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Abstract

Fibrous nano-materials can be imaged using high resolution
X-ray computer tomography (XCT). Some important param-
eters that are often manually estimated from this imaging
data include the orientation distribution and the thickness of
the fibres. Automation of this process is hampered by the
close proximity of the fibres even with sub-micron voxel
sizes. An automated sampling methodology has therefore been
developed that can detect points in the imaging data where
fibres are present and well separated. Polycaprolactone (PCL)
electrospun fibrous material was prepared and imaged with a
Zeiss Xradia Versa 510 Microtomography XCT. Automated
measurements were then determined and further summarised
using a single parameter measure.

1 Introduction

Man made fibrous nano-materials such as electrospun mate-
rials can be used for many applications such as for wound
dressings, filtration, biosensors, tissue engineering, drug de-
livery [1]. Imaging of these man made nano-materials requires
high resolution imaging techniques such as high resolution
X-ray computer tomography (XCT). The work presented here
could be considered to having some application to these areas.

Fibres are often modelled as tubes that can be detected using
Eigen-analysis of the Hessian of the 3D imaging data. This
approach was proposed by Sato et al. [2] and found repeated
use over the years [3], [4], [5]. Other works may rely on
fibre tracing in conjunction with e.g. the use of a distance
transform such as Huang et al. [6]. More recently machine
learning centric approaches have attracted some interest such
as the work by Kritrungrotsakul et al. [7]. Difficulties such as
poor interslice sampling can also be dealt with using robust
fitting algorithms such as the work by Chiverton et al. [8]

Some important parameters that are often estimated using
semi-manual interaction with image processing tools include
deriving the orientation distribution and manually assisted
measurement of the thickness of the fibres [9], [10].

An aspect not directly considered in works such as the
ones mentioned above is regarding the Partial Volume (PV)
effect [11]. Any image or signal acquisition process will be
associated with a finite sampling resolution which manifests
itself in the form of blurred image intensities known as PV
affected voxels. Measurements of structures of interest such
as the diameters of fibres can therefore be problematic. This
is particularly true if the spread of the image intensities is
wide in relation to the structure of interest which is often
the case with imaging of fibre based materials and tissues.
Another point of difficulty can arise when the fibres have
close proximity in relation to the spread of the intensities,
which again is a likely scenario. Imaging artifacts may also
result in inhomogeneities in the image intensities [12] which
may be more of a problem for denser materials.

Automation of these image summarization techniques is ham-
pered by close proximity of fibres even when using image
data acquired with sub-micron voxel sizes. We have therefore
devised an automated sampling methodology that can detect
points in the imaging data where fibres are present and which
are well separated from neighbouring fibres. These points
provide optimal locations to perform orientation and thickness
measurements and thus enable automated measurements of
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Figure 1: From left to right: (a) Volume rendering of Region
of Interest (ROI) of PCL fibre volume consisting of 55×100×
200 voxels, each of dimension 0.43µm3 covering a region in
size 70400µm3; (b) volume rendering after fibre enhancement
process of (a); (c) isolated fibres from thresholding (b).
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these variables. Imaging data of fibrous materials is collected
using our Zeiss Xradia Versa 510 Microtomography X-Ray
Computer Tomography (XCT) system at the University of
Portsmouth’s Zeiss Global Centre. Diameter measurements
are automatically obtained which match well with the ex-
pected thickness of the manufactured material. The orien-
tation distribution is also calculated, visualised and further
summarised using a single parameter measure together with
the distribution of the fibres throughout the scanned volume.

2 Methodology

A 3D image volume I is considered here to map 3D voxel
positions x = (x y z)T ∈ Ω to scalar image intensities, i.e.
I : Ω → < where Ω ⊂ <3. The Hessian matrix Hη at scale
η of second derivatives of I can be computed for every voxel
position with

Hη(x) =
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 , (1)

where Iη(x) is the image data convolved with a Gaussian with
width η at point x. The scale, in particular in conjunction
with a Gaussian smoothing kernel is important because the
derivative is a discrete approximation. The second derivatives
of the smoothed image data, convolved with a Gaussian kernel
can be approximated with the convolution of the image data
with the analytically derived second derivative of a Gaussian
due to the linear space invariant property of this combined
process. The scale notation is not included any further for
the sake of brevity. The eigenvalues λ1,x, λ2,x and λ3,x of
H(x) can then be calculated, i.e. H(x) = UxΛxU

T
x where

Ux is an eigenvector matrix and Λx is the diagonal matrix
of eigenvalues. It is well known that bright tubular structures
can be detected by finding points where λ3,x ≈ 0, λ2,x � 0
and λ1,x � 0 (see e.g. [2]). Tubular structures can then be
enhanced with (from [2])

V (x) =

{
0 if κ < 0;

κ exp
(
−λ

2
3,x

2ακ

)
elsewhere;

(2)

where κ = min(−λ1,x,−λ2,x). A binary map is created B(x)
taking a value of 1 for points that are good candidates for a
fibre if V (x) exceeds a threshold τη , i.e.

