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Figure 1: Given one object photo, our model learns to sketch stroke by stroke, abstractly but semantically, mimicking human
visual interpretation of the object. Our synthesized sketches maintain a noticeable difference from human sketches rather
than simple rote learning (e.g., shoelace for top left shoe, leg for bottom right chair). Photos presented here have never been
seen by our model during training. Temporal strokes are rendered in different colors. Best viewed in color.

Abstract

To see is to sketch – free-hand sketching naturally builds
ties between human and machine vision. In this paper, we
present a novel approach for translating an object photo to
a sketch, mimicking the human sketching process. This is
an extremely challenging task because the photo and sketch
domains differ significantly. Furthermore, human sketches
exhibit various levels of sophistication and abstraction even
when depicting the same object instance in a reference
photo. This means that even if photo-sketch pairs are avail-
able, they only provide weak supervision signal to learn
a translation model. Compared with existing supervised
approaches that solve the problem of D(E(photo)) →
sketch), we take advantage of the inverse problem (e.g.,
D(E(sketch) → photo), and combine with the unsuper-
vised learning tasks of within-domain reconstruction, all
within a multi-task learning framework. Compared with
existing unsupervised approaches based on cycle consis-

tency (i.e., D(E(D(E(photo)))) → photo), we introduce
a shortcut consistency enforced at the encoder bottleneck
(e.g., D(E(photo)) → photo) to exploit the additional
self-supervision. Both qualitative and quantitative results
show that the proposed model is superior to a number of
state-of-the-art alternatives. We also show that the syn-
thetic sketches can be used to train a better fine-grained
sketch-based image retrieval (FG-SBIR) model, effectively
alleviating the problem of sketch data scarcity.

1. Introduction
What do we see when our eyes perceive a grid of pixels

from a real-world object? We can quickly answer this ques-
tion by sketching a few line strokes. Despite the fact that
drawings like this may not exactly match the object as cap-
tured by a photo, they do tell us how we perceive and repre-
sent the visual world around us, that is, we as humans con-
vey our perception of objects abstractly but semantically.

1
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Drawer 1Photo Drawer 2 Drawer 3 Drawer 1Photo Drawer 2 Drawer 3

Figure 2: Given a reference photo, sketches drawn by dif-
ferent people exhibit large variation in style and abstraction
levels. Some of them are poor in depicting the object in-
stances in the corresponding photos.

In this context, it is natural to ask to what extent a ma-
chine can see. For decades, researchers in computer vision
have dedicated themselves to answering this question, by
injecting intelligence and supervision into the machine with
the hope of seeing better. This is mostly done by formulat-
ing several specific constrained problems, such as classifi-
cation, detection, identification, and segmentation.

In this paper, we take one step forward – teaching a ma-
chine to generate a sketch from a photo just like humans
do. This requires not only developing an abstract con-
cept of a visual object instance, but also knowing what,
where and when to sketch the next line stroke. Figure 1
shows that the developed photo-to-sketch synthesizer takes
a photo as input and mimics the human sketching process
by sequentially drawing one stroke at a time. The resulting
synthesized sketches provide an abstract and semantically
meaningful depiction of the given object, just like human
sketches do.

Photo-to-sketch synthesis can be considered as a cross-
domain image-to-image translation problem. Thanks to
the seminal work of [10, 7], we are able to construct a
generative sequence model with recurrent neural network
(RNN) acting as a neural sketcher. However, the synthe-
sized sketches are not conditional on specific object pho-
tos. To address this problem, one can encode the photo via
a convolutional neural network (CNN) and feed the code
into the neural sketcher. Such a photo-to-sketch synthe-
sizer essentially follows the traditional encoder-decoder ar-
chitecture (see Figure 3(a)), and has been taken by most
existing image-to-image translation models [12, 18]. Train-
ing such a model is done in a supervised manner requir-
ing cross-domain image pairs: in our problem, these are
photo-sketch pairs containing the same object instances.
Compared to image-to-image translation, the key challenge
for learning instance-level photo-to-sketch synthesis is that
training pairs provide highly noisy supervision: Different
sketches of the same photo have large style and abstraction
differences between them (see Figure 2). This makes our
problem highly noisy and under-constrained.

