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1 Introduction

Recent progress in the study of perturbative scattering amplitudes has often relied on

supersymmetry. While the study of supersymmetric theories has both theoretical and

practical motivations, it is important to know to what extent recent findings actually

rely on supersymmetry, not least in view of the relevance to present day phenomenology.

In this work, we study non-supersymmetric gauge theory and gravity by employing two

remarkable developments in the study of amplitudes: (i) the formalism of the scattering

equations and ambitwistor strings, and (ii) the double-copy relation between gauge theory

and gravity. These closely interconnected structures are easier to study at loop level when

working with supersymmetric theories. They are, however, also expected to hold in the

absence of supersymmetry. This is indeed what we find.

Our main outcome is a set of explicit expressions for the n-particle one-loop integrands

in non-supersymmetric gauge theory and gravity. The formulae are a stepping stone in the
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application of ambitwistor strings to practical calculations of scattering amplitudes, includ-

ing for theories of phenomenological interest. Moreover, our results have consequences for

the understanding of gravity as the ‘square’ of non-abelian gauge theories.

In its basic structure, the double-copy relation between Yang-Mills theory and gravity

remains intriguing, especially at loop level where it is only a conjecture. The most fruitful

tool to understand it has been the Bern-Carrasco-Johansson (BCJ) duality between colour

and kinematics [1, 2]. The colour-kinematics duality ascertains a hidden symmetry of

the gauge-theory S-matrix when expressed as a sum over cubic Feynman-like diagrams.

Specifically, it states that the kinematic numerators associated to the diagrams can be

chosen to satisfy a Jacobi relation whenever the corresponding colour factors satisfy that

Jacobi identity. This property ensures that gravity amplitudes can be obtained from gauge

theory amplitudes by simply substituting the colour-factor by another copy of the kinematic

factor, a process known as double copy. At tree level, the BCJ double copy is equivalent

to the Kawai-Lewellen-Tye (KLT) relations [3] arising from string theory. String theory

provides a beautiful interpretation of the double copy as relating closed string amplitudes to

open string amplitudes; where gravitons, as massless vibrations of closed strings, arise from

joining the endpoints of a pair of open strings. In fact, the tree-level BCJ structure has been

proven by the same worldsheet monodromy properties of string theory that underlie the

KLT relations [4, 5]; and it has also been proven using modern field theory techniques [6, 7].

There are numerous constructions of tree-level BCJ representations for gauge theory and

gravity, e.g. [8–19]. The double-copy structure also turns out to generalise to a variety

of theories — and relations between them — ranging from open string theory to effective

scalar field theories such as the non-linear sigma model and the Galileon [20–24]. Moreover,

it applies beyond flat-space scattering amplitudes, to perturbative (and in certain cases

exact) solutions to the classical equations of motion, e.g. [25–30], and to scattering on

curved backgrounds [31, 32].

At loop level, the straightforward extension of the colour-kinematics duality to the

loop integrand is conjectural [2]. There are many non-trivial examples of supersymmetric

amplitudes for which a BCJ representation exists, to cite a few [2, 33–40], and there are

also examples of form factors [41, 42]. In fact, at one loop there is strong evidence that

the colour-kinematics duality holds in general, and that the underlying structure is similar

to that at tree level (irrespective of supersymmetry) [43–53], including the string theory

monodromy story [54–56].

However, there are also obstacles to the colour-kinematics duality at generic loop level.

In particular, it may not be possible to find a colour-kinematics satisfying representation if

one restricts the numerators to be local and to satisfy reasonable power counting properties

in the loop momenta. The most notable example of this difficulty is the five-loop four-

point amplitude in maximal super-Yang-Mills theory. The motivation is the construction

of its double copy in maximal supergravity, whose ultraviolet properties — a long standing

problem — may offer hints on the all-loop ultraviolet behaviour of the theory. Recent

work [57] has explored the double-copy structure in the absence of numerators satisfying

the Jacobi relations, and this has allowed for the construction of the full loop integrand for

this amplitude [58], although more work is required to extract the ultraviolet behaviour.
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There are previous examples of getting around this type of BCJ obstacle by relaxing in

some way the Jacobi relations [59, 60] or the loop power counting [61]. Investigations

from the field theory limit of string theory have also identified obstructions to the naive

expectations of the BCJ structure [50, 62].

Given these obstacles and potential solutions, it is important to revisit the workings of

the colour-kinematics duality using a first-principles approach. Such an approach is pro-

vided by the other main development that we explore in this work, namely the Cachazo-He-

Yuan (CHY) formalism of the scattering equations [63–65] and its worldsheet interpretation

in terms of ambitwistor strings, discovered by Mason and Skinner [31, 32, 66–71]. The latter

are quantum field theories formulated in a string-like manner, and they inherit with some

modifications the structures of ordinary string theory that so naturally express the double

copy; refs. [72–76] study the precise connection to string theory. Crucially, ambitwistor

strings provide a loop-level framework which is much easier to work with than the genus

expansion of ordinary string theory. While some ambitwistor string models admit a genus

expansion [77–79], there is a more general formalism of an expansion in the number of

nodes of a Riemann sphere, with the nodes (pairs of identified points) representing the

loop momenta [80–83]. This expansion can in principle be derived from the genus expan-

sion when the latter exists, and in fact it was discovered in this way at one loop [80]. For

an alternative approach to the loop-level scattering equations, based on a (hyper)elliptic

curve, see [84–87].

The formulae for amplitudes directly obtained from ambitwistor strings are based on

the scattering equations. At loop level, the formulae give the loop integrand, expressed

in a manner analogous to the tree-level CHY formulae, but now based on the loop-level

scattering equations [80–82]. A remarkable feature of these new loop-level formulae is

that the representation of the loop integrand is not of the Feynman type, with ordinary

propagators of the form 1/(`+K)2. Instead, the framework of the nodal Riemann sphere

gives a propagator structure based mostly on linear propagators, such as 1/(2` ·K +K2).

This new representation discovered in [80] was explored in several works, including [81–85,

88–92]. One conclusion is that this representation is well suited to express loop integrands in

terms of higher-point tree-level amplitudes. We will see in this paper that the contributions

to the n-particle one-loop integrand are a forward limit of contributions to an (n+2)-particle

tree-level amplitude; the forward limit is the gluing of the 2 extra particles into a loop.

This is analogous to the Feynman tree theorem. Ref. [90] provides the most advanced

discussion available at the moment on formal aspects of the new type of loop integrand

representation, and also presents a higher-loop construction (Q-cuts) in the spirit of the

Feynman tree theorem.

Let us now discuss in more detail the relationship between the scattering equations and

the double copy. At tree level, the CHY formulae have been shown to provide an elegant

alternative representation of the BCJ structure; see e.g. [65, 93–98]. In fact, the predecessor

to the new developments of scattering equations and ambitwistor strings, namely Witten’s

twistor string theory [99] and the resulting ‘connected’ formula for amplitudes [100], had

already been shown to be closely intertwined with the BCJ and KLT relations [101, 102].

In recent work, starting from [65], much of the attention has focused on the remarkable
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properties of the CHY Pfaffian, the crucial building block that is ‘squared’ from gauge

theory to gravity. Along this line of work, ref. [103] by Fu, Du, Huang and Feng is of

particular interest to us. It presents an explicit and straightforward algorithm to write

down tree-level BCJ numerators, based on a decomposition of the CHY Pfaffian. Aside

from shedding light on the BCJ struture, it also provides a simple tool for dealing with the

CHY amplitude expressions without explicitly solving the scattering equations.

It is natural then to study the extension of the double-copy structure to one loop using

the formalism of the scattering equations. Recently, He and Schlotterer [104, 105] have

addressed this question successfully in the case of supersymmetric theories (with various

degrees of supersymmetry). They have found a natural BCJ-type structure at one loop,

which relates to the tree-level structure in the same type of forward limit that we mentioned

above. The details differ from the original loop-level BCJ conjecture [2]. The origin of this

distinction is the representation of the loop momentum: the results obtained in the repre-

sentation that naturally comes out of the scattering equations are not easily translated into

the standard BCJ numerators associated to Feynman-type propagators. Ref. [105] stopped

short of detailing this structure in the non-supersymmetric case, because the forward-limit

procedure used for the loop integrand is divergent without the cancellations provided by

supersymmetry.

In this work, we find that the type of BCJ structure described in [104, 105] also exists

in the absence of supersymmetry, if one relaxes certain integrand-level identities to be

valid only up to terms that vanish upon loop integration. While our results also follow

from a forward limit, the procedure we apply works already at the level of the individual

numerators, and therefore avoids the usual diverging propagators. In particular, we obtain

one-loop BCJ numerators directly from the tree-level BCJ numerators of [103] via

N1-loop(i1, i2, . . . , in) =
∑
r

Ntree-level(+, i1, i2, . . . , in,−) ,

where ± represent the back-to-back loop momentum ±˜̀ (an on-shell version such that
˜̀2 = 0), and the sum is over the gluon states running in the loop. This relation between tree-

level numerators and one-loop numerators is derived from the equivalent relation between

the tree-level CHY Pfaffian introduced in [64] and its one-loop analogue determined in [81]

from the ambitwistor string. Our results, as those of [104, 105], do not directly translate

into conclusions for what the BCJ structure should be in a representation with Feynman-

type propagators.

This article exemplifies the remarkable properties of the novel type of representation

for the loop integrand. Firstly, we easily extend a technique that was successful at tree level

to loop level. Secondly, the colour-kinematics duality and the double copy are manifest.

Thirdly, we are able to straightforwardly perform explicit tests of our formulae, namely

to check gauge invariance and to match previously known forms of the integrand, both of

which require non-trivial procedures in a Feynman-type representation. The simplicity of

these tests follows from the fact that, in the representation we use, certain integrand-level

expressions are trivially recognised to vanish upon loop integration [90]. We write the

– 4 –



J
H
E
P
0
3
(
2
0
1
8
)
0
6
8

one-loop contribution to the scattering amplitude in the form

A(1) =

∫
dD`

`2
I(`) , (1.1)

where I depends on the loop momentum but not on `2; we shall discuss this representation

in the review section. Now suppose that

I′(`) = I(`) + ∆I(`) , with ∆I(λ`) = λm ∆I(`) , (1.2)

for some integer m. It follows that, in dimensional regularisation,1∫
dD`

`2
∆I(`) = 0 =⇒ I′(`) ' I(`) , (1.3)

where we use the symbol ' to denote that both I′(`) and I(`) give the same result after

loop integration, and are therefore valid forms of the loop integrand for the amplitude

A(1). More generally, this is also true if ∆I(`) is a (finite) linear combination of terms

with distinct homogeneity degree m. Notice that the argument still holds in the presence

of the iε terms that define the loop integration contour. Since a finite rescaling in ` could

be accompanied by a rescaling of the ε’s, the argument above still applies. We assume

explicitly that an iε prescription exists for the new type of representation of the loop

integrand. A natural prescription was proposed and checked in simple examples in [90],

and it would be interesting to investigate its origin in the ambitwistor string, but we will

not be concerned with this here.