B(x) =

{
1 if V (x) ≥ τη;
0 elsewhere. (3)

The threshold τη is dependent on the scale because the
statistical properties of V (x) vary dependent on the scale.
The threshold is therefore made a function of the percentile
of the statistical properties of V (x), i.e.

τη = CDF−1V (p = 0.97) (4)

where CDF−1 is the inverse of the cumulative distribution
function of V (x). An illustration of the values of τη for a
range of scales can be seen in Fig. 2.

Clusters of connected points in the binary map B(x) are
then identified where the kth cluster is given by Ck =

Figure 2: Illustration for a range of different scales showing
how the threshold τη varies, used to create the binary map in
(3).

{xi|(∃j)[B(xi)∧B(xj)∧ 〈xi,xj〉 ≤ d]} for some threshold
distance d which is typically given by the voxel size on
a single dimension scaled by

√
3 for 26 connectivity. The

major and minor axes of each cluster are then computed via
PCA which is performed for these clusters using the process
described next.

Major and Minor Axis Determination. Initially the sample
covariance matrix for each cluster is computed

Qk =
1

|Ck| − 1

∑
∀xi∈Ck

(xi − µk)(xi − µk)T (5)

where µk is the center of cluster k, i.e. the mean computed
with µk = 1

|Ck|
∑
∀xi∈Ck xi.

PCA for each cluster is then computed via the eigenvector
decomposition of each covariance matrix Qk = RkΣkR

T
k

where Rk and Σk are a matrix of eigenvectors and a matrix of
eigenvalues respectively for the kth cluster of connected vox-
els. The eigenvectors indicate here candidate major and minor
axes on which the eigenvalues describe the amount of spread.
The major axis is the direction given by the eigenvector with
the greatest eigenvalue, i.e. λ1,k where λ1,k ≥ λ2,k ≥ λ3,k.
A fibre would be expected to have the longest length along
this axis; whilst the two eigenvectors corresponding to the two
smaller eigenvalues λ2,k and λ3,k would be expected to form
the minor axes of the fibre because they are orthogonal to the
major axis. Due to the statistical nature of the aforementioned
processes, it is likely that a number of candidate fibres may
need to be rejected. This might be because of a number of
reasons, such as clusters of high intensity points that may be
somewhat fibre like but in actual fact are poor candidates for
this sampling process. Another reason might be due to a fibre
being highly irregular but still tubular and with high intensity.
The above fibre enhancement stage may still identify those as
candidate fibres but are likely to act as poor candidates for
subsequent statistical analysis of fibre properties.

Fibre Candidacy. A further stage is therefore needed to
determine if a fibre conforms to a number of requirements
that would enable useful properties to be associated with
an individual fibre. These requirements are: the two minor
axis estimated diameters of the fibre should be approximately
equal; and the two minor axis intensity profiles should be
similar including maximum and minimum intensities. These
two properties can be determined by traversing the two minor
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Figure 3: Exemplar minor axes (orthogonal) line profiles,
illustrating line profiles with low correlation and line profiles
with high correlation. The line profiles are taken along Bre-
senham paths [13], stepping through discrete voxel locations.
The actual length is computed subsequently. Also note the
variation in minima surrounding the central peak (maximum)
values in each line profile.

axes through the mean point µk as an indicator of the center
of the fibre.

The similarity of the maximum Imax
2,k , Imax

3,k and minimum
values Imin

2,k , I
min
3,k for the two minor axes (2, 3) for cluster

k can be calculated with

Dk,max =
|2(Imax

2,k − Imax
3,k )|

|(Imax
2,k + Imax

3,k )|
and (6)

Dk,min =
|2(Imin

2,k − Imin
3,k )|

|(Imin
2,k + Imin

3,k )|
. (7)

If the maximum similarity has a value below e.g. Dk,max ≤
0.02 then we consider it to be approximately equal as the
maximum should coincide with the center of the fibre through
which both axes traverse. However, the minimum value is
likely to vary more widely so we found, by empirical ex-
perimentation that a value of Dk,min ≤ 0.2 gave a strong
indication of a fibre with some geometric properties that could
prove useful in the statistical characterisation of the data.

