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Abstract

In the field of Automatic Music Transcription, note tracking systems constitute
a key process in the overall success of the task as they compute the expected note-
level abstraction out of a frame-based pitch activation representation. Despite its
relevance, note tracking is most commonly performed using a set of hand-crafted rules
adjusted in a manual fashion for the data at issue. In this regard the present work
introduces an approach based on machine learning, and more precisely supervised
classification, that aims at automatically inferring such policies for the case of piano
music. The idea is to segment each pitch band of a frame-based pitch activation
into single instances which are subsequently classified as active or non-active note
events. Results using a comprehensive set of supervised classification strategies on the
MAPS piano dataset report its competitiveness against other commonly considered
strategies for note tracking as well as an improvement of more than +10 % in terms
of F-measure when compared to the baseline considered for both frame-level and note-
level evaluation.

Keywords: Note Tracking, Polyphonic Piano Transcription, Onset De-
tection, Supervised Classification, Machine Learning, Audio Analysis

1 Introduction

Automatic Music Transcription (AMT) stands for the process of automatically retrieving a
high-level symbolic representation of the music content present in an audio signal (Grosche
et al., 2012). This particular task has been largely studied and addressed by the Music
Information Retrieval (MIR) field due to its considerable application in a number of tasks
such as music preservation and annotation (Kroher et al., 2016), music similarity and re-
trieval (Lidy et al., 2010), and computational musicological analysis (Klapuri & Davy, 2007),
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among others. While the task of automatically transcribing monophonic music is largely
considered to be solved, automatic transcription of polyphonic music still remains an open
problem (Benetos et al., 2013).

With the sole exception of some particular systems as for instance the one by Berg-
Kirkpatrick, Andreas, and Klein (2014), the majority of AMT systems comprise two stages
(Benetos et al., 2013): an initial multipitch estimation (MPE) stage in which the system
estimates the active pitches in each frame of the signal; and a note tracking (NT) stage that
processes and refines the results of the former MPE step to obtain a higher-level description
of the note events in terms of a discrete pitch value, onset, and offset. Thus, while the
former stage aims at retrieving a raw pitch description of the signal, the latter acts as both a
correction and segmentation stage for obtaining musically-meaningful representations (Cheng
et al., 2015).

Multipitch estimation has been largely explored due to its relevance not only in AMT but
also in fields such as source separation or score following (Duan et al., 2010). These systems
retrieve a time-pitch representation typically referred to as pitch activation or posteriorgram
that depicts the temporal evolution of the salience of each pitch band. In general, these
techniques may be grouped in three different categories depending on the type of principle
considered (Benetos et al., 2012): (i) feature-based methods that extract meaningful descrip-
tors of the signal for later applying either heuristics or machine learning methods for the
estimation; (ii) modelling the estimation within a statistical framework and thus address the
problem as the estimation of the parameters of the distribution; and (iii) the spectrogram
factorization paradigm that considers the initial time-frequency representation (generally, a
spectrogram) as a matrix to be decomposed into a series of pitch templates and activations.
The particular case of the latter approach has proved to be quite effective for MPE, and thus
a number of strategies based on that principle have been proposed from which Non-negative
Matrix Factorisation (NMF) and Probabilistic Latent Component Analysis (PLCA) stand
out.

On the contrary, note tracking has not received that much attention despite its relevance
in the overall success of the automatic music transcription task (Duan & Temperley, 2014).
Note-level transcriptions are commonly obtained by binarizing the time-pitch representation
and post-processing it with a set of minimum-length pruning processes for eliminating spuri-
ous detections and gap-filling stages for removing small gaps between consecutive pitches as,
for instance, works by Benetos and Weyde (2015) or Iñesta and Pérez-Sancho (2013). Thus,
our main criticism lies in the fact that note tracking strategies typically rely on hand-crafted
rules. Hence, as opposed to such methods, in this work we consider and explore an approach
based on Pattern Recognition and Machine Learning so that the system may automatically
infer the proper strategy for performing the note tracking task.

More precisely, the present paper expands the initial work in Valero-Mas, Benetos, and
Iñesta (2016) which explored, as a proof of concept, the use of supervised classification
approaches for note tracking as a post-processing stage using as input a frame-level tran-
scription. More precisely, a binary classifier was used to post-process an initial binarized
posteriorgram by labelling the events as either active or non-active and thus obtain a note-
level representation. The new contributions in this work with respect to the aforementioned
proof-of-concept publication are: (i) the use of a larger amount of classification schemes for
the testing the method; (ii) a comprehensive experimental set-up to assess the potential
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and capabilities of the proposed method; and (iii) a comparison with existing and published
approaches commonly considered for the task.

The rest of the paper is structured as follows: Section 2 reviews related work on note
tracking to contextualize our contribution; Section 3 presents the proposed method for note
tracking; Section 4 addresses the experimental set-up and the evaluation methodology con-
sidered; Section 5 discusses the results obtained; finally, Section 6 concludes the work and
introduces directions for future work.

2 Background on note tracking

The first step towards obtaining a note-level representation consists in binarizing the pos-
teriogram estimation obtained with the multipitch analysis of the piece, i.e. the non-binary
two-dimensional representation depicting the prominence of each pitch value of being present
at a certain time stamp. This is typically done by applying a threshold to the pitch activa-
tions, i.e. the values over a certain threshold are considered active pitch elements while the
ones below it are assumed to be silence. In some cases, the result of this binarization process
is directly considered to be a high-level representation, namely frame-level transcription, as
seen in works as Vincent, Bertin, and Badeau (2010) or Grindlay and Ellis (2011). Figure 1
shows a graphical example of the process.

Time (s)

F
re
qu
en
cy

(H
z)

5 10 15 20 25 30
27.5

...

659.3

...

4186

(a) Spectrogram representation.

0 5 10 15 20 25 30
27.5

...

659.3

...

4186

Time (s)

F
re
q
u
en
cy

(H
z)

(b) Multipitch analysis.

0 5 10 15 20 25 30
A0

...

E4

...

C8

Time (s)

P
it
ch

(s
em

it
on

e
sc
al
e)

(c) Binary frame-level representation obtained with a
single thresholding stage.
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(d) List of note events obtained with the note
tracking process.

