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Linear optimal noncausal control of wave energy
converters
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Abstract—This paper addresses the fundamental theoretical
development of a linear optimal noncausal control for wave
energy converters (WECs) in a closed analytic form. It is well
known that wave energy converter control is a noncausal control
problem, i.e. the future wave information contributes to the
present control action. This paper provides a reliable, efficient
and simple linear optimal controller with guaranteed stability
for WEC control problem. The proposed WEC linear optimal
control (LOC) consists of a causal linear state feedback part and
an anticausal linear feedforward part to incorporate the influence
of future incoming waves. The stability of the closed-loop WEC
control system with the proposed linear optimal controller is
proven. The contribution of the noncausal term using wave
prediction information to the optimal control and the energy
output is analyzed quantitatively. The proposed linear controller
can be more preferred when constraint satisfaction becomes a
less important issue for mild sea states and some well-designed
WECs with an ample operation range. The proposed optimal
control strategy can be extended for a generic class of energy
maximization problems. Numerical simulations are presented to
justify the efficacy of the proposed WEC optimal control.

Index Terms—Optimal control, sea wave energy, wave energy
converter, energy maximization control, sea wave prediction.

I. INTRODUCTION

ASubstantial amount of renewable energy is contained in
ocean waves. The subject of harnessing wave energy has

been extensively studied in recent decades, especially after the
oil crisis in 1973 [1], and many different types of wave energy
converters (WECs) have been invented since then. However,
the WEC technology is still immature compared with other
renewable energies, such as wind energy and solar energy [2].

It is well known that control plays an important role in
increasing the energy conversion efficiency of WECs. Con-
ventional WEC control strategies are based on the impedance
matching principle that energy output can be maximized when
the resonance frequency of a WEC matches the dominant
frequency of the incoming waves [3]. The typical conventional
WEC control strategies include latching control [4], [5], phase
control [6] and declutching control [7]. However most of these
control strategies are only effective for regular waves and
become very complicated to implement for irregular waves
in real sea conditions.

Optimal control of WECs is essentially different from
the conventional optimal control problems. Firstly, a WEC
controller aims to maximize energy output, whereas con-
ventional optimal control has been developed for reference
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tracking or equilibrium regulation problems. Because a WEC
is subject to the persistent disturbance (excitation force from
incoming waves), there are no equilibrium or fixed references
for tracking. Secondly, it has been proven that to achieve
an optimal operation of a WEC, the future information of
the incoming wave is needed for the implementation of a
WEC controller, which results in a noncausal optimal control
problem [3]. These differences invalidate a direct application
of the conventional optimal control strategies.

Some linear causal sub-optimal control strategies have been
recently developed for the WEC control problem, e.g. a
non-standard linear quadratic Gaussian (LQG) control [8]
and the noncausal control proposed in [9]. Although the
implementation of these causal optimal controllers avoids the
hardware cost for wave prediction, this extra hardware cost
can be trivial compared with the increased energy output
gained by incorporating wave prediction into control in some
scenarios. In [10], we demonstrate that the noncausal optimal
WEC control with wave prediction based on the concept of
model predictive control (MPC) can at least double the energy
output than the energy converted by the traditional causal
WEC control methods. Recent progress in wave prediction
techniques, e.g. the deterministic sea wave prediction (DSWP)
technology developed in [11], makes the employment of wave
prediction in a WEC control system more economically viable.

In this paper, we develop a generic linear noncausal optimal
control strategy for the WEC control problem. Compared
with the existing causal sub-optimal controllers, this controller
can explicitly incorporate wave prediction information into
the WEC control problem. At the price of not explicitly
incorporating constraints into WEC optimal control problem,
the resulting optimal controller takes a compact closed analytic
form, which provides theoretical insights into WEC optimal
control. The control signal is composed of two terms: one
feedback term determined by the current measurement of
state, and one feedforward term incorporating the influence
of current and future waves. The feedback and feedforward
gains used to calculate the feedback and feedforward control
signals can be efficiently determined off-line. The stability
of the proposed noncausal optimal control is also analyzed,
which provides a theoretical basis towards the stability analysis
of MPC of WECs when constraints are active. The reliable,
efficient and simple linear optimal controller with guaranteed
stability can be more preferred when the potential constraints
violation becomes a less significant issue for mild sea states
and some well-designed WECs with an ample operation range,
e.g. the M4 device reported in [12]. As an alternative simple
controller to MPC, the proposed linear controller can be easily
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tuned and implemented on economically-viable hardware. The
proposed optimal control strategy can be extended to cope with
a generic class of direct energy output maximization problems
where optimal references are difficult to be calculated, or
even do not exist, e.g. solar energy and wind energy control
problems. This method has more potential especially when the
energy source can be predicted.

