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Abstract
Analysis of idealised thin single-crystal wires under torsion based on the continuum theory of dislocations gives results in accordance with the critical thickness theory. The dislocation-free zone near the wire surface and the nearly-zero stress around the wire axis are predicted by both the continuum dislocation theory and critical thickness theory. It is demonstrated that the size effect at the onset of yielding, the distributions of stress and geometrically necessary dislocations in the thin wires in torsion, simply result from the critical thickness effect. A continuous increase of plastic strain from the neutral axis toward the wire surface is indicated. The plastic strain becomes (nearly) flat around the wire surface. Such a phenomenon is attributed to the fact that this is the region in which dislocations sources can operate, to provide the geometrically necessary dislocations required by the plastic strain gradient beneath. The results of continuum dislocation theory quantitatively elucidate the critical thickness phenomenon occurred in single-crystal wires under torsion. This links the continuum dislocation theory to the underlying physical picture of Matthews’ critical thickness theory.
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1. Introduction
The size-dependent plasticity of micron-dimensioned metallic wires, i.e. the flow stress of metallic wires increasing with decreasing diameter, has attracted tremendous attention since the seminal work by Fleck et al. 1[]
. Torsion of thin metallic wires has been recognized as a benchmark experiment for exploring the strain-gradient effect at small scales 
 ADDIN EN.CITE 
[1-6]
 since it provides both the most sensitive and the most wide-ranging data in studies of the size effect in confined plasticity. In wire torsion, twist angle can be measured much more accurately than changes in length in tension or compression experiments 
 ADDIN EN.CITE 
[7, 8]
, or indentation depth in hardness testing 9[]
. Consequently, torsion experiments can readily span a range of strain from microstrain to more than unity, and have been crucial in revealing the size effect in soft metals in the yield strength and in the flow stress over at least six orders of magnitude in strain 
 ADDIN EN.CITE 
[1-3, 6, 10]
.
Conventional theories of plasticity are unable to predict the size-dependent phenomena since they do not involve any material length scales. Generally, the size effect associated to the non-uniform plastic deformation is attributed to the presence of geometrically necessary dislocations (GNDs 11[, 12]
, sometimes they are called misfit dislocations 13[]
, excess dislocations 14[, 15]
, or non-redundant dislocations 16[]
). The size effect in the torsion of thin metal wires has been analyzed by using various theories, for examples, strain gradient plasticity (SGP) theories 
 ADDIN EN.CITE 
[1, 2, 17-27]
, stress gradient plasticity theory 
 ADDIN EN.CITE 
[28, 29]
, critical thickness theory (CTT) 
 ADDIN EN.CITE 
[3, 30, 31]
, continuum dislocation theory (CDT) 
 ADDIN EN.CITE 
[15, 16, 32, 33]
, and by molecular dynamics (MD) and discrete dislocation dynamics (DDD) simulations 
 ADDIN EN.CITE 
[34-40]
. The dislocation configuration in a single-crystal thin wire undergoing torsion was firstly studied by Eshelby 41[]
 in 1953 which is now referred to as the Eshelby twist. The author analyzed a screw dislocation lying along the axis of a thin rod (e.g. crystal whisker) which gives rise to the Eshelby twist. Gao et al. 17[]
 considered a range of screw dislocations parallel with the wire axis as the admissible bundle of GNDs. Weertman and his co-workers 
 ADDIN EN.CITE 
[16, 42]
 and Duan et al. 43[]
 concluded that the screw GNDs should lie in the planes orthogonal to the cylinder axis. Weertman 16[]
 showed that it is impossible in plastically isotropic metals for the anomalous hardening to result from twist boundaries formed by combining GNDs that are parallel to the wire axis and GNDs that are perpendicular to the wire axis because the sign of the GNDs in one set of dislocations of a cross-grid is opposite that of the other.
In conventional plasticity, for wire torsion, the onset of plasticity starts near the wire surface while no plasticity is developed in the center of wire. However, contradicting the classic plasticity, Dunstan and Bushby 30[]
 predict a dislocation-free thickness near the surface of a wire under torsion according to Matthews’ critical thickness theory 13[]
. Such a critical-thickness phenomenon has been further confirmed by latter MD and DDD simulations 
 ADDIN EN.CITE 
[36, 38, 44, 45]
, by theoretical analysis based on the continuum dislocation theory 
 ADDIN EN.CITE 
[15, 32, 46]
, and has also been observed in recent torsion experiment on bamboo-structured gold micron-scale wires 47[]
. Ziemann et al. 47[]
 measured the evolution of plastic deformation along the radial direction within twisted bamboo-structure Au wires of diameter 25 μm, using Laue microdiffraction. They found that the misorientation continuously increases from the wire axis toward the wire surface, and that the highest density of GNDs appears in the neutral center of wire. Therefore, the critical thickness effect happens for the defect-free single-crystal wire where dislocations can move freely inward the wire. Moreover, when a wire is under torsion, screw dislocations can escape from the wire surface if the surface is traction-free. So, there must be a dislocation-free zone near the wire surface for the wire to be at equilibrium.
Experimental data from wire torsion yields only torque-twist curves which do not necessarily discriminate adequately between different theories of the size effect 
 ADDIN EN.CITE 
[1-3]
. It is valuable to be able to complement experimental data with the DDD or MD simulations and with the theoretical prediction based on CDT, which are capable of providing the distribution of dislocations in twisted wire. In particular, one can see directly how the GNDs required by a plastic strain gradient arrange themselves in the DDD simulation 
 ADDIN EN.CITE 
[34, 35]
 or in the analysis based on continuum dislocation theory 
 ADDIN EN.CITE 
[15, 16, 32, 33]
. This information is crucial in deciding among the different theories of the size effect and in understanding plasticity in constrained volumes.