Figure 1: Example of a frame-level transcription using a simple thresholding stage applied
to a multipitch analysis of an excerpt of piano music.

The use of such approach has the clear advantage of its conceptual simplicity. Never-
theless, they generally entail low performance results as they are not robust enough against
errors that might occur in the MPE stage as, for instance, false positives or over-segmentation
of long note events. In this regard, alternative techniques that post-process the initial bina-
rization are also considered to address those types of errors. Most commonly, these techniques
are based on combinations of minimum-length pruning processes for eliminating spurious de-
tections and, occasionally, gap-filling stages for removing small gaps between consecutive note
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events. Quite often, these techniques are implemented as rule-based systems. For example,
works by Dessein, Cont, and Lemaitre (2010) and Benetos and Weyde (2015) considered
simple pruning stages for removing false detections, while the system in Bello, Daudet, and
Sandler (2006) studied a more sophisticated set of rules comprising both pruning and gap-
filling stages.

Probabilistic models have also been considered for the note tracking process. In this
regard, Hidden Markov Models (HMMs) have reported remarkably good results in the liter-
ature: the work by Ryynänen and Klapuri (2005) considered HMMs to model note events in
terms of their attack, sustain, and noise states; Cheng et al. (2015) also proposed a four-stage
HMM to model the states of a musical note; finally, other works such as Poliner and Ellis
(2007); Benetos and Dixon (2013); Cañadas-Quesada, Ruiz-Reyes, Vera-Candeas, Carabias-
Orti, and Maldonado (2010) proposed systems in which binary pitch-wise HMM models are
used for modelling events as either active or inactive.

Alternative methodologies to the commented ones may also be found in the literature.
For instance, Raczyński, Ono, and Sagayama (2009) proposed a probabilistic model based
on dynamic Bayesian networks which takes as input the result of an MPE analysis. Other
examples are the work by Duan and Temperley (2014), which presented a system that
models the NT issue as a maximum likelihood problem, or the one by Pertusa and Iñesta
(2012) in which this task is addressed by favouring smooth transitions among partials using
directed acyclic graphs. Finally, a last work to highlight due to its conceptual relation to
the approach proposed in this paper is the one by Weninger, Kirst, Schuller, and Bungartz
(2013). In that work a classification-based approach was presented in which a set of Support
Vector Machines (SVMs) were trained on a set of low-level features obtained from the pitch
activations obtained from a supervised NMF analysis for then performing the note tracking
process.

It must be noted that, in general, MPE systems are rather imprecise in terms of tim-
ing. Examples of typical issues are their tendency to miss note onsets, mainly due to the
irregularity of the signal during the attack stage, the over-segmentation of long notes or the
merge of repeated notes (e.g., tremolo passages) into single events. Hence, the use of timing
information in this context is clearly necessary and useful (Valero-Mas et al., 2017).

Under this premise some works have considered the use of onset information to address
such issues. Examples of such works may be found in Marolt and Divjak (2002), which
considered onset information for tackling the problem of tracking repeated notes, the work
by Emiya, Badeau, and David (2008), in which onset information was used for segmenting
the signal before the pitch estimation phase, the proposal by Iñesta and Pérez-Sancho (2013),
which postprocessed the result of the MPE stage with the aim of correcting timing issues
with onset information, or the system by Grosche et al. (2012), which also considered onset
information under an HMM framework. Note that, while scarce, some works as the one
by Benetos and Dixon (2011) have considered both onset and offset estimation systems for
tackling these timing issues.

To the best of our knowledge, no previous work has considered the use of supervised
classification as a note tracking approach in the context of music transcription. Thus, in this
work we consider supervised classification for post-processing an initial note-level estimation
to model and correct the note-level transcription errors committed. Conceptually, the idea
is to derive a set of instances from the initial note-level estimation of an audio piece by
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temporally segmenting each pitch band using as delimiters the estimated onset events of the
piece; each of these instances is represented by a set of features obtained from this initial
note-level representation and the initial multipitch estimation; each of these instances is
subsequently categorized as being active or inactive segments of notes, thus producing the
post-processed note-level transcription. This proposed approach is thoroughly described in
the following section.

3 Proposed method

Figure 2 shows the general workflow for the proposed system, with the area labelled as
Note tracking being the one devoted to the proposed note tracking method. In this system,
the audio signal to transcribe undergoes a series of concurrent processes: an MPE stage to
retrieve the pitch-time posteriorgram P (p, t), which is then binarized and post-processed to
obtain a frame-level transcription TF (p, t) (binary representation depicting whether pitch p
at time frame t is active), and an onset estimation stage that estimates a list of onset events
(on)Ln=1. These three pieces of information are provided to the proposed note tracking method
which post-processes the initial frame-level transcription TF (p, t) using the onset events to
retrieve the final note-level transcription TN(p, t). Note that this process is carried out in
two different stages: (i) a first one that considers the onset events (on)Ln=1 for segmenting
frame-level representation TF (p, t) into a set of examples or instances (i.e., models of the
objects to work with – in our case, these objects are the commented segments from the
frame-level representation – and characterised by a collection of features or descriptors); and
(ii) a second stage which classifies these instances as being active or inactive elements in the
eventual note-level transcription TN(p, t).

MPE

Onset
Detection

Binarization

Instance
segmentation Classifier

P (p, t)
Audio

(on)
L
n=1

TN (p, t)

TF (p, t)

Note tracking

Figure 2: Set-up considered for the assessment of the classification-based note tracking
method proposed.

It must be mentioned that, while the main contribution of this approach resides in how
an initial frame-level transcription TF (p, t) is mapped into a set of instances to be classified,
we present all system sub-components of Fig. 2 in the following sections as they constitute
our entire note tracking workflow.

3.1 Multipitch Estimation

The first step of note tracking proposal is the multipitch analysis of the audio music piece to
retrieve the pitch-time posteriorgram P (p, t), for which we consider the system by Benetos
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and Weyde (2015). This system belongs to the Probabilistic Latent Component Analysis
(PLCA) family of MPE methods and ranked first in the 2015 evaluations of the MIREX
Multiple-F0 Estimation and Note Tracking Task1. PLCA is a spectrogram factorization
variant which considers a normalised input spectrogram Vω,t as a bivariate probability dis-
tribution P (ω, t) (here, ω stands for log-frequency and t for time). PLCA subsequently
decomposes the bivariate distribution into a series of basis spectra and component activa-
tions. In the context of MPE, the component activations correspond to a probability of
having an active pitch at a given time frame, and the basis to the spectrum of each pitch.

