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We consider a dynamics generated by families of maps whose invariant density depends on a
parameter a and where a itself obeys a stochastic or periodic dynamics. For slowly varying a the
long-term behavior of iterates is described by a suitable superposition of local invariant densities.
We provide rigorous error estimates how good this approximation is. Our method generalizes the
concept of superstatistics, a useful technique in nonequilibrium statistical mechanics, to maps. Our
main example are Blaschke products, for which we provide rigorous error estimate on the difference
between Birkhoff density and the superstatistical approximation.

I. INTRODUCTION

Dynamics often takes place in a changing environment. This means, given some control parameter a and a local
dynamics xn+1 = fa(xn) generated by some mapping fa, the control parameter a itself will also slowly change in
time. In nonequilibrium statistical mechanics, these environmental fluctuations, if taking place on a large time scale,
are modeled by a very useful concept, so-called superstatistics. The superstatistics concept was introduced in [1]
and has since then provided a powerful tool to describe a large variety of complex systems for which there is change
of environmental conditions [2–9]. The basic idea is to characterize the complex system under consideration by a
superposition of several statistics, one corresponding to local equilibrium statistical mechanics (on a mesoscopic level
modeled by a linear Langevin equation leading to locally Gaussian behavior) and the other one corresponding to a
slowly varying parameter a of the system. Essential for this approach is the fact that there is sufficient time scale
separation, i.e. the local relaxation time of the system must be much shorter than the typical time scale on which the
parameter a changes.
In most applications in nonequilibrium statistical mechanics the varying control parameter a is the local inverse

temperature β of the system, i.e. a = β. However, in some applications beyond the immediate scope of statistical
mechanics the control parameter a can also have a different meaning. There are many interesting applications of the
superstatistics concept to real-world problems, for example to train delay statistics[10], hydrodynamic turbulence [11]
and cancer survival statistics [12]. Further applications are described in [13–18].
In this paper we want to extend the superstatistics concept to maps, which usually have invariant densities different

from Gaussian distributions, and thus analyze this problem in a more general context. Our generalization assumes
that the local dynamics is not anymore restricted to a linear Langevin dynamics (as in the nonequilibrium statistical
mechanics applications), but given by an a priori arbitrary map with strong mixing properties. We will make the
superstatistics concept mathematically rigorous by considering simple model examples of local maps where everything
can be proved explicitly and by estimating the error terms. In our new approach described here, we allow for a priori

arbitrary local invariant densities ρa(x) and consider a dynamics given by long term iteration of a map fa with slowly
varying a. This leads to a mixing of various invariant densities ρa(x) with different parameter a, in a way that we
will analyze in detail in this paper.
If a changes on a long time scale, long as compared to the relaxation time of the local map fa, the resulting long-

term probability distribution of iterates is closely approximated by a superposition of local invariant densities ρa(x).
For particular examples, Blaschke products, we will indeed provide estimates of the error terms involved and prove
how fast the Birkhoff density approaches the superstatistical approximation. On the other hand, if a changes rapidly,
then a different dynamics arises which is not properly described by a mixing of the various local invariant densities.
Rather, in this case one has to look at fixed points of the Perron-Frobenius operator of higher iterates of composed
maps fa with varying a. Depending on the time scale of the changes of a, there are transition scenarios between both
cases.
This paper is organized as follows. In section 2, we will introduce the superstatistics concept for maps. We will

study several examples in this section to illustrate the concept and to motivate our rigorous treatment in the later
sections. In section 3 we state our main result, estimating the error terms for alternating block iteration of Blaschke
products. In section 4 we present a rigorous theory for Blaschke products. We will prove the existence of invariant
measures, determine the invariant measure explicitly as a function of the parameters involved and prove our main
result, an error estimate on the difference between Birkhoff density and the superstatistical approximation.
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II. SUPERSTATISTICAL DYNAMICS OF MAPS

Let us consider families of maps fa depending on a control parameter a. These can be a priori arbitrary maps
in arbitrary dimensions. Later we will restrict ourselves to mixing maps and assume that an absolutely continuous
invariant density ρa(x) exists for each value of the control parameter a. The local dynamics is

xn+1 = fa(xn). (1)

We now allow for a time dependence of a and study the long-term behavior of iterates given by

xn = fan
◦ fan−1

◦ . . . fa1
(x0). (2)