In order to achieve photo-to-sketch synthesis with noisy

photo-sketch pairs as supervision, we address the limita-
tions of existing cross-domain image translation models by
proposing a novel framework based on multi-task super-
vised and unsupervised hybrid learning (see Figure 3(c)).
Taking an encoder-decoder architecture, our primary task is
D(E(photo))→ sketch) where a photo is first encoded by
E and then decoded into a sketch by D. To help learn a bet-
ter encoder and decoder, we introduce the inverse problem
(D(E(sketch)) → photo) so that the supervised model
learning can be done in both directions. Importantly, we
also introduce two unsupervised learning tasks for within-
domain reconstruction, i.e., D(E(photo)) → photo and
D(E(sketch))→ sketch. This hybrid learning framework
differs significantly from existing approaches in that: (1) It
combines supervised and unsupervised learning in a multi-
task learning framework in order to make the best use of
the noisy supervision signal. In particular, by sharing the
encoder and decoder in various tasks, a more robust and ef-
fective encoder and decoder for the main photo-to-sketch
synthesis task can be obtained. (2) Different from the exist-
ing unsupervised models based on cycle consistency (Fig-
ure 3(b)), our unsupervised learning tasks exploit the notion
of shortcut cycle consistency: instead of passing through a
different domain to get back to the input domain for recon-
struction, our model takes a shortcut and completes a recon-
struction within each domain. This is particularly effective
given the large domain gap between photo and sketch.

Figure 1 shows that our model successfully translates
photo to sketches stroke by stroke, demonstrating that the
model has acquired an abstract and semantic understanding
of visual objects. We compare against a number of state-of-
the-art cross-domain image translation models, and show
that superior performance is obtained by our model due
to the proposed novel supervised and unsupervised hybrid
learning framework with the shortcut cycle consistency. We
also quantitatively validate the usefulness of the synthesized
sketches for training a better fine-grained sketch-based im-
age retrieval (FG-SBIR) model.

Our contribution can be summarized as follows: (1) To
our best knowledge, for the first time, the photo-to-sketch
synthesis problem is addressed using a learned deep model,
which enables stroke-level cross-domain visual understand-
ing from a reference photo. (2) We identify the noisy su-
pervision problem caused by subjective and varied human
drawing styles, and propose a novel solution with hybrid
supervised-unsupervised multi-task learning. The unsu-
pervised learning is accomplished more effectively using
a new shortcut cycle consistency constraint. (3) We ex-
ploit the synthesized sketches as an alternative to expen-
sive photo-sketch pair annotation for training a FG-SBIR
model. Promising results are obtained by using the syn-
thesized photo-sketch pairs to augment manually collected
pairs.