This particular system takes as input representation a variable-Q transform (VQT) and
decomposes into a series of pre-extracted log-spectral templates per pitch, instrument source,
and tuning deviation from ideal tuning. Outputs of the model include a pitch activation
probability P (p, t) (p stands for pitch in MIDI scale), as well as distributions for instru-
ment contributions per pitch and a tuning distribution per pitch over time. The unknown
model parameters are iteratively estimated using the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977), using 30 iterations in this implementation. For this particular
study we consider a temporal resolution of 10 ms for the input time-frequency representation
and output pitch activation and |P| = 88 pitch values.

Finally, in order to retrieve the frame-level transcription TF (p, t), the pitch-time poste-
riorgram P (p, t) obtained is processed as follows: first of all, P (p, t) is normalized to its
global maximum so that P (p, t) ∈ [0, 1]; then, for each pitch value pi ∈ p, a median filter
of 70 ms of duration is applied over time to smooth the detection; after that, the resulting
posteriorgram is binarized using a global threshold value of θ = 0.1 as it is the value which
maximizes the note tracking figure of merit (to be introduced and commented in Section 4.2)
after binarization; finally, a minimum-length pruning filter of 50 ms is applied to remove
spurious detected notes.

3.2 Onset Detection

This process is devoted to obtaining the start times of note events present in the music signal
at issue by means of an onset detection algorithm. For that we select four representative
methods found in the literature for the detection of such events: a simple Spectral Difference
(SD), the Semitone Filter-Bank (SFB) method by Pertusa, Klapuri, and Iñesta (2005), the
SuperFlux (SF) algorithm by Böck and Widmer (2013b, 2013a), and Complex Domain De-
viation (CDD) by Duxbury, Bello, Davies, and Sandler (2003). All these processes retrieve
a list (oi)

L
i=1 whose elements represent the time positions of the L onsets detected in the

signal.
SD tracks changes in the spectral content of the signal by obtaining the difference between

consecutive values of the magnitude spectrogram. Increases in such measure points out the
presence of onset information in the frame under analysis.

SFB applies a harmonic semitone filter bank to each analysis window of the magnitude
spectrogram and retrieves the energy of each band (root mean square value); a first-order
derivative is then applied to each band; negative results are filtered out as only energy
increases may point out onset information; finally, all bands are summed to obtain a function

1http://www.music-ir.org/mirex/wiki/MIREX HOME
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whose peaks represent the onset events.
SF expands the idea of the spectral flux signal descriptor by substituting the difference

between consecutive analysis windows by tracking spectral trajectories in the spectrum to-
gether with a morphological dilation filtering process. This suppresses vibrato articulations
in the signal which tend to increase false positives.

CDD combines the use of magnitude and phase information of the spectrum for the
estimation. Basically, this approach aims at predicting the value of the complex spectrum
(magnitude and phase) at a certain temporal point by using the information from previous
frames; the deviation between the predicted and the actual spectrum values points out the
possible presence of onsets.

3.3 Segmentation

As mentioned, the proposed note tracking strategy requires three sources of information,
which are retrieved from the additional processes explained in the previous sections: the
pitch-time posteriorgram P (p, t), where p and t correspond to the pitch and time indices
respectively, retrieved from the MPE stage; a frame-level transcription TF (p, t) obtained
from the binarization and basic post-processing of P (p, t); and an L-length list (on)Ln=1 of
the estimated onset events in the piece. Additionally, let TR(p, t) be the ground-truth piano-
roll representation of the pitch-time activations of the piece, which is required for obtaining
the labelled examples of the training set.

The initial binary frame-level transcription TF (p, t) can be considered a set of |P| binary
sequences of |t| symbols, where |P| and |t| stand for the total number of pitches and frames
in the sequence respectively. In that sense, we may use the elements (on)Ln=1 as delimiters for
segmenting each pitch band pi ∈ P in L + 1 subsequences. This process allows to segment
frame-level transcription TF (p, t) with the onset information and express it as follows:

TF (pi, t) = TF (pi, 0 : o1) || TF (pi, o1 : o2) || ... || TF (pi, oL : |t| − 1) (1)

where || represents the concatenation operator.
Each of these onset-based L+ 1 subsequences per pitch are further segmented to create

the instances for the classifier. The delimiters for these segments are the points in which
there is a change in the state of the binary sequence, i.e. when there is a change from 0 to 1
(inactive to active) or from 1 to 0 (active to inactive). Mathematically, for the onset-based
subsequence TF (pi, on : on+1) the |C| state changes are obtained as:

C = {tm : TF (pi, tm) 6= TF (pi, tm+1)}on+1

tm=on
. (2)

Thus, the resulting |C| + 1 segments, which constitute the instances for the classifier, may
be formally enunciated as:

TF (pi, on : on+1) = TF (pi, on : C1) || ... || TF (pi, C|C| : on+1) . (3)

Figure 3 illustrates graphically this procedure. In this example, for frame-level transcription
TF (p, t), in the interval given by [on, on+1] and pitch pi, there are |C| = 4 state changes (i.e.,
changes from active to inactive or viceversa). Hence we obtain |C|+ 1 = 5 subsequences.
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C1 C3C2 C4

on on+1

Pitch pi

Figure 3: Conceptual example of the segmentation of the onset-based subsequence TF (pi, on :
on+1) into instances. The grey and white segments depict sequences of 1 and 0, respectively.