Although the control method is generic and can be used
for a wide variety of WECs, we select a particular WEC as
a case study for demonstration purpose. The device to be
investigated in this paper reflects the working principle of
a point absorber whose schematic diagram is shown in Fig.
1. To present the WEC control problem, we use the models
similar to those used in [13]. The excitation wave force drives
the float, resulting in the relative heave motion between the
piston fixed to the buoy and the cylinder fixed to the seabed (or
anchored through mooring lines, but with a negligible heave
motion of anti-heave plate compared to that of the float). This
relative motion creates fluid flow that drives the power take-off
(PTO) system to generate power; the typical PTO mechanism
includes direct linear generators [14] and hydraulic motors
connected to electricity generators [15].
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Fig. 1. Schematic diagram of a point absorber

The external manipulated force fu acting on the piston is
the control input. zw and zv represent the sea surface level and
the heave position of the middle point of the buoy respectively.
By defining the direction as shown in Fig. 2, the power output
of the WEC at time t is expressed as

P (t) = −fużv (1a)

The energy absorbed during period [T1, T2] is expressed as∫ T2

T1

P (t)dt (1b)

For safety operation, we restrict the float’s heave motion so
that the constraint can be expressed as

|zv| ≤ Φmax (2a)

where Φmax is the float heave motion limits. The WEC is also
subject to control input limitation

|fu| ≤ umax (2b)

The controller design objective is to maximize the energy (1b)
subject to the state constraint (2a) and input constraint (2b).

Since linear optimal control cannot explicitly incorporate
hard constraints into optimization, we use soft constraints
instead. The WEC LOC problem is solved via the Bellman
principle [16]. The implementation of the WEC LOC is based
on the assumption that full state information is available from
a state observer.

The rest of the paper is organized as follows. The dynamic
modeling of a single WEC device is presented in Section II.
Section III provides the WEC optimal control formulation.
Simulation results are demonstrated in Section IV. Finally, the
paper is concluded in Section V.

II. MODEL SETUP

The free body diagram of the float is shown in Fig. 2. By
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Fig. 2. Free body diagram of the float

applying Newton’s second law, we have

msz̈v = −fs − fr + fe + fu (3)

where ms is the float mass; the restoring force fs is given by

fs = kszv (4)

with the hydrostatic stiffness ks = ρgs, and ρ as water density,
g as standard gravity, and s as the cross-sectional area of the
float. fr is the radiation force determined by

fr = m∞z̈v +

∫ ∞
−∞

hr(τ)żv(t− τ)dτ (5)

where m∞ is the added mass; hr is the kernel of the radiation
force that can be computed via hydraulic software packages
(e.g. WAMIT [17]). Following [13], the convolutional term in
(5) fR :=

∫∞
−∞ hr(τ)żv(t − τ)dτ can be approximated by a

causal finite dimensional state-space model

ẋr = Arxr +Br żv (6a)

fr = Crxr ≈
∫ t

−∞
hr(τ)żv(t− τ)dτ (6b)
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where (Ar, Br Cr, 0) and xr ∈ Rnr are the state-space
realisation and the state respectively. Following [13], the wave
excitation force fe can be determined by

fe =

∫ ∞
−∞

he(τ)zw(t− τ)dτ (7)

where he is the kernel of the radiation force and the state-space
approximation is given by

ẋe = Aexe +Bezw (8a)

fe = Cexe ≈
∫ t

−∞
he(τ)zw(t− τ)dτ (8b)

where (Ae, Be Ce, 0) and xe ∈ Rne are the state-space
realization and the state respectively.

With the realizations of (6) and (8a), the state-space model
of (3) can be represented by{

ẋ = Acx+Bucu+Bwcw
z = Czx

(9)

where w := zw, z := zv , y := żv , x := [zv, żv, xr, xe] and

Ac =


0 1 0 0

−ks

m 0 Ce

m −Cf

m
0 Br Ar 0
0 0 0 Ae

 Bwc =


0
0
0
Be

 Buc =


0
1
m
0
0


Cz =

[
0 1 01×(nr+ne)

]
(10)

with m := ma +m∞.
The continuous time model (9) can be converted to a

discrete time model{
xk+1 = Axk +Buuk +Bwwk

zk = Czxk
(11)

The WEC linear optimal control development in the remaining
paper will be based on this discrete time model.

III. WEC OPTIMAL CONTROL FORMULATION

A. Optimal controller derivation of WEC

The optimal control strategy of a WEC can be written as

min
u

1

N

(
N−1∑
k=0

Lk(xk, uk)

)
, (12a)

s. t. xk+1 = Axk +Buuk +Bwwk (12b)
zk = Czxk (12c)

where N is the number of prediction steps and Lk is a stage
cost

Lk =
1

2
xTkQxk + zkuk +

1

2
ru2

k (12d)

Here
• 1

2x
T
kQxk is used to penalize the state. The weight Q

influences the stability of the control system and can be
used as a tuning parameter to handle the state constraint
(2a).

• −zkuk represents the power that can be captured by the
power take-off (PTO) mechanism, i.e. minimizing zkuk
is equivalent to maximizing the energy output.