2
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2. Related Work
Image-to-Image Translation Recent advances on genera-
tive modeling make realistic image generation possible. Im-
age generation can be conditional on class labels [25], at-
tributes [39, 17], text [29, 45] and images [12, 18]. For
image-to-image generation/translation, if paired data (in-
put and output image) are available, most recent approaches
adopt a conditional generative adversarial network (GAN),
from which a joint distribution is readily manifested and can
be matched to the empirical joint distribution provided by
the paired data. However for many tasks, paired data are of-
ten difficult to acquire for supervised learning; unsupervised
learning methods thus started to get popular recently. Bi-
GAN [3] and ALI [4] are models that jointly learn a genera-
tion network and inference network via adversarial learning.
Other models including DiscoGAN [14], CycleGAN [48]
and DualGAN [40] adopted two generators to model the
bidirectional mapping between domains with adversarially
trained discriminators to identify each. Cycle consistency is
further added as a way to transitively regularize structured
data, which greatly alleviates non-identifiability issues [19].
Additional weight-sharing constraints are also explored in
CoGAN [23] and UNIT [22] to build a bond between do-
main marginal distributions. Note that most previous works
rely on the assumption of level of pixel-to-pixel correspon-
dence to a certain extent, which clearly does not hold for our
sketch-to-photo translation problem. In our problem, pair-
wise supervision is available but the supervision signal is
noisy and weak, challenging the existing supervised learn-
ing based methods. Nevertheless this supervision is too use-
ful to ignore by adopting an entirely unsupervised learning
approach. Therefore we propose a novel hybrid model to
have the best of both worlds.
Recurrent Vector Image Generation Most recent image
generation and understanding work generate images in a
continuous pixel space via convolutional neural networks
(CNNs) [12, 47, 45, 17]. There has been relatively few stud-
ies on vector image generation. Vector representation is per-
fectly suited for sketches because both spatial and temporal
visual cues are encoded during the sketching process. The
seminal work of Graves et al. [7] adopted recurrent neural
networks (RNNs) to generate vector handwritten digits by
using mixture density networks for continuous data points
approximation. Similar models were developed for vector-
ized Kanji characters [46, 9] and free-hand human sketches
[10], both conditionally and unconditionally by modeling
them as a sequence of pen stroke actions. Very recently, [2]
proposed to build ties between raster and vector sketch im-
ages through a CNN-RNN paradigm. In this work, sketches
are stored as vector images and a RNN decoder is employed
to generate sketches from a CNN encoder embedding, re-
sulting in clean and sharp line strokes, which has shown
better sketch generation performance compared to [10].

Vector Sketch Datasets One main factor that hampers re-
search on generating vector sketch images is the lack of
publicly available large-scale datasets. The TU-Berlin [5]
and Sketchy [31] datasets provide 20k and ∼70k vector
sketches from multiple categories respectively. They are
designed for sketch recognition and FG-SBIR respectively.
But they are not quite big enough for learning a sketch
generation model. The lack of data problem is partially
solved in [10], which contributes a dataset of 50 million
vector drawings covering hundreds of categories obtained
from the QuickDraw AI Experiment [13]. Nevertheless,
these category-level symbolic and conceptual vector draw-
ings were each sketched within 20 seconds, so they often
do not possess sufficient fine-grained detail for distinguish-
ing object instances belonging to the same category. To
our knowledge, the largest fine-grained paired sketch-photo
dataset to date is the QMUL-Shoe-Chair-V2 dataset [43],
which contains over 8000 photo-sketch pairs from two cat-
egories. In this work we focus on these two categories and
use the QuickDraw shoe and chair sketches [10] for pre-
training, and QMUL-Shoe-Chair-V2 for model fine-tuning.
Learning Discriminative Models with Synthetic Data
A number of recent studies use data synthesized using deep
generative models for training discriminative models, there-
fore circumventing the need for large-scale manual data col-
lection and annotation. These discriminative models have
been applied to various tasks including gaze estimation
[33], hand pose estimation [37, 35] and human pose estima-
tion [28]. The most related work is [41], which controls the
variations in the synthesized images using a learned deep
model rather than heuristic rendering. Most existing works
use synthesized photo images, whilst in this work we aim to
use synthesized sketches to learn a discriminative model.
Fine-grained Sketch-based Image Retrieval One such
discriminative models is a fine-grained sketch-based image
retrieval (FG-SBIR) model. FG-SBIR addresses the prob-
lem of finding a specific photo containing the same instance
as an input sketch. The relevant research field has flourished
recently [21, 42, 34, 31, 20, 27] due to its huge potential for
commercial applications. One primary challenge associated
with FG-SBIR is how to train a model with limited sketch-
photo pairs, because collecting free-hand sketch-photo pairs
is very expensive in practice. Previous work [44] resorts
to heuristic stroke augmentation and removal techniques to
enhance the training data. In this work, for the first time,
we attempt to generate synthetic sketch drawings from a
learned deep model model to boost FG-SBIR performance.

