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ABSTRACT  

 

Central to Alzheimer’s disease (AD) pathology is the assembly of monomeric amyloid-

β peptide (Aβ) into oligomers and fibres. The most abundant protein in the blood plasma and 

cerebrospinal fluid (CSF) is human serum albumin (HSA). Albumin can bind to Aβ and is 

capable of inhibiting the fibrillisation of Aβ at physiological (µM) concentrations. The ability 

of albumin to bind Aβ has recently been exploited in a phase-II clinical trial, which showed a 

reduction in cognitive decline in Alzheimer’s disease patients undergoing albumin plasma-

exchange.  Here we explore the equilibrium between Aβ monomer, oligomer and fibre in the 

presence of albumin. Using transmission electron microscopy and thioflavin-T fluorescent dye, 

we have shown albumin traps Aβ as oligomers, 9 nm in diameter. We show that albumin-

trapped A oligomeric assemblies are not capable of forming ion-channels, which suggests a 

mechanism by which albumin is protective in Aβ exposed neuronal cells. In vivo albumin binds 

a variety of endogenous and therapeutic exogenous hydrophobic molecules, including 

cholesterol, fatty acids, and warfarin. We show these molecules bind to albumin and suppress 

its ability to inhibit Aβ fibre formation.  The interplay between Aβ, albumin and endogenous 

hydrophobic molecules impacts Aβ assembly; thus changes in cholesterol and fatty acid levels 

in vivo may impact Aβ fibrillisation, by altering the capacity of albumin to bind A. These 

observations are particularly intriguing given that high cholesterol or fatty acid diets are well 

established risk-factors for late-onset AD.  
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 INTRODUCTION 

Alzheimer’s disease (AD) is the main cause of dementia and affects 47 million people 

worldwide 
1
. A range of evidence points to a small 39-43 residue peptide, Amyloid-β (Aβ), that 

self-assembles into cytotoxic oligomers and fibres that are thought to be essential contributors 

to the cascade of events in AD aetiology 
2
. Aβ(1-40) and Aβ(1-42) are the most abundant 

isoforms in the brain interstitial fluid/cerebrospinal fluid (ISF/CSF) and in plaques. In 

particular, Aβ(1-42) is thought to disrupt cellular ionic homeostasis through the insertion of 

oligomeric Aβ assemblies into the cellular membrane, leading to the formation of ion channel 

pores which span the lipid bilayer 
3
. 

 

There are numerous endogenous proteins and metal ions that interact with Aβ and influence 

its assembly process both in vitro and in animal models 
4-8

. Human serum albumin (HSA) is 

one such protein able to inhibit fibre formation at physiological concentrations 
9
. Furthermore, 

reduced serum HSA levels are correlated with cognitive impairment in AD patients 
10, 11

 and 

the elderly
12

. Albumin is the most abundant extracellular protein in blood plasma, at a 

concentration of 640 µM 
13

. It has been shown that albumin binds 90-95 % of the Aβ found in 

blood plasma 
14, 15

.  The ability of albumin to sequester Aβ explains why Aβ fibre deposits are 

not observed in the peripheral vasculature, even though Aβ is found in the blood plasma at 0.1 

to 0.5 nM concentrations, at comparable levels to within the cerebrospinal fluid (CSF) 
16, 17

. 

Albumin, which is derived from vascular leakage across the blood-brain-barrier, is also the 

most abundant protein in the ISF/CSF at 3 µM 
18

.  

 

In vitro HSA is known to inhibit both Aβ(1-40) and Aβ(1-42) fibrillisation 
9, 19-21

. Aβ can 

interact with hydrophobic binding pockets within all three domains of HSA with similar 

affinities
22

 
23

. Albumin can also reduce the cytotoxicity of Aβ(1-42) in SH-SY5Y cell viability 

assays and primary cell culture 
19, 24

, which suggests a reduction of toxic oligomers, as well as 

fibres. We have previously shown that even micromolar ISF/CSF concentrations of HSA 

inhibit Aβ fibre formation, decreasing both the rate at which fibres form and the total amount of 

fibres produced 
9
. Thus the presence of albumin in blood plasma, but also the brain interstitium, 

can potentially directly impact A assembly.    

 

One quarter of Aβ is cleared from the brain interstitium by transport across the blood-brain 

barrier into blood serum 
25

. Aβ traffics between CSF/ISF and blood 
26-29

, and albumin is 
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important in this clearance by acting as a sink for Aβ in blood serum 
30

. Indeed a decrease in 

blood serum levels of Aβ-albumin complexes is observed in AD 
10, 11

. In an AD 3xTg mice 

model, infusion of HSA intracerebroventricularly caused a reduction in Aβ(1-42) soluble 

oligomers and total plaque area 
31

. The use of albumin as a therapeutic approach, in 

sequestration of Aβ via plasma exchange, has been explored 
32-36

 and is receiving a good deal 

of interest 
37

.   Recent phase-II clinical trials using an albumin Aβ plasma-exchange approach 

have shown some improvements in cognition using the Boston Naming Test and a Semantic 

Verbal Fluency Test 
36

.  

 

Albumin is capable of transporting many different hydrophobic molecules within blood 

plasma 
13

; including cholesterol 
38, 39

, fatty acids, such as palmitic acid 
40, 41

, as well as a 

number of hydrophobic therapeutic molecules, for example warfarin 
42

.  We postulated that 

these endogenous and exogenous hydrophobic molecules might compete with Aβ for the 

binding of albumin, and so might influence Aβ assembly in the presence of HSA. These 

molecules are particularly interesting owing to high dietary levels of fatty acids and cholesterol, 

increasing the risk of developing dementia and AD 
43-48

. Furthermore, genome-wide association 

studies (GWAS) point to cholesterol metabolism as a key AD risk factor 
49, 50

 and an increase in 

cholesterol within the central nervous system (CNS) is observed both in the aging and in early 

AD patients 
51

. In agreement with Alzheimer’s pathology, AD phenotypes in animal models are 

exacerbated by elevated dietary cholesterol 
52-54

, however the mechanism by which cholesterol 

accelerates disease progression has not yet been established 
55

. 