• 1
2ru

2
k is used to penalize the input. The weight r influ-

ences the stability of the control system and can be used
as a tuning parameter to handle the input constraint (2b).

Remark 1. If the constraints (2a) and (2b) are not explicitly
included in the optimization, an analytical solution can be
derived. The weights Q and R can be used to penalize x and
u in the objective function and can be used as the tuning
parameters to avoid constraint violations.

The linear optimal noncausal control policy for WEC con-
trol is given in the following Theorem:

Theorem 1. The linear optimal noncausal controller for the
control problem (12) is

uk = Kx,kxk +Kw,kwk +Ks,ksk+1 (13a)

where

Kx,k = − (r +BT
u Vk+1Bu)−1(Cz +BT

u Vk+1A) (13b)

Kw,k = − (r +BT
u Vk+1Bu)−1BT

u Vk+1Bw (13c)

Ks,k = − (r +BT
u Vk+1Bu)−1BT

u (13d)

and Vk and sk+1 can be calculated via backward iterations

Vk = Qk +ATVk+1A− (Cz +BT
u Vk+1A)T (r (14a)

+BT
u Vk+1Bu)−1(Cz +BT

u Vk+1A)

sk = (A+BuKx,k)T (Vk+1Bwwk + sk+1) (14b)

with the boundary conditions

VN = 0 (15a)
sN = 0 (15b)

Proof. Define the optimal cost-to-go (from k to N ) to be
v(x, k). Since the dynamics are linear and the stage cost are
quadratic, a reasonable guess of the cost-to-go function can
be quadratic on the current state xk

v(x, k) =
1

2
xTk Vkxk + xTk sk + ak (16a)

where Vk, sk, ak do not depend on xk and Vk ≥ 0. From

v(x,N) =
1

2
xTNVNxN + xTNsN + aN = 0 (16b)

we have the boundary conditions VN = 0, sN = 0, aN = 0
for any xN . From the Bellman optimality principle [16], we
have

v(x, k) = min
uk

{L(xk, uk) + v(x, k + 1)} (16c)

Define P (xk, uk, wk) := L(xk, uk) + v(x, k + 1). Since
∂2P (xk,uk,wk)

∂u2
k

= r +BT
u Vk+1Bu > 0, we have

uk =
∂P (xk, uk, wk)

∂uk
= − (r +BT

u Vk+1Bu)−1[(BT
u Vk+1A+ Cz)xk

+BT
u Vk+1Bwwk +BT

u sk+1]
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which results in (13). Then we replace uk in (16c) with
(13). Since (16c) needs to be satisfied for all xk, after some
calculation and rearrangement, we have

Vk = Q+ATVk+1A− (Cz +BT
u Vk+1A)T (r (16d)

+BT
u Vk+1Bu)−1(Cz +BT

u Vk+1A)

sk = (A+BuKx,k)T (Vk+1Bwwk + sk+1) (16e)

and ak satisfies

ak = ak+1 +M1 −M2 +M3 (16f)

where

M1 =
1

2
(Bwwk)TVk+1(Bwwk) (16g)

M2 =
1

2
(Kw,kwk +Ks,ksk+1)T (BT

u Vk+1Bu (16h)

+ r)(Kw,kwk +Ks,ksk+1)

M3 = wT
k B

T
wsk+1 (16i)

which completes the proof.

Remark 2. From Theorem 1, we can see that the optimal
control consists of two parts:
• the causal linear part Kx,kxk + Kw,kwk, i.e. the part

depending on current state and wave information.
• the anticausal part Ks,ksk+1, where sk+1 depends only

on the future wave information provided by some wave
prediction technique. This enables one to quantitatively
investigate the influence of anticausal term on energy
output.

The coefficients Kx,k, Kw,k and Ks,k can be determined off-
line.

Remark 3. The calculation of the optimal controller (13) can
be partially computed offline for the gains Kx,k, Kw,k and
Ks,k and partially computed online for sk incorporating the
wave prediction information. The control algorithm is shown
in Algorithm 1.

Algorithm 1 Implementation of Theorem 1
1: Compute Vk for 0 ≤ k ≤ N−1 using backward recursion

(14a) with boundary condition VN = 0.
2: Compute Kx,k, Kw,k, and Ks,k using (13).
3: Repeat online:

Compute s1 using the backward recursion (14b) with
boundary condition sN = 0.
Apply u = Kx,0x+Kw,0w +Ks,0s1.

Note that the term s1 calculated from the online backward
recursion can be viewed as the accumulation of the impact
from the incoming wave prediction on the optimal control
action.

B. Steady-state solution

In this section, we develop a steady state solution so that
the stability can be proved and Algorithm 1 can be further
simplified for implementation. We start with the backward
recursion of the discrete-time Ricatti equation (14a).