In a previous paper 44[]
, we have shown that in the bending of thin foils the GNDs collected in the vicinity of the neutral plane, and accordingly this is the region in which there is a plastic strain gradient. Between this region and the free surfaces of the foil, the plastic strain is nearly constant so this region is GND-free. The elastic strain gradient here is close to the gradient of the applied (total) strain. Results were quantitatively in agreement with CTT 
 ADDIN EN.CITE 
[13, 48-52]
, according to which dislocation sources can only be operated in the GND-free region and the strain-thickness product (integral) in this region is a constant determined by the need to operate sources (for example, Frank-Read, spiral, or single-armed source) 
 ADDIN EN.CITE 
[30, 50, 52]
. In this work, we address the additional complexities of the dislocation distribution in thin crystal wires under torsion, and perform a comparison between the prediction of CTT and CDT.
The current paper is organized as follows. In Section 2, critical thickness theory is revisited. Key predictions for the problem of torsion of thin metal wires are given based on CTT. In Section 3, the framework of the continuum dislocation theory is summarized. In Section 4, the elasto-plastic torsion of the single-crystal wires under zero dissipation is analyzed based on the continuum dislocation theory. In Section 5, the main results for the problem of wire torsion given by the CTT and by the continuum dislocation theory are compared and discussed. Finally, conclusions are drawn in Section 6.
2. Critical thickness phenomenon in wire under torsion
2.1 Physical picture of the critical thickness theory
Matthews’ critical thickness theory is based on the idea, firstly addressed by Frank and van der Merwe 53[]
, that misfitting epitaxial layers would be elastically strained if the introduction of a dislocation that reduces the elastic misfit strain nevertheless increases the total energy. Since the energy of a strained layer is proportional to the layer thickness, while the energy of a dislocation varies with the logarithm of the thickness, a critical thickness can be determined above which plastic relaxation is expected 54[]
. The required dislocations are referred to as misfit dislocations or GNDs, since they are due to the misfit between the layer and the substrate, and the introduction of these dislocations leads to a plastic strain gradient or discontinuity for which the presence of the dislocations is necessary from geometrical arguments. There are plenty of references on the calculation of critical thickness for epitaxial layers 
 ADDIN EN.CITE 
[13, 48, 50-52, 54]
. According to CTT, dislocation sources can only operate in the GND-free region and the strain-thickness integral in this region is a constant. The Matthews’ critical thickness equation 30[]
 gives 
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 the value of the Burgers vector of the misfit dislocations. This equation predicts the critical thickness 
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 at which misfit dislocations (GNDs) may be generated by extending existing dislocations for relieving the elastic strain in a simple layer with misfit strain 
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 is very close to  GOTOBUTTON ZEqnNum894294  \* MERGEFORMAT . For a linearly graded strained epitaxial layer, it allows the mismatch strain in the growth of structures advance linearly. That is  
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 over the thickness. In significant relaxation, the condition is determined by the need to operate dislocation sources 30[, 50]
. In this case, a relaxation critical thickness 
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. The factor of five is a reasonable approximation for the Frank-Read sources 49[]
. For graded layers 55[]
,
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We now focus on the torsion of wires, which is analogous to the growth of the graded layer that has been well studied by using CTT 
 ADDIN EN.CITE 
[44, 56]
. For both cases, plastic strain gradients are necessarily present. The solution to the graded-layer problem is illustrated in Fig. 1 (a). We denote the thickness of the layer as 
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 which is increased with the growth of the layer. If 
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, the material is completely relaxed plastically from 
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 to the substrate, which generates the plastic strain gradient 
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 has no GNDs. Above the thickness 
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 is entirely strained elastically, having the lattice constant at 
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. As growth of the graded layer advances, the added stress is relieved by the glide of dislocations, whereas at the top of the layer at 
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 the elastically-strained thickness (i.e. 
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) is changeless. The solution for the wire under torsion is illustrated in Fig. 1 (b). This is very similar to the thin foil under bending 44[]
, and to the growth of graded layer mentioned above. The neutral axis plays the same role as the substrate, and from the neutral axis to the free surface the wire behaves in the same manner as a graded layer. The difference is only that, for the graded-layer problem, the plastic strain gradient remains constant and the thickness of layer rises during growth. While for the wire under torsion, the thickness (wire radius) is constant and the plastic strain gradient rises with torsion. However, for any given thickness and strain gradient, the solution (Eq.[image: image28.wmf] 