The paper is organised as follows. We start in section 2 with a review of the BCJ and

CHY structures at tree level and at one loop, including the one-loop CHY-type formulas

derived from ambitwistor strings, which are the main ingredient for our results. In section 3,

we present the algorithm to obtain one-loop BCJ numerators and give various examples.

We describe several tests of the results for Yang-Mills theory in section 4, while also giving

an explicit example of how to construct the loop integrand from the BCJ numerators. In

section 5, we discuss the double copy to gravity, leading to formulae for both NS-NS gravity

and pure gravity. To conclude, we summarise our results and comment on open questions

in section 6.

2 Review

We start this section with brief reviews of the CHY representation of tree-level scattering

amplitudes and of the BCJ colour-kinematics duality and double copy. The models un-

derlying the simple and compact CHY formulae for amplitudes — two-dimensional chiral

conformal field theories, known as ambitwistor strings [66] — naturally extend the scat-

tering equation formalism to higher loop order. We review key formulae, as well as the

specific representation of the loop integrand these models result in.

1This statement follows from a change of variables `→ λ`, which cannot alter the result of the integral,

but leads to
∫

dD` ∆I(`)/`2 → λD−2+m
∫

dD` ∆I(`)/`2. In dimensional regularisation, D 6= 2−m, so the

integral must vanish.

– 5 –
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2.1 Tree-level amplitudes and BCJ numerators

The CHY representation of tree-level amplitudes. The Cachazo-He-Yuan (CHY)

representation [63–65] expresses tree-level scattering amplitudes for n massless particles in

D dimensions as integrals over the moduli space of a punctured Riemann sphere M0,n,

A(0)
n =

∫
M0,n

dµ0,n I , dµ0,n ≡
∏n
i=1 dσi

vol SL(2,C)

n∏
i=1

′ δ

(∑
j 6=i

ki · kj
σij

)
, (2.1)

with σi ∈ CP1 and σij = σi − σj . The measure dµ0,n is universal to all massless scattering

amplitudes and fully localises the moduli space integral onto the solutions of the so-called

scattering equations2 [63, 64]

Ei ≡
∑
j 6=i

ki · kj
σij

= 0 . (2.2)

Both the scattering equations and the (theory-specific) integrand I transform covariantly

under Möbius transformations, in such a manner that the amplitude is invariant. Fixing

this redundancy introduces the usual Jacobian and removes three redundant scattering

equations (hence the prime in the formula). This leaves exactly dimC(M0,n) = n − 3

constraints, which fully localise the integral.

In all cases of interest studied so far, the CHY integrand I exhibits a double-copy

structure,

I = IL IR , (2.3)

where the factors IL,R depend explicitly on the marked points σi and on the scattering

data, e.g. the null momenta ki, the polarisation vectors εi, or the SU(Nc) colour indices ai.
3

A theory is thus specified by its building blocks IL and IR. While CHY representations

have been given for a wide family of theories [23, 108], ranging from Einstein-Yang-Mills to

effective scalar theories such as Born-Infeld or the non-linear sigma model, we focus here

on the formulae for gravity and Yang-Mills theory:

IYM = ISU(Nc) Ikin , Igrav = Ikin Ĩkin . (2.4)

where the ‘colour’ and ‘kinematic’ integrand factors are given by

ISU(Nc) =
∑

ρ∈Sn/Zn

tr
(
T ρ(a1) . . . T ρ(an)

)
σρ(a1)ρ(a2) . . . σρ(an)ρ(a1)

, (2.5a)

Ikin = Pf ′(M) ≡ (−1)î+ĵ

σîĵ
Pf
(
M îĵ

îĵ

)
, Ĩkin = Ikin(εi → ε̃i) . (2.5b)

2These scattering equations also feature prominently in the high-energy scattering of strings [106]. See

also [78] for more details on the relation to ambitwistor strings and the CHY formulae.
3Notice that the factorisation poles of the amplitudes are due to poles in σij of the integrand I, evaluated

on solutions to the scattering equations; see e.g. [107]. The explicit dependence of I on the Mandelstam

variables is polynomial.
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The sum in ISU(Nc) runs over non-cyclic permutations, denoted by Sn/Zn. The 2n × 2n

antisymmetric matrix M({ki, εi, σi}) defining Ikin is determined by

M =

(
A −CT

C B

)
, (2.6a)

Aij =
ki · kj
σij

, Bij =
εi · εj
σij

, Cij =
εi · kj
σij

, (2.6b)

Aii = 0 , Bii = 0 , Cii = −
∑
j 6=i

Cij . (2.6c)

On solutions to the scattering equations (2.2), M has co-rank two,4 and thus Pf (M) = 0.

However, an invariant quantity, the reduced Pfaffian Pf ′(M), can be defined by removing

any two rows and columns î and ĵ such that 1 ≤ î < ĵ ≤ n, leading to Ikin as given in

eq. (2.5b).

The dependence of Igrav on two sets of polarisation vectors indicates that the scatter-

ing states have the polarisation tensors εµνi = εµi ε̃
ν
i . The gravity theory described in this

way is the theory of NS-NS gravity (the name is imported from string theory), describing

gravitons, dilatons and (2-form) B-field states. At tree level, if the external states are re-

stricted to describing gravitons (an appropriate symmetric and traceless linear combination

of terms εµi ε̃
ν
i ), then the scattering amplitudes coincide with those of pure Einstein gravity.

The colour-kinematics duality. The splitting of the CHY integrands into colour and

kinematic factors in eq. (2.4) is highly suggestive of the Bern-Carrasco-Johansson (BCJ)

colour-kinematics duality for gauge theory and the associated double copy to gravity [1]. To

make the connection between the two more explicit, we should relate the CHY framework

to the BCJ Feynman-like diagrams.

Our starting point is an expansion of the Yang-Mills amplitude into cubic diagrams Γα,

A(0)
YM =

∑
Γα

cαNα

Dα
, (2.7)

where each term contributes with a colour factor cα, a kinematic numerator Nα dependent

on the external momenta and on the gluon polarisations,5 and a product 1/Dα of scalar

propagators of the cubic graph. The colour factors are composed of the structure constants

fabc of the Yang-Mills Lie algebra, and therefore obey Jacobi relations

cα ± cβ ± cγ = 0 , (2.8)

for suitable choices of (α, β, γ) and signs. The colour-kinematics duality [1] then ascertains

that there exists a dual set of kinematic numerators Nα satisfying the same relations,

Nα ±Nβ ±Nγ = 0 . (2.9)

4Its kernel is spanned by the vectors (1, . . . , 1, 0, . . . , 0) and (σ1, . . . , σn, 0, . . . , 0).
5In this paper, we will only consider the scattering of gluons. More generally, we could also consider

matter states, e.g. in supersymmetric gauge theories.

– 7 –



J
H
E
P
0
3
(
2
0
1
8
)
0
6
8

Kinematic numerators satisfying eq. (2.9) whenever the corresponding colour factors satisfy

eq. (2.8) are known as BCJ numerators, and will be the central object of interest throughout

this article. An important point is that this set of numerators is non-unique, i.e. there

exist different choices giving the same amplitude. We will see later that this statement

also applies at one loop. The loop-level conjecture of the colour-kinematics duality is

the straightforward extension of the statement above, but applied to the loop integrand

expressed in terms of cubic diagrams, where the kinematic numerators and the propagators

depend on the loop momenta [2].

Given a set of BCJ numerators from Yang-Mills theory, a gravity amplitude is obtained

straightforwardly via the BCJ double copy [1]: we substitute the colour factors in (2.7) by

another set of Yang-Mills numerators,

A(0)
grav =

∑
Γα

Nα Ñα

Dα
, Ñα = Nα(εi → ε̃i) . (2.10)

The external states in the gravity amplitude have the polarisation tensors εµνi = εµi ε̃
ν
i ,

exactly as we discussed before for the corresponding CHY formula.

We can consider the BCJ structure starting from an alternative decomposition of the

colour dependence of the gauge theory amplitude, in terms of colour traces,

A(0)
YM =

∑
ρ∈Sn/Zn

AYM(ρ(a1), . . . , ρ(an)) tr
(
T ρ(a1) . . . T ρ(an)

)
. (2.11)

The existence of numerator relations (2.9) is then equivalent to the fact that the partial

amplitudes AYM satisfy the BCJ relations [1],6

n∑
j=2

k1 · k23...j AYM

(
2, 3, . . . , j, 1, j + 1, . . . , n

)
= 0 , ki...j =

j∑
a=i

ka . (2.12)

In the CHY framework, these relations emerge elegantly as relations among the Parke-

Taylor factors appearing in (2.5a) [63, 101],

n∑
j=2

k1 · k23...j

σ23 . . . σj1σ1 j+1 . . . σn2
= 0 , mod Ei , (2.13)

that is, on the support of the scattering equations (2.2). This short and elegant implemen-

tation of the BCJ relations should serve as a first indication that the BCJ numerators Nα

can also be derived effectively from the scattering-equations formalism.

The principal idea for deriving numerators satisfying eq. (2.9) from the CHY formulae,

following [103] and building on earlier work [65, 109, 110], is to expand both the Yang-

Mills amplitude and the gravity amplitude in a Dixon-Del Duca-Maltoni (DDM) half-ladder

basis [111],

AYM =
∑

ρ∈Sn−2

c(1, ρ, n)AYM(1, ρ, n) , (2.14a)

Agrav =
∑

ρ∈Sn−2

N(1, ρ, n)AYM(1, ρ, n) , (2.14b)

6These relations appear in string theory as monodromy relations [4, 5].
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1 n

ρ(2) ρ(3) ρ(n− 1)

Figure 1. The tree-level BCJ master numerators N
(
1, ρ(2, . . . , n−1), n

)
, correspond to half-ladder

diagrams with legs 1 and n at opposite endpoints.

1 4

2 3

−
1 4

3 2

=
1 4

2 3

Figure 2. Example at 4 points of how a diagram relates to master diagrams via Jacobi relations.