So far we have performed the segmentation process based only on the information given
by TF (p, t). Thus, at this point we are able to derive a set of instances that may serve as test
set since they are not tagged according to the ground-truth piano roll TR(p, t). However,
in order to produce a training set using the labels in TR(p, t), an additional step must be
performed. For that we merge the pieces of information from both TF (p, t) and TR(p, t)
representations, which we perform by obtaining the C set of delimiters as:

C = CTF
∪ {tm : TR(pi, tm) 6= TR(pi, tm+1)}on+1

tm=on
(4)

where CTF
represents the segmentation points obtained from TF (p, t). This need for merging

these pieces of information in shown in Fig. 4: if we only took into consideration the break-
points in TF (pi, t) (i.e., the band labelled as Detected), subsequence TF (pi, ta : tb) would have
two labels if checking the figure labelled as Annotation – subsequence TF (pi, ta : tc) should be
labelled as non-active and TF (pi, tc : tb) as active. Thus, we require these additional break-
points to further segment the subsequences and align them with the ground-truth labels to
produce the training set. Again, note that this process is not required for the test set since
evaluation is eventually done in terms of note tracking performance and not as classification
accuracy.

Pitch pi

on on+1

ta tb

Pitch pi

tc td

Pitch pi

C1 C3C2 C4

Detected

Annotation

Segments

Figure 4: Conceptual example of the segmentation and labelling process for the training
corpus. Breakpoints ta and tb from frame-level transcription TF (pi, t) – labelled as Detected
– together with breakpoints tc and td from ground-truth piano roll TR(pi, t) – labelled as
Annotation – are considered for segmenting sequence pi ∈ P . Labels are retrieved directly
from TR(p, t). For each case, grey and white areas depict sequences of 1 and 0, respectively.

8



Once the segmentation process has been performed, a set of characteristics is extracted
for each of the instances. This set comprises features directly derived from the geometry of
the instance (i.e., absolute duration or duration relative to the inter-onset interval), others
derived from the frame-level transcription TF (p, t), as its distance to previous and posterior
onsets, and others related to the posteriorgram P (p, t) as the average energy in both the
current and octave-related bands. No pitch information is included as feature, thus classifi-
cation is performed independently of the pitch value. We assume that these features (both
temporal and pitch salience-based descriptors) are able to capture relevant characteristics of
the note tracking process. Table 1 describes the features considered and Fig. 5 graphically
shows their obtaining process.

Table 1: Summary of the features considered. Operator 〈·〉 retrieves the average value of the
elements considered.

Feature Definition Description
∆t Cm+1 − Cm Duration of the block

∆on Cm − on
Distance between previous onset
and the starting point of the block

∆on+1 on+1 − Cm+1
Distance between end of the
block and the posterior onset

D ∆t
on+1−on

Occupation ratio of the block
in the inter-onset interval

E 〈P (pi, Cm : Cm+1)〉 Mean energy of the multipitch
estimation in current band

El 〈P (pi − 12, Cm : Cm+1)〉 Mean energy of the multipitch
estimation in previous octave

Eh 〈P (pi + 12, Cm : Cm+1)〉 Mean energy of the multipitch
estimation in next octave

C1 C3C2 C4

on on+1

Pitch pi

∆on

∆t

∆on+1

Figure 5: Graphical representation of the descriptors considered. In this conceptual example,
the instance being characterized is TF (pi, C2 : C3).

To avoid that the considered features may span for different ranges, we normalize them:
energy descriptors (E, El, and Eh) are already constrained to the range [0, 1] as the input
posteriorgram is normalised to its global maximum (cf. Section 4 in which the experimenta-
tion is described); occupation ratio D is also inherently normalized as it already represents
a ratio between two magnitudes; absolute duration ∆t and distance features ∆on and ∆on+1

are manually normalised using the total duration of the sequence as a reference.
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Finally, in an attempt to incorporate temporal knowledge in the classifier, we include as
additional features the descriptors of the instances surrounding the one at issue (previous
and/or posterior ones). To exemplify this, let us take the case in Fig. 5. Also consider to
include a temporal context that of one previous and one posterior windows to the instance
to be defined. To do so, and for the precise case of instance TF (pi, C2 : C3), we take into
account the features of both neighbouring instances TF (pi, C1 : C2) and TF (pi, C3 : C4).

3.4 Classifier

The proposed approach models the note tracking problem as a binary classification task in
which the instances must be tagged as being either active or inactive (i.e., pitch activations
in the audio signal). For that, the classifier requires both the set of instances to be classi-
fied and the reference data to create the classification model (i.e., the test and train data,
respectively) derived from the process in Section 3.3 while retrieves the corresponding label
(active/inactive) for each test instance.

As the note tracking strategy is not designed for any particular classification model, we
now list the different classifiers we experimented with and whose performance will be later
assessed and compared in Section 5. Note that, while the considered classification strategies
are now introduced, the reader is referred to works by Bishop (2006) and Duda, Hart, and
Stork (2001) for a thorough description of the methods:

1. Nearest Neighbour (NN): Classifier based on dissimilarity which, given a labelled set of
samples T , assigns to a query x′ the class of sample x ∈ T that minimizes a dissimilarity
measure d(x, x′). Generalising, if considering k neighbours for the classification (kNN
rule), x′ is assigned the mode of the individual labels of the k nearest neighbours.

2. Decision Tree (DT): Classifier that performs separation of the classes by iteratively
partitioning the search space with simple decisions over the features in an individual
fashion. The resulting model may be represented as a tree in which the nodes represent
the individual decisions to be evaluated and the nodes contain the classes to assign.

3. AdaBoost (AB): Ensemble classifier based on the linear combination of weak classifi-
cation schemes. Each weak classifier is trained on different versions of the training set
T that basically differ on the weights (classification relevance or importance) given to
the individual instances.

4. Random Forest (RaF): Ensemble-based classification scheme that categorizes query x′

considering the decisions of one-level decision trees (decision stumps) trained over the
same training set T . The class predicted by the ensemble is the mode of the individual
decisions by the stumps.

5. Support Vector Machine (SVM): Classifier that seeks a hyperplane that maximizes the
margin between the hyperplane itself and the nearest samples of each class (support
vectors) of training set T . For non-linearly separable problems, this classifier relies on
the use of Kernel functions (i.e., mapping the data to higher-dimensional spaces) to
improve the separability of the classes.
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6. Multilayer Perceptron (MLP): Particular topology of an artificial neural network para-
metric classifier. This topology implements a feed-forward network in which each
neuron in a given layer is fully-connected to all neurons of the following layer.