r

hh

-

(2)

, at which GNDs initiates, is satisfied. It is significant to realize that, for the graded-layer problem, plastic deformation continues from the surface down to (2)

) is still valid if the critical condition of Eq.  GOTOBUTTON ZEqnNum850472  \* MERGEFORMAT , which leaves a plastic strain gradient in the range 
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. For the wire under torsion, in the similar way, plastic deformation proceeds from the surface to the axis of the wire, but produces a plastic strain gradient simply in the range 
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 represents the critical thickness for plastic relaxation of wire torsion, and 
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 is the radius of the wire. Yet, 
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 decreases with torsion. In the following, we test the prediction that at the surface of the wire under torsion there is a region depleted of GNDs; the onset of yielding and the strain distributions in elastic-plastic deformation agree with the idea.
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Fig. 1. Diagram of the critical thickness phenomenon for (a) the growth of graded layer and (b) the wire under torsion. In (a), the misfit strain (the dotted line) is linear with height. For thickness 
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, the elastic strain (thick solid line) is equal to the misfit strain, the dotted line coincides with the thick solid line. When thickness 
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 (thick solid line) keeps the same slope as the dotted line and the triangular area below it stays constant. In (b), the total strain is illustrated by the red dotted line going through the origin. The area of the red triangle under the thick solid line (elastic strain) is the constant strain-thickness integral. After more torsion, the total-strain line is the steeper dotted blue line through the origin, and the elastic strain is the parallel solid blue line delimiting steeper triangles of the same area as the red shaded triangle.
2.2 The Matthews’ CTT applied to wire torsion
Now we apply Matthews’ ideas directly to a thin crystal wire under torsion (see Fig. 2).  We firstly consider the Matthews CTT for epitaxial layers, as shown in Fig. 2(a). The pre-existing dislocation (1) necessarily extends into the epitaxial layer as growth starts. As growth continues, the dislocation curves sideways by the epitaxial strain (2). When the layer thickness is above 
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, the dislocations lengthen indefinitely (3) creating a misfit dislocation. In Fig. 2(b), a threading dislocation on a diameter of the wire follows the same evolution (1), curving on a slip plane passing through the axis by torque (2). When the critical condition is met, it prolongs indefinitely (3). Figure 2(c) shows the evolution of a well-placed spiral source through the series of position 1-2-3-4. The critical condition for operation of the source is that the stress isufficient to swing the section 2 through 180° and the section 4 through 90°.
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Fig. 2. The Matthews mechanism for critical thickness is illustrated for epitaxial layers (a) and wires in torsion (b) (After Dunstan [49]). The initial state in both cases is labeled (1): A threading dislocation which necessarily extends into the epitaxial layer as growth starts (a) or an initial dislocation on a diameter of the wire at zero torque (b). As growth continues in (a) the dislocation curves under the layer stress (2), while in (b) the dislocation curves on a slip plane containing the axis (2) under the increasing torque. When the critical condition is exceeded, the dislocations extend indefinitely (3) creating a misfit dislocation in (a) and an axial dislocation giving Eshelby twist in (b). In (c) a well-placed spiral source is illustrated which evolves through the series of positions 1-2–3-4.
Following Matthews 13[]
, one can determine the total elastic energy with and without the axial screw dislocation. As indicated by Dunstan et al. 3[]
, the critical values of torsion angle or wire diameter can be calculated by equating these two energies. Let the axis be the z-direction. The only nonvanishing component of the strain tensor is 
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 is the twist per unit length. The shear strain induced by the screw dislocation is 
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 being the magnitude of the Burgers vector. We may subtract this from the torsion strain field and symmetrise the strain tensor before integrating for the elastic energy. In order to avoid the divergence as 
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 as the lower integral limit in the integrals is introduced. So, without the dislocation, the elastic energy of the wire per unit length is
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where 
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 is the shear modulus, 
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 is the radius of the wire. The energy with the dislocation is
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Equating energies 
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Here, 
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 are used for giving the approximate expression. The core energy of the dislocation, typically taken to be 
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, is usually accounted for by an additive (or multiplying) factor within the logarithmic term. The formula Eq. 48[(5)