 

 Aβ fibres exist in a dynamic equilibrium with Aβ monomer, where fibres represent a 

thermodynamically stable species in the Aβ assembly folding landscape. In this study, we have 

used ThT fluorescence and transmission electron microscopy (TEM) to follow Aβ fibre growth 

and disassembly, in the presence of HSA, over different stages of the assembly pathway, in 

order to gain a more thorough understanding of how albumin impacts the equilibrium between 

Aβ monomer, oligomer and fibre. Our TEM data suggests HSA traps Aβ in an oligomeric 

form, and we have characterised the size of the trapped oligomers and investigated their ability 

to form harmful ion channels in cell membranes. Furthermore, we show that HSA bound 

ligands, cholesterol, fatty acids and warfarin, disrupt the Aβ-HSA interaction and suppress the 

inhibitory effect of HSA on Aβ fibrillisation. We suggest that this has significant ramifications 

for the role of HSA in the inhibition of Aβ fibre formation in the brain interstitium. 
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RESULTS  

Albumin traps Aβ as Oligomers and Inhibits Fibre Growth  

We sought to understand how albumin can influence the different stages of Aβ assembly, 

and how albumin can impact the equilibrium between Aβ monomer, oligomer and fibre. In the 

absence of HSA, Aβ exhibits a characteristic fibre growth with an initial lag phase during 

nucleation followed by rapid elongation to form fibres. We have previously shown HSA is able 

to markedly retard Aβ fibrillisation when added to monomeric Aβ 
9
. We wanted to determine if 

albumin could inhibit fibre formation when substantial amounts of oligomers and curvy-linear 

Aβ protofibrils were permitted to form before albumin was added to the assembling Aβ 

solution. We monitored Aβ fibre growth using ThT, a fluorophore that selectively binds to 

amyloid fibres and produces an intense fluorescence, while monomeric and oligomeric Aβ 

produces minimal ThT fluorescence 
56

. Monomeric Aβ(1-40) was incubated in a 96-well-plate 

and the ThT fluorescence signal monitored.  Albumin was then added to half of the wells 

containing Aβ solution towards the end the lag-phase, just before rapid elongation of fibres 

occurred.  Even though appreciable amounts of nucleating Aβ oligomers and protofibrils were 

found to be present, the addition of albumin completely inhibited further assembly of Aβ into 

fibres, as shown in Figure 1. This data indicates albumin can halt the further assembly of Aβ 

oligomers into fibres by inhibiting monomer addition of otherwise elongating fibres. 

 

We have also probed the impact of albumin on Aβ assembly using TEM. Figure 2 compares 

the effect of Aβ assembly in the absence and presence of HSA. Our TEM images clearly show 

that monomeric Aβ(1-40) and Aβ(1-42) incubated in the presence of 50 µM HSA, are only 

capable of assembling into a large quantity of small circular oligomers while fibre formation is 

inhibited, Figure 2d,f. These Aβ assemblies in the presence of albumin are relatively small, 

perhaps explaining why they have not previously been reported. The TEM images of control 

albumin appear very different, the 66 kDa albumin molecule being barely observable, 

appearing as speckles throughout the grid, Figure 2c. Albumin (50 µM) was also added to Aβ 

(10 µM) at the end of the lag-phase of Aβ assembly (as in Figure 1) and incubated with HSA 

for 2 days. In agreement with the ThT measurements, TEM micrographs here indicate Aβ as 

being trapped at the oligomeric stage with a very limited number of mature fibres also 

observed, Figure 2e.  
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Albumin trapped Aβ(1-40) and Aβ(1-42) oligomers were surveyed further using single 

particle analysis of negatively stained images. A dataset of 368 and 206 oligomers were used 

for each Aβ isoforms, respectively.  The data highlights the relatively homogeneous nature of the 

oligomer assembles with a limited range of diameters and morphologies. Representative class 

averages are shown for both Aβ(1-40) and Aβ(1-42) indicating the range of oligomers 

observed, as shown in Figure 3. The approximately spherical oligomers were calculated to have 

an average diameter of 9 +/- 1 nm, suggesting a molecular mass of approximately 270 kDa; 

across a range of 190-360 kDa. It is clear that HSA traps Aβ assembly at an early stage of 

oligomerization. Smaller oligomers might also be present but of comparable in size to albumin.   

 

As fibres are thermodynamically very stable, we wondered whether Aβ would eventually 

form fibres even in the presence of HSA if given sufficient time, so we chose to monitor 

potential fibre formation using ThT fluorescence over a number of weeks. Figure 4 presents 

ThT fluorescence data for the fibrillisation of 10 μM Aβ(1-40) in the absence and presence of 

20 μM HSA, over a period of 38 days.  In the absence of albumin, a fluorescent peak centred at 

485 nm was visible within the first few hours of incubation, indicating ThT bound to Aβ fibres. 

The maximum ThT fluorescence at 485 nm, as a function of time, is shown in Figure 4c. It is 

apparent from Figure 4, that Aβ fibrillisation was completely inhibited in the presence of 20 

μM HSA and did not show any signs of appearing even after 38 days. HSA has a weak affinity 

for ThT 
57

, and does not compete for ThT binding to fibres (shown later in Figure 5), thus the 

lack of ThT fluorescence in the presence of HSA is attributable to the inhibition of fibre 

formation, as confirmed by the TEM studies. ThT binds to the hydrophobic pockets in HSA 

and fluoresces weakly 
57

, but this fluorescence is negligible compared to ThT when bound to 

fibres.   

 

In the absence of albumin the ThT fluorescence signal of Aβ fibres was reduced by a third 

after 38 days, Figure 4c. This reduction in ThT intensity could be due to the very slow lateral 

association of fibres into larger bundles, conceivably displacing ThT from the surface of fibres. 

A similar reduction in ThT signal caused by lateral association of N-terminally truncated 

Aβ(11-40) fibres has recently been reported 
58

. 
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Disassembly of pre-formed Aβ  fibres does not occur or is too slow to be observed 

We also wished to investigate the reverse reaction of albumin addition to preformed fibres.  

We hypothesised that given sufficient time, albumin might be able to disassemble the fibres.  If 

HSA binds non-fibrillar Aβ species, then over time albumin should be able to solubilise mature 

Aβ fibres to monomers/oligomers. We monitored the ThT fluorescence of pre-formed Aβ fibres 

(10 µM Aβ monomer equivalent) in the presence of 0, 3, 20 and 200 μM HSA for 22 days, with 

ThT fluorescence plotted as a function of time, as shown in Figure 5. In the presence of HSA, 

the ThT signal for Aβ fibres remained intense over a 22-day period. The ThT signal stayed 

constant for Aβ fibres in the presence of 3, 20 and even 200 μM albumin, suggesting HSA was 

unable to disassemble Aβ fibres over a period of three weeks. TEM was also used to investigate 

the impact of albumin on preformed fibres. In agreement with the ThT studies, Figure 2h shows 

that the addition of 50 µM albumin to preformed fibres does not impact the quantity of 

preformed Aβ fibres. 

