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ABSTRACT: Organic long-persistent phosphorescent materials are advantageous due to the cost-

effectiveness and easy processability. The organic phosphorescence is achieved by the long-lived 

triplet excitons, and the challenges are recognized regarding the various nonradiative pathways to 

quench the emission lifetime. Taming long-lived phosphorescence is generally engaged with the 

charge-transfer or exciton diffusion in molecular stacking to stabilize triplet excitons or form a 

mailto:w.gillin@qmul.ac.uk
mailto:h.ye@qmul.ac.uk


 2 

photo-induced ionized state. Herein, we elucidate that the triplet-diffusion can cause a significant 

quenching that is not thermally activated by using a system of perfluorinated organic complexes. 

Hence, we suggest a co-evaporation technique to dilute a single phosphorescence-emitting 

molecule with another optically-inactive molecule to suppress the diffusion-induced quenching, 

tuning the phosphorescence lifetime and spectral features continuously. The work successfully 

suggests a general semi-theoretical method of quantifying the population equilibrium to elucidate 

the loss mechanisms for organic phosphorescence. 
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Organic phosphorescence has become of great interest in functional and cost-effective 

optical applications such as energy storage, advanced anti-counterfeiting, bioimaging, and sensors, 

etc. The phosphorescence is emitted from a triplet-to-singlet ground state transition that is spin-

forbidden, and the long-persistence tends to make triplet excitons to suffer from several non-

radiative deactivation pathways to fade the phosphorescence. Thermally activated quenching1 has 

been a known problem, although the cryogenic temperature can suppress this nonradiative 

pathway, which restricts practical applications. Hence, several approaches regarding material 

design have been suggested to realize ultralong phosphorescence, up to hours lifetime, at room 

temperature by introducing H-aggregation2, photo-induced ionized state3, molecular packing4,5, 

chemical cross-linking6, and halogen bonding7. These approaches commonly rely on molecular 

aggregation8–10, where triplet exciton diffusion becomes a considerable consequence11. The 

improved exciton diffusion could favor the possibility of an exciton-interaction that might cause 

self-quenching, for instance, triplet-triplet annihilation (TTA) that is intrinsic rather than a 

thermally-activated process. However, this quenching effect and mechanism are less evident in 

this field. Herein, our study elucidates that TTA is a considerable loss for the phosphorescence. 

Nonetheless, we provide a simple co-evaporation technique to dilute the exciton diffusion to 

suppress the loss. Consequently, it is realized that the phosphorescence emission lifetime and 

spectral features are tuned continuously on a single perfluorinated organic compound. 

At photoexcitation, triplet excitons are formed via intersystem crossing (ISC). Two 

mechanisms can lead to the ISC. One is the heavy atom effect, where the coordinated metallic ions 

and the halogen atoms can both improve spin-orbit coupling. Alternatively, the ISC can be 

triggered by inter-molecular interaction12 that is also responsible for the exciton diffusion. We thus 

choose an organic metallic complex, Zinc (II) 
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tetrafluoro(hydroxyphenyl)tetrafluorobenzothiazoles: Zn(FBTZ)2, where two F-BTZ- ligands in a 

single molecule nearly are perpendicular in orientation with a poor inter-ligand packing13. This 

would allow the ISC to be mainly activated by the heavy-atom effect of a large number of fluorine 

atoms that can interact with the excited states instead of the inter-ligand packing. A deposited film 

of the pure material is likely to form some molecular stacking. This might explain the slight shift 

of the absorption maxima and additional trivial absorption band over a range of ~ 550 nm to 700 

nm, which would form some trapped singlet states14 compared to the absorption of the complex 

diluted in solution, shown in Figure 1a. 

To interrupt the molecular stacking, we employ a co-evaporation technique15 to co-dope 

Zn(FBTZ)2 with an inactive molecular complex that can be treated as a molecular barrier12 to 

prevent the exciton diffusion among Zn(FBTZ)2 molecules. The molecular barrier we chose is the 

tetrakis(pentafluorophenyl)imidodiphosphninimidic complex of yttrium, Y(F-TPIP)3, which is 

optically inactive at UV-visible-IR wavelengths.16 The co-evaporation technique is described in 

the Supporting Information (SI), and it allows two complex molecules to be composited at the 

molecular level with accurate control of the doping ratios. In a series of co-doping films, the 

Zn(FBTZ)2 can be continuously diluted from a molar ratio of 91% to 20%. 

In a 20% Zn(FBTZ)2 co-doped film, decreasing temperature gradually introduces 

additional photoluminescence (PL) band at long wavelength, shown in Figure 1b. Meanwhile, its 

intensity reduces when the temperature increases to 300 K. At 80 K, the time-resolved PL curve 

recorded at 550 nm wavelength gives an average emission lifetime of ~ 225 ms, indicating that the 

emission results from phosphorescence compared to a ~ 10 ns fluorescence recorded at 500 nm 

wavelength. In a fully fluorinated material system, the phonon energy due to bond vibration16,17 

and inter-molecular vibration18 is < 1360 cm-1, which is inconsistent with the emission energy of 
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> 18,000 cm-1. According to the energy gap law, we can exclude the possibility of a thermal 

quenching for the T1→S0 transition. The phonon energy is approximately resonant with the energy 

gap between the S1 and T1 level. Therefore, the thermal quenching for the T1→S0 transition can 

be dominated by the thermal-activated delayed fluorescence, which is rational to be eliminated at 

a low temperature. 