 is useful because it implies that the geometrical theory of critical thickness developed for flat surfaces  GOTOBUTTON ZEqnNum376000  \* MERGEFORMAT ]
 can be used for curved surfaces as in wire under torsion.
The strain-thickness product or integral 
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 is an important quantity in the Matthews theory. If a misfit dislocation is terminated by a section rising to the free surface, it is the value of 
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 which determines the force on the termination. If this force is equal to the line tension of the dislocation, the critical condition is satisfied. The force is independent of the shape of the termination (roughly a quarter-circle for a simple epitaxial layer) and it is also independent of the distribution of the strain within the thickness. Consequently, 
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 provides a simple measure of the critical condition for more complicated problems 56[]
 such as, here, a strain rising linearly from the neutral axis to the surface. The critical value of 
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 is 



[image: image66.wmf]0

dln

4

a

cc

ba

Srr

b

k

p

=»

ò


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6)

Using the typical values 
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. This is close to the approximate value for epitaxial layers 3[, 48]
. Correspondingly, the critical stress-thickness product or integral is just 
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 times the relevant elastic modulus. When the critical torsion is achieved, the curvature of the dislocation is sufficient to take it through a right angle between the axis and the surface of the wire, see the dislocation thread (3) of Fig. 2(b).
The strain-thickness product is also very useful for determining the critical condition for the operation of dislocation sources. All that is necessary is the topology of the source. The value of 
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 is then multiplied by the number of quarter-circle equivalents that the source requires to fit into the space available, for example, five for a Frank-Read source or three for a spiral source in an epitaxial layer 
 ADDIN EN.CITE 
[50, 52, 57]
. For the single-crystalline copper wire studied here, an optimally-placed source may thus require a 
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 value of 0.45-0.75nm, see Fig.2 (c). Therefore, the radius beyond which the excess strain-thickness integral is about 
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Then the ratio
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where 
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. At the onset of yield, GNDs will first be situated at the radius 
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In Fig. 3, we compare the predictions of CTT for the form of the stress distributions with the predictions of other plasticity theories. In the absence of any plasticity we take the stress as proportional to 
[image: image89.wmf]r

. Then in the absence of a size effect, for perfect plasticity 
[image: image90.wmf]0

()

 