 

We were concerned that albumin might bind to ThT and generate its own fluorescence 

signal, however from Figure 5, ThT fluorescence for each for the different HSA concentration 

did not vary markedly. This confirmed the contribution of ThT fluorescence owed to weak 

HSA binding was negligible compared to that from ThT bound to fibres.  The ThT fluorescence 

for Aβ with no HSA present was observed to decline a little from a maximum intensity of 340 

AFU to 210 AFU after 9 days, a similar loss of ThT signal is also shown in Figure 4c. 

Interestingly, HSA can stop the gradual loss in ThT fluorescence signal, perhaps by preventing 

lateral association of the preformed fibres.  

 

Cholesterol and Fatty Acid Loaded HSA Supresses Albumin’s Inhibition of A 

Fibrillisation 

Cholesterol is a known risk factor for developing AD 
45, 47, 59

 and is also known to bind 

albumin 
38, 39

. We wanted to investigate the effect of cholesterol-loaded HSA on A 

fibrillisation kinetics to determine if cholesterol bound to albumin may influence albumin’s 

ability to supress A fibre formation. Figure 6 shows the kinetic traces of ThT binding to 

fibres, obtained for A in the presence and absence of albumin and cholesterol-loaded albumin. 

It is evident that 20 M albumin will completely inhibit fibrillisation of 10 µM A(1-40), 

Figure 6b. However, albumin loaded with an equimolar concentration (1:1) of cholesterol no 

longer inhibits fibre growth, and fibrillisation is largely recovered, Figure 6c. The ThT signal is 
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almost as intense as that for Aβ in the absence of albumin. TEM images of Aβ(1-40) incubated 

with cholesterol bound albumin confirms Aβ is able to form amyloid fibres similar in 

appearance to those formed in the absence of albumin, Figure 6d.  

The effect of sub- and supra-stoichiometric amounts of cholesterol loaded albumin (30 µM) 

on fibre formation was also studied, shown in supplemental figure S1. It is clear 1:1 

stoichiometry’s and above almost completely negates albumins protective effects on fibre 

formation, although with delayed lag-times.  Interestingly, just one-sixth of a molar-equivalent 

of cholesterol (30 µM albumin + 5 µM cholesterol) is sufficient to cause considerable recovery 

of the Aβ fibre growth, as shown in supplemental figure S1c.  The observation that sub-

stoichiometric amounts of cholesterol can cause the ThT signal to almost completely recover 

suggest that cholesterol can exchange between albumin molecules. An alternative explanation 

could involve the association of cholesterol with Aβ which permits fibres to form but inhibits 

Aβs interaction with albumin. It is notable cholesterol alone does not impact total Aβ fibre 

load, as shown in supplemental Figure S2.  In addition, the presence of 2 % DMSO (v/v) used 

to solubilise cholesterol does not affect the fibre formation, also shown in Figure 6a. 

 

The concentration of albumin in CSF is approximately 3 M, so we also studied the effect of 

this lower concentration of albumin on A40) fibrillisation, supplemental Figure S3. This 

lower concentration of HSA does not completely inhibit fibril formation but caused an increase 

in the lag-time (tlag), a decrease in the apparent rate of elongation (kapp) and a reduction in total 

ThT signal, as we have previously reported 
9
. The cholesterol-loaded HSA partially returned 

fibre growth to that of Aβ in the absence of albumin.  In particular, the apparent elongation rate 

(kapp), the t50 and the total amount of ThT fluorescence was closer to that of Aβ in the absence 

of albumin. This indicates that equimolar cholesterol bound to HSA can suppress the inhibitory 

action on Aβ(1-40) fibre formation at concentrations found in the CSF. Despite cholesterol’s 

modest affinity for albumin 
38, 60

, it is clear that cholesterol will strongly compete with A for 

albumin binding, and this was indeed the case at 3, 10 and 20 M albumin concentrations.  

 

Albumin is a transport protein for fatty acids and the binding of as many as seven palmitic 

acid molecules have been characterised within albumin 
41

.  The effect albumin has on 

A40) fibrillisation when loaded with 7 molar equivalents of palmitic acid is shown in 

Figure 7. When the HSA (10 µM) was loaded with palmitic acid, the A fibre growth was no 

longer inhibited by the fatty acid loaded albumin, and returned to its maximum ThT 
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fluorescence, Figure 7c.  Similar experiments with 20 µM albumin produced similar behaviour,  

supplemental Figure S4.  

 

Warfarin Negates the Inhibitory Effect that Albumin has on Aβ Fibrillisation. 

Albumin has a number of hydrophobic pockets and as a consequence it is able to bind to a 

range of exogenous hydrophobic therapeutic molecules, with warfarin being one such molecule 

42
. Warfarin is an anti-coagulant prescribed to individuals with a risk of forming blood clots and 

stroke, such as those with heart arrhythmia. As much as 99 % warfarin in blood plasma is 

bound to HSA 
42

.  With this in mind, we monitored Aβ fibre growth in the presence and 

absence of warfarin bound to albumin. The ThT fluorescence fibre growth curves in the 

presence and absence of warfarin bound albumin are shown in Figure 8. As previously shown, 

Aβ incubated in the presence of 30 μM HSA generated no detectable fibres (Figure 8b). In 

contrast, in the presence of HSA loaded with warfarin (4 molar-equivalent) Aβ is now able to 

form fibres (Figure 8c) to the same extent as to when albumin is absent. The ThT signal is 

comparable to that for Aβ alone. A one-way analysis of variance (ANOVA) with Tukey-HSD 

post-hoc tests revealed no significant difference in maximum fluorescence intensity between 

Aβ alone and Aβ incubated with 30 µM warfarin-loaded albumin. TEM confirms the formation 

of amyloid fibres, Figure 8d, in the presence of warfarin loaded albumin. 

A control experiment shows that Warfarin alone does not interfere with Aβ fibrillisation. 

Indeed there was no significant difference in maximum fluorescence or rate of fibre formation 

(t50, tlag and kapp ) between Aβ alone and Aβ in the presence of warfarin, see supplemental 

Figure S5. 

Next we investigated the effect of sub-stoichiometric warfarin (15 µM warfarin and 30 µM 

albumin). Sub-stoichiometric amounts of warfarin are sufficient to cause the return of Aβ fibre 

formation, although there is a marked delay in the rate of fibre formation, and the maximum 

intensity of the ThT signal completely returns, supplemental Figure S6. 

 

 

HSA-trapped Aβ oligomers are incapable of forming ion channels in cellular membranes 

The assembly state of Aβ is critical in exerting synaptic dysfunction and cytotoxicity. 

