus, after a supervised initialization, the domain discovery
continues in an unsupervised manner.

The initialization from a person re-identification net is
crucial to the success of our prototype domain discovery.
The re-identification training ensures that the initial model
does not react strongly to the dataset biases present in our
feature pool. This prevents the clustering from simply dis-
covering trivial dataset boundaries as prototype domain
boundaries and instead, lets the model focuses more on the
content of each person bounding box.

3.1.3 Training Strategy

For training of our deep clustering model we use a low ini-
tial learning rate of 0.001. This ensures that the cluster em-
bedding does not deviate too quickly from its re-id label
constrained initialization. Given the initial embedding, we
perform 25 runs of k-means clustering in the embedding
space and select the best result for the next refinement of
the embedding (i.e. step 2 in Section 3.1.2). This ensures
stability of the iterative training process. The refinement
(fine-tuning) of the embedding CNN is then performed for
a further 10,000 training iterations (i.e. step 1 in Section
3.1.2). We divide the learning rate of the embedding by 10
every two iterations of the discovery process. This itera-
tive process is repeated until less than 1% of images change
their cluster assignments. Some examples of learned proto-
type domains (i.e. clusters in the embedding feature space)
with their corresponding images are shown in Figure 3.

3.2. Deep Learning Domain Perceptive Re-Id Model

The second stage of our DLDP re-id model consists of
learning a domain-sensitive re-id model for each prototype
domain. That is, we train one feature embedding with all
person ID labels for each of the discovered clusters in the
feature embedding space resulted from the first stage. To
that end, we start by training a common generic baseline
re-id model on all available data without considering the
domains. The individual domain models are then trained by
fine-tuning this baseline model. The same baseline model
is also used as initialization for the domain discovery ap-
proach described in Section 3.1.2.

3.2.1 Baseline Generic Model

As a baseline approach we train a model of the architec-
ture given in Table 2 (Section 3.2.2 for more details) on all

2We choose 8 clusters as a tradeoff between the number of domains
available to our model and the computational effort involved in training
our domain-specific embeddings. Future work can further optimise it.

Figure 3. Example domains discovered by our approach using the
proposed initialization with a re-id net (top 3 rows, supervised ini-
tialization) and initialization by weights learned through autoen-
coding (AE) (bottom 3 rows, unsupervised initialization). The
re-id initialization leads to more semantically meaningful domain
(e.g. light-colored, yellow and blue clothing). The AE initializa-
tion is strongly influenced by dataset bias and learns domains cor-
responding to datasets (e.g. CAVIAR4REID, 3DPeS, PRID).

available training data to learn a generic feature embedding
without domain specific adaptation. We train the baseline
model for 60,000 iterations. The initial learning rate is set
to 0.1 and divided by 10 after every 20,000 iterations. We
use the output of the 512 dimensional layer (fc feat in Ta-
ble 2) just before the loss as our feature embedding for per-
son re-id. The resulting features are compared using cosine
distance.

3.2.2 Domain Embeddings

In order to learn feature embedding focused on each of the
domains we need to first create suitable domain-specific
training data. For any person ID in a given domain we thus
select all of that person’s images and add them to the train-
ing data for the domain. This data sampling method allows
the domain models to specialize and focus particularly on
the visual cues relevant to persons from their domain while
not having to also learn how to distinguish persons from
different domains.

The architecture (Table 2) we use to learn the domain-
specific feature embedding is motivated by a number of re-
cent studies. It consists of an inital set of four convolu-
tional layers with filter sizes of 3 × 3. This configuration
of multiple layers with small filter sizes was shown to per-
form well for image classification in the VGG nets [26].



name
patch size,

stride output dim # filters

input 3 × 160 × 64
conv 1-4 3 × 3, 1 32 × 160 × 64
pool 2 × 2, 2 32 × 80 × 32
inception 1a 256 × 80 × 32 64
inception 1b stride 2 384 × 40 × 16 64
inception 2a 512 × 40 × 16 128
inception 2b stride 2 768 × 20 × 8 128
inception 3a 1024× 20 × 8 128
inception 3b stride 2 1536× 10 × 4 128
fc feat 512
fc loss #person ids

Table 2. DLDP model architecture for prototype domain discovery.