This equation applies to both the colour factors and (by definition) the BCJ numerators associated

to the diagrams.

where both the colour factors

c(1, ρ, n) = fa1aρ(2)b1 f b1aρ(3)b2 · · · f bn−3aρ(n−1)an , with [T a, T b] = fabcT c ,

and the kinematic numerators N(1, ρ, n) are associated with cubic diagrams forming a

‘half-ladder’; see figure 1. If this can be achieved, the amplitudes satisfy the double-copy

structure, since the gravity amplitude Agrav is constructed from the gauge theory ampli-

tude AYM by replacing the colour factors c(1, ρ, n) by kinematic numerators N(1, ρ, n).

The numerators of DDM half-ladder diagrams are known as master numerators, since the

numerators of any other cubic diagram can be obtained from these via the Jacobi-type

relations (2.9); this mirrors the analogous statement for colour factors, as in figure 2. The

colour-kinematics duality is thus satisfied by construction.

The challenge is then to decompose the gravity amplitude into Yang-Mills ampli-

tudes (2.14b). In the CHY language, this can be achieved by rewriting the ‘colour’ (2.5a)

and ‘kinematic’ (2.5b) integrand factors [65],7

ISU(Nc) =
∑

ρ∈Sn−2

c(1, ρ, n)

σ1ρ(2) σρ(2)ρ(3) · · ·σρ(n−1)n σn1
, (2.15a)

Ikin = Pf ′(M) =
∑

ρ∈Sn−2

N(1, ρ, n)

σ1ρ(2) σρ(2)ρ(3) · · ·σρ(n−1)n σn1
, mod Ei . (2.15b)

Notice that neither the colour factors c(1, ρ, n) nor the kinematic numerators N(1, ρ, n) de-

pend on the punctures σi. While there exist several distinct choices of numerators achieving

this goal, we will focus our attention on a recent construction of [103]; see also the closely

related work [112]. By definition, the Pfaffian is a product over closed cycles, and this

structure can be exploited to find a convenient Ansatz for a recursive expansion. In [103],

Fu, Du, Huang and Feng demonstrate beautifully that the parameters in such an Ansatz

7The so-called KLT orthogonality guarantees that such an expansion exists, [63, 102]. A prior version

of this type of decomposition, valid for a (pure spinor) supersymmetrised version of the Pfaffian, was given

in [9].
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are completely fixed by the requirement of gauge invariance, and derive a surprisingly sim-

ple algorithm for all tree-level BCJ numerators. Instead of reviewing here their tree-level

algorithm, we will describe it in our one-loop construction in section 3.

2.2 One-loop integrands from ambitwistor strings

The existence of the remarkably simple CHY representation of the S-matrix is elegantly

explained by ambitwistor strings [66, 69, 113] — chiral worldsheet models with an auxiliary

target space, the space of complex null geodesics. Ambitwistor string correlation functions

give rise to the CHY representation of scattering amplitudes, and the physical understand-

ing provided by the underlying CFT has been crucial in extending the scattering equations

formalism to loop level [77, 80–82].

In the genus expansion of the ambitwistor string, g-loop amplitudes are represented by

integrals over the moduli space of punctured genus-g Riemann surfaces Mg,n. Specialising

to one loop, the loop integrand8 is thus given by an integral over the punctures, as well

as the fundamental domain of the modular parameter τ of the torus. While conceptually

simple, the mathematical framework on higher genus Riemann surfaces is computationally

challenging and obscures the relative simplicity of the expected loop integrand.

Due to modular invariance, however, the support of the one-loop scattering equations

localises the τ integral on the cusp or non-separating degeneration τ → i∞, [80, 81]. On

the resulting nodal Riemann sphere, one-loop amplitudes take the following form:

A(1)
n =

∫
dD`

`2

∫
M0,n+2

dµ
(nod)
1,n I(1) , dµ

(nod)
1,n ≡

∏
a dσa

vol SL(2,C)

∏
a

′δ
(
E(nod)
a

)
. (2.16)

In eq. (2.16), a runs over all external particles as well as the two parameters describing

the node, σ+ and σ−, corresponding to the insertions of +` and −` respectively. The

nodal scattering equations E
(nod)
a in the measure dµ

(nod)
1,n bear a remarkable similarity to

the tree-level scattering equations for n+ 2 particles,

E
(nod)
+ ≡

∑
i

` · ki
σ+i

, (2.17a)

E
(nod)
− ≡ −

∑
i

` · ki
σ−i

, (2.17b)

E
(nod)
i ≡ ki · `

σi+
− ki · `

σi−
+
∑
j 6=i

ki · kj
σij

. (2.17c)

In fact, the nodal measure may be written compactly as

dµ
(nod)
1,n = dµ0,n+2

∣∣
˜̀2=0

, (2.18)

with two additional particles with back-to-back on-shell momenta ±˜̀. This on-shell mo-

mentum ˜̀relates to the loop momentum ` as ˜̀= `+η, where η satisfies `·η = ki·η = εi·η = 0

and η2 = −`2; so η can be thought of as a higher-dimensional contribution. Therefore, if

8The full amplitude moreover involves an integration over the loop momentum `.
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I(1) depends on the loop momentum only via ` · ki and ` · εi, we have I(1)(`) = I(1)(˜̀). We

will see below that this interpretation in terms of n + 2 on-shell particles has immediate

consequences for the representation of the loop integrand, and plays an important role in

the construction of the BCJ numerators.

It is worth highlighting that while the genus-one representation of the amplitude has

so far only been achieved for type II supergravity (sugra) and only in the critical dimension

D = 10, the one-loop formalism based on the nodal Riemann sphere can be applied to a

variety of theories in any dimension D. In fact, this formalism was used in [80] for super-

Yang-Mills (sYM) theory and in [81] for gravity and gauge theory in a variety of dimensions

and degrees of supersymmetry, even though a genus-one ambitwistor string representation

is not known (or perhaps even expected to exist) for such theories. Moreover, there is strong

evidence for the validity of its higher-genus extension [82], representing g-loop amplitudes

as integrals over the moduli space of punctured g-nodal Riemann spheres.

Similarly to tree level, there is a factorisation I(1) = I(1)
L I

(1)
R in the theories of interest

that have been explored so far. The fundamental building blocks for the one-loop integrands

of Yang-Mills theory and gravity are given by the following colour and kinematic integrand

factors [81]

I(1)
SU(Nc)

=
∑
ρ∈Sn

tr
(
T ρ(a1) . . . T ρ(an)

)
σ+ ρ(1)σρ(1) ρ(2) . . . σρ(n)−σ−+

+ double-trace terms , (2.19a)

I(1)
susy = I(1)

NS + I(1)
R . (2.19b)

The ambitwistor-string origin of these expressions allows for the identification of contribu-

tions from individual GSO sectors, as well as the scalar contribution (following a similar

analysis in the string literature [114]),

I(1)
NS =

∑
r

Pf ′
(
M r

NS

)
, I(1)

R = − cD
(σ+−)2

Pf
(
M2

)
, I(1)

scal =
1

(σ+−)2
Pf
(
M3

)
. (2.20)

Here, cD is a dimension-dependent constant,9 and the matrices Mα for α = 2, 3 (stemming

from the different spin structures (0, 0) and (1, 0)) are defined similarly to eq. (2.6) by

Mα =

(
A −CT

C B

)
, (2.21a)

Aij = ki · kj Sα(σij) , Bij = εi · εj Sα(σij) , Cij = εi · kj Sα(σij) , (2.21b)

Aii = 0 , Bii = 0 , Cii = −
∑
j 6=i

εi · kj
σij

− εi · `
σi+

+
εi · `
σi−

. (2.21c)

with S3 = σ−1
ij and S2 = σ−1

ij

(√
σi+σj−
σi−σj+

+
√

σi−σj+
σi+σj−

)
. As discussed above, these integrands

only depend on the loop momentum via ` · ki and ` · εi, and hence I(1)(`) = I(1)(˜̀). The

9The dimensional reduction of 8 Majorana-Weyl spinors in D = 10 leads to c10 = 8, c8 = 8, c6 = 2 and

c4 = 2.
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NS integrand I(1)
NS therefore manifests the interpretation of adding two additional particles

with back-to-back momenta ±˜̀ with ˜̀= `+ η,

M r
NS = M tree

n+2

∣∣∣∣∣
˜̀2=0 , ε+=εr , ε−=(εr)†

. (2.22)

and the sum runs over a basis εr of polarisation vectors for the two additional particles.

The completeness relation for this basis, defined via εr · q = 0 for a null q, is

D−2∑
r=1

εrµ (εr)†ν = ηµν −
kµqν + kνqµ

k · q
≡ ∆µν . (2.23)

We can produce the substitutions∑
r

ε+ · ε− = D − 2 ,
∑
r

(ε+ · v) (ε− · w) = ∆µνv
µwν  v · w , (2.24)

where in the second equation we are allowed to drop the q-dependent term in ∆µν , since

its contribution vanishes on the solutions to the scattering equations; see [83]. These

substitutions will later allow us to obtain n-particle one-loop BCJ numerators from (n+2)-

particle tree-level BCJ numerators.

As at tree level, the Yang-Mills and gravity integrands, given here with and without

supersymmetry, exhibit the double-copy relation:

I(1)
sYM = I(1)

SU(Nc)
I(1)

susy , I(1)
sugra = I(1)

susy Ĩ(1)
susy , (2.25a)

I(1)
YM = I(1)

SU(Nc)
I(1)

NS , I(1)
NS-NS = I(1)

NS Ĩ
(1)
NS . (2.25b)

In the case of NS-NS gravity, we have the graviton, dilaton and B-field states running in the

loop. If we want to obtain pure gravity, with only the graviton states in the loop, we must

subtract the dilaton and B-field contributions. This is particularly easy in D = 4, since

the B-field has a single degree of freedom, the axion, and therefore it suffices to subtract

the contribution of two scalars running in the loop,

I(1)
4D-pure-grav = I(1)

NS Ĩ
(1)
NS − 2 I(1)

scal Ĩ
(1)
scal . (2.26)

New representation of the loop integrand. One feature of this scattering-equations

based representation particularly worth highlighting is that it gives rise to a non-standard

representation of the loop integrand:10 after carrying out the integration over the moduli

space M0,n+2, the integrand contains poles linear in ` not immediately recognisable as the

conventional loop propagators (`+K)2.

However, there is a simple prescription to obtain such a representation from a standard

loop integrand. The method is particularly easy to illustrate for numerators independent of

10In fact, this can already be observed from the general form of the amplitude given in eq. (2.16) and

eq. (2.17) by simply counting powers of the loop-momentum. Since all scattering equations in eq. (2.17)

are linear in `, all propagators will be as well, and the only quadratic power comes from the overall `−2.