Oligomeric preparations which are otherwise indistinguishable by size can have starkly 

different abilities to exert cellular toxicity. Aβ(1-42) ion channel formation is a mechanism by 

which Aβ is thought to be synaptotoxic. We therefore wanted to determine if the albumin 
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trapped Aβ(1-42) oligomers are capable of forming ion channel pores in cellular membranes. 

Here, patches of cell membrane were excised from HEK293 cells. Aβ samples at 5 µM were 

then delivered to the extracellular face of the membrane within a glass pipette, and 

transmembrane currents were measured by clamping the patch at a series of step voltage 

potentials. Preparations of Aβ(1-42) oligomer formed in both the presence and absence of HSA 

were studied, with between 18 and 49 patches of cellular membrane excised for each.  

 

Large, voltage-independent, Aβ channels with clear open/closed step current transitions 

form in the presence of albumin-free oligomeric Aβ(1–42) assemblies, with channels found in 

17 out of 49 (35%) patches, Figure 9. Similarly, a more dilute preparation of Aβ(1-42) 

oligomers (1 µM  monomer equivalent) also causes ion channels to form in 9 out of 34 (26%) 

of patched pulled.  A third oligomeric Aβ(1–42) preparation was then generated by incubation 

of Aβ (5 µM  monomer equivalent) in the presence of HSA and these albumin trapped 

oligomers (characterized in Figure 2 and 3) were then applied to the membrane, Figure 9. We 

report that HSA-trapped oligomers were incapable of forming ion channels, with no channels 

formed in 18 patches of membrane. Aβ channels were also not present in 20 control patches of 

membrane exposed to Aβ-free buffer. Fisher’s exact test confirmed channel formation by HSA-

free Aβ(1-42) oligomers to be significant for both 1 µM (p = 0.02) and 5 µM (p = 0.003) Aβ 

preparations against HSA-trapped Aβ(1–42) oligomer. 

 

DISCUSSION  

HSA Inhibits Aβ Fibre Formation, Trapping Aβ in an Oligomeric Form, but Cannot 

Disassemble Pre-Formed Aβ Fibres 

Aβ monomers, oligomers and fibres exist in a dynamic equilibrium, and fibres are the most 

thermodynamically stable structures 
61

. The effect of binding partners on the equilibrium 

between these assemblies is of great interest 
4
, as the Aβ assembly state confers its cytotoxicity.  

Previous studies have shown that HSA inhibits fibre formation 
9, 19-21

. There is disagreement as 

to whether HSA binds Aβ oligomers 
20, 22, 62-64

, or binds to Aβ trapping it in a monomeric state 

15, 65
. The TEM images of albumin trapped Aβ oligomers shown here, indicates that albumin 

interacts with Aβ oligomers. These trapped oligomers are ~9 nm in diameter which 

approximates to ~270 kDa in size. We show that Aβ can be trapped in an oligomeric form 

which is incapable of forming ion-channels. The inability of albumin trapped Aβ oligomers to 

form ion-channels provides a mechanism by which HSA can have a protective role in Aβ’s 
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cytotoxicity.  This is supported by cell viability studies where the presence of albumin was able 

to reduce the cytotoxicity of Aβ(1-42) 
19

 
24

.  Thus, albumin may have a protective role in the 

brain as it can influence Aβ assembly outcomes at physiological µM concentrations.  

 

Albumin has a moderate affinity for Aβ and it is reported to bind to Aβ monomer, or monomer-

equivalent concentration of oligomer, with a dissociation constant of 5 μM 
65

 . Conversely, the 

affinity of Aβ monomer for growing fibre, described as the critical aggregation concentration 

(CAC), is reported to be approximately 100 nM for Aβ(1-40) 
66, 67

. Despite Aβ having a tighter 

affinity for fibres, fibre growth of Aβ monomer (10 μM) was completely inhibited by HSA (20 

μM) over a period of 38 days. One explanation for this behaviour may be that a true 

equilibrium has not been reached and Aβ is trapped in an off-pathway oligomeric form. Indeed 

we have recently shown that although Zn
2+

 has a weak affinity for Aβ, trace amounts of Zn
2+

 

rapidly exchanging between multiple Aβ molecules can have a profound impact on assembly 

outcomes 
68

. Alternatively, Milojevic et al 
22

 
23

 have reported that HSA binds Aβ oligomers 

with a tighter affinity (Kd = 1-100 nM). This implies the Aβ-HSA complex is 

thermodynamically more favourable than fibre elongation. If this is the case, then HSA should 

be able to shift the equilibrium towards favouring fibre disaggregation. However, we observed 

no significant decrease in ThT signal when Aβ fibres were incubated with HSA. We observed 

that even 200 μM HSA was unable to disassemble Aβ fibres over 22 days.  

 

It is clear even after 22 or 38 days, a true equilibrium has not been reached either for pre-

formed fibre disassembly by HSA, or Aβ fibres formed in the presence of HSA. Thus one of 

these reactions must be kinetically trapped. It has been shown that Aβ curvy-linear protofibrils 

and oligomers are able to dissociate into the monomeric form, taking 2 hrs for half of the 

oligomers to disassemble in the presence of a designed peptide fibre inhibitor 
69

.  However Aβ 

fibres are much more kinetically stable and their disassembly into monomers has an extremely 

slow rate constant, occurring only over many weeks 
70

. It therefore seems probable that Aβ 

remains as a fibre as the rate of dissociation from Aβ fibres is very slow.  

 

As well as albumin, there are a number of proteins that have been identified to inhibit fibre 

formation.  These include the prion protein 
6
, extracellular chaperones such as clusterin 

71, 72
, 

designed peptides 
69, 70

, and other chaperone or non-chaperone proteins 
5, 7

.  These proteins 

inhibit Aβ fibre formation from monomer, but cellular prion protein (PrP
C
) can disassemble 

preformed fibres over a few hours 
6
. This suggests a very different mode of action for PrP

C
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interacting with preformed fibres compared to albumin and other fibre growth inhibitors, which 

are mostly reported to influence the oligomeric and monomeric pool, but not preformed fibres.    

 

Hydrophobic molecules that bind albumin, block albumin interaction with Aβ  

Cholesterol and palmitic acid are endogenous hydrophobic molecules found in blood and 

ISF/CSF.  These molecules bind to hydrophobic pockets within albumin 
13, 39, 41

 and have been 

linked with an increased risk of developing AD 
43-48

. We have shown that when albumin is 

complexed with either of these ligands, the ability for albumin to inhibit Aβ fibrillisation is lost. 