Clearly, the problem now requires the specification of the sequence of control parameters a1, . . . , an as well, at least
in a statistical sense. One possibility is a periodic orbit of control parameters of length L. Another possibility is to
regard the aj as random variables and to specify the properties of the corresponding stochastic process in parameter
space.
In general, rapidly fluctuating parameters aj will lead to a very complicated dynamics. However, there is a significant

simplification if the parameters aj change slowly. This is the analogue of the slowly varying temperature parameters in
the superstatistical treatment of nonequilibrium statistical mechanics [1, 19]. The basic assumption of superstatistics
is that an environmental control parameter a changes only very slowly, much slower than the local relaxation time of
the dynamics. For maps this means that significant changes of a occur only over a large number T of iterations. In
practice, one can model this superstatistical case as follows: One keeps a1 constant for T iterations (T >> 1), then
switches after T iterations to a new value a2, after T iterations one switches to the next values a3, and so on.
One of the simplest examples is a period-2 orbit in the parameter space. That is, we have an alternating sequence

a1, a2 that repeats itself, with switching between the two possible values taking place after T iterations. We are
interested in the long-term behavior of iterates obtained for n → ∞. Possible sequences of parameters a1, a2, . . . , aL
of period length L could be studied equally well, with a switching to the new parameter value always taking place
after T >> 1 iterations. Another possibility are stochastic parameter changes on the long time scale T .
To illustrate and motivate the superstatistics concept for maps, we will now deal with three important examples of

families of maps fa.
Example 1 We take for fa the asymmetric tent map on [0, 1] given by

fa(x) =

{

1
ax x ≤ a
1− x−a

1−a x > a
(3)

with a ∈ (0, 1). This example is somewhat trivial, because the invariant density ρa(x) is independent of a and given
by the uniform distribution for any value of a. Hence, whatever the statistics of the varying parameter sequence
a1, a2, . . . is, we get for the long-term distribution of iterates given by (2), (3) the uniform distribution

p(x) = 1 (4)

Example 2 We take for fa a map of linear Langevin type [20, 21]. This means fa is a 2-dimensional map given by
a skew product of the form

xn+1 = g(xn) (5)

yn+1 = e−aτyn + τ1/2(xn − ḡ) (6)

Here ḡ denote the average of iterates of g. It has been shown in [20] that for τ → 0, t = nτ finite this deterministic
chaotic map generates a dynamics equivalent to a linear Langevin equation [22], provided the map g has the so-
called ϕ-mixing property [30], and regarding the initial values x0 ∈ [0, 1] as a smoothly distributed random variable.
Consequently, in this limit the variable yn converges to the Ornstein-Uhlenbeck process [22] and its stationary density
is given by

ρβ(y) =

√

β

2π
e−

1

2
βy2

(7)

The variance parameter β of this Gaussian depends on the map g and the damping constant a. If the parameter a
changes on a very large time scale, much larger than the local relaxation time to equilibrium, one expects for the
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long-term distribution of iterates a mixture of Gaussian distributions with different variances β−1. For example, a
period 2 orbit of parameter changes yields a mixture of two Gaussians

p(y) =
1

2

(

√

β1
2π
e−

1

2
β1y

2

+

√

β2
2π
e−

1

2
β2y

2

)

. (8)

Generally, for more complicated parameter changes on the long time scale T , the long-term distribution of iterates yn
will be mixture of Gaussians with a suitable weight function h(β) for τ → 0:

p(y) ∼
∫

dβ h(β)e−
1

2
βy2

(9)

This is just the usual form of superstatistics used in statistical mechanics, based on a mixture of Gaussians with
fluctuating variance with a given weight function [1]. Thus for this example of skew products the superstatistics of
the map fa reproduces the concept of superstatistics in nonequilibrium statitistical mechanics, based on the Langevin
equation. In fact, the map fa can be regarded as a possible microscopic dynamics underlying the Langevin equation.
The random forces pushing the particle left and right are in this case generated by deterministic chaotic map g
governing the dynamics of the variable xn. Generally it is possible to consider any ϕ-mixing map here [20]. Based on
functional limit theorems, one can prove equivalence with the Langevin equation in the limit τ → 0.
Example 3: Blaschke products We now want to consider further examples beyond the immediate scope of

statistical mechanics where the invariant density of the local map is non-Gaussian but still a full analytic treatment
is possible. Consider mappings of a complex variable z given by

f(z) = b0

d
∏

j=1

z − bj

1− b̄jz
, (10)

where |b0| = 1 and |bj | < 1 for j = 1, 2, . . . , d and d ≥ 2. We are interested in a dynamics restricted to the unit circle
S1 and write u ∈ S1 as

u = ei2πϕ, (11)

so that ϕ ∈ [0, 1). According to Martin [27], and as established in the following sections in much more detail, the
invariant density of f with respect to the variable u is given by