We further adopt insights from [27] and [28] to add multi-
ple (four) inception layers to our network. We modify the
original inception architecture by replacing the 5 × 5 layer
with two 3× 3 layers, reducing the grid size and expanding
filter banks as suggested in [28]. We apply batch normaliza-
tion [13] after each layer and use a softmax loss based on
the person ID labels for training. Our feature embeddings
are of size 512.

3.2.3 Training Strategy

We begin training by disregarding the identified domain
borders and combining all available person IDs into one
softmax layer. We train this net for an initial 60,000 iter-
ations with a learning rate on 0.1 which is divided by 10
every 20,000 iterations. After this, we continue to train in-
dividually for each domain relying only the corresponding
data pool. The dimension of the softmax layers is adapted
accordingly. For each domain we continue training for
30,000 iterations at an inital learning rate of 0.001. Our in-
put images are resized to a size of 210× 70. Data augmen-
tation is then performed by randomly flipping images and
randomly cropping them to a final input size of 180 × 60.
Similar to [31] we apply hard negative mining by select-
ing misclassified training images and fine-tuning each net
for a further 10,000 iterations at a reduced learning rate of
0.00001.

3.2.4 Automatic Domain Selection

After model training and during model deployment, a probe
person image is first matched to its most likely domain by
the deep clustering model (Section 3.1). The corresponding
domain embedding (domain specific re-id model) is then

used to rank the gallery images by computing the corre-
sponding 512 dimensional embedding and using cosine dis-
tance for matching the probe image. Note, the camera view
and the target domain of the probe image is new, i.e. un-
seen and independent from any of the multi-sources used to
construct the DLDP dataset.

4. Experiments
Datasets: We evaluate our model on two publicly available
large re-id datasets: CUHK-SYSU [33] and PRW [37], both
of which are independent/unseen from the ten multi-source
data pool used to construct our DLDP domain discovery
training dataset. Both datasets contain a large number of
viewing angles. CUHK-SYSU consists of pedestrian im-
ages collected by handheld cameras as well as scenes from
movies and the PRW dataset was collected with six cam-
eras on a campus environment. The datasets contain 8432
and 932 person ids and 99,809 and 34,304 bounding boxes,
respectively. Both datasets provide full images to enable
automatically detected person bounding boxes to be eval-
uated in person re-id, subject to occlusion, bbox misalign-
ment, and large changes in resolution/low-resolution. Some
example images of both datasets are depicted in Figure 1.
These characteristics of the two datasets allow us to investi-
gate the generalization capability of our approach, its ability
to handle large amounts of varying views and to evaluate its
performance against automatically detected person bboxes
for more realistic evaluation.
Evaluation protocol: A central objective of our approach
is not to require any training data on the target domain for
the re-id task. To that end, in the experiments we only used
the test part of both datasets. The CUHK-SYSU dataset
contains a fixed set of 2,900 query persons and gallery sets
of multiple sizes (at most 6,978 images). The PRW dataset
contains a fixed query set of 2,057 bounding boxes and a
gallery size of 6,112 test images. Note that in both datasets
each gallery image contains multiple persons and an auto-
matic person detector may generate additional false posis-
tive bounding boxes. We follow the exact evaluation pro-
tocols specified in [33] and [37] respectively, and used the
provided evaluation code where applicable. Also note, both
datasets contain many persons without id in the galleries,
i.e. the re-id tasks in these datasets are potentially open-set
given the unknown distractors in the target population. To
give a direct comparison to the reported results in [33] and
[37], we also adopt mean Averaged Precision (mAP) and
Rank-1 accuracy as evaluation metrics.
Comparison with the state-of-the-art: To demonstrate the
effectiveness of our approach, we compared our model di-
rectly to the state-of-the-art reported in [33] and [37], us-
ing both manually labelled person bounding boxes (ground
truth) and automatically detected bounding boxes. Results
on the CUHK-SYSU dataset for gallery sizes of 100 images



mAP Rank-1
G

T
Euclidean [33] 41.1 45.9
KISSME [14] 56.2 61.9
BoW [36] 62.5 67.2
IDNet [33] 66.5 71.1
Baseline Model 68.4 70.3
DLDP 74.0 76.7