A further test to determine a candidate fibre’s minor axis
properties is to compare the intensity profiles for the two
minor axes. Correlation in the form of the sample correlation
coefficient is used here to compare the line intensity profiles
Il,2,k and Il,3,k where

ρk2,3 =

∑L−1
l=0 (Il,2,k − µ2,k)(Il,3,k − µ3,k)

(L− 1)η2,kη3,k
(8)

where the line profiles have L voxels and individual voxels,
indexed by l ∈ L are determined using Bresenham’s line
algorithm [13]. A high correlation e.g. ρk2,3 ≥ 0.9 would
indicate that the intensity line profiles correlate reasonably
well which increases the possibility that the candidate fibre is
correct. Some comparative line profiles can be seen in Fig. 3.

Fibre Diameter Determination. It might be expected that
the diameter of a fibre could potentially be found by finding
the point at which the intensity of the fibre drops down to
a level comparable to the surrounding medium. However,
it is interesting to observe the variation in the minimum
intensity levels surrounding each individual fibre. This can be
seen in the exemplar profiles shown in Fig. 3. The diameter
is therefore determined dynamically based on finding the
distance from the minimum intensity profile value for both
line profiles, which can be considered dual estimates of the
radius of each fibre but in orthogonal directions.A further
consideration here is regarding the effect of the blurring action
of the Point Spread Function (PSF) which will result in an
over estimation of the width of a fibre if the limits are taken
from the lowest observable points. Therefore in common with
e.g. Mets et al. [14], the diameter is taken at the mid-point
between the points at which the maximum and minimum are
observed. The diameter is thus calculated with

γi = 2× 〈xstart,xend〉 ×
(nmax − nmin)

L
(9)

where xstart, xend are the start and end points along the
Bresenham path but in voxel coordinates with dimensions (e.g.
µm) respectively;and nmax − nmin and L are the number of
voxels along the Bresenham path between the voxels with the
maximum and minimum intensities and the total number of
voxels along the Bresenham path. The diameter is estimated
along both minor axes for every cluster i.

A further complication is that the estimate in (9) is possibly
dependent on the scale used to derive the candidate fibres
through (1). Therefore the mean of the fibre candidates are
determined for a given Hessian scale with

E[Γ|η] =
1

Nη

∑
∀i

γi (10)

where Nη is the number of selected candidate fibres. Each
diameter estimate γi will potentially have an error associated
with it. Furthermore, the number of detected fibres at any
given scale may vary. Any further averaging could potentially
benefit by taking into account these factors. Therefore, each
diameter estimate γi is considered to be an instance of a
Gaussian distributed random variable, i.e. Γη ∈ N (µη, σ

2
η)

with variance σ2
η and at scale η (see (1)). Therefore, an overall

diameter estimate, independent of scale can be found with

γ̂ =
1∑

∀η
Nη√
2πσ2

η

∑
∀η

Nη√
2πσ2

η

(
1

Nη

∑
∀i

γi

)
. (11)

Orientation Distribution and Summarization. The ori-
entation distribution is another important characteristic in
many fields of science and engineering when considering the
distribution of fibers in a material. It can be characterised
purely as a 2D distribution in terms of the spherical co-
ordinate system consisting the inplane θ ∈ [0π] (or polar)
angle and out-of-plane angle φ ∈ [−π2

+π
2 ]. A spherical

coordinate system would also require a radius r but this is
not usually incorporated into the orientation distribution. For
a given vector, the orientation parameters (r, θ, φ) can be
computed with r =

√
x2 + y2 + z2; θ = tan−1

(
y
x

)
; and
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Figure 4: Overview of the experimental setup used to perform
electrospinning.

φ = cos−1
(
z
r

)
. The angle pair (θ, φ) can be approximated

via discretization resulting in (n,m) in combination with a
distribution P (n,m). The orientation distribution can then
be summarised over P (n,m) with a multiscale Shannon’s
Entropy measure, as shown in [8]

Hms =
∑
∀N

∑
∀M

∑
∀n

∑
∀m

P (n,m)h(n,m) (12)

where the self-information is given by h(n,m) =
− log2(P (n,m)) and N and M are the scales over which
(n,m) are discretized.

