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Abstract. We present a new model for the redshift-space power spectrum of galaxies and
demonstrate its accuracy in modeling the monopole, quadrupole, and hexadecapole of the
galaxy density field down to scales of k = 0.4 hMpc−1. The model describes the clustering
of galaxies in the context of a halo model and the clustering of the underlying halos in
redshift space using a combination of Eulerian perturbation theory and N -body simulations.
The modeling of redshift-space distortions is done using the so-called distribution function
approach. The final model has 13 free parameters, and each parameter is physically motivated
rather than a nuisance parameter, which allows the use of well-motivated priors. We account
for the Finger-of-God effect from centrals and both isolated and non-isolated satellites rather
than using a single velocity dispersion to describe the combined effect. We test and validate
the accuracy of the model on several sets of high-fidelity N -body simulations, as well as
realistic mock catalogs designed to simulate the BOSS DR12 CMASS data set. The suite of
simulations covers a range of cosmologies and galaxy bias models, providing a rigorous test
of the level of theoretical systematics present in the model. The level of bias in the recovered
values of fσ8 is found to be small. When including scales to k = 0.4 hMpc−1, we find 15-30%
gains in the statistical precision of fσ8 relative to k = 0.2 hMpc−1 and a roughly 10-15%
improvement for the perpendicular Alcock-Paczynski parameter α⊥. Using the BOSS DR12
CMASS mocks as a benchmark for comparison, we estimate an uncertainty on fσ8 that
is ∼10-20% larger than other similar Fourier-space RSD models in the literature that use
k ≤ 0.2 hMpc−1, suggesting that these models likely have a too-limited parametrization.
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1 Introduction

Galaxy redshift surveys measure the three-dimensional clustering of galaxies in the Universe,
and over the past few decades, they have provided a wealth of cosmological information
[1–9]. In combination with other cosmological probes, such as observations of the cosmic
microwave background, type-Ia supernova samples, and weak-lensing surveys, analyses of
the large-scale structure (LSS) of the Universe have proven invaluable in establishing the
current cosmological paradigm, the ΛCDM model, as well as measuring its parameters with
ever-increasing precision.

Crucial to the success of galaxy surveys has been the ability to precisely and accurately
measure the feature imprinted on the clustering of galaxies by baryon acoustic oscillations in
the early Universe (BAO; see e.g., [10] for a review). The BAO signal can be used to provide
constraints on the expansion history of the Universe and infer properties of dark energy (e.g.,
[11, 12]). The isotropic effect was first detected in the SDSS [5] and the 2dFGRS [4], and
more recent measurements of the anisotropic signal, combined with the Alcock-Paczynski
(AP; [13]) effect, have provided percent-level measurements of the Hubble parameter H(z)
and angular diameter distance Da(z) [9]. Perhaps most encouragingly, the BAO signal is
well-understood theoretically, with systematic effects on the distance scale expected to be
sub-dominant for future generations of surveys [14–18].

Beyond the BAO signal, additional information is present in the clustering of galaxies
through what are known as redshift-space distortions (RSD). The peculiar velocities of galax-
ies affect their measured redshifts through the Doppler effect, and in turn, these measured
redshifts are used to infer the line-of-sight (LOS) position of those galaxies. The peculiar
velocity field is sourced by the gravitational potential, and thus, an anisotropic signal con-
taining information about the rate of structure growth in the Universe is imprinted on the
clustering. Extracting information from RSD is inherently more difficult than with BAO,
as it requires modeling of the full broadband shape of the clustering statistic and precise
understanding of the anisotropy induced by RSD. The theoretical task is complicated by the
fact that the well-understood, linear Kaiser model [19] breaks down on relatively large scales,
with various kinds of nonlinear effects complicating the theoretical modeling (e.g., [20–23]).
Of particular importance is the large, nonlinear virial motions of satellite galaxies within ha-
los, known as the Finger-of-God (FoG) effect [24]. Since the statistical precision of clustering
measurements is generally higher on smaller scales, where the effects of nonlinearities are
worse, a direct limit on the amount of useable cosmological information is imposed due to
theoretical uncertainties.

Despite these modeling challenges, RSD analyses have developed into one of the most
popular and powerful cosmological probes today [25–36]. Constraints on the growth rate of
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structure through measurements of the parameter combination f(z)σ8(z) can provide tests
of General Relativity (e.g., [28]), as well as information about the properties of neutrinos
[35, 37] and tighter constraints on the expansion history through the AP effect (e.g., [12]).
Recent results from Data Release 12 (DR12) of the Baryon Oscillation Spectroscopic Survey
(BOSS) [38–41] have provided the tightest constraints to date on the growth rate of structure,
with roughly 10% constraints on fσ8(zeff) in 3 redshift bins centered at zeff = 0.38, 0.51, and
0.61.