ρu(u) =
1

2π

1− |z0|2
|u− z0|2

. (12)

Here z0 = f(z0) is a fixed point of f . Blaschke products usually exhibit very strong chaotic behaviour and can be
used as the map g in equation (5) if an extension to a Langevin dynamics is wished for for physical reasons. The
remarkable property of Blaschke products is that the knowledge of a fixed point z0 of the map uniquely fixes the
shape of the invariant density ρu, making an analytic treatment very convenient.
Transformation of variables u→ ϕ yields the invariant density ρϕ with respect to the variable ϕ as

ρϕ(ϕ) = ρu(u)

∣

∣

∣

∣

du

dϕ

∣

∣

∣

∣

(13)

=
1− |z0|2

|ei2πϕ − z0|2
(14)

=
1− a2 − b2

1 + a2 + b2 − 2a cos 2πϕ− 2b sin 2πϕ
. (15)

Here a denotes the real part and b the imaginary part of the fixed point z0, i.e. z0 = a+ ib.
For z0 = 0 we get a = b = 0 and hence ρϕ(ϕ) = 1. This is just the invariant density of a d-ary shift map on [0,1],

noting that for bj = 0 the Blaschke product becomes

z → zd ⇐⇒ ϕ→ d · ϕ mod 1 (16)

Another example would be a Blaschke product with a real fixed point z0 = a. In this case the invariant density is

ρϕ(ϕ) =
1− a2

1 + a2 − 2a cos 2πϕ
. (17)
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A particular example, taken from [27], is b1 = b2 = 1
2 , i.e.

f(z) =
(z − 1

2 )
2

(1− 1
2z)

2
(18)

The fixed point condition z0 = f(z0) is solved by

z0 =
1

2
(7−

√
45) ≈ 0.145898...= a (19)

This is the unique fixed point in the unit disk D = {z| |z| < 1}.
We are now in a position to explicitly do superstatistics for Blaschke products, since the invariant densities are

known explicitly as a function of the parameters of the map. While a rigorous treatment will be worked out in detail
in the following sections, we here just consider a simple example to illustrate the general idea. Let us consider two
different Blaschke products, and a periodic orbit of length 2 of the parameters. For example, we may consider an
alternating dynamics of the two maps

f1(z) = z2 (20)

f2(z) =
(z − 1

2 )
2

(1− 1
2z)

2
. (21)

If we iterate f2 for a long time T , then iterate f1 for the same long time T , then switch back to f2, then to f1, and so
on, the Birkhoff density will be a mixture of both invariant densities. In the ϕ variable we expect to get for T → ∞
the superstatistical result

ρ∞(ϕ) =
1

2
ρ1(ϕ) +

1

2
ρ2(ϕ) (22)

=
1

2

(

1 +
1− a2

1 + a2 − 2a cos 2πϕ

)

(23)

with a ≈ 0.145898.... This will be confirmed by our rigorous treatment in the following section. If, on the other hand,
we switch maps after each iteration step, the result will be different. In this case we need to determine the invariant
density of the composed map f1 ◦ f2(z) (or f2 ◦ f1(z), depending on which map is iterated first). The composed map
is again a Blaschke product, now with d = 4:

f12(z) := f1 ◦ f2(z) =
(z − 1

2 )
4

(1− 1
2z)

4
(24)

The fixed point condition

z0 = f12(z0) =
(z0 − 1

2 )
4

(1− 1
2z0)

4
(25)

yields z0 ≈ 0.0464774...=: c and hence the invariant density of f12 = f1 ◦ f2 is given by

ρ12(ϕ) =
1− c2

1 + c2 − 2c cos 2πϕ
. (26)

Similarly the other composed map is also a Blaschke product with d = 4:

f21(z) := f2 ◦ f1(z) =
(z2 − 1

2 )
2

(1− 1
2z

2)2
(27)