With the dilution gradually tuned by controlling the doped Y(FTPIP)3 concentration, we 

found a continuous tuning of the phosphorescence lifetime and spectral features at 80 K. shown in 

Figure 2. This modulation allows a continuous  tuning of the average emission lifetimes from ~ 

96 ms to ~ 225 ms. The nearly linear response of the average emission lifetimes to the Zn(FBTZ)2 

concentration below 60% might imply the uniformity of the molecular-level composition of two 

materials within the dilution region. The fitting data are listed in Table S1. The temperature 

dependent PL of the 20% Zn(FBTZ)2 film allows us to calculate that the ISC rate (RISC) is ~ 3.9 × 

107 s-1 corresponding to the order of ~ 25 ns. This value is comparable to the fluorescence lifetime 

of ~ 10 ns. The calculation details can be found in the SI. At 80K, the reverse-ISC rate is estimated 

to be small enough to be negligible. Thus the quenching effect for the T1 states can be dominated 

by the TTA rate, RTTA, which will partially repopulate the S1 states (SI). In Figure 2, the RTTA value 

for the 91% Zn(FBTZ)2 doped film is ~ 5.76 s-1, which is similar to the estimated triplet emission 

rate (RT) of ~ 4.75 s-1, indicating the TTA can significantly quench the T1 state population leading 

to shortening of the phosphorescence lifetime. However, once the Zn(FBTZ)2 is diluted linearly to 

20%, the molecular stacking is spatially interfered to reduce the RTTA to be < ~ 0.22 s-1, shown in 

Figure 2 and Table S2. This rate is reduced to be within the experimental error of measured 

phosphorescence emission rate, and it is negligible for the quenching mechanism. Using the fitted 
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parameters can give the calculated phosphorescence peak intensities, indicated by the empty 

circles in Figure 3, which agree with the experimentally extracted PL data. 

The time-resolved PL curves shown in Figure S1 indicate there are two exponential 

components in the decays which can both be tuned by the dilution. It is rational to consider that 

molecular grains can form for each material when they are co-deposited onto a room-temperature 

substrate.16,19 Thus, even for 20% Zn(FBTZ)2, we believe that the TTA pathway might be still 

valid inside some Zn(FBTZ)2 grains that lead to the short-lifetime component (~ 8 ms to 33 ms). 

These trivial stacking might also explain the small blue-shift of the phosphorescence peak for 91% 

Zn(FBTZ)2 and small distortions of the phosphorescence spectral features at various dilutions, 

shown in Figure 3. Nevertheless, this short-lifetime component takes up ~ 10%, implying the most 

of Zn(FBTZ)2 molecules are spatially separated. 

In conclusion, the TTA process is competitive to consume the population of excited triplet 

states to quench the phosphorescence. Thus the TTA needs to be considered as a significant 

quenching effect for a long-persistent organic triplet emitting material. Our study demonstrates 

that diluting the phosphorescent materials at the molecular level using a co-evaporation technique 

is an effective way to suppress the TTA-induced quenching. The results demonstrate a continuous 

tuning of the phosphorescence lifetime and spectral feature using a single organic triplet emitting 

material in a solid-state film. Our results also provide a semi-theoretical modeling and 

experimental method to simulate the quenching effect for the newly synthesized long-persistent 

organic emitting materials in future.  
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Figures and Captions: 

 

Figure 1. (a). Absorption spectra of the Zn(FBTZ)2 in CHCl3 (2.34×10-6 M) and a 250 nm 

Zn(FBTZ)2 film. The inset is the Zn(FBTZ)2 molecular structure extracted from a crystallographic 

data (CCDC number: 873937). (b) The temperature dependent PL spectra of a 20%-Zn(FBTZ)2-

80%-Y(FTPIP)3 film. The green region indicates the fluorescence (Fluo) and the red region 

indicates the phosphorescence(Phos). Photoexcitation: 405 nm CW laser, 10 mW. The smoothed 

PL spectra are provided, and the original spectral data are provided in the SI.  
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Figure 2. Upper Plot: The time-resolved PL decay of a 20%-Zn(FBTZ)2 and 91%-Zn(FBTZ)2 film 

at 80 K. The red lines are the dual exponential fits to the data. The original spectral data for all 

samples are provided in the SI. Lower Plot: the phosphorescence emission rate, 1/ T , which is 

calculated from the average emission lifetimes, and the TTA rate, RTTA, which is obtained from 

the fitting (SI), are plotted with the Zn(FBTZ)2 concentration in molar ratios.  
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Figure 3. The Zn(FBTZ)2 dilution dependent PL spectra measured at 80 K. The green region is 

the fluorescence (Fluo) and the phosphorescence (Phos). The colored empty circles indicate the 

calculated phosphorescence peak intensities.  
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