3. Methodology

3.1. Overview

We aim to learn a mapping function between the photo
domain X and sketch domain Y , where we denote the em-
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Figure 3: (a) Existing supervised image-to-image translation framework, where mapping is one-way only. (b) Existing
unsupervised image-to-image translation models enforce cycle consistency to address the highly under-constrained one-to-
one mapping problem. (c) Our supervised-unsupervised hybrid model with dual/two-way supervised translation sub-models
and two unsupervised sub-models with shortcut cycle consistency. This takes advantage of the noisy supervision signal
offered by photo-sketch pairs, as well as learning from within-domain reconstruction.

pirical data distribution as x ∼ pdata(x) and y ∼ pdata(y)
and represent each vector sketch segment as (sxi

, syi
), a

two-dimensional offset vector. Our model includes four
mapping functions, learned using four subnets namely a
photo encoder, a sketch encoder, a photo decoder, a sketch
decoder. They are denoted as Ep, Es, Dp and Ds respec-
tively.

Sub-Models As illustrated by Figure 3(c), our model con-
sists of four sub-models, each comprising an encoder sub-
net and a decoder subnet. (1) A supervised sub-model that
translates a photo to a sketch; (2) a supervised sub-model
that maps a sketch back to the photo domain; (3) an unsu-
pervised sub-model to reconstruct photo and (4) an unsuper-
vised sub-model to reconstruct sketch. This means that our
learning objective consists of two types of losses (to be de-
tailed later): supervised translation loss for matching cross-
domain and shortcut cycle consistency loss for traversing
within domain.

Variational Encoders The two encoders Ep and Es are
CNN and RNN respectively (see Figures 4(a) and (c)). In
particular, Es is a bidirectional LSTM. They take in either
a photo or sketch as input and output a latent vector. They
are variational because the latent vector is then projected
into two vectors µ and σ with one fully connected (FC)
layer. From the FC layer we construct our final embed-
ding layer (bottleneck layer in each sub-model) by fusing
it with a random vector, N (0, I), sampled from IID Gaus-
sian distribution. To enable efficient posterior sampling, the
re-parameterization trick is used as in [16]:

z = µ+ σ �N (0, I) (1)

Sketch Decoder We build an LSTM-based sequence
model as in [10] to sample output sketches segment by seg-
ment conditioned on the latent vector z (see Figure 4(b)).
This is done by predicting each sketch segment offset
p(∆sxi

,∆syi
) using a Gaussian mixture model and mod-

eling pen state qi for each time step as a categorical distri-
bution. We refer the reader to [10] for more details. To train
the LSTM decoder, the reconstruction loss is formulated as:

Lrnn(S, Ŝ) = Ex∼S,y∼Ŝ[
− 1

Nmax

( Ns∑
i=1

log(p(∆sxi
,∆syi

|x, y))

−
Nmax∑
i=1

3∑
k=1

pk,ilog(qk,i|x, y)
)] (2)

where Nmax represents the maximum number of segments
in one sketch in the training set, and Ns denotes the actual
length of segments for one particular sketch, thusNs is usu-
ally smaller thanNmax. Index i and k indicate the time step
and one of three pen states, respectively.
Photo Decoder We use a CNN-based deconvolutional-
upsampling block, as is commonly adopted by various gen-
erative tasks, where an l2 loss

L→p(P, P̂ ) = Ex∼P,y∼P̂ [||x− y||2] (3)

is used to measure the difference, which often leads to a
blurry effect, known as the regression to mean problem

4
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Figure 4: (a) bidirectional LSTM encoder Es. (b) conditional LSTM decoder Ds. (c) generative CNN encoder Ep. (d)
conditional CNN decoder Dp.

[24]. An obvious solution is to add adversarial loss [6] for
obtaining shaper photo visual effect. This was however not
adopted because: (a) We did not observe improved photo-
to-sketch synthesis, and even slightly worse due to the mode
collapse issue, commonly observed with generative adver-
sarial training [30]. (b) Synthesizing photos is not the main
goal of the model; it is used as an auxiliary task to help the
main photo-to-sketch synthesis task.