Cholesterol and palmitic acid may compete with Aβ for binding to albumin, or their binding 

might induce a structural change in albumin which disrupts the Aβ binding site 
23

. In vivo it is 

also possible that raised levels of cholesterol and fatty acids might impact albumins ability to 

bind Aβ.  At µM CSF concentrations of albumin small variations in the capacity of HSA to 

bind Aβ found in the brain ISF/CSF is predicted to have a marked impact on Aβ fibre 

formation 
9
. It is therefore conceivable that cholesterol/fatty acids binding to albumin could 

impact Aβ fibre formation in the brain interstitium, and also the ability of Aβ to form toxic 

oligomers that form ion channel pores. The observation that even sub-stoichiometric levels of 

cholesterol negate albumins protective properties supports a role for cholesterol.  Interestingly, 

traumatic brain injury is also a risk factor for developing AD and is characterised by increased 

levels of saturated fatty acids in the brain, with palmitic acid levels increasing three-fold to 180 

M 
73

.  Fatty acids and cholesterol which bind to albumin may negate albumin’s protective role 

and this hints at a possible mechanism through which fatty acids might heighten the risk of AD 

development, although other modes of action are also possible 
55

.  

 

Albumin in blood serum and Aβ clearance from the CNS 

In addition to the presence of albumin in the brain interstitium, HSA may also act as a 

protective sink for Aβ in blood serum 
10, 11, 26

 .  As much as 25% of Aβ is cleared from the 

ISF/CSF across the blood-brain-barrier and furthermore, peripheral albumin levels regulate Aβ 

clearance 
25

.  As the most abundant protein in blood plasma (640 µM) albumin typically binds 

90-95% of the Aβ found in blood plasma 
14, 15

. High blood serum cholesterol at mid-life has 

been identified as an independent risk factor for developing AD 
47, 48, 74

. The mechanisms by 

which blood cholesterol may increases AD risk are not yet resolved 
55

; as cholesterol levels in 

the brain are unaffected by blood serum levels and cholesterol synthesis occurs within the brain 
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itself 
75

. The observation that cholesterol will impede the binding of A to albumin may 

therefore provide a mechanism in which blood serum cholesterol impacts AD. Similarly the 

high dietary intake of fats, particularly saturated fats, has been identified to increase the risk of 

developing AD 
43, 44, 46

. While in AD mice models, a high fat diet leads to increases in cognitive 

impairment and A deposition 
76, 77

.  Fatty acid binding to albumin is not exclusive to palmitic 

acid; the binding sites of several other fatty acids have also been identified, all of which share 

common hydrophobic binding pockets 
41

. Indeed tetradecanoic acid has been shown to compete 

for A binding to albumin 
23

. It is likely that other fatty acids could therefore also supress the 

effect of HSA on A fibrillisation. The various concentrations and µM affinities of a range of 

endogenous fatty-acids and cholesterol make their interplay with albumin a complex 

equilibrium in blood plasma and the CSF.   

 

A number of hydrophobic therapeutic molecules also bind to HSA 
78

. This raises the 

possibility that sustained use of, for example, the anti-coagulant warfarin might influence Aβ-

HSA binding.  The inhibitory effect of HSA on Aβ fibrillisation is lost by the addition of 

warfarin, where, like cholesterol and palmitic acid, warfarin disrupts the Aβ-HSA interaction. 

Thus wafarin might inhibit albumin’s ability to act as a protective sink for Aβ, both in blood 

and possibly in the CSF. Warfarin is used as a long term preventative treatment against the 

formation of blood clots and against stroke. Studies have shown individuals with heart 

arrhythmia have an increased risk of developing AD 
79-82

, although we are not aware of any 

studies reported to show a link between AD and long-term warfarin use. A recent study shows 

a correlation between sustained the use of anticholinergic drugs and the onset of dementia 
83

. 

Amongst these drugs are Doxepin and chlorphenamine that have been reported to bind to HSA 

84
. It is possible that these drugs might also disrupt Aβ-albumin interaction.  

 

CONCLUSIONS 

In vitro albumin has a profound effect on A fibre formation, even at µM concentrations 

found in the ISF/CSF. Our TEM images show Aβ is trapped by albumin in a relatively small 

range of oligomeric assemblies, 9 nm in diameter. These albumin associated Aβ oligomers are 

incapable of forming ion-channels, which provides a mechanism by which albumin may be 

protective against Aβ’s cytotoxicity. Endogenous and exogenous hydrophobic molecules that 
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bind to albumin have an impact on albumin’s role in Aβ fibrillisation. High cholesterol and 

fatty acids in the diet are known risk factors in the development of AD, raising the possibility 

that these risk factors are linked to their action on a neuroprotective albumin which acts as an 

Aβ sink in blood plasma. A potential therapeutic strategy recently explored is the clearance of 

Aβ from the CNS across the blood-brain-barrier using plasma exchange of albumin, which has 

shown efficacy in a phase-II clinical trial 
36

. 
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MATERIALS AND METHODS 

 

Aβ production and solubilisation: Lyophilised Aβ(1-40) and Aβ(1-42) were purchased 

commercially from EZBiolab Inc. and Cambridge Research Biochemicals. Aβ peptides were 

synthesised using solid phase F-moc (N-(9-fluorenyl)methoxycarbonyl) chemistry, producing a 

single elution band in HPLC with correct mass verified by mass spectrometry. Aβ(1-40) and 

Aβ(1-42) were solubilised by dissolving 0.7 mg.ml
-1

 Aβ in ultra-high quality (UHQ) water at 

pH 10 and rocked gently for 4 hrs at 4
o
C. This procedure has been found to be an effective 

solubilisation protocol 
85, 86

.  It was necessary, particularly in the case of Aβ(1-42), to remove 

any remaining nucleating, oligomeric, aggregates by size exclusion chromatography (SEC) 

(Superdex 75 10/300 GL column, GE Healthcare) to generate a seed-free preparation. Based on 

a single elution peak in size exclusion chromatography, a clear lag-phase observed in fibre 

growth curves and a lack of detectable assemblies observed by TEM, SEC-eluted Aβ stock was 

deemed to be seed-free and monomeric. Aβ concentration was determined using the Tyrosine 

absorbance at 280 nm, ε280 =1280 M
-1

 cm
-1

.  

 

Human Serum Albumin (HSA): ≥99% Fatty acid and globulin-free HSA was purchased from 

Sigma-Aldrich Company Ltd. and solubilised in ultra-high quality (UHQ) water (10
-18

 Ω
-1

cm
-1 

resistivity). The concentration was determined using the absorbance at 280 nm, ε280 = 34445 M
-

1
 cm

-1
. All other chemicals were purchased from Sigma-Aldrich Company Ltd. 