D
et

ec
tio

ns Person Search [33] 55.7 62.7
Person Search rerun 55.79 62.17
DLDP (SSD VOC300) 49.53 57.48
DLDP (SSD VOC500) 57.76 64.59

Table 3. DLDP re-id performance comparison against both super-
vised (KISSME, IDNet, Person Search) and unsupervised (Eu-
clidean, BoW) methods on the CUHK-SYSU dataset.

mAP Rank-1

D
PM

In
ri

a IDE [37] 13.7 38.0
IDEdet [37] 18.8 47.7
BoW + XQDA [37] 12.1 36.2
Baseline Model 12.9 36.5
DLDP 15.9 45.4

SS
D

BoW + XQDA (SSD VOC300) 6.8 26.6
DLDP (SSD VOC300) 10.1 35.3
DLDP (SSD VOC500) 11.8 37.8

Table 4. DLDP re-id performance on the PRW dataset in compar-
ison to state-of-the-art. All results are obtained by considering 5
bounding boxes per image. Note that all approaches except ours
were trained (supervised) on the PRW dataset.

are given in Table 3. Our baseline generic re-id model (Sec-
tion 3.2.1) given manually labelled person bounding boxes
(ground truth) as input outperforms not only [33] using con-
ventional image features but also the deep IDNet model
which has the advantage of being trained on the CUHK-
SYSU dataset itself at Rank-1 by 1.9%. The reason is likely
a combination of our deeper 10 layer network architecture,
the use of inception layers and batch normalization. For
our domain adaptive model given manually labelled person
bounding boxes, our model outperforms [33] by 7.5% and
5.6% in mAP and Rank-1 respectively, a further improve-
ment of 6% in both mAP and Rank-1 over our generic base-
line model. This suggests that the DLDP model learning for
prototype-domain adaptive re-id is more effective than the
“blind” generic model.

For automatic detection generated person bounding
boxes, we adopt the SSD VOC500 person detector [20].
For re-id given these automatic detections, our prototype-
domain adaptive model outperforms the state-of-the-art per-
son search deep model [33] by 2.06% and 1.89% on mAP
and Rank-1 respectively, despite a very critical difference

that the person search deep model [33] was trained jointly
for person detection and re-identification using part of the
CUHK-SYSU dataset, i.e. both their detector and their re-id
matching model were trained and fine-tuned on the target
domain. In contrast, our DLDP model did not benefit from
training detectors in the target domain, nor fine-tuning re-id
model on the target domain data.

For the evaluation on the PRW benchmark, we compared
DLDP to a baseline using BoW features and XQDA met-
ric learing [19] and two deep feature embeddings IDE and
IDEdet from [37] which are based on the AlexNet [15] ar-
chitecture, trained on ImageNet and fine-tuned for re-id on
PRW. For person detection, we used both the DPM person
detector [8] trained on the INRIA dataset [6] provided by
[37] and the SSD detectors for a fair comparison. Our re-
sults are shown in Table 4. All reported results were ob-
tained by considering five bounding boxes per gallery im-
age which is the value at which the methods reported in
[37] perform best. It is evident that the SSD detectors de-
crease re-id performance for all models as the SSD detec-
tors seem to perform poorly on the PRW dataset. Regard-
less, our model outperforms both the BOW+XQDA base-
line and the deep IDE feature embedding reported in [37]
when identical DPM person detector was used, by 2.2% and
7.4% in mAP and Rank-1, respectively (for the more accu-
rate DPM detections). The improved deep IDEdet embed-
ding of [37] is trained by fine-tuning the AlexNet first for
person/background classification followed by further fine-
tuning for re-id. It outperforms DLDP by 2.9% and 2.3% in
mAP and Rank-1 accuracy. However, our performance re-
mains competitive and has its unique advantage over IDEdet

embedding. This is because that IDEdet was not only
trained directly on PRW but also specifically adapted on
the PRW for sensitivity to false positive person detections.
DLDP benefited from none of that.