See [107] at tree level and [81] at one loop for details on this argument using factorisation.
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∑
i

+ −
i i− 1

=
∑
i

+ −

i i− 1

Figure 3. Diagrammatic depiction: interpretation of the I representation of loop integrands as

(n+ 2)-particle tree diagrams.

`2 [80]. In that case, a loop integrand representation Ilin of the type appearing in eq. (2.16)

can be derived from a standard ‘quadratic’ representation Iqdr via repeated partial fraction

identities of the form

1∏
aDa

=
∑
a

1

Da
∏
b 6=a(Db −Da)

, where Da = (`+Ka)
2 and Ka =

∑
i∈Ia

ki , (2.27)

and shifts in the loop momentum ` → ` − Ka (differently for each term in the partial

fraction expansion), to obtain the overall factor `−2. These partial fraction identities are in

fact a special case of a more widely applicable contour integral argument [90]: to relate the

different representations for general numerators11 N(`, `2), we shift the loop momentum in

the standard representation Iqdr by ` → ˜̀ = ` + η (cf. eq. (2.22) and eq. (2.18)), where

` · η = ki · η = εi · η = 0, such that the Lorentz invariants are unaffected except for

`2 → `2 + η2 ≡ `2 + ζ. The integrand is then naturally written as the residue at ζ = 0.

Applying the Cauchy residue theorem, and shifting individual terms by ` → ` − Ka as

above, then yields Ilin:

Iqdr =
∑

Γ

N
(
`, `2

)∏
a∈ΓDa

 Ilin =
1

`2

∑
Γ

∑
a∈Γ

N
(
`−Ka, −2` ·Ka +K2

a

)∏
b 6=a(Db −Da)

∣∣∣
`→`−Ka

=
1

`2
I , (2.28)

up to terms integrating to zero in dimensional regularisation; hence I does not depend on

`2. It is easy to check that the denominator factors in I take the form 2` ·K +K2, where

K is a sum of external momenta. The sum over different propagators a on the right-hand

side of eq. (2.28) has an intuitive interpretation as different ways of ‘cutting open’ the loop

in the diagram, and each term can be associated to a tree-diagram involving the (on-shell)

momentum ˜̀; see figure 3.

We discuss an explicit example of the above presciption for changing the representation

of the loop integrand from Iqdr to Ilin in section 4.

While non-standard, this novel representation of the loop integrand has several re-

markable properties, as we will see below in detail:

• First and foremost, it facilitates a straightforward extension of tree-level results to

loop-level. This is particularly evident in the construction of the BCJ numerators

below, cf. section 3.2, but has also been implicitly used above in writing down the

integrands (2.25) for Yang-Mills and gravity.

11For readability, we keep the dependence on `2 explicit. By the first argument in N(`, `2) we mean the

` dependence of the type ` · ki or ` · εi.
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• Moreover, it manifests symmetry properties that are either obscured or absent in the

usual representation. In particular, while the construction of local BCJ numerators

on quadratic propagators faces serious obstacles for six external particles at one

loop [50, 62], these difficulties are absent in this representation of the integrand; see

also [104, 105].

• As a last point, several checks on the amplitude are substantially simplified in this

framework, and we exploit this in section 4. Recall the discussion below (1.1) about

terms in the integrand that integrate to zero due to scaling with `, and consider also

the form of I in (2.28). The numerators are polynomials in ` · ki and ` · εi, and the

linear propagator factors always take the form 1/(2` · K + K2), where K is a sum

of external momenta. Therefore, only terms with at least one propagator factor for

which K2 6= 0 can contribute after the loop integration. In particular, any term for

n = 2 and n = 3 must vanish upon integration because the Mandelstam variables

are trivial.

Notice, however, that while it is straightforward to go from the quadratic propagators

to the linear ones in the new representation, as shown in (2.28), the converse is not true.

To our knowledge, there is no general algorithm to go in the opposite direction starting

from contributions with linear propagators.

Refs. [115, 116] have explored the use of the scattering equations formalism to directly

produce quadratic propagators at loop level, at the price of more elaborate CHY-type

expressions. It would be interesting to know whether this idea can be efficiently applied

to gauge theory and gravity, and whether it has a simple interpretation from the point of

view of ambitwistor strings.

3 One-loop BCJ numerators

The main advantage of the CHY representation (2.16) and the resulting integrand I lies

in its simplicity: effectively, it has the complexity of an (n + 2)-particle on-shell tree-

amplitude. This close similarity makes it possible to easily extend tree-level results to loop

level. In this section, we use this relation to derive an algorithm for all-multiplicity BCJ

numerators, building on the corresponding work at tree level in [103].

3.1 Derivation from ambitwistor strings

Just as at tree level, the BCJ relations embed straightforwardly into the ambitwistor-string

setting. For instance,

n−1∑
j=1

` · k12...j

σ12 . . . σj+σ+ (j+1) . . . σn−σ−1
= 0 , mod E(nod)

a , (3.1)

as shown in [104]. Since the colour/kinematic duality consistency relations are naturally

satisfied on the support of the scattering equations, we can follow the same main idea as

at tree-level to derive the one-loop BCJ numerators.

– 14 –



J
H
E
P
0
3
(
2
0
1
8
)
0
6
8

+ −

ρ(1) ρ(2) ρ(n)

Figure 4. The one-loop BCJ master numerators N
(
1, ρ(2, . . . , n− 1), n

)
correspond to half-ladder

diagrams with legs + and − at opposite endpoints.

Our goal is therefore to expand both the Yang-Mills integrand IYM and the gravity

integrand Igrav in a DDM half-ladder basis,

IYM =
∑
ρ∈Sn

c(+, ρ,−)IYM(+, ρ,−) , (3.2a)

Igrav =
∑
ρ∈Sn

N(+, ρ,−)IYM(+ρ,−) , (3.2b)

where the factors IYM(+, ρ,−) are colour-ordered Yang-Mills integrands. Both the colour

factors,

c(+, ρ,−) = fa+aρ(1)b1 f b1aρ(2)b2 · · · f bn−1aρ(n)a− δa+a− ,

and the kinematic numerators N(+, ρ,−) are associated to half-ladder diagrams with legs

+ and − at opposite endpoints; see figure 4. This expansion naturally manifests the

double-copy structure, now at the level of the one-loop integrand. As at tree level, the

kinematic numerators N(+, ρ,−) in (3.2b) are known as the (one-loop) master numerators,

and all numerators for other cubic diagrams follow from the requirement of colour-kinematic

duality (2.9).

Rephrasing the above expansion in terms of the ambitwistor string integrands I(1),

eq. (3.2) is equivalent to

I(1)
SU(Nc)

=
∑
ρ∈Sn

c(+, ρ,−)

σ+ρ(1) . . . σρ(n)−σ−+
, (3.3a)

I(1)
NS =

∑
r

Pf ′(M r
NS) =

∑
ρ∈Sn

N(+, ρ,−)

σ+ρ(1) . . . σρ(n)−σ−+
, mod E(nod)

a . (3.3b)

Crucially, the extension of KLT orthogonality [63, 102] to one loop [104, 105] guarantees

that this expansion of the Pfaffian into loop partial integrands exists. However, determining

the coefficients N is far from trivial, since (3.3b) relies on the support of the scattering

equations. Different strategies have been used at tree level and at one loop, including the

use of cross-rational identities [96], of a differential operator for residues [117, 118], and of

the forward limit for the CHY-type loop integrand in supersymmetric theories [105].

The strategy we will implement here is to first use the definition of the (reduced)

Pfaffian to expand the gravity loop integrand I(1)
NS-NS into a sum over simpler Pfaffians

with purely kinematic prefactors. In turn, the expansion of these Pfaffians into pure Yang-
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Mills integrands is well known, [103], and can be obtained by expanding recursively and

fixing the expansion coefficients by gauge invariance.12

As a starting point, recall the definition of the (CHY) Pfaffian as a sum over permu-

tations13

Pf
(
M r

NS

)
=

∑
ρ∈Sn+2

(−1)sgn(ρ)MIMJ . . .MK

σIσJ . . . σK
. (3.4)

Above, I, J and K denote closed cycles determined by the permutation, and the coefficients

are given by

MI = tr(I) := tr(Fi1 . . . FinI ) , σI = σi1i2σi2i3 . . . σinI i1 , for nI > 1 , (3.5a)

MI = Cii , σI = 1 , for nI = 1 , (3.5b)

with nI = length(I) and Fµνi = kµi ε
ν
i − kνi ε

µ
i . For readability, we have used the notation

k+ = −k− = ` and ε+ = εr , ε− = (εr)†. Eq. (3.4) immediately generalizes to the reduced

Pfaffian I(1)
NS ,

I(1)
NS ≡

∑
r

Pf ′
(
M r

NS

)
=

∑
ρ∈S+−

n+2

(−1)sgn(ρ)WIMJ . . .MK

σIσJ . . . σK
. (3.6)

In an important distinction from eq. (3.4), I now denotes the open cycle determined by

the choice of removed rows and columns î, ĵ in the definition of the reduced Pfaffian (2.5b),

and S+−
n+2 indicates that we are only summing over permutations exchanging + and − or

keeping them fixed. A convenient choice for î and ĵ are the rows and columns associated

to the loop momentum `. With î = σ+ and ĵ = σ−, the coefficient WI of the open cycle I

is given by

WI =
∑
r

εr · Fi1 . . . FinI · (ε
r)† =

{
tr
(
Fi1 . . . FinI

)
for nI > 0 ,

D − 2 for nI = 0 ,
(3.7)

where we have explicitly carried out the sum over the basis of polarisation vectors for the

loop momenta, according to (2.24).

By decomposing the sum in S+−
n+2, the NS-integrand I(1)

NS thus becomes

I(1)
NS =

∑
I

( ∑
ρ∈S+−

I

(−1)sgn(ρ)WI

σI

)(∑
ρ̄∈SĪ

(−1)sgn(ρ̄)MJ . . .MK

σJ . . . σK

)

=
∑
I

∑
ρ∈S+−

I

(−1)sgn(ρ)WI
Pf
(
MĪ

)
σI

. (3.8)

12At tree-level, the Pfaffians obtained in the expansion coincide with the single-trace contribution to the

Einstein-Yang-Mills amplitude. We will see below that a suitable generalisation holds at one loop as well.
13This representation of the CHY Pfaffian is easy to derive from the ambitwistor string, where all fermions

in the vertex operators have to be contracted. With two fermions in each vertex operator, the sum over Wick

contractions is equivalent to a sum over all contraction cycles. Using the equivalence between permutations

and the product of cycles corresponding to the orbits of that permutation leads directly to eq. (3.4).