3 Experimental Details

Randomly distributed electrospun poly(caprolactone) (PCL)
nano-fibre samples were prepared. PCL (80 KDa, 1g) was
dissolved in chloroform (7.5 ml) under vigorous stirring,
once completely dissolved, methanol (2.5 ml) was added
and thoroughly mixed. Solutions were electrospun using the
Spraybase device by Profector Life Science Ltd. (Ireland)
connected to a custom made capillary nozzle by Rame-hart
Instruments Co. (NJ, US) with an internal diameter of 508
µm (Fig. 3). The capillary nozzle was connected to a high-
voltage supply (max 30 kV) operated at 6.5 kV and positioned
at 6.5cm distance from the collector. Solutions were perfused
through the nozzle via a syringe pump (World Precision
Instruments, FL, US) ran at 1 ml/h and fitted with a 5 ml gas-
tight glass syringe (Hamilton). All experiments were carried
out at ambient temperature. An overview of the setup of the
experiment can be seen in Fig. 4. Fibres were collected, for
about 20 min, on a grounded and continuous aluminium foil
to achieve a random distribution of the fibres.

The PCL electrospun fibre samples were then scanned with
a Zeiss Xradia Versa 510 Microtomography X-Ray Com-
puter Tomography (XCT) system with a voxel resolution of
0.43µm3. The resulting scan consisted of 944 × 975 × 942
voxels or, equivalently a 377.6 × 390 × 376.8µm3 volume.
A sub-volume or region-of-interest (see Fig. 1) was then
created by cropping the initial scanned volume consisting of
55× 100× 200 voxels to simplify subsequent analysis.

(a) No selection. (b) Selection using (6) & (7).

(c) Selection using (6), (7) & (8). (d) Selection using just (8).

Figure 5: Comparing, via scatter plots, consistency of esti-
mates of the diameter γ in (9), which is for a single scale
(η). The scatter plots using correlation appear to be the most
effective at reducing the number of outliers here.

selection axis mean st. dev.
µm µm

none minor axis 1 1.7120 0.9223
minor axis 2 1.2698 0.6372

axis mean 1.4909 0.6954
max. & min. minor axis 1 1.4700 0.5001

(6), (7) minor axis 2 1.1443 0.4035
axis mean 1.3072 0.3987

max. & min. minor axis 1 1.4703 0.5673
& corr. minor axis 2 1.1439 0.3633

(6), (7), (8) axis mean 1.3071 0.4126
corr. minor axis 1 1.4392 0.5147
(8) minor axis 2 1.1414 0.3511

axis mean 1.2903 0.3735

Table 1: Results for the fibre diameter estimation process
involving differing candidate fibre selections for η = 1.

4 Results

Comparisons were made in the effectiveness of rejecting
outliers in the fibre diameter estimation process for the two
orthogonal axes, as shown in Fig. 5. A table of mean estimated
fibre diameters for the different fibre selection techniques is
shown in Table 1. Here it can be seen a range of different
diameters have been estimated as a result of the different
selection processes.

Scale Selection. It is interesting to note that the results shown
above are for a single scale of the Hessian matrix in (1). It
would be expected that the diameter estimates might vary at
different scales. Therefore the same process of estimating the
diameter of the fibres was repeated but using a number of
different scales in (1). The resulting diameter estimates can
be seen in Fig. 6(a). It can be seen that at greater scales
the standard deviation of the estimates increases considerably.
Furthermore, as might be expected, at greater scales, the
system has detected fibres with greater diameters however,
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(a) (b)

Figure 6: (a) Mean estimates of E[Γ|η] from (10) as a
function of a range of different scale values η as used in
the computation of the Hessian matrix in (1). The error bars
indicate ±(×1) standard deviation of the estimated diameters.
(b) Number of detections as a function of scale and selection
technique.

scale mean st. dev. count
η (µm) E[Γ|η] (µm) σ (µm)

0.25 0.993 0.221 161
0.50 1.058 0.256 153
0.75 1.182 0.348 120
1.00 1.290 0.373 97
1.25 1.480 0.422 69
1.50 1.738 0.590 42
1.75 1.783 0.621 34
2.00 1.573 0.480 25

Table 2: Scale dependent results using correlation only for
mean width and error estimation.

because of the large error on these estimates, it could equally
mean that the true fibre diameters should actually be much less
than the ones estimated using the mean. A further interesting
result is in terms of the number of detected fibres as a function
of scale and selection technique which can be seen in Fig.
6(b). Here it can be seen that as the scale increases, far fewer
fibres are detected, thus reducing the statistical significance in
the mean estimation process which is also further hampered
with the large standard deviations at greater scales.