Assumption 1. The system (A,Bu) is stabilizable. The coeffi-

cients of the cost function are chosen such that
[
Q CT

z

Cz r

]
>

0. The control horizon is infinite, i.e. N → ∞ in the cost
function (12a).

Lemma 1 (Convergence & Stability). If Assumption 1 holds,
the solution of the Ricatti equation (14a) converges as N →
∞, i.e. V0 → V and V satisfies the discrete algebraic Ricatti
equation (DARE)

V = ATV A+Q (17)

− (BT
u V A+ Cz)T (r +BT

u V Bu)−1(BT
u V A+ Cz)

and the solution of the DARE (17) is unique. The control action
to be implemented can be simplified as

u = Kxx+Kww +Kss1 (18a)

where

Kx = − (r +BT
u V Bu)−1(Cz +BT

u V A) (18b)

Kw = − (r +BT
u V Bu)−1BT

u V Bw (18c)

Ks = − (r +BT
u V Bu)−1BT

u (18d)

and s1 is the solution of the online backward recursion (14b).
With this control law, the system is stable, i.e. A+BuKx has
eigenvalues strictly inside the unit circle.

Proof. We begin the proof by introducing a nominal system

x̄k+1 = Ax̄k +Buūk (19)

and an optimization problem based on this nominal system

JN−k(x̄N−k) = min
ūN−k,...,ūN−1

x̄TNQN x̄N (20)

+

N−1∑
i=N−k

[
x̄i
ūi

]T [
Q CT

z

Cz r

] [
x̄i
ūi

]
By assuming Jk(x̄N−k) = x̄TN−kV̄N−kxN−k where V̄N−k ≥
0 and with the Bellman optimality principle [16], we have

JN−k(x̄N−k) = min
uN−k

[JN−k+1(x̄N−k+1) (21)

+

[
x̄N−k
ūN−k

]T [
Q CT

z

Cz r

] [
x̄N−k
ūN−k

]]
Following the similar method to (14), we have

V̄k = Q+AT V̄k+1A− (Cz +BT
u V̄k+1A)T (r (22)

+BT
u V̄k+1Bu)−1(Cz +BT

u V̄k+1A)

with boundary condition V̄N = QN , with optimal control
action

ū∗k = K̄x,kx̄k (23)

where K̄x,k − (r +BT
u V̄k+1Bu)−1(BT

u V̄k+1A+ Cz)
By defining Sk = V̄N−k, the backward recursion (22) can

be rewritten as

Sk+1 = Q+ATSkA− (Cz +BT
u SkA)T (r (24)

+BT
u SkBu)−1(Cz +BT

u SkA)
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with S0 = QN . With (20) to (24), after rearrangement
(replacing x̄N−k with x̄0), we have

x̄0Skx̄0 := P ∗k (QN ) = min
u0,...,uk−1

Pk(QN ) (25)

where P ∗k (QN ) denotes the optimal value of Pk(QN ) and

Pk(QN ) := xTkQNxk +

k−1∑
i=0

[
x̄i
ūi

]T [
Q CT

z

Cz r

] [
x̄i
ūi

]
Then we move to the main part of the proof.

1) Convergence:
By assuming QN = 0, (22) becomes identical with
(16d). Since (A,Bu) is stabilizable, there exists a
feedback control sequence Mk such that the state x0

can be regulated to the origin in nx steps, where nx is
the dimension of the state xk, with control sequence
uk = Mkxk, Pk(0) = c1 for k > nx, where c1 is a
constant.

Meanwhile, since
[
Q CT

z

Cz r

]
> 0, P ∗k (0) is increasing,

i.e. P ∗k (0) ≤ P ∗k+1(0). Also, P ∗k (0) = x̄T0 Skx̄0 is upper
bounded by P ∗k (0) ≤ Pk(0), which means P ∗k (0) is
converging, i.e. limn→∞ P ∗k (0) = P ∗∞(0).

Since the above holds for all x̄0, both the solution
of (24) with QN = 0 and (16d) are converging, i.e.
V0 = S∞ → V as N → ∞ and can be calculated by
(17) and (13) converges to (18a).

2) Stability:
From limk→∞ P ∗k (0) = P ∗∞(0), we have

lim
k→∞

[
x̄k
ūk

]T [
Q CT

z

Cz r

] [
x̄k
ūk

]
= 0

Since
[
Q CT

z

Cz r

]
> 0, we have limk→∞ ūk = 0 and

limk→∞ x̄k = 0. The system (19) with optimal control
action ū∗ = limk→∞ K̄x,kx̄ = Kxx̄ with Kx defined
in (18a) is stable. Then we have A + BuKx has all
eigenvalues strictly inside the unit circle.