 

Aβ Assembly Kinetics: Assembly kinetics were monitored by addition of 10 µM of the 

fluorescent dye, Thioflavin T (ThT). ThT fluoresces when bound to amyloid fibres to give a 

fluorescent signal proportional to the amount of amyloid fibre present, whilst ThT fluorescence 

for monomer and oligomeric assemblies is minimal 
56

. ThT fluorescence was measured using 

BMG-Galaxy and BMG-Omega FLUOstar fluorescence 96-well plate readers. Flat-bottomed, 

polystyrene, non-tissue-culture treated plates were purchased from Falcon. Well plates were 

subjected to mild double orbital shaking for 30 s every 30 min followed by a fluorescence 

reading, 20 flashes per well per cycle with 4 mm orbital averaging. Fluorescence excitation and 

emission detection were at 440 and 490 nm, respectively. It has been shown that ThT does not 

markedly affect fibre formation kinetics or fibre morphology 
56

.  
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Conversion of the Aβ monomer into the fibre follows a characteristic sigmoidal fibre growth 

curve, which has a lag-phase (nucleation) and a growth-phase (elongation). The data obtained 

can be fit to the growth curve using the following equation: 

 

𝑌 =  (𝑦𝑖 +  𝑚𝑖𝑥) + 
𝑦𝑓 + 𝑚𝑓𝑥

1 + 𝑒−(
𝑥−𝑥𝑜

𝜏
)
 

 

 

where y is the ThT fluorescence intensity, x is the time and xo is the time at which the ThT 

fluorescence has reached half maximal intensity referred to as t50. yi and yf are the initial and 

final fluorescence signals. The apparent fibre growth rate (kapp for elongation)  is calculated 

from, kapp=1/ and the lag-time (tlag) is taken from tlag= Xo -2 87
.  The reciprocal of lag-time 

(tlag) is largely influenced by the microscopic rate constants associated with a combination of 

primary and secondary nucleation as well as fragmentation,  while the apparent fibre growth 

rate (kapp) is influenced by the elongation rate constant, due to the addition of each monomer 

onto a growing fibre 
88

.  

 

Fibre growth curves were presented using KaleidaGraph. Kinetic parameters were extracted 

from, typically, 6 kinetic traces and the mean values and standard errors calculated. Analysis of 

variance (ANOVA) was used to compare the kinetic parameters extracted from curve fitting 

under different conditions. One-way ANOVA with Tukey-HSD post-hoc tests were used to 

reveal significant differences at P= 0.05. 

 

Preparation of Aβ fibres and HSA-trapped oligomers: Amyloid fibre preparations of Aβ(1–

40) and Aβ(1–42) were generated by incubation in a 96-well plate at 30
○
C. Aβ peptides were 

incubated at a concentration of 10 µM in 160 mM NaCl, and 30 mM HEPES  buffer (pH 7.4). 

HSA (20 or 50 µM) was also added to adjacent wells of 10 µM Aβ incubated in identical pH 

7.4 buffer. HSA was added to Aβ at three separate time-points of fibre growth assembly, those 

being at the beginning of fibre growth (0 hrs), at the end of the lag-phase and after maximal 

fibre formation (≥70 hrs).  

 

Preparation of Aβ oligomer for patch-clamp: It was also necessary to generate an oligomeric 

Aβ(1–42) preparation in the absence of HSA which was previously reported to form toxic ion 
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channels 
3
. Aβ(1–42) oligomer was obtained from the well plate towards the end of the lag-

phase, as monitored by ThT fluorescent dye in separate wells and not used for ion channel 

measurements. Samples were immediately stored at -80 
o
C to prevent further assembly before 

use in patch-clamp experiments. HSA-free Aβ(1–42) oligomer was diluted into patch-clamp 

buffer before delivery to cell membrane at a final 5 µM preparation. 

 

Transmission Electron Microscopy and Single Particle Analysis: Aβ-containing 

preparations, typically 5 µM to 0.05 µM Aβ monomer-equivalent concentration, were aliquoted 

(5 µl) onto glow-discharged carbon-coated 300 mesh grids using the droplet method and 

washed past with UHQ water. A negative stain phosphotungstic acid (2% (w/v), pH 7.4) was 

then applied before a final wash step and air-drying. Images were captured at 80,000 × using a 

JEOL model JEM-1230 electron microscope (JEOL, Ltd., Japan) operating at 80 keV, paired 

with a Morada 2k CCD camera system and its iTEM software package (Olympus Europa, UK). 

Representative single particle images of each oligomer were interactively selected using the 

e2boxer.py module of the EMAN2 software package 
89

 from multiple 16-bit micrograph CCD 

patches visualised from several grids and fields. All subsequent image processing was 

performed using the Imagic-5 environment. CCD patches from the Morada system were chosen 

that displayed minimal astigmatism and drift. The sampling frequency corresponded to 5.962 Å 

per pixel at the specimen level. 

 

A data set of single particle images was obtained by picking all distinct particles by visual 

inspection, determined to be HSA-trapped Aβ(1-40) and Aβ(1-42) oligomers. This dataset was 

then subjected to single particle analysis, starting with the reference free alignment-by-

classification procedure in order to identify 9 sub-populations of particles differing in size and 

shape. The diameter of the oligomers were assumed to be spherical to predict an approximate 

molecular mass using Calctool 
90

. 

 

Single-Cell Fluorescence: Fibre growth and disassembly was followed using ThT 

Fluorescence. 10 µM Aβ(1-40) was incubated with 20 µM ThT in 160 mM NaCl and 30 mM 

HEPES, at pH 7.4. For recordings taken over a long time span, 0.005 % (w/v) sodium azide 

was added to prevent microbial growth. ThT measurements were conducted on a temperature-

controlled Hitachi F-2500 fluorescence spectrophotometer at 30
o
C. Excitation wavelength was 

set to 440 nm and an emission wavelength scan was collected between 460 nm and 650 nm in 
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order to measure peak-fluorescence. Samples were placed in a 1 cm quartz cuvette (Hellma) 

and three fluorescence readings were averaged at each time point. Readings were taken every 

day for up to 50 days with samples subjected to constant shaking at 30
o
C. Between readings the 

samples remained covered and kept in the dark to reduce possible degradation of the 

fluorophore and microbial growth. 