P

ses

=

, we expect stress distributions of the form of Fig. 3(a). For critical thickness theory with no bulk strength (size effect only), we expect the form of Fig. 3(b). If there is a bulk strength as well as the size effect, we expect the form of Fig. 3(c) 30[]
. For the mechanistic strain-gradient plasticity theory of Nix and Gao [28] we may write,
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and solving for 
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 as in Fig. 3(d). One can see that the prediction of CTT (Fig. 3(c)) is a good approximation of the prediction given by Nix-Gao model.
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Fig. 3. The distribution of stress for a wire under torsion with some plastic deformation. (a) perfect plasticity in continuum mechanics with a yield strength of 
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 with the constants of proportionality set to 1.
3. Framework of continuum dislocation theory
3.1 Dislocation density tensor in single crystal
We consider a crystal with one slip system. The total strain of the crystal is the summation of the elastic strain and the plastic strain. The plastic strain is
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where 
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 is the plastic distortion. The elastic strain is obtained by subtracting the plastic strain from the total strain,
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where 
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 is the displacement vector. For single slip system, the plastic distortion is expressed by
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where 
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 is the slip direction vector, 
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 the normal vector to the slip plane, and 
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 is an amount of slip on the corresponding active slip system. For the crystal with n-number of slip systems, the plastic distortion can be expressed as 
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 denoting the slip systems. Generally, the continuous plastic distortion does not change the volume, so we have 
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 that the plastic distortion is exactly the gradient of the plastic displacement field,
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The plastic distortion tensor can also be written by
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where 
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 is given by
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where 
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 is the (Levi-Civita) permutation symbol. We consider 
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 as the fundamental measure of the density of GNDs. For a crystal deforming in single slip, the density of GNDs can be expressed as 58[]
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where 
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n

 is the outward normal of the cut surface of the crystal, and 
[image: image120.wmf]b

 the magnitude of Burgers vector.
3.2 Theoretical framework revisited
We analyze the torsion of thin single-crystalline wires by means of the continuum theory of dislocation proposed by Berdichevsky 59[, 60]
. The main results of the continuum dislocation theory are summarized here. In this theory, the free energy density is the sum of the elastic energy density depending on the elastic strain tensor 
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, and the energy density of microstructure depending on the dislocation density tensor 
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. It can be expressed as 60[, 61]
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where 
[image: image124.wmf]l

 and 
[image: image125.wmf]m

 are the Lamé constants. The first two terms in Eq. 
(17)

 denote the macroscopic elastic strain energy density of the crystal, and the term  GOTOBUTTON ZEqnNum759835  \* MERGEFORMAT  represents the energy of dislocation network 46[, 60]
. In the case of single crystal with single slip system, this energy density can be expressed as
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where 
[image: image128.wmf]r

 is the scalar dislocation density, 
[image: image129.wmf]s
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 the saturated dislocation density, and 
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 a material constant. As indicated by Berdichevsky 60[]
, the logarithmic term guarantees that the energy increases linearly for the small dislocation density 
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, and 
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 as 
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. Therefore, this form of energy provides an energy barrier to avoid over-saturation.
For small density to moderate density of dislocations, the logarithmic term in Eq. (18)

 has the following asymptotic formula
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Alternatively, other forms of the defect energy have been proposed by Forest and Guéninchault 62[]
, Groma 63[]
, Bardella and Panteghini 25[]
.
Let 
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 be a domain occupied by the crystal in the initial state. The energy functional of the crystal in the domain 
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 is
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where 
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 represents the volume element. If energy dissipation is neglected, the variational principle of the theory states that the true displacement field and the plastic distortion in the final equilibrium state minimize the energy functional. That is
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4. CDT applied to wire torsion
4.1 Energy functional

The problem of wire torsion has been studied by Kaluza and Le 32[]
 based on CDT. We now focus on the problem by comparing the results with those given by CTT. Consider a single-crystalline wire of circular cross-section of diameter 
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 under monotonic torsion. The wire is of length 
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 and under twist 
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 at its end. The Cartesian reference system 
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 axis is the axis of the wire. A cylindrical coordinate system 
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 is also introduced for convenience, with 
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. We also assume that the active slip planes are perpendicular to the vectors 
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 in the cylindrical coordinate system, while the slip directions and the dislocation lines are parallel to the 
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 axis. Actually, this assumption cannot be met for any single crystal. However, since the Burgers’ vector is parallel to a screw dislocation, any crystallographic plane containing the dislocation is a possible slip plane 32[]
. For screw dislocations in the slip planes perpendicular to the vector 
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. So, the non-zero components of the plastic strain are
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Actually, for torsion of the rod here, 
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Therefore, the non-vanishing components of the elastic strain tensor are
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From Eq. (15)