4 Experimentation

This part of the work introduces the experimentation carried out to assess the performance
of our proposed note tracking method and its comparison with other existing methods. For
that, we initially introduce the corpora considered, then we explain the figures of merit
typically used for assessing note tracking systems, after that we introduce the parameters
considered for our note tracking approach, and finally we list and explain other alternative
note tracking strategies from the literature for the comparison of the results obtained.

4.1 Datasets

In terms of data, we employ the MAPS database (Emiya et al., 2010), which comprises
several sets of audio piano performances (isolated notes, chords, and complete music works)
synchronised with their MIDI annotations. For comparative purposes we reproduce the
evaluation configuration in Sigtia, Benetos, and Dixon (2016). In that work the assessment
was restricted to the subset of the MAPS collection of complete music works. This subset
comprises 270 music pieces, out of which 60 were directly recorded using a Yamaha Disklavier
piano under different recording conditions (these pianos are able to export both the audio
recording and the ground-truth MIDI file) and the rest were synthesized from MIDI emulating
different types of piano sounds. Within their evaluation, the data was organized considering
a 4-fold cross validation, with 216 out of the 270 music pieces used for training and 54
music pieces for testing. The precise description of the folds can be found in http://

www.eecs.qmul.ac.uk/~sss31/TASLP/info.html. Additionally, only the first 30 seconds
of each of the files are considered for the experimentation as done in other AMT works,
which gives up to a corpus with a total number of 72,585 note events. Table 2 summarizes
the number of note events for each train/test fold.

Table 2: Description in terms of the number of note events for each train/test partition of
the different folds considered.

Fold 1 Fold 2 Fold 3 Fold 4
Train 59,563 59,956 54,589 60,527
Test 13,022 12,629 17,996 12,058

4.2 Evaluation metrics

For the evaluation of the proposed method we consider the methodology described in the
Multiple-F0 Estimation and Note Tracking task which is part of the Music Information Re-
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trieval Evaluation eXchange (MIREX) public evaluation contest2. The general idea behind
this methodology is to assess how similar the obtained transcription TN(p, t) is to its corre-
sponding ground-truth piano-roll representation TR(p, t). Additionally, as the proposed note
tracking strategy considers the use of onset information, we also assess the performance of
the onset detectors to evaluate the correlation between the goodness of the onset estimation
algorithm and the note tracking task.

Regarding onset information, an estimated event is considered to be correct if its corre-
sponding ground-truth annotation is within a ±50 ms window of it Bello et al. (2005).

For the case of note tracking evaluation we consider two evaluation methodologies to
compare transcription TN(p, t) against ground-truth piano-roll TR(p, t): (i) a frame-based as-
sessment that evaluates the correctness of the estimation by comparing both representations
in a frame-by-frame basis; and (ii) a note-based evaluation that assesses the performance of
the system by comparing the two representations in terms of note events defined by an onset,
an offset, and a discrete pitch value. While the latter metric is the proper one to evaluate a
note tracking approach as the one proposed, the former assessment can also provide valuable
information to understand the performance of the method.

For the frame-based evaluation, a pitch frame estimated as active is considered to be
correct if it matches an active pitch annotation within less than half semitone (±3% in terms
of pitch value), considering a temporal resolution of 10 ms. As of note-based evaluation, we
restrict ourselves to the onset-only note-based figure of merit as we are not considering note
offsets; in our case, a detected note event is assumed to be correct if its pitch matches
the corresponding ground-truth pitch and its onset is within ±50 ms of the corresponding
ground-truth onset (Bay et al., 2009).

Based on the above criteria, and following the evaluation strategy of (Bay et al., 2009),
we use the F-measure (F1) as the main figure of merit, which properly summarises the overall
performance of the method (in terms of correct, missed, and overestimated events) into one
single value:

F1 = 2 · NOK

NDET + NGT

, (5)

where NOK stands for the number of correctly detected events (frames, onsets or notes,
depending on the case), NDET for the number of total events detected, and NGT the total
amount of ground-truth events. This metric is obtained for each single recording to then
obtain the general performance by averaging across recordings in each fold.

4.3 Parameters considered

This section introduces the analysis parameters of the different onset estimation methods
and classifiers considered for the note tracking approach proposed in Section 3.

4.3.1 Onset estimation

The analysis parameters of the different onset estimation algorithms are set to the default
values in their respective implementations: SFB considers windows of 92.8 ms with a tem-

2http://www.music-ir.org/mirex/wiki/MIREX HOME
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poral resolution of 46.4 ms; SF considers smaller windows of 46.4 ms with a higher temporal
granularity of 5.8 ms; SD and CDD both consider windows of 11.6 ms with also a tem-
poral resolution of 5 ms. Additionally, as all of them comprise a final thresholding stage,
we test 25 different values equally spaced in the range (0, 1) to check the influence of that
parameter. From this analysis we select the value that maximizes the onset estimation in
the data collection at issue for then use it in the note tracking stage. Finally, the onset lists
(on)Ln=1 are processed with a merging filter of 30 ms of duration to avoid overestimation
issues as in Böck, Krebs, and Schedl (2012). Such filtering process takes all onset events that
fall within a temporal lapse of 30 ms and retrieves a single onset event that represents its
average value.

We also consider two additional situations regarding the origin of the onset information:
a first one in which we consider ground-truth onset events and a second one in which the
onset description is obtained by sampling a random distribution. Considering these three
situations (i.e., automatic estimation, ground-truth events, and random distribution) allows
us to assess the potential improvement that may be achieved with the proposed note tracking
approach when considering the most accurate onset information (the ground-truth one) and
compare it to the results achieved with the estimated events or the random onset description.

4.3.2 Classifiers

We now introduce the precise configuration of the classifiers considered for our note tracking
approach:

1. Nearest Neighbour (NN): We restrict to one single nearest neighbour (i.e., 1NN) and
consider the Euclidean distance as dissimilarity measure.

2. Decision Tree (DT): We consider the Gini impurity as the measure to perform the
splits in the tree and set one sample per leaf (i.e., when a leaf contains more than one
example, it becomes a node of the tree).