3) Uniqueness of solution:
Assume u∗k is the corresponding optimal control action
of P ∗k (0) and QN is an arbitrary positive semi-definite
function. Immediately, we have

P ∗k (0) ≤ P ∗k (QN ) ≤ Pk(QN ) (26)

By assuming Pk(QN ) using the control action u∗k,
we have Pk(QN ) = P ∗k (0) + x̄TkQN x̄

T
k . Since

limk→∞ x̄k = 0, we have

lim
k→∞

Pk(QN ) = lim
k→∞

P ∗k (0) + lim
k→∞

x̄TkQN x̄
T
k (27)

= lim
k→∞

P ∗k (0) = P ∗∞(0)

Combining (26) and (27), we have

lim
k→∞

P ∗k (0) = lim
k→∞

P ∗k (QN ) = P ∗∞(0) (28)

Assume Ṽ is another solution of (17) other than V . Then
we have

lim
k→∞

P ∗k (Ṽ ) = x̄T0 Ṽ x̄0 (29)

We also have

lim
k→∞

P ∗k (Ṽ ) = lim
k→∞

P ∗k (0̃) = x̄T0 V x̄0 (30)

With (29) and (30), we have Ṽ = V , i.e. the solution of
DARE (17) is unique.

Remark 4. The control law proposed in Lemma 1 is practi-
cally intractable because solving s1 in (18a) using backward
recursion (14b) requires infinite wave prediction horizon as
N → ∞. However, only finite length of wave prediction is
achievable from the wave prediction technique.

Remark 5. Recent studies [18], [19] show that the require-

ment for the stage cost
[
Q CT

z

Cz r

]
to be positive definiteness

can be relaxed, so that greater weight can be imposed on
the energy output term and the DARE still yields a unique
stabilizing solution.

To make the control law proposed in Lemma 1 practically
implementable, in the remaining of the section, we will show
that if the wave prediction horizon is finite but long enough,
the control law proposed in Lemma 1 can be further simplified.

Assumption 2. The wave prediction technique can provide
sufficiently long np steps of future wave prediction.

Lemma 2. If Assumption 1 and 2 hold, the control law
proposed in Lemma (1) can be further simplified by linear
optimal noncausal control law

u = Kxx+Kdw (31a)

where

Kx = − (r +BT
u V Bu)−1(Cz +BT

u V A) (31b)

Kd = − (r +BT
u V Bu)−1BT

u Ψ (31c)

V = ATV A+Q (31d)

− (BT
u V A+ Cz)T (r +BT

u V Bu)−1(BT
u V A+ Cz)

x is the current state; w := [w0, w1, . . . , wnp−1]T is the
sequence of predicted future wave heave velocities; Φ =
(A+BuKx)T ; Ψ := [V Bw,ΦV Bw, . . . ,Φ

np−1V Bw].

Proof. From Lemma 1, as N →∞, the coefficients Kx,k and
Vk+1 converge for 0 ≤ k ≤ np − 1, i.e. Kx,k = Kx, Vk+1 =
V . The backward recursion of sk (16e) can be rewritten in a
compact form

sk = Φsk+1 + ΦV Bwwk (32)

where Φ = (A+BuKx)T .
Define a sequence of np steps of predicted wave heave el-

evation profile as w := [w0, w1, . . . , wnp−1]T . The backward
recursion (32) can be represented by

s1 = Φnp−1snp
+ [0,ΦV Bw, . . . ,Φ

np−1V Bw]w (33)
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Substituting (33) into (18a) gives

u = Kxx+Kss1 +Kww0

= Kxx+KsΦ
np−1snp +Kdw (34)

where Kd, Kx and Φ are defined in (31).
Note that since Φ has all the eigenvalues strictly inside the

unit circle, the impact of future waves on the control input
diminishes as the power of Φ increases. This implies that the
wave prediction of near future has more significant impact on
control actions than that of the far future, and thus justifies that
the term KsΦ

np−1snp
in (34) can be negligible with sufficient

large wave prediction horizon np in real time implementation.
Then we have (31), which completes the proof.

C. Sea wave prediction techniques

The efficacy of wave prediction techniques plays a key role
in the proposed noncausal optimal WEC control strategy. Dif-
ferent wave prediction techniques have been developed, which
can be generally classified into two categories. One class of
wave prediction techniques are based on the past sea wave data
measured at the same point of the sea surface where the WEC
is located. This class of methods for the prediction are based
on statistical methods, such as autoregressive models, cyclical
models, extended Kalman filters, as summarized in [20]. The
other class of techniques are based on the measurements of
sea wave elevations at multiple nearby locations with certain
distances away from the WEC. The information of wave
propagation and wave directions can be used to predict the
sea wave profile at the WEC’s location with tens of seconds
into the future. A representative wave prediction method in
this category is the deterministic sea wave prediction (DSWP)
method. We briefly describe its principle for completeness, and
more details can be found in [11] and the references therein.
Because of the requirement of fast real-time wave prediction
in the linear noncausal optimal control for WECs, we use
a standard linear oceanographic wave model [21], [22]. The
weight elevation at the spatial coordinates (px, py) at time t
has the form of

h(px, py, t) =

Np∑
n=1

Rs∑
r=1

A(ωn, θr) cos[knpx cos(θr)