Alternatively, eq. (3.4) can be derived directly from writing the Pfaffian as a sum over perfect matchings:

since Aij , Bij and Cij all involve factors of 1/σij , perfect matchings exchanging these terms can be combined

into cycles. See e.g. [119] for an explicit discussion at tree level.
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In the last line, we have used the definition (3.4) to rewrite the sum over permutations SĪ as

a Pfaffian over a matrix we denote by MĪ .
14 To relate this representation of the integrand

I(1) to the half-ladder form of eq. (3.2b), we need to express the Pfaffian Pf
(
MĪ

)
/σI as a

sum over (n+2)-particle Parke-Taylor factors with kinematic coefficients ỸĪ . The full BCJ

numerators are then given by

N(+, ρ,−) =
∑
I

WI ỸĪ . (3.9)

A procedure for obtaining these kinematic factors ỸĪ has been developed in [103], and

we refer the interested reader to the original paper for details of the derivation. A point

worth highlighting is that the factors ỸĪ are extracted from the Pfaffian Pf
(
MĪ

)
/σI recur-

sively, and thus depend on an (arbitrary) reference ordering RO. The set of BCJ numera-

tors is therefore non-unique. The final amplitudes are of course invariant with respect to

this choice.

Since both the one-loop measure (2.18) and the integrand (2.22) structurally resemble

(n + 2)-particle tree-amplitudes, the algorithm for ỸĪ generalizes straightforwardly from

tree-level to one loop, and we summarize the procedure in the next subsection 3.2.

3.2 Algorithm for master numerators

We have seen in the last subsection how BCJ master numerators can be derived in the

scattering-equations formalism at one loop. Below, we summarise the resulting algorithm

and discuss several examples. In section 4, we will see an example of how to construct the

full loop integrand from the BCJ numerators.

Following section 3.1, the master numerators are given by half-ladder diagrams, with

the loop momenta ±` forming the ‘handles’ of the half-ladder; see figure 4. They are

therefore characterised unambiguously by a colour ordering

CO = (+ a1a2 . . . an−) , (3.10)

where a1 is the left-most particle next to +`. As discussed in section 3.1, the kinematic

factors ỸĪ are obtained recursively, which corresponds to

(I) Fixing a reference ordering (RO) to be used in the definition of all numerators,

independently of their colour ordering. For example,

RO = (+ 1 2 . . . n−) . (3.11)

To keep the algorithm and the formulae compact, it will be useful to introduce a notation

for ‘particle i is to the left of particle j in a given colour or reference ordering’. We denote

this by i / j (CO) and i a j (RO), respectively; see table 1.

14The Pfaffian Pf
(
MĪ

)
/σI can be identified as the single-trace contribution to the Einstein-Yang-Mills

(EYM) one-loop integrand I(1),gluon,ntr=1
EYM with gluons running in the loop [120]. This directly extends the

tree-level results of [103].
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relation ‘particle i is to the left of particle j in a given . . . ’

i / j colour ordering

i a j reference ordering

i ≺ j split ordering

Table 1. Notation for colour-ordering, reference-ordering and split-ordering relations.

The master numerators (3.9) (and in particular ỸĪ) naturally depend on both the colour

ordering and the global choice of reference ordering. This dependence is best expressed

in the form of split orderings, defined to encode the difference between the two orderings.

They can be constructed as follows:

(II) Decompose the set of all particles into a colour-ordered subset I and its complement

Ī. For Ī, then construct all disjoint decompositions into R subsets α(r) satisfying the

following criteria:15

(i) Ī = ∪Rr=1α
(r).

(ii) Each subset α(r) respects the colour ordering:

∀i<j α
(r)
i / α

(r)
j . (3.12)

(iii) The last elements of the subsets respect the reference ordering. Using again the

notation nI = length(I), and nr = length(α(r)), this can be compactly written

as

α(1)
n1
a . . . a α(t)

nR
. (3.13)

(iv) The last element of the subset is the smallest in the reference ordering. No

ordering among the other elements is assumed; indeed the ordering is fixed by

(ii).

∀i α(r)
nr a α

(r)
i . (3.14)

For any decomposition Ī = ∪rα(r) satisfying these criteria, the split ordering (SO) is

defined as

SO =
(

+ I α(1) . . . α(R)−
)
. (3.15)

As above, it will be convenient to introduce the notation i ≺ j to mean ‘particle i is

to the left of particle j in the split ordering’, cf. table 1.

(III) Using these definitions, the master numerators are given by

NRO(a1 a2 . . . an) =
∑
I

(−1)nI WI

(∑
SO

∏
r

Y
(
α(r)

))
, (3.16)

15For readability, we choose to identify the subsets by raised indices, and their elements by lowered ones.
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where the sum runs over split orderings SO =
(
+ I α(1) . . . α(R)−

)
and

WI 6=∅ = tr(I) := tr(Fi1 · . . . · FinI ) , W∅ = D − 2 , (3.17)

Y
(
α(r)

)
=

{
εa · Za α(r) = {a}
εanr · Fa(nr−1)

· . . . · Fa1 · Za1 α(r) = {a1, . . . , anr} ,
(3.18)

where Fµνi = kµi ε
ν
i − kνi ε

µ
i . The Za are defined as the sum over momenta to the left

of particle a in both the colour ordering and the split ordering,

Za =
∑
i

ki ∀i/a and i≺a . (3.19)

This implies in particular that different terms in the sum over SO’s in eq. (3.16) may

involve different sums over momenta for Za, since the split orderings differ.

To highlight the relation to the schematic formula of the numerators as N(+, ρ,−) =∑
IWI ỸĪ given in eq. (3.9), note that eq. (3.16) amounts to

ỸĪ = (−1)nI

(∑
SO

∏
r

Y
(
α(r)

))
. (3.20)

Relating this back to the expansion of the integrand I(1)
NS , the product over Y

(
α(r)

)
can be

understood intuitively as ‘breaking open’ the closed cycles in the definition of the Pfaffian

(see eq. (3.8)), and the sum over split ordering ensures that only terms consistent with the

colour ordering and the recursive expansion of the Pfaffian are kept.

Let us now take a closer look at the split ordering featuring so prominently in the algo-

rithm. As pointed out at the beginning of this section, the split orderings are constructed

to encode the difference between the two orderings the numerators depend on: the colour

ordering CO and the reference ordering RO. This is best understood in a concrete ex-

ample: consider the term coming from Ī = {3, 4} in the four-point master numerators

NRO(2134) and NRO(2143). With RO= (+1234−), and hence 3 a 4, the set Split(Ī) of

possible decompositions Ī = ∪rα(r) is

Split(Ī) =

{
{{3}, {4}} for 3 / 4 , so NRO(2134) ,

{{3}, {4}} ∪ {{4, 3}} for 4 / 3 , so NRO(2143) ,
(3.21)

and thus SO =

{
(+2134−) for 3 / 4 ,

(+2134−), (+2143−) for 4 / 3 .
(3.22)

We see that if a and / agree when restricted to Ī, there is a unique decomposition of Ī

(with all subsets containing only a single element, ∀r nr = 1). On the other hand, if a
and / differ on Ī, the decomposition contains subsets α(r) with more than one element

(e.g. {4, 3} in eq. (3.22)). In particular, this observation only depends on whether a and

/ describe different ordering relations on Ī, without reference to I. Indeed, the above

example is chosen such that CO 6= RO for both numerators.
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Ī Split(Ī) SO tr(I) numerator factor W
(
α(r)

)
{1, 2, 3, 4} {{1}, {2}, {3}, {4}} (+1234−) (D − 2) ε1 · ` ε2 · (`+ k1) ε3 · (`− k4) ε4 · `

{1, 2, 3} {{1}, {2}, {3}} (+4123−) 0 . . .
...

...

{1, 2} {{1}, {2}} (+3412−) tr(34) ε1 · ` ε2 · (`+ k1)
...

...

{1} {{1}} (+2341−) tr(234) ε1 · `
...

...

∅ {} (+1234−) tr(1234) 1

Table 2. Contributions to the master numerator N(1234)(1234).

In other words, the set {α(r) |nr > 1} is in one-to-one correspondence with the set

of colour-ordered subsets of the external particles whose ordering differs from the chosen

reference ordering RO. This will be a useful interpretation to keep in mind for the next

subsection, where we calculate some of the master numerators for illustration.

3.3 Examples

The easiest way to approach the rather abstract algorithm given in the last section is to

consider a few examples. Along the way, we will make some useful observations concerning

the form of the numerators. For simplicity, we take

RO = (+1234−)

for the remainder of this section.

The simplest example: NRO(1234). Keeping in mind the correspondence between

α(r) and colour-ordered, but not reference-ordered subsets of external particles, it is easy

to see why NRO(1234) constitutes the simplest case: since CO = RO, a and / agree when

restricted to any Ī, and thus the sum over split orderings only involves a single term for

any Ī. We see this explicitly in table 2.

While we have only listed one example term at any nI for illustration, it is easily

checked that the decomposition into α(r) is unique for the other terms as well. Due to CO

= RO, only subsets of length one satisfy the criteria of (ii) being colour-ordered and (iv)

the last element being the smallest in the reference ordering.

We can already make a useful observation concerning the structure of the master

numerators based on this example: due to tr(Fi) = 0, all terms from a decomposition

with nI = 1 (and hence nĪ = n − 1) vanish. This simplification occurs for any number

of external particles, and for any colour ordering and reference ordering; we will therefore

omit these terms from now on.
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Ī Split(Ī) SO tr(I) numerator factor W
(
α(r)

)
{1, 2, 4, 3} {{1}, {2}, {3}, {4}} (+1234−) (D − 2) ε1 · ` ε2 · (`+ k1) ε4 · (`− k3) ε3 · (`− k4)

{{1}, {2}, {4, 3}} (+1243−) (D − 2) ε1 · ` ε2 · (`+ k1) ε3 · F4 · (`− k3)

{1, 2} {{1}, {2}} (+4312−) tr(43) ε1 · ` ε2 · (`+ k1)

{4, 3} {{3}, {4}} (+1234−) tr(12) ε4 · (`− k3) ε3 · (`− k4)

{{4, 3}} (+1243−) tr(12) ε3 · F4 · (`− k3)
...

...

{1} {{1}} (+2431−) tr(243) ε1 · `
...

...

∅ {} (+1243−) tr(1243) 1

Table 3. Contributions to the master numerator N(1234)(1243).