3. AdaBoost (AB): The weak classifiers considered for this ensemble-based scheme are
decision trees.

4. Random Forest (RaF): For our experiments with this algorithm, the number of decision
stumps is fixed to 10.

5. Support Vector Machine (SVM): We consider a radial basis function (RBF) for the
kernel function, which constitutes a typical approach with this classifier.

6. Multilayer Perceptron (MLP): The configuration considered for this case is a single-
layer network comprising 100 neurons with rectified linear unit (ReLU) activations and
a softmax layer for the eventual prediction.

Note that the interest of the work lies in the exploration of the classification-based scheme
rather than in parameter optimization. In that sense, the algorithms considered are directly
taken from the Scikit-learn Machine Learning library (Pedregosa et al., 2011).
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4.4 Comparative approaches

In order to perform comparative experiments with other note tracking methods from the
literature, we also consider the use of pitch-wise two-state Hidden Markov Models (HMMs)
as in Poliner and Ellis (2007). HMMs constitute a particular example of statistical model in
which it is assumed that the system at issue can be described as a Markov process (i.e., a
model for which the value of a given state is directly influenced by the previous one) with a set
of unobservable states. In this work we replicate the scheme studied in the aforementioned
work: we define a set of 88 HMMs (one per pitch considered) with two hidden states, active
or inactive step; each HMM is trained by counting the type of transition between consecutive
analysis frames (i.e., all combinations of transitioning from an active/inactive frame to an
active/inactive one) of the elements of the training set; decoding is then performed on the
test set using the Viterbi algorithm (Viterbi, 1967).

Finally, we also compare the proposed method with the results obtained by Sigtia et al.
(2016) as we both replicate their experimental configuration and consider the same PLCA-
based MPE method (cf. Section 3.1 for the description of the method). This consideration
is mainly motivated by the fact that the aforementioned work constitutes a very recent
method that tackles note-level transcription by implementing a polyphonic Music Language
Model (MLM) based on a hybrid architecture of Recurrent Neural Networks (RNNs, a par-
ticular case of neural networks that model time dependencies) and a Neural Autoregressive
Distribution Estimation (NADE, a distribution estimator for high dimensional binary data).

5 Results

This section presents the results obtained with the proposed experimental scheme for both
the onset detection and note tracking methods, organized in two different subsections for
facilitating their comprehension. The figures shown in each of them depict the average value
of the considered figure of merit obtained for each of the cross-validation folds.

5.1 Onset detection

Firstly, we study the performance of the different onset detection methods considered. The
aim is to assess the behaviour of these algorithms on the data considered to later compare
the performance of the proposed note tracking method when considering different onset
descriptions of the signal. For the assessment of the onset detectors we only consider the
training set (we assume that test partition is not accessible at this point) and we assume
that the conclusions derived from this study are applicable to the test set as they represent
the same data distribution. In these terms, Fig. 6 graphically shows the average F1 of the
folds considered by the different onset estimation algorithms used as the selection threshold
θ varies.

An initial remark to point out is the clear influence of the threshold parameter of the
selection stage in the performance of the onset estimation methods. In these terms, SFB
arises as the one whose performance is more affected by this selection stage, retrieving
performance values that span from a completely erroneous estimation of F1 ≈ 0 to fairly
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Figure 6: Onset detection results in terms of F1 when varying the selection threshold.
Acronyms in the legend stand for each onset estimation method: SFB for Semitone Filter-
Bank, SuF for SuperFlux, CDD for Complex Domain Deviation, and SD for Spectral Dif-
ference.

accurate results of F1 ≈ 0.75. Attending to its performance, we select a threshold of θ = 0.13
that reaches an approximate value of F1 = 0.75 in the onset detection task.

SD and CDD show a totally opposite behaviour to the SFB method: these algorithms
show a relatively steady performance for the threshold values studied with goodness figures
of F1 ≈ 0.8 that only decrease to a performance of F1 ≈ 0.5 when the selected threshold
approaches the unit. It can be seen that the CDD method shows a slightly better performance
than the SD one, possibly due to the use of phase information for the estimation. For these
two methods we find the local maxima when selecting threshold values of θ = 0.34 of the SD
methods and θ = 0.30 for the CDD one, retrieving performances of F1 ≈ 0.80 and F1 ≈ 0.82
for the SD and CDD algorithms, respectively.

Finally, the SuF method also presents a very steady performance for all threshold values
studied with the particular difference that the performance of the onset estimation degrades
as the threshold value considered for the selection is reduced. Also, it must be pointed
out that this algorithm shows the best performance among all studied methods when the
selection stage is properly configured. In this case we select θ = 0.38 as the threshold value
that maximizes the performance of the algorithm.

5.2 Note tracking

Having analysed the performance of the considered onset selection methods, we now focus
on the proposed note tracking approach. Table 3 shows the average results obtained (both
frame-based and note-based assessments) with the cross-validation scheme considered for
the proposed note tracking method with different classification strategies and numbers of
adjacent instances. Note that the different onset detection methods used the thresholds that
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optimize their respective performance (i.e., the ones previously commented). These onset
estimators are denoted with the same acronyms as above while the particular case when
considering ground-truth onset information is denoted as GT.

Table 3: Average note tracking results in terms of F1 for the proposed method. Nota-
tion (x, y) represents the number of previous and posterior additional instances considered.
Bold figures highlight the best performing configuration per onset estimator and number of
surrounding windows considered.