 

Cholesterol-Loaded and -Palmitic Acid-Loaded Albumin: Cholesterol was solubilised in 

dimethyl sulfoxide (DMSO) to generate a stock solution such that when diluted in aqueous 

buffer to the desired cholesterol concentration, the final DMSO concentration would be 2 % 

(v/100 ml). Each HSA monomer binds one cholesterol molecule 
38

. An equimolar concentration 

of cholesterol and HSA (1:1) was used throughout. Cholesterol and HSA were pre-incubated 

together at room temperature to allow complex formation for a minimum of 30 min prior to 

use. 

 

Palmitic acid was also solubilised in DMSO. HSA can bind up to 7 palmitic acid molecules 
41

, 

hence HSA was loaded with 7 molar equivalents of palmitic acid. Stocks of palmitic acid were 

mixed with HSA and diluted with water to bring the final DMSO concentration to 6 % (v/100 

ml). Palmitic acid was incubated with HSA for 2.5 hrs at room temperature to allow for binding 

to occur before excess palmitic acid was removed through 5 concentration/dilution cycles. 

Samples were concentrated using 10 kDa MWCO centrifugal concentrators (Vivaspin, 

Sartorius) and the concentrated HSA-palmitic acid complex was returned to its original 

concentration by dilution into 6 % DMSO. Final concentrations of palmitic acid-loaded HSA 

used were then further diluted such that the well-plate incubated samples contained 2 % 

DMSO.  

 

Warfarin-Loaded Albumin: Warfarin was solubilised in UHQ water. HSA is reported to bind 

up to 4 molecules of warfarin, thus 4 molar-equivalents of warfarin were incubated with HSA 

in 50 mM HEPES (pH 7.4). Aβ(1-40) at 10 μM was then incubated with 0, 20 and 30 μM HSA 

loaded with 4 molar-equivalents of warfarin. Additional controls of 10 μM Aβ(1-40) with 20 

and 30 μM HSA, and of 10 μM Aβ(1-40) with 80 and 120 μM warfarin were also prepared. 

 

Native-PAGE - PAGE was performed using Bio-Rad pre-cast gels and Bio-Rad Mini-Protean 

electrophoresis cells. Before separation, Aβ samples were concentrated (x4) using 5 kDa 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

19 
 

MWCO centrifugal concentrators (Sartorius Vivaspin 500, Sartorius UK Ltd., Epsom, UK). 

Peptide preparations were then diluted into loading buffer  at a ratio of 1:1 before 

electrophoresis on Bio-Rad 4–20% Mini-PROTEAN Tris-glycine gels (Bio-Rad Laboratories 

Ltd., Watford, UK). Gels were run at 40V for ~4 hrs before being stained with Coomassie 

Brilliant Blue R-250 (ThermoFisher Scientific Inc. USA). 

 

Cell Culture: HEK293 immortal cells were cultured at 37°C within a 5% CO2 incubator in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum, 

200 units penicillin, and 0.2 mg.ml
-1

 streptomycin. On reaching confluence, cells were 

dissociated from culture flasks using a Ca
2+

- and Mg
2+

-free phosphate-buffered saline (pH 7.2) 

solution. Cultured cells were split every 7 days and used between passages 80 and 85. With 

each round of splitting, a fraction of cells was plated into 35 mm diameter Petri dishes and 

maintained in supplemented DMEM until the day of any given patch clamp experiment. Plated 

cells were cultured for 2 to 5 days before use in patch clamp experiments. Reagents and media 

were purchased from Sigma-Aldrich Ltd., UK, and ThermoFisher Scientific (Invitrogen).  

 

Patch Clamp Recording: Patch clamp recordings in voltage clamp mode were made from 

excised membranes of HEK293 cells. Patch pipettes were backfilled with patch clamp buffer 

containing Aβ preparations at 1 and 5 µM monomer equivalent concentration of Aβ (pH 7.4). 

Backfilled Aβ diffused toward the extracellular face of the membrane within the patch pipette. 

The membrane was then excised and clamped at a series of voltage potentials between +60 and 

-60 mV and transmembrane currents were measured. Patches of membrane were excised, in an 

inside-out configuration, submersed in a 35 mm dish containing buffer of identical ionic 

composition. A stepwise voltage ramp protocol was applied using an Axopatch 200B amplifier 

(Axon Instruments, Union City, CA) via personal computer using PCLAMP-10 software (Axon 

Instruments). Data were further processed and analysed using the Clampfit software package 

and a low pass boxcar filter was typically applied. Patches were pulled from thick walled 

filament borosilicate glass (Harvard Apparatus, Edenbridge, Kent, UK) with a needle diameter 

of ~1 to 3 µm and a resistance of 4 to 6 MΩ (megaohms) when filled with recording solution. 

Junction potentials generated at boundaries of ionic asymmetry were accounted for using an 

applied pipette offset potential. Recordings were sampled at a rate of 2 kHz with 500 µs 

intervals with a low pass four-pole Bessel filter frequency of 1 kHz. In the excised patch, the 

holding potential was set to 0 mV. Recordings were made in symmetrical solution adjusted to 
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pH 7.4 containing 121.4 mM NaCl, 10 mM CsCl, 9 mM Na-HEPES, 1.85 mM CaCl2, 1.87 mM 

MgCl2, 2.16 mM KCl. Transmembrane patch currents were recorded for 30 min; when current 

spikes, indicative of membrane destabilization, were observed in this period, the recordings 

were extended to 45 min.  
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Figure Legends: 

 

Figure 1: HSA inhibits Aβ fibre growth and impedes elongation of Aβ oligomers.  Fibre 

growth kinetics were monitored for Aβ(1-40) in the presence and absence of HSA. ThT 

fluorescence was recorded over 70 hrs under 3 conditions, Aβ(1-40) (blue), Aβ(1-40) with 

HSA at 0 hrs (red) and Aβ(1-40) with HSA at the beginning of fibre growth phase (green). The 

green arrow indicates addition of HSA after 28 hrs of Aβ incubation. Final peptide 

concentrations were 10 μM Aβ and 50 μM HSA. Preparations were incubated with 10 µM ThT, 

30 mM HEPES buffer, 160 mM NaCl and 0.005 (g/100 ml) sodium azide, at pH 7.4. n = 6 

traces for each condition 

 

Figure 2: Albumin traps Aβ as spherical oligomers, but does not disassemble pre-formed 

fibres. Negative-stain TEM micrographs were obtained for preparations of Aβ(1-40) and Aβ(1-

42) incubated in the presence and absence of albumin. An absence of oligomeric assemblies 

was confirmed in three control preparations of (a) Aβ(1-40) monomer, (b) Aβ(1-42) monomer,  

and (c) HSA alone. Spherical HSA-trapped oligomers ~ 10nm in diameter were observed after 

100 hours of incubation in preparations where HSA was added to: (d) monomeric Aβ(1-40), (e) 

oligomeric Aβ(1-40), at the end of the lag phase, and (f) monomeric Aβ(1-42).  However, fibre 

morphology appears to be unchanged when HSA is added to pre-formed fibre preparations, 

with no apparent difference between Aβ(1-40) and Aβ(1-42) control samples (g),(i) and Aβ(1-

40) fibres in the presence of HSA (h). Preparations were at 10 μM Aβ and 50 μM HSA and 

incubated with Aβ for 100 hours in 30 mM HEPES at pH 7.4, 160 mM NaCl. 