In summary, our DLDP model (given the output from
comparable/identical person detectors) outperforms most of
the state-of-the-art person re-identification methods on both
the CUHK-SYSU and the PRW benchmark datasets. It is
even more significant that our results are obtained without
any labelled data training on the target test domains whilst
all other methods require training data from the target do-
mains. Qualitative examples on both datasets are shown in
Figure 8, including two failure cases in the last row. Note
that the incorrect results for all queries have a color compo-
sition or clothing configuration that is reasonably similar to
the query image. In particular, DLPD understandably ranks
near-identically looking people (PRW, row 2) very high. In
the failure case on PRW our model appears to focus on the
structural pattern created by the bikes in combination with
white-dressed persons.
Effects from gallery size increase: The CUHK-SYSU
dataset offers multiple gallery sets of varying sizes. This



50 100 500 1000 2000 4000 all (6978)
Person Search [33] mAP 58.72 55.79 47.38 43.41 39.14 35.70 32.69
DLDP (SSD VOC500) 60.8 57.7 49.2 45.2 41.4 38.1 35.2
Person Search [33] Rank-1 64.83 62.17 53.76 49.86 45.21 41.86 38.69
DLDP (SSD VOC500) 67.6 64.6 57.0 52.9 49.2 46.1 43.1

Table 5. Comparison of DLDP to [33] for different gallery sizes on CUHK-SYSU. Results of [33] were obtained using the provided code.

Deep+Kissme [33] ACF+BOW [33] Person Search [33] Person Search [33] rerun DLDP (SSD VOC500)
mAP top-1 mAP top-1 mAP top-1 mAP top-1 mAP top-1

Whole 39.1 44.9 42.4 48.4 55.7 62.7 55.79 62.17 57.7 64.6
Occlusion 18.2 17.7 29.1 32.1 39.7 43.3 34.97 37.43 38.9 39.0
LowRes 43.8 42.8 44.9 53.8 35.7 42.1 35.21 40.00 41.9 49.0

Table 6. Comparisons on the CUHK-SYSU occlusion and low resolution tests.

allows us to evaluate the influence of larger numbers of
detractors on re-identification accuracy in a more realistic
open-set setting. Table 5 shows results of our DLDP model
in comparison to those achieved by the end-to-end person
search deep network model [33], where results were ob-
tained by running the code provided by the authors. Our ob-
tained results closely match those reported in [33] (Figure 7
b)). Overall, our DLDP model consistently ourperforms the
end-to-end person search deep model by a constant 2% in
mAP regardless gallery size; 3% in Rank-1 for low gallery
sizes of 50 images (correspoding to 256 bounding boxes)
and up to 5.4% in Rank-1 for the largest possible gallery of
all 6978 images (36984 bounding boxes). This suggests that
the DLDP model is less sensitive to increase in gallery size,
even without benefiting from learning on target domains.
Effects from occlusion and low-resolution: Finally, we
evaluated the effects of occlusion and low-resolution probe
images. The CUHK-SYSU dataset provides two probe
subsets for this purpose, which were created by sampling
heavily occluded probe images and the 10% probe images
with the lowest resolutions, respectively. Gallery sizes for
this evaluation are fixed at 100 images. We report results
using the SSD VOC500 person detection in Table 6 and
compared to the end-to-end person search deep network
model. Consistent with the observation made by [33], an
occluded probe image causes more difficulty for re-id than
that of low-resolution imagery. For low-resolution, our
DLDP model suffers only a 15% loss in mAP and Rank-
1, as compared to a 20% decrease for the end-to-end person
search deep model. On occlusion, the reported results on
the end-to-end person search model are less affected (re-
duced by 16.0% mAP and 19.4% Rank-1) than our DLDP
model whose performance is reduced by 18.8% in mAP and
25.6% in Rank-1. However, using the author provided code,
we could not re-create the same results as reported in [33]
for the occlusion test. Instead, we obtained the result on the
end-to-end person search model for occlusion test 5% lower