, the only non-vanishing component of Nye’s tensor is
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where 
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. Such a component of Nye’s tensor is associated with the density of the pure screw GNDs lying parallel to the axis of wire. From Eq. (16)

, the density of GNDs is
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According to Eqs. (26)

, one can obtain the energy functional(24)

, and (19)

, (17)
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This energy functional was firstly derived by Kaluza and Le32[]
. In what follows, we study it further to give more results for comparing with the results obtained by CTT.

The density of GNDs must be a finite value at 
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, then, according to Eq. (26)

, we obtain the regularity condition
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which implies that the neutral axis of the wire should be seen as an obstacle hindering the motion of dislocations. So, the screw dislocations pile up around the neutral axis in equilibrium. This phenomenon is in agreement with the DDD simulation 64[]
 and the prediction of CTT 3[]
. If we neglect the resistance to the dislocation glide, i.e. the dissipation is taken to be zero, the true plastic distortion (i.e. the plastic shear strain here) minimizes the energy functional [image: image167.wmf](
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x

b

(27)

 among all admissible function  GOTOBUTTON ZEqnNum359617  \* MERGEFORMAT  satisfying the regularity condition Eq. (28)

.
4.2 The onset of yielding and the expression of torque
For convenience, we introduce the following non-dimensional variables
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Here, the variable 
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. The functional (27)

 is then reduced to be
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We minimize the functional [image: image174.wmf](
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 among the function  GOTOBUTTON ZEqnNum129948  \* MERGEFORMAT  with the regularity condition 
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, it is traction-free and the dislocations can be annihilated, so there should be a dislocation-free zone near the free surface of the wire, as we discussed above. Therefore, the density of GNDs is zero, i.e. 
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where 
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 is an unknown critical normalized radius, 
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Varying the functional [image: image191.wmf](
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 with respect to  GOTOBUTTON ZEqnNum776960  \* MERGEFORMAT , one can obtain the corresponding Euler-Lagrange equation in the range 
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The variation of Eq. [image: image194.wmf]x

(32)

 with respect to  GOTOBUTTON ZEqnNum776960  \* MERGEFORMAT  and 
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 gives two additional boundary conditions at 
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and 
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Eq. 65[(33)

 is a non-homogeneous second-order modified Bessel differential equation. Its general solution can be obtained as  GOTOBUTTON ZEqnNum312207  \* MERGEFORMAT ]
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where the expression in the square brackets is the general solution of the homogeneous modified Bessel differential equation, 
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Using 
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Since 
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Substituting Eq. (35)

 leads to(39)

 into Eq. 


[image: image218.wmf](

)

(

)

(

)

2

22

0

I

1

1

2

I

ln0

k

k

k

k

h

h

x

gxxx

x

g

h

--

=

-

 
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (40)

This is a transcendental equation for determining 
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 in terms of constants 
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 and 
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.
The threshold value of surface shear strain, 
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 and considering  GOTOBUTTON ZEqnNum725503  \* MERGEFORMAT  at the onset of dislocation nucleation, we obtain
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In terms of the original variables, we have
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For 
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 no dislocations are nucleated and the plastic distortion 
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 is the surface shear strain at initial yielding. The value of 
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 is inversely proportional to the wire radius, which shows an obvious size effect.
It is interesting to give the expression of torque for the torsion problem investigated here. The torque can be derived by integrating the shear stress over the cross section of the wire,
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For 
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, the plastic distortion 
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 into Eq. 
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where 
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 denotes the regularized confluent hypergeometric function. Alternatively, Eq. [image: image241.wmf](
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 may be derived by differentiating the strain energy  GOTOBUTTON ZEqnNum379791  \* MERGEFORMAT  with respect to 
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 since the torque 
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 is the work conjugate to 
[image: image244.wmf]k