The fixed point condition

z0 = f21(z0) =
(z20 − 1

2 )
2

(1− 1
2z

2
0)

2
(28)

yields z0 = c
1

2 ≈ 0.0464774...
1

2 ≈ 0.215586... and hence the invariant density of f21 = f2 ◦ f1 is given by

ρ21(ϕ) =
1− c

1 + c− 2
√
c cos 2πϕ

. (29)
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FIG. 1: The density ρ12(ϕ) (lower dashed line at ϕ = 0) and the density ρ21(ϕ) (upper dashed line at ϕ = 0), obtained by
switching between f1 and f2 on the short time scale T = 1. The Birkhoff density 1

2
ρ12(ϕ) +

1

2
ρ21(ϕ) corresponds to the dotted

line. In the limit T → ∞, the Birkhoff density will converge to the superstatistical composition ρ∞(ϕ) (solid line).

The Birkhoff density, which describes the long-term distribution of iterates independent of the phase of the periodic
orbit, is then given by 1

2ρ12(ϕ) +
1
2ρ21(ϕ).

Fig. 1 shows the densities ρ12 and ρ21 (dashed lines), the Birkhoff density 1
2 (ρ12+ρ21) (dotted line) and the supersta-

tistical composition ρ∞ (solid line) as a function of ϕ. Apparently, all curves are different. But the difference between
Birkhoff density 1

2ρ12 +
1
2ρ21 and the superstatistical composition ρ∞ will decrease if the time scale T of switching

between parameters is increased. There is a transition scenario from the Birkhoff density to the superstatistical result
ρ∞ for T → ∞.

III. STATEMENT OF MAIN RESULT

Physicists use superstatistical techniques in many applications [2, 5, 7–10, 13, 14, 18], but a rigorous proof and
estimate for the error terms involved in the superstatistical approximation are missing. It would be highly desirable to
have a very general theorem delivering this. Unfortunately, in full generality such a theorem is out of reach presently.
Hence in this paper we restrict ourselves to a first step in this direction, a rigorous proof for particular dynamics
(Blaschke products) and a particular orbit structure in parameter space, namely blocks of two alternating Blaschke
products.
Let us prepare the mathematical background for our main theorem. Let λ0 be the normalized Lebesgue measure

on the unit circle S1. For any z in the unit disk, let λz denote the harmonic measure on the unit circle whose density

ρz with respect to the normalized Lebesgue measure λ0 on S1 is given by the Poisson kernel 1−|z|2

|u−z|2 , u ∈ S1.

Suppose we are given two Blaschke products A and B which expand Lebesgue measure λ0 on the unit circle. Given
an arbitrary composition C = Cl ◦ . . . ◦ C1 (or word) with Ci ∈ {A,B} define λC = λγ where γ is the attracting
fixed point of the composition C. Thus λA = λα where α is the attracting fixed point of A and λB = λβ where β is
the attracting fixed point of B. We are interested in alternate block iteration of A of length m and of B of length n.
When iterated cyclically the two maps A and B induce a Birkhoff measure

1

m+ n
{

m
∑

i=1

λAi◦Bn◦Am−i +
n
∑

j=1

λBj◦Am◦Bn−j} .

The sum over i and j takes care of the fact that we average over all possible phases of iteration of Am and Bn in a
cyclic way, analogous to eq. (24) and (27) for m = n = 1. Our main result is that as m and n tend to infinity with
fixed ratio p : q (satisfying p+ q = 1) this Birkhoff measure tends to the super-statistical limit pλA + qλB . One thus
gets in this limit a significant simplification — just the superstatistical approximation used by physicists.
To formulate our main theorem, it is useful to proceed to densities. Writing ρC(= ργ) for the (Poisson) density of



6

λC we obtain the quantity

1

m+ n
{

m
∑

i=1

ρAi◦Bn◦Am−i +

n
∑

j=1

ρBj◦Am◦Bn−j}

as the Birkhoff density for the cycle of maps A and B.

Given a Blaschke product B and a point α in the unit disk, define the error εB(α) by

εB(α) =

∞
∑

j=1

εBj ,α .

Similarly, given a Blaschke product A and a point β in the unit disk, define the error εA(β) by

εA(β) =

∞
∑

i=1

εAi,β .