Summing all contributions from table 2, NRO(1234) is given by

NRO(1234) = (D − 2) ε1 · ` ε2 · (`+ k1) ε3 · (`− k4) ε4 · ` (3.23)

+
(

tr(12)ε3 · (`− k4) ε4 · `+ tr(13)ε2 · (`+ k1) ε4 · `

+ tr(14)ε2 · (`+ k1) ε3 · (`− k4) + tr(23)ε1 · ` ε4 · `

+ tr(24)ε1 · ` ε3 · (`− k4) + tr(34)ε1 · ` ε2 · (`+ k1)
)

−
(

tr(123)ε4 · `+ tr(124)ε3 · (`− k4) + tr(134)ε2 · (`+ k1) + tr(234)ε1 · `
)

+ tr(1234) .

A more interesting example: NRO(1243). Having gained some intuition with the

algorithm in the last example, let us now turn to a more interesting case with CO 6= RO.

For N(1234)(1243), the algorithm of section 3.2 leads to the terms listed in table 3.

Consistently with the intuition developed in the last section, we get terms from the

decompositions {{3}, {4}} and {{4, 3}}, since a and / describe different ordering relations

on any Ī containing both particles 3 and 4. We notice, moreover, that terms from different

split orderings of the same Ī combine nicely; for example the contribution from Ī = {4, 3} is

tr(12)

 ∑
SO(43)

∏
r

W
(
α(r)

) = tr(12)
(
ε4 · (`− k3) ε3 · `− ε3 · ε4 k4 · (`− k3)

)
. (3.24)

The first term on the right-hand side actually looks familiar: we have already encountered

it in N(1243)(1243) (with RO = CO). A similar calculation for Ī = {1, 2, 4, 3} shows that

the two terms from SO = (+1234−) and SO = (+1243−) combine to the N(1243)(1243)-

contribution and terms proportional to ε3 · ε4. Combining all terms, the numerator is

given by

N(1234)(1243) = N(1243)(1243)− (D − 2) ε1 · ` ε2 · (`+ k1) ε3 · ε4 k4 · (`− k3) (3.25)

− tr(12) ε3 · ε4 k4 · (`− k3) .
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Remark. In fact, the observations from the examples above can be extended to any

colour ordering and any number of external particles:

• All terms with nI = 1 in the sum over split orderings vanish due to tr(FI) = 0.

• Given a reference ordering RO and a colour ordering CO, the master numerators take

the form

NRO(CO) = NCO(CO)−∆ , (3.26)

where all terms in ∆ are proportional to εi · εj with i / j but j a i.16

Proof. eq. (3.26) is easily proven directly from the algorithm as follows. First note that

it suffices to consider a single set Ī on which / and a differ, since the simplifications work

term by term in the expansion I ∪ Ī. Moreover, although there is always a contribution

coming from the decompositions where all subsets α(r) have length one, this term does

not directly coincide with NCO(CO) due to the different split orderings. To be precise,

∆Z := ZCO
a −ZRO

a =
∑

i|i/a, a≺i ki is given by the sum over momenta respecting the colour

ordering, i / a, but violating the reference ordering, a ≺ i. However, we will see that this

is exactly compensated by the split orderings with nr > 1.

By construction, contributions from nr > 1 are of the form εanr · F(anr−1) · . . . · Za1

with ai satisfing ai / a1, a1 ≺ ai for i > 1. We further observe that ZCO
a1

= ZRO
a1

. Upon

expanding Fµνi = k
[µ
i ε

ν]
i , the terms contracting only polarisation vectors to momenta thus

add precisely the factors ε ·∆Z required to match to the numerators NCO(CO). Collecting

all terms containing the contractions among polarisation vectors as ∆ then completes the

proof of eq. (3.26).

Corollary: all-plus and one-minus. The above remark leads to an immediate corollary

for the all-plus helicities and one-minus helicities master numerators in four spacetime

dimensions. For these amplitudes, the reference spinors in the polarisation vectors can be

chosen such that εi · εj = 0 ∀i,j ; see eq. (4.12) below. Using eq. (3.26), the numerators

simplify to

NRO(CO) = NCO(CO) , ∀RO , (3.27)

that is, the numerators are independent of the choice of reference ordering. This vastly

simplifies the structure of the amplitudes and facilitates the matching to known results,

which we will verify in the next section.

4 Tests of our Yang-Mills formulae

In this section, we provide several explicit tests of our gauge theory results. The first

part is dedicated to tests of our four-gluon scattering formula, whereas the second part is

dedicated to the simplest four-dimensional helicity configurations: all-plus and one-minus

(and analogously, all-minus and one-plus).

16Or explicitly, i is to the left of j in the colour ordering, but to the right of j in the reference ordering.
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4.1 Tests at four points

The four-point colour-ordered one-loop integrand for gluons is given by a combination of

box, triangle and bubble diagram contributions, all defined with respect to the numerators

N defined in the previous section. It reads17

IYM(1234) =
1

2

[
Ibox

YM(1234) +
(
Itri

YM(1234) + Itri
YM(2341) + Itri

YM(3412) + Itri
YM(4123)

)
+
(
Ibub

YM(1234) + Ibub
YM(4123)

)
+ (`→ −`)

]
, (4.1)

and

Ibox
YM(1234) =

N(1234; `)

(2` · k1)(2` · (k1 + k2) + 2k1 · k2)(−2` · k4)
+ cyc(1234) ,

Itri
YM(1234) =

1

2k1 · k2

(
N([1, 2]34; `)

(2` · (k1 + k2) + 2k1 · k2)(−2` · k4)

+
N(34[1, 2]; `)

(2` · k3)(2` · (k3 + k4) + 2k3 · k4)
+

N(4[1, 2]3; `)

(2` · k4)(−2` · k3)

)
,

Ibub
YM(1234) =

1

(2k1 · k2)2

(
N([1, 2][3, 4]; `)

2` · (k1 + k2) + 2k1 · k2
+

N([3, 4][1, 2]; `)

2` · (k3 + k4) + 2k3 · k4

)
,

where cyc(1234) denotes the three remaining cyclic permutations. The full (colour-dressed)

integrand, including the double-trace contributions, is obtained from (3.2a), where colour-

ordered integrands IYM(+ρ−) are now denoted as IYM(ρ) for brevity. In the expressions

above, we introduced two pieces of notation. Firstly, we wrote explicitly the loop mo-

mentum in the numerators, N(. . . ; `), which will be helpful later for comparison with a

different representation. Secondly, we incorporated the BCJ Jacobi relations by defining

the triangle and bubble numerators in terms of the box numerators constructed in the

previous section, e.g.

N([1, 2]34; `) = N(1234; `)−N(2134; `) , (4.2a)

N([1, 2][3, 4]; `) = N(1234; `)−N(2134; `)−N(1243; `) +N(2143; `) , (4.2b)

and so on; see figure 5 for a graphic depiction of the first line. The box numerators are

simply the half-ladder numerators at four points.

We performed three basic numerical tests of our formulae, using random kinematic

points. The first test is gauge invariance. Working with any particular reference ordering

(RO) to define the numerators, we find numerically that a gauge transformation changes

the integrand but not the amplitude:

IYM(1234)
∣∣∣
εi→εi+αiki

' IYM(1234) . (4.3)

17The explicit average in the sign of ` in (4.1) is not essential, but leads to convenient cancellations,

simplifying the tests to be described below. For instance, we find that the sign average is not needed to check

the cyclic relation IYM(1234) = IYM(2341), but it enforces directly the reflection relation IYM(1234) =

IYM(4321).
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34

Figure 5. Graphic depiction of the Jacobi identity giving rise to the triangle numerator in eq. (4.2a).

Explicitly, we check that the difference between the left-hand and right-hand sides in the

expression above either scales for a rescaling of the loop momentum or is a linear com-

bination of terms that scale; equivalently, that there is no propagator factor of the type

2` ·K +K2 with non-vanishing K2, since this would ruin the scaling. For the present test,

we find simply

IYM(1234)
∣∣∣
εi→εi+αiki

− IYM(1234)
`→λ`−→ O(λ0) , (4.4)

but in other tests below we may find (finite) linear combinations of terms O(λm) for integer

m. According to the argument around (1.3), this ensures that the two loop integrands are

equivalent. The simplicity of this important test is striking, when compared with the more

elaborate procedure required to verify gauge invariance in a Feynman-type representation

of the integrand.

The second test we performed is the verification that we obtain an equivalent loop

integrand (') for any choice of reference ordering in the definition of the numerators. For

instance,18

IYM(1234)
∣∣∣
RO=(1234)

' IYM(1234)
∣∣∣
RO=(4231)

. (4.5)

More generally, we can use any linear combination

N(CO; `) =
∑

RO∈S4

(
c(RO) NRO(CO; `) + c̃(RO) NRO(ICO;−`)

)
, ∀CO ∈ S4 , (4.6)

as long as the constant coefficients satisfy∑
RO∈S4

(
c(RO) + c̃(RO)

)
= 1 . (4.7)

We denote by ICO the inverted colour ordering; for instance, CO = (1234) ⇒ ICO =

(4321). The inclusion of these terms into the numerators in eq. (4.6) is allowed because of

the reflection property of the propagators in half-ladder diagrams (which requires momen-

tum conservation), e.g.

(2` · k4)(2` · (k4 + k3) + 2k4 · k3)(−2` · k1)
∣∣∣
`→−`

= (2` · k1)(2` · (k1 + k2) + 2k1 · k2)(−2` · k4) .

Let us give an explicit example. If we define the numerators by choosing the linear

combination

N(CO; `) = (1− c) N(2413)(CO; `) + c N(4312)(ICO;−`) , ∀CO ∈ S4 , (4.8)

18We denote the reference ordering (+i1i2i3i4−) simply as (i1i2i3i4) for brevity.
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then the terms proportional to the coefficient c in the complete integrant IYM(1234) vanish

after loop integration, due to their scaling with the loop momentum, as discussed above.

A natural choice of numerators is to symmetrise over all reference orderings, as we discuss

in appendix B. In this case, the various colour orderings are obtained from each other by

just relabelling the particles.