3.2. Shortcut Cycle Consistency

We might expect that learning a one-way mapping from
photo to sketch should suffice, as paired examples exist
for providing a supervision signal. However, as discussed,
photo-sketch pairs provide a weak and noisy supervision
signal, so such a one-way mapping function cannot be
learned effectively. Our solution is to introduce two-way
mapping using supervised learning and unsupervised re-
construction tasks. Since the four encoder and decoders
are shared by these supervised and unsupervised tasks, they
benefit from multi-task learning.

For the under-constrained mapping in the unsupervised
self-reconstruction tasks, cycle consistency [11, 48] is de-
veloped to alleviate the non-identifiable [19] problem by
reducing the space of possible mappings. This is achieved
from the intuition that for each source image, the translation
should be cycle consistent as to bring back to itself from the
translated target domain. Taking photo to sketch transla-
tion for example, we have x → Ep(x) → Ds(Ep(x)) →
Es(Ds(Ep(x)) → Dp(Es(Ds(Ep(x))). However, since
we do have noisy but paired data to provide weak super-
vision, the approximate posterior can actually be learned
within each domain from the encoder’s embedding. This is
achieved by enforcing a variational bound and this is exactly
where the shortcut can happen in the new cycle consistency
proposed in this work.

Specifically, to form a photo to photo cycle now re-
quires only traverse within domain, i.e., x → Ep(x) →
Dp(Ep(x)), which we term as shortcut cycle consistency.
We find that apart from resulting in faster convergence in
our supervised-unsupervised hybrid framework, our unsu-

pervised sub-models with the shortcut cycle consistency can
produce much better photo-to-sketch synthesis compared
with the model learned with conventional cycle consistency.
We postulate that given the large domain gap between photo
and sketch, doing a long walk across domains potentially
makes it harder to establish cross-domain correspondence.
Formally, to enforce the shortcut cycle consistency, we min-
imize the following loss:

Lshortcut(X,Y ) = L→s(Y,Ds(Es(Y )))

+ L→p(X,Dp(Ep(X)))
(4)

3.3. Full Learning Objective

The four sub-models are learned jointly. Therefore, in
additional to the unsupervised loss above, there are thus two
supervised translation losses:

Lsupervised(X,Y ) = L→s(Y,Ds(Ep(X)))

+ L→p(X,Dp(Es(Y )))
(5)

Furthermore, to enable efficient posterior sampling, we
add KL losses for the bottleneck layer embedding space dis-
tributions to force the four sub-models to use a similar dis-
tribution to feed to their decoders. For simplicity, we com-
bine them into one term:

LKL =Ex∼X,y∼Y,x̂∼X̂,ŷ∼Ŷ

[−1

2
(1 + σ2 − exp(σ))|x, y, x̂, ŷ]

(6)

Our full objective thus becomes:

Lfull(X,Y ) = Lsupervised(X,Y )

+ λshortcutLshortcut(X,Y )

+ λKLLKL

(7)

where λshortcut, λKL controls the relative importance of
each loss. With the full loss, we aim to optimize:

argmin
Ep,Es,Dp,Ds

Lfull(X,Y ) (8)
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4. Experiments