We are interested in the case α is the attracting fixed point of A and β is the attracting fixed point of B.
The individual terms εBj ,α are given by the difference in Poisson densities ρBj(α) − ρβ and the individual terms

εAi,β are given by the difference in Poisson densities ρAi(β) − ρα. These Poisson differences converge to zero, in the
supremum norm on densities, exponentially fast as i and j tend to infinity. Hence the above errors are well-defined.

Given |b| with 0 < |b| < 1/
√
3 put

r|b| =
1− |b|2 −

√

(1 + |b|2)(1− 3|b|2)
2|b|2

which satisfies 0 < r|b| < 1.

THEOREM: Given two Blaschke products A and B with opposite zeroes: A(z) = a0
z2−a2

1−ā2z2 and B(z) = b0
z2−b2

1−b̄2z2

(with |a0| = |b0| = 1) and satisfying |a|, |b| < 1/
√
3, and given r with max{r|a|, r|b|} ≤ r < 1 then, putting K = 2r

1+r2

(< 1), we have, for all m,n ∈ N:

∣

∣

∣

∣

∣

m
∑

i=1

ρAi◦Bn◦Am−i −mρα − εA(β)

∣

∣

∣

∣

∣

<
4r

(1− r)2

(

Kn+1 +Km+1

1−K

)

,

∣

∣

∣

∣

∣

∣

n
∑

j=1

ρBj◦Am◦Bn−j − nρβ − εB(α)

∣

∣

∣

∣

∣

∣

<
4r

(1− r)2

(

Km+1 +Kn+1

1−K

)

.

COROLLARY:
m
∑

i=1

ρAi◦Bn◦Am−i +
n
∑

j=1

ρBj◦Am◦Bn−j − (mρα + nρβ) → εA(β) + εB(α)

exponentially fast as m and n tend to infinity.

COROLLARY: The Birkhoff density

1

m+ n
{

m
∑

i=1

ρAi◦Bn◦Am−i +

n
∑

j=1

ρBj◦Am◦Bn−j}

tends to the super-statistical limit pρA + qρB as m and n tend to infinity with fixed ratio p : q (satisfying p+ q = 1).
Note that the linear combination pρA+qρB occuring above is just the analogue of the superstatistical approximation

used by physicists, with the invariant densities of the two different Blaschke products replacing the two different
stationary Gaussian distributions that occur in equation (8). The limit m → ∞ and n → ∞ corresponds to the
assumption of time scale separation made by physicists: The system has enough time to relax to the stationary state
of A before the next parameter change takes place, changing the dynamics to B. The fact that p and q occur simply
means that it is relevant how long the system stays in state A as compared to state B. All this makes physical sense.

In the following sections we show how to arrive at this rigorous result, by proving statements for the existence and
uniqueness of invariant measures of Blaschke products and estimating the relevant error terms of the superstatistical
approximation.
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IV. DETAILED CALCULATIONS FOR BLASCHKE PRODUCTS

Degree d maps of the circle

Let λ0 be normalized Lebesgue measure on the unit circle S1. Suppose τ : S1 → S1 is C1 and has degree d > 1.
Then its pushforward action τ∗ : µ 7→ µ ◦ τ−1 on probability measures µ which are absolutely continuous with respect
to Lebesgue measure is given by the transfer operator Lτ on densities. Thus τ∗ : ρλ0 7→ Lτ (ρ)λ0 where

(Lτ (ρ))(e
iθ) =

∑

eiζ∈τ−1(eiθ)

ρ(eiζ)

|τ ′(eiζ)| .

The main example which we are concerned with is when τ is the restriction to S1 of a Blaschke product

B(z) = b0

d
∏

j=1

z − bj

1− b̄jz

(where |b0| = 1 and |bj| < 1 for j = 1, 2, . . . , d).

Action of Blaschke products on Poisson measures

For any z in the unit disk, let λz denote the harmonic measure on the unit circle whose density ρz with respect to

the normalized Lebesgue measure λ0 on S1 is given by the Poisson kernel 1−|z|2

|u−z|2 , u ∈ S1.

As observed in [27], a Blaschke product pushes forward Poisson measures to Poisson measures.

PROPOSITION 1: If f : D → D is an analytic function on the unit disk D whose extension to D̄ is continuous and
where the restriction τ to S1 takes values in S1. Then, for all z ∈ D, we have

τ∗λz = λf(z) .