 

Figure 3: TEM views of Aβ(1-40) and Aβ(1-42) albumin-trapped oligomers. Three 

representative class averages taken from 368 and 210 manually picked oligomers for Aβ(1-40) 

and Aβ(1-42).  Each class average represents between 27 and 67 particles. Analysis was 

performed on micrographs of negatively stained Aβ (10 µM) incubated with HSA (50 µM) for 

70 hours. Diameters ranged between ~8 and ~10 nm. 
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Figure 4: HSA inhibits Aβ fibre formation over 38 Days. Inhibition of Aβ(1-40) fibre growth 

was monitored by recording ThT fluorescence over 38 days. In the absence of HSA, maximal 

Aβ(1-40) fibre formation is observed within 48 hrs. However, when HSA is added to 

monomeric Aβ(1-40), fibre growth is inhibited. Fluorescence emission spectra taken over a 38 

day period: (a) Aβ alone and (b) Aβ in the presence of HSA. ThT fluorescence (at 485 nm) has 

been plotted against time (c). Final peptide concentrations were 10 μM Aβ and 20 μM HSA. 

Preparations were incubated with 30 mM HEPES, 160 mM NaCl and 0.005 (g/100 ml) sodium 

azide, at pH 7.4, at 30 
o
C Two repeat experiments shown for growth conditions. 

 

Figure 5: HSA does not disaggregate pre-formed Aβ fibres over 22 Days.  A high stability of 

Aβ(1-40) fibres is confirmed in the presence of HSA. Aβ(1-40) fibre formation was observed 

by ThT fluorescence, and identical fibre preparations were generated. ThT fluorescence was 

then recorded over a period of 22 days to monitor the presence of pre-formed Aβ(1-40) fibres 

(10 µM monomer equivalent) in the presence of 0, 3, 20 and 200 μM HSA. The ThT signal 

remains stable in the presence of HSA and suggests fibre content is constant throughout. All 

samples were incubated with 30 mM HEPES, 160 mM NaCl and 0.005 (g/100 ml) sodium 

azide, at pH 7.4. 

 

Figure 6: Cholesterol negates HSA-mediated inhibition of Aβ(1-40) fibre formation.  Aβ(1-40) 

(10 µM) fibre formation monitored by ThT fluorescence over time. (a) Aβ(1-40) in HEPES 

buffer with and without 2 % (v/v) DMSO, (b) Aβ(1-40) in presence of albumin (20 µM), (c) 

Aβ(1-40) in the presence of (1:1) cholesterol-loaded albumin (20 µM). (d) Negative-stain TEM 

image of Aβ(1-40) fibres formed in the presence of cholesterol-loaded albumin, scale bar = 100 

nm. All samples were incubated with 20 µM ThT, 30 mM HEPES at pH 7.4, 160 mM NaCl 

and 0.005 (g/100 ml) sodium azide.  n = 6 traces for each condition. 

 

Figure 7: Aβ(1-40) fibre growth returns in the presence of palmitic acid loaded-HSA. Aβ(1-

40) (10 µM) fibre formation monitored by ThT fluorescence over time. (a) Aβ(1-40) in HEPES 

buffer with and without 2 % (v/v) DMSO, (b) Aβ(1-40)  in presence of 10 µM fatty acid free 

albumin, (c) Aβ(1-40) in the presence of palmitic acid loaded albumin (10 µM). All samples 
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were incubated with 30 mM HEPES, 20 µM ThT, 160 mM NaCl and 0.005 (g/100 ml) sodium 

azide, at pH 7.4. n = 6 traces for each condition.  

 

Figure 8: Aβ(1-40) fibre growth is observed in the presence of Warfarin-loaded HSA.  ThT 

fluorescence was monitored over time to observe fibre formation. (a) Aβ(1-40) alone, (b) Aβ(1-

40) incubated with HSA (30 μM) and (c) Aβ(1-40) incubated with HSA (30 μM) loaded with 

warfarin (120 μM). (d) Negative-stain TEM image of Aβ(1-40) fibres formed in the presence of 

warfarin-loaded albumin, scale bar = 50 nm. All Aβ(1-40) samples were at a concentration of 

10 µM and incubated with 30 mM HEPES, 20 µM ThT, 160 mM NaCl and 0.005 % (w/v) 

sodium azide, at pH 7.4. n = 5 traces for each condition.  

 

Figure 9: HSA prevents ion channel formation by Aβ(1-42) in the cellular membrane.  

Preparations of Aβ(1-42) oligomer were generated in the presence and absence of HSA and 

presented to excised extracellular membrane surface. Transmembrane current was then 

recorded over a range of potentials, and a representative recorded current trace is shown with 

corresponding TEM images for preparations containing (a) Aβ(1-42) oligomer; (b)  HSA-

trapped Aβ(1-42) oligomer. (c) The bar-chart shows the proportion of membrane patches that 

formed ion channels in the presence of Aβ(1-42) oligomer and HSA-trapped Aβ(1-42) 

oligomer. Channel formation was significant for both 1 µM (n = 34) and 5 µM (n = 49) 

concentrations of Aβ(1–42) oligomer, against corresponding HSA-trapped Aβ(1–42) oligomer 

preparations which were unable to form ion channels within 30 min (n = 18). 5 molar 

equivalences of HSA was used to generate HSA-trapped oligomers. (d) Shows voltage ramp 

protocol which was applied to clamp the cell membrane at six membrane potentials between -

60 and +60 mV.  
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Highlights: 

 

Albumin binds to Aβ inhibiting fibre formation at physiological (µM) concentrations. 

 

TEM indicates albumin kinetically traps Aβ as oligomers, 9 nm in diameter. 

 

Albumin-trapped Aβ oligomeric assemblies are incapable of forming ion-channels. 

 

Cholesterol, warfarin & fatty acids (FAs) suppress albumin’s amyloid inhibiting properties. 

 

Aβ clearance from the brain by albumin may be impacted by cholesterol and FAs levels. 
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