Means, standard deviations and fibre detection counts for the
three fibre selection processes can be seen in Tables 2, 3 and
4. The estimated means E[Γ|η] using (10) vary considerably
dependent on scale. However, the standard deviations also
vary and so do the overall counts of detected fibres. The
standard deviation increases for an increasing value of scale.
Furthermore the detection count reduces for increasing scale.
This means that the mean diameter estimates become less
prominent in a technique based on e.g. kernel density esti-

scale mean st. dev. count
η (µm) E[Γ|η] (µm) σ (µm)

0.25 0.923 0.202 39
0.50 0.995 0.233 51
0.75 1.078 0.293 51
1.00 1.307 0.413 32
1.25 1.553 0.471 22
1.50 2.005 0.725 11
1.75 2.202 0.594 6
2.00 1.555 0.467 6

Table 3: Scale dependent results using correlation, min. and
max. selection for mean width and error estimation.

scale mean st. dev. count
η (µm) E[Γ|η] (µm) σ (µm)

0.25 1.014 0.321 193
0.50 1.113 0.383 199
0.75 1.130 0.360 182
1.00 1.307 0.399 121
1.25 1.576 0.670 102
1.50 1.724 0.863 75
1.75 1.851 0.601 35
2.00 2.148 1.262 23

Table 4: Scale dependent results using min. and max. selection
only for mean width and error estimation.

(a) No selection. (b) Selection using (6) & (7).

(c) Selection using (6), (7) & (8). (d) Selection using just (8).

Figure 7: Illustration of the effects of the estimated diameters
in a Kernel Density Estimation process, where the estimated
parameters at each scale contribute a single Gaussian kernel.
The final combined density estimates are also shown.

mation. Kernel density estimates applied to these parameter
values, using a Gaussian kernel can be seen in Fig. 7.

The final combined density estimates, also shown in Fig. 7
each have a clearly defined modal point. The overall estimated
means and modes can be seen in Table 5 for the 3 different
candidate fibre selection techniques. The mean results appear
to suggest a mean fibre diameter of γ̂ = 1.15µm ± 0.05µm
whereas the mode estimates appear to suggest an overall
modal fibre diameter of 1.05µm ± 0.05µm. These estimates
agree well with diameter estimates that have been obtained
from Scanning Electron Microscope (SEM) images of the
same sample, where smaller fibres, which are beyond the
imaging resolution of the XCT, are not included.

selection mean mode
γ̂ (µm) (µm)

none 1.337 1.21
corr. 1.163 1.065

corr,min,max 1.109 1.000
min,max 1.199 1.120

Table 5: Overall means and modes for the different candidate
fibre selection techniques. The mean, γ̂ was calculated with
(11). The mode was calculated as kernel density estimation.
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(a) No selection. (b) Selection using (6) & (7).

(c) Selection using (6), (7) & (8). (d) Selection using just (8).

Figure 8: Comparison of orientation distributions when con-
sidering differing candidate fibre selection.

Figure 9: Multiscale Entropy calculations as a function of the
Hessian scale and the candidate fibre selection techniques.

Orientation Distribution Results. A comparison of the
effects of the different candidate fibre selection criteria on the
orientation distribution can be seen in Fig. 8. The orientation
distribution can also be conveniently summarised with the
multiscale Entropy using (12), as can be seen in Fig. 9. The
results in Fig. 9 appear to show a reduction in the entropy
with increasing scale in the Hessian which could be due to the
reduction in the number of detected fibres. This is somewhat
confirmed by the lower entropy estimates for the correlation
combined with the min. and max. candidate selection process
which has the fewest detections overall, see e.g. Table 3.

5 Conclusions

A fibre detection process, along with two main candidate
selection processes have been described and investigated.
A diameter estimation process has also been proposed that
takes into account the partial volume effect. The candidate
fibre detection process has also enabled the estimation of the
distribution of the orientations of the fibres and further sum-
marization of the orientation distribution using a multiscale
Entropy measure. Further work is required to determine the
effectiveness of the described techniques in their application
to fibres of smaller dimensions.
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