Proof. The proof is given in [27], but we repeat it here in order to make the paper self-consistent. Given a continuous
function ψ : S1 → R the unique extension ψ̄ of ψ which is continuous on D̄ and harmonic in D is given by

ψ̄(z) =

∫

S1

ψdλz

where λz is the harmonic measure on S1 determined by z ∈ D. (See [24] Chapter 10.)
Given f : D → D an analytic function on the unit disk D whose boundary value τ to S1 is continuous, mapping

S1 to S1, then for any continuous ψ : S1 → R we have that ψ̄ ◦ f is a harmonic function with boundary value ψ ◦ τ
whence equals ψ ◦ τ (by the uniqueness theorem for harmonic extensions).
Write τ∗ for the action on probability measures on S1 induced by τ . Then for all ψ : S1 → R continuous we have

∫

S1

ψd(τ∗λz) =
1

2π

∫ 2π

0

ψ(eiθ)(Lτ (ρz))(e
iθ)dθ

=
1

2π

∫ 2π

0

ψ(eiθ)
∑

eiζ∈τ−1(eiθ)

ρz(e
iζ)

|τ ′(eiζ)|dθ

=
1

2π

∫ 2π

0

ψ(τ(eiζ ))ρz(e
iζ)dζ

=

∫ 2π

0

(ψ ◦ τ)(eiζ )dλz(ζ)
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=

∫

S1

(ψ ◦ τ)dλz = ψ ◦ τ(z)

= (ψ̄ ◦ f)(z) = ψ̄(f(z)) =

∫

S1

ψdλf(z) .

It follows that τ∗λz = λf(z) by uniqueness of the probability measure. �

Consequently, if B is a Blaschke product with a fixed point z in the unit disk then λz is an invariant measure for
the action (τ) on S1. With respect to such smooth invariant measure λ̃ the transfer equation Lτ̃ (ρ̃) = ρ̃ (with ρ̃ = 1
and τ̃ the straightened circle map) together with an upper bound on |τ̃ ′| shows (via |τ̃ ′| > 1) that τ expands such
measure. By Walters [29] (Theorem 18) there is only one invariant probability measure absolutely continuous with
respect to Lebesgue and so this must be λz . The measure is mixing whence ergodic.

If a Blaschke product of degree d expands some measure on the unit circle then there must be exactly d− 1 fixed
points on S1, but since there are d + 1 fixed points on the Riemann sphere, there must be two further fixed points,
one in each component of the complement of S1, and both attracting (by the Schwarz lemma).

Blaschke products which expand Lebesgue measure

Martin [27] gives a sufficient condition for a Blaschke product

B(z) = b0

d
∏

j=1

z − bj

1− b̄jz

(where |b0| = 1 and |bj| < 1 for j = 1, 2, . . . , d and d ≥ 2) to expand Lebesgue measure on the unit circle. The
sufficient condition is

d
∑

j=1

1− |bj|
1 + |bj|

> 1 .

(In the special case d = 2 and b1 + b2 = 0 this can be improved to

2
∑

j=1

1− |bj |2
1 + |bj |2

> 1 ,

which reduces to |bj | < 1/
√
3.)

Dynamics on the unit disk

Any holomorphic self map of unit disk does not increase the pseudo hyperbolic distance

d(z, w) =
|z − w|
|1− w̄z|

(a metric which is invariant under Möbius transformations preserving the disk). In the case the self map is a Blaschke
product of degree at least two we get contraction uniform on compact subsets of the disk.

LEMMA 2: For z and w in the unit disk we have

|z − w|
|1− w̄z| ≤

|z|+ |w|
1 + |z||w| .

Proof. We consider w fixed and z varying around a circle centre the origin and radius r < 1. Then the pseudo
hyperbolic distance between z and w is the absolute value of

v =
z − w

1− w̄z
.
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Inverting this yields

z =
v + w

1 + w̄v

and the absolute value of this equals r. Hence

|v + w|2 = r2|1 + w̄v|2

This can be written as
∣

∣(1− r2ww̄)v + (1− r2)w
∣

∣ = r(1 − ww̄)

which is the equation of a circle in v. The centre is

− (1− r2)w

1− r2ww̄

and the radius is

r(1 − ww̄)

1− r2ww̄

whence the maximum of |v| on the circle is

(1− r2)|w| + r(1 − |w|2)
1− r2|w|2

=
|w| − r2|w| + r − r|w|2
(1− r|w|)(1 + r|w|)

=
(1 − r|w|)(r + |w|)
(1− r|w|)(1 + r|w|) =

r + |w|
1 + r|w| . �

PROPOSITION 3: In the case B is a Blaschke product of degree two with opposite zeros we have

d(B(z), B(w))

d(z, w)
=

∣

∣

∣

∣

z + w

1 + w̄z

∣

∣

∣

∣

.