. The torque can be rewritten in the non-dimensional form 
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Evidently, the magnitude of 
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 depends on the value of 
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. The value of 
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 is inversely proportional to the wire radius, which suggests that the non-dimensional torque increases with decreasing the wire radius.
5. Results and discussions
In order to perform the calculation, we take the following parameters: 
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5.1 The prediction of critical thickness

The trends of the critical radius 
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 (
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) with increasing the surface shear strain predicted by CTT and CDT are compared in Fig. 4. In both theories, if 
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, the critical radius is zero. After that, the critical radius increases as the surface shear strain increases. Accordingly, the dislocation-free zone decreases with increasing the surface shear strain. If we take values of 
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 and 
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 by assuming 
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, the critical radius given by CDT increases with the surface shear strain more quickly than that of CTT, as shown in Fig. 4.
[image: image266.png]
Fig. 4. The ratio of 
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 as a function of surface shear strain 
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 in CTT and in CDT. The lower curve is based on Eq. (40)

.(8)

; the upper curve is based on Eq. 
The critical radii predicted by CTT (Eq. [image: image269.wmf]g
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(40)

) at four values of surface shear strain, (8)

) and CDT (Eq.  GOTOBUTTON ZEqnNum292230  \* MERGEFORMAT 0.00256, 0.005, 0.01 and 0.02, are given in Table 1. At a prescribed value of 
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, the critical radius predicted by CDT is larger than that given by CTT. However, the difference can be reduced by choosing another values of of 
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 and 
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.
Table 1. Normalized critical radius 
[image: image273.wmf]x

 predicted by CDT and CTT at different values of surface shear strain.
	Surface shear strain 
[image: image274.wmf]g


	0.00256
	0.005
	0.01
	0.02

	Critical radius by CTT (μm)
	0
	0.28
	0.49
	0.64

	Critical radius by CDT (μm)
	0
	0.68
	0.85
	0.93


The distribution of the plastic shear strain along the wire radius predicted by CTT and CDT are shown in Fig. 5. Below the threshold value of surface shear strain 
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, the plastic shear strain along the wire radius is zero. With the further increase of the surface shear strain, the critical radius increases. In the range 
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, for CTT, the plastic shear strain increases linearly with the wire radius; while for CDT, the plastic shear strain increases linearly with the wire radius at the beginning, and then tends to a plateau around 
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. In the range 
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, for the CTT, the plastic shear strain keeps a constant; while for CDT, the plastic shear strain decreases with the wire radius.
[image: image279.png][image: image280.png]
Fig. 5. The distribution of plastic shear strain along the wire radius at different values of surface shear strain. (a) Prediction by critical thickness theory; (b) Prediction by continuum dislocation theory.

The distributions of the elastic shear strain 
[image: image281.wmf]E
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 across the radius of the wire at different torsion are plotted in Fig. 6. When 
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, it is seen that the elastic shear strain nearly vanishes at 
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. Accordingly, the shear stress is also nearly-zero in this range, i.e. around the neutral axis of the wire. The strain-thickness product in CTT, the area of the shaded part below the solid line, is a constant about 0.00128 μm, while the strain-thickness product in CDT changes from 0.00128μm to 0.00109μm with increasing torsion from γ=0.00256 to 0.02. Yet, the predictions given by CCT and CDT are in qualitative agreement with each other.
[image: image284.jpg]
Fig. 6. The distribution of the elastic strain with the radius of wire at different surface shear strain: (a) Prediction by CCT, the predicted strain-thickness is 0.00128μm; (b) Prediction by CDT, the predicted strain-thickness is 0.00128, 0.000925, 0.000866 and 0.00109μm for γ=0.00256, 0.005, 0.01 and 0.02.
5.2 The density of GNDs
The CTT does not provide a direct approach for calculating the density of GNDs. However, Nye 11[]
 and Ashby 12[]
 proposed a relation between the density of GNDs and the effective plastic strain gradient 
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, where 
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 is the Nye’s factor introduced by Arsenlis and Parks 66[]
 to characterize the scalar density of GNDs related to the macroscopic plastic strain gradients. For torsion of FCC polycrystals, the Nye factor is found to be 
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. Following Liu et al. 2[]
, we assume for wire torsion 
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. The distributions of GNDs predicted by CTT are illustrated in Fig. 7(a). One can see that the density of GNDs vanishes in the elastic zone near the surface of the wire.
The distributions of GNDs in the range 
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 for three different values of surface shear strain are shown in Fig. 7(b). One can see that 
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 is mostly flat over a range near the neutral axis, having an obvious transition to a dislocation-free zone outwards the wire surface. The dislocation-free zone decreases as the surface shear strain increases. It is worth mentioning that an increasing number of the dislocations accumulating in this configuration are geometrically necessary. Clearly, the surface depletion of density of GNDs is demonstrated.
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Fig. 7. The dislocation density of GNDs as a function of radius 
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 at the surface strain: (a) Prediction given by CCT; (b) Prediction given by CDT.
5.3 Size effect in the torsion of thin wires by CDT
According to CDT (Eq. [image: image298.wmf]ˆ