+ knpy sin(θr)− ωnt+ Θ(ωn, θr)] (35)

where Np is the number of frequencies employed; Rs is the
number of significant storm directions which can be assumed
to be modest, i.e. Rs < 10; kn is the wave number, which
is computed via kn = 2π/λn, where λn is the wave length;
A(ωn, θr) is the directional magnitude spectrum, where θr
is the propagation direction of an individual wave component
and ωn is the angular frequency; Θ(ωn, θr) is a phase-lift. The
principle of DSWP method is to use the wave data collected
from the remote wave sensors at multiple fixed positions to
estimate the parameters in wave model (35) and use the model
to predict the future wave profile.
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Fig. 3. WEC linear optimal noncausal control framework

D. Implementation

In previous sections, we have designed the WEC optimal
control based on the assumption that full state information is
available. However, in practice it may not always be realistic
or economically viable to measure all the states of a WEC, in
which case a state observer is required. We assume that only
some outputs can be measured

y(k) = Cx(k) + v(k) (36)

where v represents the measurement noise and the pair (A,C)
is assumed to be observable. Then a standard Kalman observer
can be designed to estimate the full state information of a
WEC, see [23] for more details. The WEC optimal control
framework is shown in Fig. 3. The future wave profile is
predicted (by e.g. DSWP [10], [11]). The control input consists
of (i) the anticausal feedforward part from the predicted wave
information and (ii) the causal feedback part from the estimat-
ed states x̃ provided by a state estimator. The WEC optimal
control with estimation can be implemented by Algorithm 2.
Based on the separation principle, the whole system is stable
if both the observer and the controller are stable.

IV. NUMERICAL EXAMPLES

In this section, we demonstrate the efficacy of the proposed
methods using two sets of numerical examples based on dif-
ferent WEC designs. The WEC model used in the simulation
has the form as described in (10). The optimal control policies
for WECs are generated by Algorithm 2.

A. The WEC model with parameters used in [13] and no
model mismatch

The parameters of the WEC model used in section IV-A
are adopted from those used in [13], which are summarized
in Table I.

After discretizing the model with a sampling time Ts =
0.1s, we formulate an optimal control with the objective
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Algorithm 2 Implementation of WEC linear optimal non-
causal control.

1: Wave prediction w from DSWP.
2: State estimation updates:

x̃(k|k) = x̃(k|k − 1) + L(y(k)− Cx̃(k|k − 1)) (37)

where x̃(k|k) represents x̃k estimated at time k; L is the
Kalman gain which can be computed offline by

L = −PCT (CPC +Rv)−1 (38)

where the matrix P is the solution of DARE

P = APAT −APCT (CPCT +Rv)−1CPAT (39)

+BwRwB
T
w

where Rv and Rw are weighting matrices and are tuned to
be according to the estimated covariance of measurement
noise and incoming wave respectively.

3: Control action update:

u(k|k) = Kxx̃(k|k) +Kdw (40)

where Kx and Kd are derived from Lemma 2.
4: Estimator updates:

x̃(k + 1|k) = Ax̃(k|k) +Buu(k|k) +Bww (41)

TABLE I
THE PARAMETERS USED FOR THE WEC MODEL IN SIMULATION SET A

Description Notation values
Stiffness ks 3866 N/m
Float mass ms 242 kg
Added mass ma 83.5 kg
Total mass m 325.5 kg
Input force limit umax 8 kN
Float heave limit Φmax 0.5 m

function as described in (12). The weights Q and r are tuned
(i) to be sufficiently small for maximizing the energy output;
(ii) to guarantee a unique stabilizing solution can be derived
from DARE (17); (iii) to ensure input and heave constraints
are not violated. Here we choose Q = diag(6, 9.8, 0, . . . , 0),
r = 0.08 respectively. The observer weights are tuned at
Rv = 0.01, Rw = 1 respectively.

Then we move to the formulation of LOC for WEC using
the finite wave prediction with the prediction time horizon
tp := Tsnp and np represents the prediction horizon steps.
Note that in designing the WEC LOC, the term KsΦ

np−1snp

described in (34), where snp summarizes the future wave
information for t > tp, is neglected in designing the LOC
for WEC.

Fig. 4 shows that the closed-loop system is stable, i.e.
Φ = A+ BKx has eigenvalues strictly inside the unit circle.
With such properties, we can see that the coefficient on snp is
deceasing with the increase of np, which means that the term
KsΦ

np−1snp
can be negligible for a sufficiently large wave

prediction horizon.
Fig. 5 shows the change of the gain Kd =

[Kd(0),Kd(1), . . . ,Kd(np − 1)] over the prediction steps.
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Fig. 4. The coefficient on snp is decreasing with the increase of np, which
means that the term KsΦnp−1snp can be negligible for sufficiently large
wave prediction length np.
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Fig. 5. Impact of future wave predictions on control

Here, Kd(i) represents the gain of wave prediction at step
n = i, i.e. wave prediction at time t = Tsi. We can see
the magnitude of the Kd(i) decreases with the increase of
prediction step i, which means that the impact of future wave
prediction decreases with time in wave feedforward control
part Kdw .