Proof. Introduce [z, w] = z−w
1−w̄z . Then a degree two Blaschke product can be written B(z) = b0[z, b1][z, b2]. When B

is a Blaschke product of degree d in z then the derived map

B△(z, w) =
[B(z), B(w)]

[z, w]

turns out to be a Blaschke product of degree d− 1 in z [23]. We prove this in the case B has degree two with opposite
zeros b1 and b2 (written ±b) obtaining the precise formula.

[B(z), B(w)] =
B(z)−B(w)

1−B(w)B(z)

=
b0[z, b1][z, b2]− b0[w, b1][w, b2]

1− b̄0[w̄, b̄1][w̄, b̄2]b0[z, b1][z, b2]

=
b0

[

z2−b2

1−b̄2zz − w2−b2

1−b̄2w2

]

1− b0b̄0

(

w̄2−b̄2

1−b2w̄2

)(

z2−b2

1−b̄2z2

)
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After a short calculation one obtains

[B(z), B(w)] =
b0(z − w)(z + w)

(1 − w̄z)(1 + w̄z)

(

1− b2w̄2

1− b̄2w2

)

.

Hence

B△(z, w) =
[B(z), B(w)]

[z, w]

=
b0(z + w)

(1 + w̄z)

(

1− b2w̄2

1− b̄2w2

)

is a degree one Blaschke product in z whose absolute value is

∣

∣

∣

∣

z + w

1 + w̄z

∣

∣

∣

∣

. �

COROLLARY 4: We have a bound on the uniform contraction on compact subsets of the disk, which is given by

d(B(z), B(w))

d(z, w)
≤ |z|+ |w|

1 + |z||w| .�

Write |b| for the common absolute value of b1 and b2. When |b| < 1/
√
3 put

r|b| =
1− |b|2 −

√

(1 + |b|2)(1 − 3|b|2)
2|b|2 .

PROPOSITION 5: Given a Blaschke product B with zeros ±b satisfying |b| < 1/
√
3 and an r satisfying r|b| ≤ r < 1

then the closed disk Dr centre 0 radius r is mapped inside itself by B.

Proof. We first show that, for |b| < 1 and r < 1, a Blaschke product B with zeros ±b maps the disk Dr inside the
disk Ds centre 0 radius s where

s =
r2 + |b|2
1 + |b|2r2 .

Treating

B(z) = b0
z2 − b2

1− b̄2z2

as a function of z2 (and b2) we can apply the lemma and obtain

|z2 − b2|
|1− b̄2z2| ≤

|z2|+ |b2|
1 + |z2||b2|

whence the inclusion follows since s is monotone increasing in r.
Finally the hypothesis r ≥ r|b| then guarantees that s ≤ r. �

If r satisfies the hypotheses for two Blaschke products A and B, each with opposite zeros, then an iterated function
system on Dr with uniform contraction K = 2r

1+r2 (with respect to the pseudo-hyperbolic distance on D) is created.

This is the situation considered by Hutchinson [26].
When iterated cyclically the two maps A and B induce a Birkhoff measure

1

m+ n
{

m
∑

i=1

λAi◦Bn◦Am−i +

n
∑

j=1

λBj◦Am◦Bn−j} .
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Superstatistics for Blaschke products

The map z 7→ λz (from the unit disk) is continuous relative to the supremum norm on densities, as is seen in the
following

PROPOSITION 6: For z and w in the unit disk and u in the unit circle
∣

∣

∣

∣

1− |w|2
|u− w|2 − 1− |z|2

|u − z|2
∣

∣

∣

∣

≤ 2|z − w|
(1− |z|)(1− |w|) .

Proof. For |z| < 1 and |u| = 1 we have

1− |z|2
|u− z|2 =

1− |z|2
|(u− z)(1− z̄u)|

=

∣

∣

∣

∣

1

u− z
+

z̄

1− z̄u

∣

∣

∣

∣

.

Now

1

u− w
− 1

u− z
=

w − z

(u − w)(u − z)

and

w̄

1− w̄u
− z̄

1− z̄u
=

w̄ − z̄

(1− w̄u)(1− z̄u)
.