4.1. Datasets and Settings

Dataset Splits and Preprocessing We use the publicly
available QMUL-Shoe-Chair-V2 [43] dataset, the largest
stroke-level paired sketch-photo dataset to date, to train and
evaluate our deep photo-to-sketch synthesis model. There
are 6,648 sketches and 2,000 photos for the shoe category,
where we use 5,982 and 1,800 of which respectively for
training and the rest for testing. For chairs, we split the
dataset as following strategy: 300/100 photos, 1275/725
sketches for training/testing respectively. It is guaranteed
that each photo is paired with at least one human sketch.
We scale and center the photos to 224 × 224 pixels and
pre-process original sketches via stroke removal and spa-
tial sampling to reduce to number of segments to the level
suitable for LSTM-based modeling.
Pretraining on QuickDraw Dataset Due to the limited
number of sketch-photo pairs in QMUL-Shoe-Chair-V2, we
pretrain our model with 70,000 shoe and 70,000 chair train-
ing sketches from the QuickDraw dataset [10]. Despite the
fact that only abstract iconic vector sketches exist with no
associated photos, we form our pretrained photos by trans-
forming sketches to raster pixel images.
Implementation Details Our CNN-based encoder and
decoder, Ep and Dp consist of five stride-2 convolutions,
two fully connected layers and five fractionally-strided con-
volutions with stride 1/2, similar to [12] but without skip
connections. We use instance normalization instead of
batch normalization as in [38]. We adopt bidirectional and
unidirectional LSTM for our RNN encoder Es and decoder
Ds respectively, while keeping other learning strategies the
same as [10]. We implement our model end-to-end on Ten-
sorflow [1] with a single Titan X GPU. We set the impor-
tance weights λshortcut = 1 and λKL = 0.01 during train-
ing and find this simple strategy works well. Both pretrain-
ing and fine-tuning stages are trained for a fixed 200,000
iterations with a batch size of 100. The model is trained end
to end using the Adam optimizer [15] with the parameters
β1 = 0.5, β2 = 0.9, ε = 10−8. A fixed learning rate of
0.0001 is adopted for experiments.

4.2. Evaluation Metric

Evaluating the quality of synthesized images is still an
open problem. Traditional maximum likelihood approaches
(e.g., kernel density estimation) fail to offer a true reflec-
tion of the synthesis quality, as validated in [36]. Con-
sequently, most recent studies either run human percep-
tual studies by crowd-sourcing or explore computational
metrics attempting to predict human perceptual similarity
judgments [26]. Our measures fall into the latter by dis-
criminatively answering two questions: (i) How recogniz-
able can the synthesized sketch be when evaluated with a

recognition model trained on human sketch data? (ii) How
realistic and diverse are the synthesized sketches, so that
they can be used as queries to retrieve photos using a FG-
SBIR model trained on photo-human sketch pairs? A good
score under these metrics requires synthesized sketches to
be both realistic and instance-level identifiable. The met-
ric thus shares the same intuition behind the “inception
score” [30]. More specifically, the two metrics are: (1)
Recognition-Accuracy: We feed the synthesized sketches
into the sketch-a-net [44] model, which is trained to rec-
ognize 250 real-world sketch categories with super-human
performance. The assumption is that if a synthesized sketch
can be recognized correctly as the same category as the cor-
responding photo, we can conclude with some confidence
that it is category-level realistic. (2) FG-SBIR Retrieval-
Accuracy: Since our data are from the same category (ei-
ther shoe or chair), the recognition-score could still be high
if the model learns to one specific object instance regard-
less of the input photo instances (i.e., the typical symptom
of mode collapsing [30]), or if the synthesized sketches are
diverse but hardly resemble the object instances in the corre-
sponding photos. To overcome this problem, the FG-SBIR
accuracy is introduced as a harder metric. We retrain the
model of [42] on the QMUL-Shoe-Chair-V2 training split
[43] and used the synthesized sketches to retrieve photos on
the test-split.

4.3. Competitors

For fair comparison, we implement all the competitors
under the same architecture and training strategies as our
model. Pix2pix [12]: We compare with replacing vector
sketch images with raster sketch images, where translation
happens within the pixel space. We tried different state-of-
the-art cross-domain translation models [12, 8, 32], but did
not find much difference between them. We thus only re-
port the results of the model in [12] as a representative one.
Pix2seq [2]: This corresponds to the ablated version of our
full model: a one-way photo-to-sketch supervised transla-
tion mode with vector sketch as output. This is similar to
[2], which was originally designed for better sketch recon-
struction, now re-designed and re-purposed for the photo-
to-sketch translation task. CycleGAN [48]: This is pro-
posed to specifically target image-to-image translation with
the absence of paired training examples. Cycle consistency
is enforced to alleviate the highly under-constrained setting
of the problem. CycleGAN-Supervised (CycleGAN-S):
Additional supervised learning modules (two discrimina-
tors for adversarial training) are added on top of CycleGAN
to give a level playing field. This can be considered as an
alternative supervised-unsupervised hybrid model.