than reported, almost identical to that of DLDP.
To gain more insight, we further report the re-id results

from our DLDP model on the occlusion and low-resolution
tests but this time using manually labelled person bounding
boxes (Table 7). The overall results are much improved by
relying on ground truth detections. This may partly be due
to that ground truth labelled bboxes resemble more closely
to data the model was trained on, therefore the negative im-
pact of low-resolution query images is less severe. This sug-
gests that the resolution gap between probe and gallery can
be handled well by DLDP provided person bbox detection
is reasonably accurate without significant misalignment.

5. Conclusion

In this work, we presented a novel approach to domain
sensitive person re-identification by deep learning without
the need for training data from the target (test) domains.
The new model DLDP automatically discovers prototype
domains from independent diverse datasets and learns spe-
cific feature embedding for each of the discovered domains.
In model deployment, each query image is used to select for
the most suitable feature embedding with its correspond-
ing domain best fitting the query before the ranking match
against the gallery candidates. Our approach has a singi-
ficant unique advantage, over all existing models, of not
requiring any target domain data for model learning. Our
extensive comparative evaluation on two latest benchmark
datasets demonstrate clearly that the proposed DLDP model
outperforms the state-of-the-art or is competitive, notwith-
standing that all other models benefit from having been
trained on the target domain data. It is also evident that
the proposed new DLDP model copes well with real-world
re-id conditions when automatic person detection, occlu-
sion, low resolution and very large gallery sizes (i.e. open
world) are unavoidable in model deployment. Future work
includes investigating in more detail the impact of the num-



mAP Rank-1 Rank-5 Rank-10 Rank-20
DLDP GT Whole 74.0 76.7 86.4 89.7 92.9
DLDP GT Occlusion 56.0 54.0 69.5 76.5 83.4
DLDP GT LowRes 72.0 74.1 86.9 89.7 93.1

Table 7. Results of DLDP on the occlusion and low resolution test sets using ground-truth detections.

Figure 4. (a) The top 8 re-id matches by the DLDP model on the CUHK-SYSU test data for a set of five randomly chosen queries from
the 100 image gallery setting, and (b) five randomly chosen queries on the PRW test data. Note, rank-2 and rank-3 in the “yellow T-shirt”
example in (b) are false matches even though they look very similar. The bottom examples from both (a) and (b) show failure cases when
the model failed to find a match in the top 8 ranks.

ber of domains on the accuracy of our approach as well as
ways of coupling the domain discovery and learning of do-
main embeddings more directly in an end-to-end approach.
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Appendix

Evaluation on Market-1501

We additionally evaluted DLDP on the Market-1501 [36]
dataset. This dataset does not provide full images but was
created using the DPM detector instead of manual anno-
tations. Results of DLDP in comparison to state-of-the-
art approaches are given in Table 8. DLDP outperforms
many recent approaches and performs en-par with the ap-
proach of [1] (-0.12% mAP and -0.44 Rank-1). DLPD is
clearly outperformed by [9] and [7] which both achieve a
significant improvement over the previous state-of-the-art
and beat DLPD by up to 13.32% in mAP and 14.42% in
Rank-1. All approaches given in Table 8 make full use of
the Market training dataset with the noteable exception of
[5] which uses only 13.58% of the training data to adapt
model pretrained on other data. DLPD clearly outperforms
this result without using any of the training data.