For the third test, we match our loop integrand (in any of the equivalent forms de-

scribed above) with a known form of the four-point integrand. That is, while we have

verified the consistency of our expressions with respect to gauge transformations and to

the choice of reference ordering that defines the numerators, we are still to show explicitly

that it matches the correct amplitude. In order to do this, we choose a conventional BCJ

representation of the integrand — that is, one with Feynman-type quadratic propagators

— obtained in [49]. In particular, we define as

N̂(1234; `; `2)

the box BCJ numerator of equation (3.5) in that paper. Notice that, in this conventional

BCJ representation, the analogous numerator for any other ordering of the particles is

given by a simple relabelling. Moreover, the numerators N̂ depend on `2 (unlike ours,

which depend on ` only through ` · ki and ` · εi) and we denote this dependence explicitly

in its arguments. Now, in order to compare to our numerators, we must change from the

Feynman-type representation Iqdr of the integrand used in [49] into the representation Ilin
we use. We can follow the procedure reviewed around (2.27) to obtain

ÎYM(1234) =
1

2

[
Îbox

YM(1234) +
(
Îtri

YM(1234) + Îtri
YM(2341) + Îtri

YM(3412) + Îtri
YM(4123)

)
+
(
Îbub

YM(1234) + Îbub
YM(4123)

)
+ (`→ −`)

]
, (4.9)

and

Îbox
YM(1234) =

N̂(1234; `; 0)

(2` · k1)(2` · (k1 + k2) + 2k1 · k2)(−2` · k4)

+
N̂(1234; `− k1;−2` · k1)

(2` · k2)(2` · (k2 + k3) + 2k2 · k3)(−2` · k1)

+
N̂(1234; `− k1 − k2;−2` · (k1 + k2) + 2k1 · k2)

(2` · k3)(2` · (k3 + k4) + 2k3 · k4)(−2` · k2)

+
N̂(1234; `+ k4; 2` · k4)

(2` · k4)(2` · (k4 + k1) + 2k4 · k1)(−2` · k3)
,

Îtri
YM(1234) =

1

2k1 · k2

(
N̂([1, 2]34; `; 0)

(2` · (k1 + k2) + 2k1 · k2)(−2` · k4)

+
N̂([1, 2]34; `− k1 − k2;−2` · (k1 + k2) + 2k1 · k2)

(2` · k3)(2` · (k3 + k4) + 2k3 · k4)

+
N̂([1, 2]34; `+ k4; 2` · k4)

(2` · k4)(−2` · k3)

)
,
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Îbub
YM(1234) =

1

(2k1 · k2)2

(
N̂([1, 2][3, 4]; `; 0)

2` · (k1 + k2) + 2k1 · k2

+
N̂([1, 2][3, 4]; `− k1 − k2;−2` · (k1 + k2) + 2k1 · k2)

2` · (k3 + k4) + 2k3 · k4

)
. (4.10)

The choice of the last argument in the numerators N̂ is associated with the shifts `2 →
`2 + η2 for each term, as explained below (2.27). Finally, we can verify numerically that

ÎYM(1234) ' IYM(1234) , (4.11)

where our integrand IYM can be given by any reference ordering of the numerators N , or

by any valid linear cobination of these as discussed above.

We conclude that we have the correct four-particle one-loop integrand.

For completeness, we performed one more check: the verification of the one-loop BCJ

relations. For the representation of the loop integrand that we use, these relations were

given in [104]. We find that the relations (5) and (6) in that paper are still valid, but

only up to terms that integrate to zero due to scaling. This subtlety does not occur for the

supersymmetric case studied in [104], but was anticipated in previous work on the one-loop

BCJ relations [43, 44]. Likewise, we find that the partial integrands defined in [104] are

now gauge invariant only up to terms that integrate to zero.

4.2 Tests in four dimensions: all-plus and one-minus amplitudes

The simplest four-dimensional amplitudes are those for which all the particles have the

same helicity. In a helicity basis for the polarisations, for which we take a spinor-helicity

representation,

ε
(+)
i =

|η〉[i|
〈iη〉

, ε
(−)
i =

|i〉[η|
[iη]

, (4.12)

we have ε±i · ε
±
j = 0. As we saw in (3.26), the definition of the numerators is independent

of the choice of reference orderings when εi · εj = 0. In the case where all the particles have

the same helicity, we have verified up to 15 points that

N(1+2+ · · ·n+; `) = 2
n∏
i=1

1

〈ηi〉2
X(`+ k1 + · · ·+ ki−1, ki) , (4.13)

where the factor 2 comes from D − 2, and we made use of the object

X(K,K ′) ≡ −〈η|KK ′|η〉 = −X(K ′,K) , (4.14)

with the momenta K and K ′ possibly off-shell. These numerators are precisely the BCJ

numerators for all-plus amplitudes found in [47]. The all-plus one-loop amplitudes belong

to the self-dual sector of Yang-Mills theory, where X(K,K ′) plays the role of vertex in

diagrams. As first described in [10], the colour-kinematics duality in the self-dual sector is

a consequence of the (Schouten) identity

X(Ka,Kb) X(Kc,Kd) +X(Kb,Kc) X(Ka,Kd) +X(Kc,Ka) X(Kb,Kd) = 0 , (4.15)

which leads to the Jacobi relations among numerators.
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The above result can be extended to the case when all but one particles have the same

helicity. Let us take particle 1 to have negative helicity, while the others have positive

helicity. We can still obtain εi · εj = 0 for any particles i and j, if we choose |η〉 = |1〉.
Then our BCJ-numerator algorithm leads to the one-minus BCJ numerators also described

in [47], for instance,

N(1−2+ · · ·n+; `) = 2
1

[η1]2
X̄(`, k1)

n∏
i=2

1

〈ηi〉2
X(`+ k1 + · · ·+ ki−1, ki) , (4.16)

with X̄(K,K ′) ≡ −[η|KK ′|η], which we have also checked up to 15 points.

To conclude, the only non-supersymmetric families of amplitudes for which an n-point

BCJ form was known explicitly — the all-plus and one-minus sectors [47] — are precisely

reproduced by the general numerators that we introduce in this paper.

4.3 Comment on representations of the loop integrand

The all-plus and one-minus numerators we have just described are special in that they are

valid both in our representation of the loop integrand and in a conventional representation

with quadratic propagators, where they were originally found in [47]. To appreciate this,

consider these two types of representation at four points, in (4.1) and (4.9), respectively.

Our numerators obey

N(1234; `− k1) = N(2341; `) for all-plus or one-minus helicities, (4.17)

where the choice of reference ordering is irrelevant. However, in general, the expression

above is only valid for certain distinct reference orderings, such as

N(1234)(1234; `− k1) = N(2341)(2341; `) . (4.18)

For this reason, it is in general not easy to relate our numerators to a set of numerators

in a conventional representation of the integrand with quadratic propagators. We expect

that, in a conventional representation, BCJ numerators should in general depend on `2,

as in the four-point numerators N̂ of [49] used above to test our loop integrand. It would

be interesting to find a modification of our numerators that applies to a conventional

integrand.

4.4 Comment on unitarity cuts

Unitarity based techniques are a powerful tool to deal with loop-level amplitudes [121–

124]. A natural question is whether our formulae are well suited to the application of these

techniques, as an alternative to direct loop integration. Although this question is beyond

the scope of this paper, we can make a simple remark.

Consider the four-point integrand given above in (4.1). There exist four terms in the

box contribution, whose propagators are cyclically related; the same does not apply in

general to the numerators, as they depend on the choice of reference ordering. However,

this complication is ultimately spurious. A four-dimensional maximal (box) cut is given

by, for instance,19

19A non-vanishing result requires that there are two particles external of each helicity.
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• either NRO(1234; `a) , independently of RO, with cut loop momentum solutions `a,

a = 1, 2,

(`a)
2 = 2 `a · k1 = 2 `a · (k1 + k2) + 2 k1 · k2 = −2 `a · k4 = 0 , (4.19)

• or NRO’(2341; `′b) , independently of RO’, with cut loop momentum solutions `′b,

b = 1, 2,

(`′b)
2 = 2 `′b · k2 = 2 `′b · (k2 + k3) + 2 k2 · k3 = −2 `′b · k1 = 0 . (4.20)

The result is equivalent. This shows that the potentially unattractive features of the

number of terms in our formulae (e.g. four terms for each box diagram) and of the choice

of reference ordering are not serious obstructions. The procedure above does not require a

sum over internal polarisation states, and its connection to tree-level formulae is manifest

from the algorithm for the numerators. We plan to explore the unitarity properties of our

formulae elsewhere.

5 Double copy to gravity

The gravity loop integrand is obtained from the Yang-Mills case via the double-copy pre-

scription, by squaring the numerators. The straightforward double copy gives the NS-NS

gravity case. For four external particles, we have

INS-NS,4 =
1

2

[ ∑
CO∈S4

(
1

8
Ibox

NS-NS(CO)+
1

4
Itri

NS-NS(CO)+
1

16
Ibub

NS-NS(CO)

)
+ (`→ −`)

]
,

(5.1)

where the box, triangle and bubble contributions are given from their Yang-Mills counter-

parts as{
Ibox

YM , Itri
YM , Ibub

YM

} ∣∣∣
N({εi,ki};`) → N({εi,ki};`) N({ε̃i,ki};`)

=
{
Ibox

NS-NS , I
tri
NS-NS , I

bub
NS-NS

}
.

This gives the amplitude for the scattering of external states with factorisable polarisation

tensors, εµν = εµε̃ν . For more general states (where the polarisation tensors are not

factorisable but can be given by linear combinations of factorisable contributions), we take

appropriate linear combinations of the numerators for the factorisable states.

We have performed the analogous numerical tests as for the Yang-Mills four-point

amplitude:

• invariance with respect to gauge transformations, now of both ε and ε̃;

• equivalence of different choices of reference ordering (or valid linear combinations of

such choices) in the definition of the numerators, independently for left and right

numerator factors in the double copy;
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• matching to a known form of the integrand, [49], namely the gravity integrand ob-

tained from the double copy of (4.9).

In all these cases, the principle of the test is the same: the loop integrand INS-NS,4 is

only defined up to terms that integrate to zero according to their scaling with the loop

momentum. Moreover, the higher-point tests for the four-dimensional all-plus and one-

minus helicity amplitudes apply also to the gravity case.