The real wave data gathered off the coast of Cornwall UK
are used for numerical simulations. The 50 seconds of the
heave elevation used in simulation are shown in Fig. 6.

Four cases with different controllers are calculated with
different wave prediction horizons (0 s, 1 s, 2 s and 3 s).
Fig. 7 and Fig. 8 show the control inputs u = Kxx + Kdw
and the wave feedforward part signals Kdw for the four cases
respectively. The limit on control input magnitude is |u| ≤ 8
kN. Note that the LOC with wave prediction horizon of 0
s is the causal LOC and can be used for comparison with
the noncausal optimal controllers proposed in this paper. By
comparing the control input without wave prediction (i.e. the
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Fig. 6. A 50-second period of wave profile (wave elevation) is used in
simulation.
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Fig. 7. Control input magnitude with different wave prediction horizons (0s
corresponds to no wave prediction). Inclusion of feedward control for wave
prediction does not change control input magnitude significantly.

0s line) with other control inputs with wave prediction in Fig.
7, we can see that the magnitude of maximal control input
signal does not significantly change when feedforward term is
added. This feature is helpful because it not only provides
a fair comparison basis, but also reduces controller design
complexity because the WEC control designers do not have to
retune the feedback part when adding the wave feedforward
part.

Fig. 9 shows buoy heave displacement response of the WEC.
The constraints on maximal buoy heave displacement is 0.5
m. We can see that although the trajectories of state responses
of system with different controllers are slightly different, the
maximal heave displacement magnitudes are similar and the
state constraint violation is avoided.

Fig. 10 shows the power output and energy output of system.
The energy output without wave prediction is 19.58 kJ while
the energy output with wave prediction horizons of 1 s, 2
s and 3 s are 22.55 kJ, 24.36 kJ and 24.94 kJ respectively,
which represents a 27% energy increase by incorporating wave
prediction into optimal WEC control with a horizon of 3 s.
Fig. 10 shows that the noncausal optimal WEC control with
wave predictions can help the WEC system to get a better
energy conversion efficiency without increasing the state and
control input magnitudes, i.e. introducing potential constraint
violations.

Fig. 11 shows the energy output of the system with different
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Fig. 8. Feedforward control input magnitude with different wave prediction
horizons (0s corresponds to no wave prediction).
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Fig. 9. Float heave displacement with different wave prediction horizons.

wave perdition horizons. We can see that the energy output
increases significantly when the wave prediction horizon is
within 3 s. We also find that the WEC LOC with longer wave
prediction has a better performance; however, the benefit of
further increasing wave prediction horizon beyond 3 s becomes
less obvious.

B. The WEC model with parameters used in [13] with para-
metric uncertainties

To test the robustness of the proposed nonlinear LOC, we
assume that the term m∞ from the radiation force (5) is
incorrectly modeled at 100 kg instead of the true value 83.5
kg while the rest of the parameters remain the same as those
used in section IV-A.

We tune the linear noncausal optimal controller using Al-
gorithm 2 based on the inaccurate model with m∞ = 100
kg. The controller weights in (12) are tuned to be Q =
diag(6, 10, 0, . . . , 0) and r = 0.09 such that the control input
and state constraints are satisfied for the incorrect modeled
system. The observer weights Rw and Rv remains the same.
The 3 s wave prediction length is used.
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Fig. 10. Power output time simulation (a 27% efficiency increase between
the linear causal control and the linear noncausal control with 3 s prediction
horizon)
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Fig. 11. Energy output with different wave predictions

After the offline computation of control coefficient Kx

and Kd and Kalman gain L using the incorrect model, we
implement the observer with incorrect estimator updates (41)
and the controller on the WEC model with m∞ = 83.5 kg.

Fig. 12 shows that the comparison of the control inputs
and buoy position responses for the cases with and without
parametric uncertainties. Note that in the simulation with
parametric uncertainties, we use the inaccurate model for the
designs of controller and observer. We can see that there are
no significant differences between the two cases (41).

Fig. 13 shows the energy output. We can see that the energy
output drops from 24.94 kJ to 24.52 kJ when the parametric
uncertainties are taken into account. There is no significant
performance degradation using the estimator and controller
designed based on inaccurate model, which indicates that the
linear noncausal optimal control method proposed in this paper
has good robustness properties against model uncertainties.
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Fig. 12. Control input and buoy position magnititude of the WEC.
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Fig. 13. Power and energy output of the WEC.

C. Simulation comparison with a bigger WEC

To show the universal efficacy of the proposed control
strategy, we do simulations on a bigger WEC than that used
in the last subsection. The parameters of this WEC model is
shown in Table II.