A qualitative impression of the results of DLPD on the
Market-1501 dataset is depicted in Figure 8. Again, it can
be observed that most of the incorrect results are quite rea-
sonable and share one or more salient features with the
query person (e.g. the black backpack in the second row
or either a bag-strap or gray shirt in the fourth row). The
last row shows a query for which only one out of five true
matches is returned among the top 15 results. We consider
this a near failure case. A success implies that the model
finds all of the existing true matches.

mAP Rank-1
Gated S-CNN [7] 39.55 65.88
DNS [9] 35.68 61.02
SCSP [1] 26.35 51.90
DLDP 26.23 51.46
Multiregion Bilinear DML [6] 26.11 45.58
End-to-end CAN [3] 24.43 48.24
TMA LOMO [5] 22.31 47.92
WARCA-L [2] - 45.16
MST-CNN [4] - 45.1

Table 8. DLDP’s performance in context of many recent state-of-
the-art approaches for the single-query setting on the Market-1501
dataset.

Ground-Truth Detections on PRW

In Table 9 we show the performance of DLDP and our
baseline model (see Section 3.2.1 in the main paper) on the
PRW dataset. We compare to the BoW+XQDA baseline
which is provided with the evaluation code of [37]. Com-
pared to the CUHK-SYSU dataset (compare Table 3, main
paper) the improvement in accuracy achieved by relying on
ground-truth is much less pronounced for all approaches.

This is likely due to the fact that the ground-truth on PRW
was obtained in part using the DPM-Inria person detector,
thus giving that detector an unusually high localization ac-
curacy on the dataset. This also explaines the comparatively
weak performance of the SSD detectors observed in Table
4 of the main paper. DLDP is able to maintain its advantage
over the BoW+XQDA baseline on ground-truth and outper-
forms it by 1.8% mAP and 8.5% Rank-1.

mAP Rank-1
BoW + XQDA 16.7 38.8
Baseline Model 16.1 43.2
DLDP 18.5 47.3

Table 9. DLDP re-id performance on the PRW dataset using
ground-truth annotations instead of automatic detections.

Full CMC-Curves

In Figures 5, 6 and 7 we give the full CMC curves for
our main experiments on CUHK-SYSU, PRW, and Market-
1501, respectively. All curves were generated using the
evaluation code provided with the datasets and are com-
pared to the strongest baseline approaches for which code
was provided.

In Figure 5 we show DLDP’s average accuracy over the
first 50 ranks on the CUHK-SYSU dataset. DLDP shows a
consistent improvement of more than 5% over the baseline
model and narrowly but consistently outperforms the deep
PersonSearch approach which integrates detection and re-id
into one CNN.

Figure 5. CMC curve of DLDP on CUHK-SYSU compared to our
baseline model and the PersonSearch approach presented in [33].
Results are obtained using the default gallery size of 100 images
and the SSD-VOD500 detector for DLDP and the baseline model.

Figure 6 shows the first 50 ranks on the PRW dataset.



Our baseline model performs en-par with the BoW+XQDA
baseline. Both appraoches are again consistently outper-
formed by more than 5% by DLDP.

Figure 6. CMC curve of DLDP on PRW compared to our baseline
model and the BoW+XQDA baseline provided with the evaluation
code. Results were obtained by considering the top 5 detections in
each image. All approaches are evaluated on the provided detec-
tions of the DPM-Inria detector.

The average accuracy over the first 50 ranks on the
Market-1501 dataset is depicted in Figure 7. The difference
between DLDP, our baseline and the BoW+KISSME base-
line is less significant on this dataset. However, in the im-
portant segment of ranks 1-20 DLDP has a clear advantage.
For ranks above 38 the BoW+KISSME approach actually
outperforms both our baseline model and DLDP narrowly.

Figure 7. CMC curve of DLDP on Market-1501 compared to our
baseline model and the BoW+KISSME baseline provided with the
evaluation code. Results are for the single-query setting.
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Figure 8. The top 15 re-id matches by the DLDP model on the Market-1501 dataset. Correct matches are framed red. Matches labelled as
“junk” in the dataset and not considered in the evaluation protocol are framed blue. The last row shows a failure case where only one (out
of five) correct images could be found in the top 15 results.
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