We have so far discussed the one-loop integrand for NS-NS gravity, where not only the

graviton but also the dilaton and B-field run in the loop. Let us now present the one-loop

integrand for pure gravity, with only gravitons in the loop. This can be performed by an

explicit subtraction of the unwanted degrees of freedom. Recall from (2.25) the form of the

loop integrand in terms of one-loop scattering equations,

INS-NS =

∫
M0,n+2

dµ
(nod)
1,n I(1)

NS-NS , I(1)
NS-NS = I(1)

NS Ĩ
(1)
NS . (5.2)

While we did not write it in this way previously, we can use the decomposition

I(1)
NS =

1

(σ+−)2

(
(D − 2) Pf(M3) + Pf√q(M3)

)
, (5.3)

where the definition of Pf√q(M3), which is not important for our current purpose, can

be found in [80] or [81]. What matters to us now is that the first contribution on the

right-hand side is the coefficient of D − 2, and the other contribution is the rest. Then we

can write

I(1)
NS-NS = I(1)

NS Ĩ
(1)
NS

=
1

(σ+−)4

(
(D − 2)2 Pf(M3) Pf(M̃3)

+ (D − 2)
[
Pf(M3) Pf√q(M̃3) + Pf√q(M3) Pf(M̃3)

]
+ Pf√q(M3) Pf√q(M̃3)

)
. (5.4)

We mentioned in (2.26) that, for pure gravity in D = 4, we need to subtract the dilaton

and the axion:

I(1)
4D-pure-grav = I(1)

NS Ĩ
(1)
NS − 2 I(1)

scal Ĩ
(1)
scal

=
1

(σ+−)4

(
2 Pf(M3) Pf(M̃3)

+ 2
[
Pf(M3) Pf√q(M̃3) + Pf√q(M3) Pf(M̃3)

]
+ Pf√q(M3) Pf√q(M̃3)

)
. (5.5)

Since our numerators for NS-NS gravity follow from the expression for I(1)
NS-NS, it is clear

how to modify them in order to subtract the unwanted states: we should modify the

coefficient of (D − 2)2,

N4D-pure-grav = N({εi, ki}; `) N({ε̃i, ki}; `)
∣∣∣

(D−2)2 → (D−2)2−2
and set D = 4 . (5.6)
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Since graviton external states are in general non-factorisable (i.e. not of the form εµν =

εµεν), an appropriate symmetric linear combination of numerators for factorisable states

εµε̃ν is required. This is not necessary in a four-dimensional helicity basis, where the two

helicity states of the graviton have the factorisable form ε±µν = ε±µ ε
±
ν .

The pure gravity numerators obtained in this way also satisfy the previous tests of

gauge invariance, independence with respect to reference ordering, and correct higher-point

all-plus and one-minus helicity amplitudes.

6 Discussion

We have presented explicit formulae for the one-loop integrands in non-supersymmetric

Yang-Mills theory and gravity. The type of integrand representation employed, which

differs from a Feynman-like representation with quadratic propagators, has allowed us to

extend tree-level results to loop level, and also to check our expressions in a straightforward

manner.

These results exhibit the potential of ambitwistor strings as a tool in quantum field

theory, including the study of non-supersymmetric theories. One major question that we

discussed in detail is the BCJ colour-kinematics duality in gauge theory and the associated

double copy to gravity. We found that the one-loop results for supersymmetric theories [104,

105] extend to the non-supersymmetric case, if one takes into account the fact that the

loop integrand is not uniquely defined due to terms that vanish upon loop integration.

These results indicate that the loop-level BCJ conjecture [2], formulated for a Feynman-

type representation of the integrand, is more restrictive than its analogue conjecture for

the new type of integrand representation. This is a significant finding in view of the

obstacles that have been found when exploring the colour-kinematics duality at loop level,

as discussed in the Introduction.

An important open question is how to perform the loop integration efficiently in the

representation of the integrand that we use. There are three obvious approaches. The first

is to explore the direct loop integration, based on the iε prescription proposed in ref. [90].

The second is to adapt our algorithm to produce a Feynman-type representation of the

integrand, for which integration techniques have been developed over decades. The third is

to extract information from our formulae in a manner that is suitable for modern unitarity

techniques. In our view, all three approaches are worth exploring, and indeed each may

inform the others.

There are several other lines of work that suggest themselves. One is the application of

our results to infrared physics in gauge theory and gravity, where the scattering equations

and ambitwistor strings have already proven to be fruitful [125–129] for describing the

new soft theorems discovered in [130, 131]. Another line of work is the study of the

four-dimensional ambitwistor strings [67], whose loop-level development has been initiated

in [132] but is still largely an open problem. It would be interesting to find explicit integrand

formulae that can in principle be integrated, along the lines of our work.

The most obvious open question is the extension of the entire formalism to higher loops.

The first two-loop results were reported in [82] and they will soon be further developed [120].
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A Master numerators at four points

For all of this section, we are assuming the reference ordering

RO = (+1234−) .

Following the algorithm given above, two of the master numerators are

N(1234) = (D − 2) ε1 · ` ε2 · (`+ k1) ε3 · (`− k4) ε4 · ` (A.1)

+
(

tr(12)ε3 · (`− k4) ε4 · `+ tr(13)ε2 · (`+ k1) ε4 · `

+ tr(14)ε2 · (`+ k1) ε3 · (`− k4) + tr(23)ε1 · ` ε4 · `

+ tr(24)ε1 · ` ε3 · (`− k4) + tr(34)ε1 · ` ε2 · (`+ k1)
)

−
(

tr(123)ε4 · `+ tr(124)ε3 · (`− k4) + tr(134)ε2 · (`+ k1) + tr(234)ε1 · `
)

+ tr(1234) ,

N(1243) = (D − 2) ε1 · ` ε2 · (`+ k1)
(
ε4 · (`− k3) ε3 · `− ε3 · ε4 k4 · (`− k3)

)
(A.2)

+
(

tr(12)
(
ε4 · (`− k3) ε3 · `− ε3 · ε4 k4 · (`− k3)

)
+ tr(13)ε2 · (`+ k1) ε4 · (`− k3) + tr(14)ε2 · (`+ k1) ε3 · `

+ tr(23)ε1 · ` ε4 · (`− k3) + tr(24)ε1 · ` ε3 · `+ tr(34)ε1 · ` ε2 · (`+ k1)
)

−
(

tr(123)ε4 · (`− k3) + tr(124)ε3 · `+ tr(134)ε2 · (`+ k1) + tr(234)ε1 · `
)

+ tr(1243) .

As discussed in section 3.3, the term proportional to (D − 2) in N(1243) for example is

calculated as the sum over the decompositions {{1}, {2}, {3}, {4}} and {{1}, {2}, {4, 3}},

ε1 · ` ε2 · (`+ k1)
(
ε4 · (`− k3) ε3 · `+ ε3 · F4 · (`− k3)

)
. (A.3)
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Following the remark in section 3.3, it is much more convenient to calculate the difference

∆ = NCO(CO) − NRO(CO) of the numerators with the reference ordering RO from the

canonical reference ordering RO = CO. We detail below the master numerators for the

colour orderings (1234) through (1432) in this notation:

∆(1234) = 0 , (A.4)

∆(1243) = (D − 2) ε1 · ` ε2 · (`+ k1) ε3 · ε4 k4 · (`− k3) + tr(12)ε3 · ε4 k4 · (`− k3) , (A.5)

∆(1342) = (D − 2)ε1 · `
(
ε3 · (`+ k1) ε2 · ε4 k4 · (`− k2) (A.6)

+ k3 · (`+ k1)
(
ε2 · ε3 ε4 · (`− k2) + ε3 · ε4ε2 · k4 − ε2 · ε4 k4 · k3

))
+ tr(13)ε2 · ε4 k4 · (`− k2) + tr(14)ε2 · ε3 k3 · (`+ k1) ,

∆(1324) = (D − 2) ε1 · ` ε4 · ` ε2 · ε3 k3 · (`+ k1) + tr(14)ε2 · ε3 k3 · (`+ k1) , (A.7)

∆(1423) = (D − 2)ε1 · ` k4 · (`+ k1)
(
ε3 · ` ε2 · ε4 + ε2 · (`+ k1) ε3 · ε4

)
(A.8)

+ tr(13)k4 · (`+ k1) ε2 · ε4 + tr(12)k4 · (`+ k1) ε3 · ε4 ,

∆(1432) = (D − 2) ε1 · `
(
ε4 · (`+ k1) ε2 · ε3 k3 · (`− k2) (A.9)

+ k4 · (`+ k1)
(
ε3 · ε4 ε2 · (`− k4) + ε2 · ε4 ε3 · (`− k2)− ε2 · ε3ε4 · k3

))
+
(

tr(12) ε3 · ε4 + tr(13) ε2 · ε4
)
k4 · (`+ k1) + tr(14) ε2 · ε3 k3 · (`− k2) .

B Master numerators independent of the reference ordering

There is a simple way to obtain BCJ master numerators independent of the reference

ordering by just summing over all choices:

Nsym(CO) ≡ 1

n!

∑
RO

NRO(CO) . (B.1)

For four external particles, the resulting numerators can be expressed (relatively) com-

pactly as

Nsym(1234) = N(1234)(1234) + (D − 2)∆(D−2)
sym + ∆tr

sym , (B.2)

where N(1234)(1234) was given in (A.1), and the contributions from contractions among

polarisation vectors are

∆(D−2)
sym =

1

12

[
3 ε4 · p4 U1

(
3 | 2, 1 | `

)
+ ε4 · ` U1

(
3 | 2, 1 | p1

)
+ (1243) + (1342) + (2341)

]
+

1

8

[
U2

(
2, 1 | `

ww 4, 3 | p3

)
+ U2

(
2, 1 | p1

ww 4, 3 | `
)

+ (1423) + (1324)
]

− 1

24

[
ε2 · ε1 k1 · p1 ε3 · `

(
2 ε4 · p4 + 2 ε4 · `+ ε4 · k3

)
+ ε2 · ε1 k1 · ` ε3 · p3

(
6 ε4 · p4 + 2 ε4 · `− 3 ε4 · k3

)
+ (1324) + (1423) + (2314) + (2413) + (3412)

]
+

1

4
U1

(
4 | 3, 2, 1 | `

)
+

1

12
ε4 · ε3 k3 · k2 ε1 · ` ε2 · k1 , (B.3a)
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∆tr
sym = − 1

2

[
tr
(
12
)
ε4 · ε3 k3 · p3 + (1324) + (1423) + (2314) + (2413) + (3412)

]
.

(B.3b)

Above, we used the convention

p1 = ` , p2 = `+ k1 , p3 = `− k4 and p4 = ` , (B.4)

and the short-hand notation

U1

(
an | an−1, . . . , a1 | p

)
= εan · Fan−1 · . . . · Fa1 · p− εan · kan−1 εan−1

· kan−2 . . . εa2 · ka1 εa1 · p , (B.5a)

U2

(
a2, a1 | p

ww a4, a3 | q
)

= εa2 · Fa1 · p εa4 · Fa3 · q − εa2 · ka1 εa1 · p εa4 · ka3 εa3 · q . (B.5b)

Moreover, we denote the permutations summed over by e.g.

(2413) =

(
1 2 3 4

2 4 1 3

)
≡ ( 1→ 2, 2→ 4, 3→ 1, 4→ 3 ) . (B.6)
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