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#1185

CVPR
#1185

CVPR 2018 Submission #1185. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Photo Pix2pix Pix2seq CycleGAN CycleGAN-S Ours Ground Truth

Figure 5: Photo-to-sketch synthesis on the QMUL-Shoe-Chair-V2 test splits. From left to right: input photo, Pix2pix [12],
Pix2seq [2], CycleGAN [48], CycleGAN with supervised translation loss, ours and ground truth human sketch.

4.4. Qualitative Results

As illustrated in Figure 5, all four competitors fail to gen-
erate high quality sketches that match with the correspond-
ing photo. Our model, in contrast, is able to sketch object
abstractly but semantically. Interestingly, our model pro-
duces some sketches with certain level of fine-grained de-
tails, which is extremely challenging given the highly noisy
supervision signals as shown in Figure 2. In some cases,
e.g., the third row shoe example, the synthesized sketch
matches the actually object shape better and contains more
fine-grained details compared to the human sketch.

The competitors suffer from various problems. We ob-
serve complete model collapse when using CycleGAN un-
der unsupervised setting, which suggests that CycleGAN
may only works with unpaired training examples under
a strong cross-domain pixel-level alignment assumption.
After injecting supervision into CycleGAN (CycleGAN-
S), the synthesized results get better but still suffers from
regular noisy stroke generation, i.e., it seems that a ran-
dom meaningless stroke is always sketched on a shoe. In
contrast, our model with shortcut cycle consistency does
not suffer from such issue. This is because our model
takes a shortcut from the bottleneck, which eases the bur-

den on optimization and enhances the representation power
of the encoder. We also witness some success using the
Pix2seq model – the sketch looks adequate on its own, but
when compared with the corresponding photo, it does not
bear much resemblance, often containing some wrong fine-
grained details, e.g., ankle strap of the first-row shoe. This
supports our hypothesis that one-way image-to-image trans-
lation is not enough to deal with the highly-noisy paired
training data. Finally, the worst results are obtained by the
Pix2pix model which is the only model that treats sketch as
a raster pixel image. The synthesized sketches are blurry
and lack sharp and clean edges. This is likely caused by the
fact that the model pays too much attention to handling the
empty background which is also part of data to model with
the raster image format.

4.5. Quantitative Results

We compare the performance of different models evalu-
ated using the two metrics (Sec. 4.2) in Table 1. The fol-
lowing observations can be made: (i) Under the recognition
metric, our model beats all the competitors. Interestingly it
also beats human, showing our superior category-level gen-
erative realism. (ii) Under the retrieval metric, our model
still outperforms all competitors on both datasets. However,
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Recognition Retrieval
ShoeV2 acc.@1 acc.@10 acc.@1 acc.@10
Human sketch [43] 36.50% 70.00% 30.33% 76.28%
Pix2pix [12] 0.00% 0.00% 0.50% 7.50%
Pix2seq [2] 51.50% 86.00% 4.50% 26.00%
CycleGAN [48] 0.00% 0.00% 0.50% 4.00%
CycleGAN-S 18.00% 51.50% 2.00% 18.00%
Our full model 53.50% 90.00% 6.00% 28.50%

ChairV2 acc.@1 acc.@10 acc.@1 acc.@10
Human sketch [43] 10.00% 35.00% 47.68% 89.47%
Pix2pix [12] 0.00% 0.00% 2.00% 16.00%
Pix2seq [2] 5.00% 51.00% 3.00% 31.00%
CycleGAN [48] 0.00% 8.00% 1.00% 7.00%
CycleGAN-S 12.00% 55.00% 6.00% 33.00%
Our full model 13.00% 55.00% 8.00% 36.00%