GT SD SFB SuF CDD Random
Frame Note Frame Note Frame Note Frame Note Frame Note Frame Note

(0, 0)

NN 0.64 0.63 0.61 0.56 0.60 0.57 0.64 0.62 0.62 0.56 0.58 0.47
DT 0.60 0.56 0.58 0.50 0.57 0.51 0.60 0.55 0.59 0.51 0.53 0.37
RaF 0.66 0.65 0.63 0.57 0.62 0.58 0.66 0.64 0.63 0.58 0.57 0.48
AB 0.56 0.60 0.53 0.52 0.51 0.54 0.56 0.59 0.54 0.53 0.46 0.45
SVM 0.60 0.67 0.58 0.61 0.57 0.62 0.60 0.66 0.57 0.62 0.57 0.61
MLP 0.67 0.69 0.65 0.60 0.63 0.61 0.67 0.68 0.66 0.61 0.61 0.57

(1, 1)

NN 0.65 0.69 0.61 0.56 0.60 0.59 0.63 0.62 0.61 0.57 0.57 0.47
DT 0.62 0.59 0.60 0.50 0.59 0.52 0.62 0.54 0.60 0.50 0.53 0.37
RaF 0.68 0.70 0.64 0.58 0.63 0.60 0.66 0.64 0.64 0.59 0.58 0.50
AB 0.57 0.61 0.55 0.56 0.52 0.56 0.56 0.59 0.55 0.56 0.48 0.47
SVM 0.58 0.69 0.56 0.58 0.54 0.64 0.57 0.64 0.56 0.58 0.56 0.58
MLP 0.70 0.72 0.66 0.60 0.65 0.62 0.68 0.66 0.66 0.61 0.60 0.54

(2, 2)

NN 0.65 0.70 0.60 0.57 0.59 0.58 0.63 0.63 0.61 0.57 0.57 0.46
DT 0.62 0.59 0.59 0.49 0.59 0.51 0.61 0.53 0.60 0.50 0.53 0.37
RaF 0.68 0.70 0.63 0.58 0.63 0.59 0.66 0.64 0.64 0.58 0.57 0.50
AB 0.59 0.63 0.55 0.55 0.53 0.57 0.57 0.59 0.66 0.56 0.59 0.44
SVM 0.57 0.70 0.60 0.62 0.54 0.64 0.55 0.63 0.56 0.59 0.56 0.52
MLP 0.69 0.73 0.66 0.61 0.64 0.61 0.69 0.66 0.66 0.60 0.59 0.53

On a broad analysis of the results obtained, a first point to highlight is that the pro-
posed note tracking strategy achieves its best performance when considering ground-truth
onset information (i.e., the one labelled as GT). While this may be seen as the expected
behaviour, such results prove the validity of the note tracking method proposed: with the
proper configuration (in this case, the most precise onset information that could be achieved
for the data) this strategy is capable of retrieving performance values of F1 = 0.70 in the
frame-based analysis and F1 = 0.73 in the note-based one. Note that such figures somehow
constitute the maximum achievable performance of the proposed note tracking method given
that actual onset estimators are not capable of retrieving such accurate onset description
of a piece. Nevertheless, these values might be improved by considering the use of other
descriptors different to the ones studied, obtained as either hand-crafted descriptors or with
the use of feature learning approaches (e.g., Convolutional Neural Networks as in the work
by Lee, Pham, Largman, and Ng (2009)) to automatically infer the most suitable features
for the task.

When considering estimated onset events instead of ground-truth information there is
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a decrease in the performance of the note tracking system. In general, and as somehow
expected, this drop is correlated with the goodness of the performance of the onset esti-
mator. As a first example, SuF achieves the best results among all the onset estimators:
its performance is, in general, quite similar to the case when ground-truth onset informa-
tion is considered and only exhibits particular drops that, in the worst-case scenario, reach
a value of 3 % and 10 % for the frame-based and note-based metrics, respectively, lower
than the maximum achievable performance. The SD and CDD estimators exhibit a very
similar performance between them, with the latter algorithm occasionally outperforming the
former one; both estimators show a decrease between 3 % and 6 % for the frame-based
metric and between 10 % and 20 % for the note-based figure of merit when compared to the
ground-truth case. As of the SFB algorithm, while reported as the one achieving the lowest
performance in terms of onset accuracy, it achieves very accurate note tracking figures that
practically do not differ to the ones achieved by the SD and CDD algorithms. Finally, the
use of random values for the onsets show the worst performance of all the onset descriptions.
This behaviour is the expected one as the values used as onsets do not actually represent
the real onsets in the audio signal.

Regarding the classification schemes, it may be noted that the eventual performance of the
system is remarkably dependent on the classifier considered. Attending to figures obtained,
the best results are obtained when considering an MLP as classifier, and occasionally an SVM
scheme. For instance, in the ground-truth onset information case, MLP reports performance
figures of F1 = 0.70 for the frame-based evaluation and F1 = 0.73 in the note-based one, thus
outperforming all other classification strategies considered that also employ the same onset
information. As accuracy in the onset information degrades, the absolute performance values
suffer a drop (for instance, F1 = 0.66 in the note-based evaluation for the SuF estimator
or F1 = 0.60 for the same metric and the CDD estimator), but MLP still obtains the best
results. As commented the only strategy outperforming MLP is SVM for the particular cases
when onset information is estimated with the SD and SFB methods and assessing with the
onset-based metric. Nevertheless, experiments report that convergence in the training stage
for the SVM classifier turns out to be much slower than for the MLP one.

On the other extreme, AB and DT generally report the lowest performance figures for
the frame-based and note-based assessment strategies, respectively. For instance, in the
ground-truth onset information case, AB reports a decrease in the frame-based metric close
to 16 % with respect to the maximum reported by the MLP. Similarly, when compared to
the maximum, DT reports a decrease close to a 20 % in the note-based assessment.

The NN classifier exhibits a particular behaviour to analyse. As it can be seen, this
scheme retrieves fairly accurate results for both the frame-based and note-based metrics for
the ground-truth onset information (on a broad picture, close to F1 = 0.65). Nevertheless,
when another source of onset estimation is considered, the note-based metric degrades while
the frame-based metric keeps relatively steady. As the NN rule does not perform any explicit
generalisation over the training data, it may be possible that instances with similar feature
values may be labelled with different classes and thus confuse the performance of the system.

The RaF ensemble-based scheme, while not reporting the best overall results, achieves
scores that span up to values of F1 = 0.68 and F1 = 0.70 for the frame-based and note-based
metric, respectively, with ground-truth onset information. While it might be argued that
these figures may be improved by considering more complex classifiers, ensemble methods
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have been reported to achieve their best performance using simple decision schemes, such
as the one-level decision trees used in this work. Given the simplicity of the classifiers, the
convergence of the training model in RaF is remarkably fast, thus exhibiting an additional
advantage to other classification schemes with slower training phases.