Q

(45)

), the non-dimensional torque  GOTOBUTTON ZEqnNum300524  \* MERGEFORMAT  versus the surface shear strain of wires with different diameters is plotted in Fig. 8. One can see that the non-dimensional torque increases with decreasing wire radius, which indicates a strong influence of wire radius on torsional response. The smaller is the wire radius, the stronger is the non-dimensional torque. The theoretical curves show a work hardening around the onset of yield due to the dislocation pile up around the neutral axis when 
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. After the work-hardening range, there is a strange softening behaviour followed by a further work-hardening region. The softening phenomenon is more significant than in the case with dissipation, as discussed by Le and Piao 15[]
. It should be mentioned that, since the resistance to the dislocation motion is neglected here, the deformation can be completely recoverable when the wire is unloaded. During unloading, the GNDs will move toward the free surface upon decreasing the shear stress, and finally slip out from the surface of the wire.
[image: image300.png]
Fig. 8. Non-dimensional torque versus surface shear strain of wires with various diameters under elasto-plastic torsion.
6. Conclusions
The results of CDT quantitatively elucidate the critical thickness phenomenon appearing in single-crystalline wires under torsion. The size effect in the initial yielding, the stress distribution and the distribution of GNDs in the torsion of thin wires, are demonstrated. The dislocation-free zone near the wire surface and the nearly-zero stress (elastic strain) around the neutral axis predicted by CDT are in agreement with the results of the CTT. Analysis of wires in torsion based on CDT shows, as CTT predicts, similar behaviour as in graded-layer problem, i.e. dislocation sources operate in a GND-free domain near the free surface. This is the stressed domain, but the GNDs accumulate near the neutral axis. Simulation of single-crystalline copper wires under torsion based on CDT gives a critical strain-thickness product around 0.001 μm for different torsion, which is close to the predicted strain-thickness product of 0.00128 μm by CTT.

Strain-thickness products and GND distributions are the key quantities which distinguish between different theories. The most striking thing about the plots of elastic strain as a function of position on the cross-sections of the various simulations based on CDT is that these plots remain very similar. They all show, more or less, a centre region with very little elastic strain as well as the stress. A fortiori, this is where the plastic strain gradient and the density of GNDs are at a maximum. They all show an outer region in which the elastic shear strain rises in proportion to the radius. Here the plastic strain gradients and the density of GNDs are small or vanish. This is the region where dislocation sources need to be operated. In summary, we find that:
· Both CTT and CDT given above are sufficient to give a full quantitative explanation / understanding of the yield point and early plasticity. GNDs are of course generated and stored, and pile-ups do occur around the neutral axis, but pile-ups are not the fundamental explanation of the size effect observed in experiments. A dislocation-free zone near the wire surface is predicted in both theories.
· In agreement with bending of foils 44[]
, number (not density) of dislocations determines what happens, and the size of the specimen determines the stress at which it happens.
· The size effect at onset of yielding, the distributions of stress and GNDs in the torsion of thin wires, are simply attributed to the critical thickness effect. A threshold value of surface shear strain for the dislocation nucleation is indicated in both theories, which is inversely proportional to the wire radius. If the torsion exceeds the threshold, GNDs appear to minimize the energy. The size effect in the initial yielding is actually due to the constraint the geometrical size puts on dislocation curvature.
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