Table 1: Recognition and retrieval results obtained using the
synthesised sketched. Numbers in red and blue indicate the
best and second-best performance among compared mod-
els. The results are in top-1 and top-10 accuracy.

this time, the gap to the human sketches’ performance is
big. This suggests that when humans draw a sketch of a spe-
cific object given a reference photo, attention is paid mainly
to fine-grained details for distinguishing different instances,
rather than the category-level realism. Nevertheless, com-
pared to the chance level (0.5% acc.@1 for ShoeV2 and 1%
for ChairV2), our model’s performance suggests the synthe-
sized sketches do capture some instance-identifiable details.
(iii) The strongest competitor on ShoeV2 is Pix2seq [2].
However, its place is taken by CycleGAN-S on ChairV2.
This is expected: the ChairV2 dataset is much smaller than
ShoeV2, posing difficulties for a pure supervised-learning
based approach. The unsupervised CycleGAN yields poor
performance all the time due to model collapse, but its su-
pervised learning boosted version CycleGAN-S fares quite
well on the small ChairV2 dataset. This further validates
our claims that a hybrid model is required and our shortcut
consistency is more effective than the full cycle consistency.

4.6. Image Reconstruction Quality

In Figure 6, we show a few samples of the recon-
struction results obtained using our unsupervised sub-
models, i.e., sketch → Ds(Es(sketch)) and photo →
Dp(Ep(photo)), with our shortcut cycle consistency. We
observe that the reconstructed photos are quite close to the
input, despite the expected blurry effects (as explained in
Sec. 3.1). For sketches, due to the existence of the KL loss
(Eq. 6), the RNN-based decoder suffers significant recon-
struction degradation, which is also shown in [2]. However,
as mentioned earlier, among the four sub-models, only the
photo-to-sketch one is what we are after, and the other three
are designed as auxiliary tasks to learn a better encoder and
decoder to serve the main sub-model. In this case, it ap-
pears that the sketch → Ds(Es(sketch)) sub-model has

Input(s)
Reconstruction
(%&((&())))Input(p)

Reconstruction
(%+((+(,)))

Figure 6: Sketch-to-sketch and photo-to-photo reconstruc-
tion results on QMUL-Shoe-Chair-V2 dataset.

Dataset acc.@1 acc.@10
Without pretraining on synthetic data 30.33% 76.28%
With pretraining on synthetic data 32.43% 77.48%

Table 2: Evaluation of the contribution of synthetic sketch
pretraining on FG-SBIR.

sacrificed its own performance to help the main sub-model.

4.7. Data Augmentation for FG-SBIR

In this experiment, we evaluate whether the synthesised
sketches using our model can be used to form some addi-
tional photo-sketch pairs to train a better FG-SBIR model.
More concretely, we collect 1800 photos from a different
shopping website (Selfridge’s), called ShoeSF, which have
no overlap with the ShoeV2 photos. We then apply our
model trained on ShoeV2 to generate sketches for ShoeSF
to form some additional photo-sketch pairs. They are then
used to pretrain the FG-SBIR model in [42] before fine-
tuning on the ShoeV2 provided photo-sketch pairs. Table 2
shows that using the synthesised data can boost the perfor-
mance by 2.10% acc.@1.

5. Conclusion

We proposed the first deep stroke-level photo-to-sketch
synthesis model that enables abstract stroke-level visual un-
derstanding of an object in a photo. To cope with the noisy
supervision of photo-human sketch pairs, we proposed a
novel supervised-unsupervised hybrid model with shortcut
cycle consistency. We show that our model achieves supe-
rior performance both qualitatively and quantitatively over
a number of state-of-the-art alternatives. We also applied
our synthetic sketches as a mean of data augmentation for
the FG-SBIR task, obtaining promising results.
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