According to the obtained results, the use of additional features which consider the
surrounding instances leads to different conclusions depending on the evaluation scheme
considered. Except for the case when considering ground-truth onset information in which
such information shows a general improvement in the performance of the system, no clear
conclusions can be gathered when considering these additional features for the rest of the
cases. For instance, consider the case of the SVM classifier with the SD estimator; in
this case, note-based performance decreases from F1 = 0.61 when no additional features
are considered to F1 = 0.58 when only the instances directly surrounding the one at issue
are considered; however, when the information of two instances per side is included, the
performance increases to F1 = 0.62.

With respect to comparison with existing note tracking methods from the literature,
Table 4 shows results in terms of F1 comparing the following approaches: Base, which stands
for the initial binarization of the posteriorgram, Poliner and Ellis (2007), using a two-stage
HMM for note tracking, and Sigtia et al. (2016) which considers a music language model
(MLM) based post-processing scheme. Finally Classification shows the best figures obtained
with the proposed method for the different onset estimators. These methods are denoted by
the same acronyms used previously in the analysis while ground-truth onset information is
referred to as GT.

Table 4: Note tracking results on the MAPS dataset in terms of F1, comparing the proposed
method with benchmark approaches. Base stands for the initial binary frame-level tran-
scription obtained; Poliner and Ellis (2007) refers to the HMM-based note tracking method
proposed on that paper; Sigtia et al. (2016) represents the MLM-based post-processing
technique; Classification stands for the proposed method with the different onset detection
methods considered.

Base
Poliner and Sigtia et al. Classification
Ellis (2007) (2016) GT SD SFB SuF CDD Random

Frame 0.57 0.59 0.65 0.70 0.66 0.65 0.69 0.66 0.61
Note 0.62 0.65 0.66 0.73 0.62 0.64 0.68 0.62 0.61

As can be seen from Table 4, the proposed classification-based method stands as a com-
petitive alternative to other considered techniques. For both frame-based and onset-based
metrics, the proposed method is able to surpass the baseline approach by more than +10 %
in terms of F1 for both metrics considered.

When compared to the HMM-based method by Poliner and Ellis (2007), the proposed
approach also demonstrates an improvement of +10 % when considering frame-based metrics
and +3 % in terms of note-based metrics, when using the SuF onset detector. As expected,
the improvement increases further when using ground truth onset information with the
proposed method.
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The method by Sigtia et al. (2016) achieves similar figures to the HMM-based approach
with a particular improvement on the frame-based metric. In this sense, conclusions gathered
from the comparison are quite similar: the proposed approach shows an improvement using
frame-based metrics while for the note-based ones it is necessary to consider very precise
onset information (e.g. the SuF method or the ground-truth onset annotations).

Finally, the existing gap between the figures obtained when considering ground-truth on-
set information and the SuF onset detector suggests that there is still room for improvement
simply by focusing on improving the performance of onset detection methods.

5.2.1 Statistical significance analysis

Concerning statistical significance of the performance of the proposed note tracking ap-
proach compared to baseline (and random) approaches, the recognizer comparison technique
of Guyon, Makhoul, Schwartz, and Vapnik (1998) is used. We compare pairs of note tracking
methods, with the hypothesis that the difference between the two is statistically significant
with 95 % confidence (α = 0.05). The multi-pitch detection errors are assumed to be in-
dependent and identically distributed. Statistical significance experiments are not made
on the level of each music piece (where each music piece can potentially contain hundreds
of notes), but on the level of a musical note or a time frame, when using note-based and
frame-based metrics, respectively. This is motivated by Benetos (2012) where statistical
significance tests on multi-pitch detection on the level of a music piece were considered to
be an oversimplification.

When considering the results from Table 3, the aforementioned tests indicate that for
each window configuration and metric type, the best performing onset estimator signifi-
cantly outperforms random onsets (in fact, even a 1 % difference in terms of F-measure can
be considered significant given the dataset size). When considering the comparative note
tracking results from Table 4, again it is observed that the proposed approach using the
best performing onset detector (in this case, the SuF one) significantly outperforms both the
baseline and comparative note tracking approaches.

6 Conclusions and future work

Note tracking constitutes a key process in Automatic Music Transcription systems. Such
process aims at retrieving a high-level symbolic representation of the content of a music piece
out of its frame-by-frame multipitch analysis. The vast majority of note tracking approaches
consist of a collection of hand-crafted rules based on note-pruning and gap-filling policies
particularly adapted to the data at issue.

In this paper we explored the use of a data-driven approach for note tracking by mod-
elling the task as a supervised classification problem. The proposed method acts as a post-
processing stage for an initial frame-level multi-pitch detection: each pitch band of the initial
frame-level transcription is segmented into instances using onset events estimated from the
piece and a set of features based on the multi-pitch analysis; each instance is classified as be-
ing an active or inactive element of the transcription (binary classification) by comparing to
a set of labelled instances. Results obtained prove that the proposed approach is capable of
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outperforming other benchmark note tracking strategies as for instance a set of hand-crafted
rules or the de-facto standard approach of a pitch-wise two-state Hidden Markov Model.

In sight of the results obtained, several lines of future work are further considered. As a
first point to address we are interested in the study of the influence of the considered features
in the overall performance of the system (e.g., considering feature selection methods) and
in the further use of feature learning methods for the automatic estimation of new sets of
descriptors for the systemas, for instance, with the use of Convolutional Neural Networks.
Another point to address is the study of the performance of the proposed method in other
timbres to assess its generalisation capabilities. Additional improvements may be observed
if considering offset events, and hence we also consider it as a path to explore. Also, the
further study of alternative descriptors to the ones proposed may give additional insights
about the performance of the method. Finally, a last point that arises from this work is the
possible exploration of improving the performance of HMM-based note tracking systems by
including the temporal segmentation provided by the onset analysis of the piece.
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A cartesian ensemble of feature subspace classifiers for music categorization. In Pro-
ceedings of the 11th International Society for Music Information Retrieval Conference
(ISMIR) (pp. 279–284). Utrecht, Netherlands.

Marolt, M., & Divjak, S. (2002). On detecting repeated notes in piano music. In Proceedings
of the 3rd International Society for Music Information Retrieval Conference (ISMIR)
(pp. 273–274).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duches-
nay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12 , 2825–2830.
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