By comparing Fig. 14 with Fig. 4, we can see that, the
closed-loop system of WEC is less strongly stable compared
with the WEC in section IV-A. By “less strongly stable”, we
mean that the eigenvalues of closed-loop system A + BKx

are close to the unit circle, which result in Φi = (A+BKx)i

decreasing slower than that in section IV-A with the increase
of i. Such properties will have the following impacts.

1) The WEC linear noncausal optimal control requires a
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TABLE II
THE PARAMETERS USED FOR THE WEC MODEL IN SIMULATION SET B

Description Notation values
Stiffness ks 6.39 × 105 N/m
Float mass ms 7 × 104 kg
Added mass ma 1 × 104 kg
Total mass m 8 × 104 kg
Input force limit umax 80 kN
Float heave limit Φmax 4 m

0 10 20 30 40 50 60 70 80

Wave predictions (s)

0

0.2

0.4

0.6

0.8

1

M
ax

im
al

 e
ig

en
va

lu
e 

of
 Φ

i

0 10 20 30 40 50 60 70 80

Wave prediction length (s)

0

0.01

0.02

0.03

0.04

K
sΦ

n p-1

Fig. 14. The maximal eigenvalue of Φi decreases slower with the increase
of i compared with that of the smaller WEC in section IV-A.

longer prediction horizon for this term to be small
enough and negligible.

2) The wave feedforward control part Kdw has a larger
impact on the WEC performance.
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Fig. 15. Control input magnitude with different wave prediction horizons (0
s corresponds to no wave prediction).

Next, we present the time simulations of the WEC with
designed linear noncausal optimal controller with the same
wave profile used in section IV-A as shown in Fig. 6.

Three cases with different controllers are calculated with
different wave prediction horizons (0 s, 30 s and 42 s).

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-60

-40

-20

0

20

40

60

W
av

e 
fe

ed
fo

rw
ar

d 
pa

rt
 (

kN
)

0s
30s
42s

Fig. 16. Feedforward control input magnitude with different wave prediction
horizons (0 s corresponds to no wave prediction).
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Fig. 17. Float heave displacement with different wave prediction horizons.

Figs. 15-17 show the control inputs u = Kxx + Kdw, the
feedforward control signals and buoy heave displacement for
the three cases respectively.

By comparing Figs. 15-16 with Figs. 7-8, we can see that the
the ratio of the maximum magnitude of the feedforward part
(Fig. 16) to that of the total control (Fig. 15) is much bigger
than the ratio for the smaller WEC case. This means the wave
prediction plays a more important role in control signal in the
less stable WEC design. Meanwhile, the maximal control input
signals and maximal buoy heave displacement are similar over
different prediction horizons.

Fig. 18 shows the power output and energy output of system.
The energy output of system without wave prediction is 5575
kJ while the energy output of system with wave prediction of
30 s and 42 s are 6492 kJ and 7637 kJ respectively.

From Figs. 15-18, we can see that if a closed-loop system
is less strongly stable, the benefits of incorporating wave
predictions become greater, i.e 37% of energy conversion rate
increase compared to 27%, while the state and control input
magnitudes are not changed significantly. However, to achieve
better performance, much longer wave prediction horizons are
required.
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Fig. 18. Power output time simulation (a 37% energy increase between the
linear causal control and the linear noncausal control with 42s prediction
horizon)
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Fig. 19 shows the energy output of system with different
wave perdition horizons. We can see that the energy output
keeps increasing until the wave prediction horizon reaches
40s, which validates our analysis that for less stable systems,
longer wave predictions are required and the impact of the
wave prediction on systems’ performance are greater. We can
also find some fluctuation occurs between 0-10 s of the wave
prediction horizons. This is because with an insufficient wave
prediction length, as shown in Fig. 14, the term KsΦ

np−1snp

is non-negligible so that Algorithm 2 with insufficient wave
prediction horizons has a loss of optimality for the optimal
control policy for WEC.

V. CONCLUSIONS

In this paper, we have developed a linear noncausal opti-
mal control strategy for WECs. The optimal control strategy
consists of a linear causal state feedback part and a linear
anticausal feedforward part to incorporate the influence of
wave prediction. This linear noncausal optimal controller can
directly maximize the energy output with a sufficiently low

computational load since the gains of the controller can be
calculated offline. It is also easy to tune and find the trade-off
between the energy output, robust stability and the satisfaction
of constraints.

The paper also studies the impact of incoming wave predic-
tions on the WEC LOC performance. The simulation shows
that the feedforward part for incorporating wave prediction
information can increase the systems performance without
introducing the issue of constraint violation. The explicit
analysis and demonstration of incoming wave prediction with
different horizons provide a general guideline for finding the
trade-off between extra cost caused by the requirement of
wave predication and the LOC performance. The results of
this paper also provide the basis to analyze the stability issues
of model predictive control of WECs. In our future work,
we will investigate the theoretical basis of the robustness of
the proposed control against WEC dynamic uncertainties and
wave prediction error.
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