It follows, by the triangle inequality, that

∣

∣

∣

∣

1− |w|2
|u− w|2 − 1− |z|2

|u− z|2
∣

∣

∣

∣

≤
∣

∣

∣

∣

w − z

(u− w)(u − z)

∣

∣

∣

∣

+

∣

∣

∣

∣

w̄ − z̄

(1− w̄u)(1− z̄u)

∣

∣

∣

∣

=
|w − z|

|(u− w)(u − z)| +
|w̄ − z̄|

|(ū− w̄)(ū− z̄)|

=
2|w − z|

|u− w| · |u− z| ≤
2|w − z|

(1− |w|)(1 − |z|) . �

DEFINITION 7: As mentioned before in section 3, given a Blaschke product B and a point α in the unit disk, define
the error εB(α) by

εB(α) =

∞
∑

j=1

εBj ,α .

Similarly, given a Blaschke product A and a point β in the unit disk, define the error εA(β) by

εA(β) =

∞
∑

i=1

εAi,β .

We are interested in the case α is the attracting fixed point of A and β is the attracting fixed point of B.
The individual terms εBj ,α are given by the difference in Poisson densities ρBj(α) − ρβ and the individual terms

εAi,β are given by the difference in Poisson densities ρAi(β) − ρα. These Poisson differences converge to zero, in the
supremum norm on densities, exponentially fast as i and j tend to infinity, by Proposition 6. Hence the above errors
are well-defined.
Given an arbitrary composition C = Cl ◦ . . . ◦C1 (or word) with Ci ∈ {A,B} define εC := ρC − ρCl

where ρC = ργ
where γ is the attracting fixed point of the composition C. (Thus ρCl

= ρα if Cl = A and ρCl
= ρβ if Cl = B.)
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THEOREM 8: Given two Blaschke products A and B with opposite zeroes: A(z) = a0
z2−a2

1−ā2z2 and B(z) = b0
z2−b2

1−b̄2z2

(with |a0| = |b0| = 1) and satisfying |a|, |b| < 1/
√
3, and given r with max{r|a|, r|b|} ≤ r < 1 then, putting K = 2r

1+r2

(< 1), we have, for all m,n ∈ N:

∣

∣

∣

∣

∣

m
∑

i=1

εAi◦Bn◦Am−i − εA(β)

∣

∣

∣

∣

∣

<
4r

(1− r)2

(

Kn+1 +Km+1

1−K

)

,

∣

∣

∣

∣

∣

∣

n
∑

j=1

εBj◦Am◦Bn−j − εB(α)

∣

∣

∣

∣

∣

∣

<
4r

(1 − r)2

(

Km+1 +Kn+1

1−K

)

.

Proof. For all i with 1 ≤ i ≤ m we have

εAi◦Bn◦Am−i = ρAi◦Bn◦Am−i − ρα

and εAi,β = ρAi(β) − ρα. Hence

εAi◦Bn◦Am−i − εAi,β = ρAi◦Bn◦Am−i − ρAi(β)

Furthermore

∣

∣ρAi◦Bn◦Am−i − ρAi(β)

∣

∣ ≤ 2

(1− r)2
|Ai(Bn(γ))−Ai(β)| ≤ 2

(1− r)2
· 2rKi+n

(since d(γ, β) ≤ 2r
1+r2 ) where γ is the fixed point of AmBn. Then, for i > m, we have

∣

∣εAi,β

∣

∣ ≤ 2

(1− r)2
|Ai(β) − α| ≤ 2

(1− r)2
· 2rKi

(since d(β, α) ≤ 2r
1+r2 ). Summing over all i ≥ 1 gives the first conclusion. A similar argument gives the second

conclusion. �

COROLLARY 9:

m
∑

i=1

ρAi◦Bn◦Am−i +

n
∑

j=1

ρBj◦Am◦Bn−j − (mρα + nρβ) → εA(β) + εB(α)

exponentially fast as m and n tend to infinity.

COROLLARY 10: The Birkhoff density

1

m+ n
{

m
∑

i=1

ρAi◦Bn◦Am−i +

n
∑

j=1

ρBj◦Am◦Bn−j}

tends to the super-statistical limit pρA + qρB as m and n tend to infinity with fixed ratio p : q (satisfying p+ q = 1).
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