To date, RSD analyses have generally either relied directly on the results of N -body
simulations or on perturbative approaches to model the clustering of galaxies in the quasi-
linear and nonlinear regimes. Both approaches have their pros and cons. For simulation-
based analyses, e.g., [36, 42–44], the simulations represent the best possible description of
nonlinearities, although individual simulations are expensive to run and, often, the relevant
parameter space cannot be as sufficiently explored as one would like. On the other hand,
modeling techniques relying on perturbation theory (PT), e.g., [38, 39, 41, 45], are relatively
fast to compute but will always break down on small enough scales and fail to capture non-
perturbative features, such as the FoG effect from satellites. In either case, simulations play
a crucial role in estimating the range of scales where a model remains accurate enough to
recover cosmological parameters in an unbiased fashion.

In this work, we present a new model for the redshift-space power spectrum of galaxies,
describing the galaxy clustering in the context of a halo model [46–49] and relying on a
combination of Eulerian PT and N -body simulations to model the power spectrum of dark
matter halos in redshift space. We use several sets of N -body simulations to validate our
model, and we perform cosmological parameter analyses on realistic BOSS-like mock catalogs
to verify both the accuracy and constraining power of the model. The model relies on the
distribution function approach [50–55] to map real-space statistics to redshift space. This
formalism is different but complementary from other commonly-used approaches in RSD
analyses, such as the TNS model [56] or the Gaussian streaming model [57]. We build
upon the results presented in [58], which showed that the characterization of the redshift-
space power spectrum of galaxies in terms of 1-halo and 2-halo correlations is accurate when
compared against N -body simulations. We extend that work by improving the accuracy
of the underlying model for the halo redshift-space power spectrum. The model is based
on the PT results presented in [54], but uses simulation-based modeling for key terms. In
particular, we develop and extend the Halo-Zel’dovich Perturbation Theory (HZPT) of [59],
which relies on a combination of linear Lagrangian PT and simulation-based calibration. A
Python software package pyRSD that implements the model described in this work is publicly
available1.

This paper is organized as follows. Section 2 describes the set of simulations that we
use to calibrate our model, as well as the test suite that we use for independent validation.
We describe the power spectrum estimator, covariance matrix, and likelihood analysis used
to perform parameter estimation in section 3. In section 4, we detail the power spectrum
model, first reviewing the halo model formalism presented in [58] and then discussing several
new modeling approaches for the redshift-space halo power spectrum. We assess the accuracy
and performance of the model based on an independent test suite of simulations in section 5.
Finally, we discuss our results and future prospects in section 6 and conclude in section 7.

1https://github.com/nickhand/pyRSD
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Name Lbox [ h−1Mpc] zbox Ωm Ωbh
2 h ns σ8

RunPB 1380 0.55 0.292 0.022 0.69 0.965 0.82

N-series; Challenge D,E 2600 0.562 0.286 0.02303 0.7 0.96 0.82

Challenge A,B,F,G 2500 0.5 0.30711 0.022045 0.6777 0.96 0.82

Challenge C 2500 0.441 0.27 0.02303 0.7 0.96 0.82

Table 1: The cosmological and simulation parameters for the various N -body simulations
used in this work.

2 Simulations

We use several sets of N -body simulations for both calibrating and testing the model pre-
sented in this paper. The first set of simulations, described in section 2.1, is used heavily
in verifying individual components of the clustering model. Sections 2.2 and 2.3 describe an
independent suite of high-fidelity simulations that we use to independently verify the accu-
racy and precision of the model. The relevant cosmological and simulation parameters for
the mocks discussed in this section are summarized in table 1.

2.1 RunPB

The main set of simulations used for calibration and testing purposes is the RunPB N -
body simulation produced by Martin White with the TreePM N-body code of [60]. These
simulations have been used recently in a number of analyses [36, 61–63]. The simulation set
has 10 realizations of 20483 dark matter particles in a cubic box of length L = 1380 h−1Mpc.
The cosmology is a flat ΛCDM model with Ωbh

2 = 0.022, Ωm = 0.292, ns = 0.965, h = 0.69
and σ8 = 0.82.

For testing and calibration of the modeling of halo clustering, we use halo catalogs
generated using a friends-of-friends (FOF) algorithm with a linking length of 0.168 times
the mean particle separation to identify halos [64]. We consider 8 halo mass bins (as a
function of Mfof) across 10 redshift outputs, ranging from z = 0 to z = 1. The redshift
outputs considered are: z ∈ {0, 0.1, 0.25, 0.4, 0.5, 0.55, 0.65, 0.75, 1}. The (overlapping) halo
mass bins range from log10Mfof = 12.6 to log10Mfof = 14.4 and are described in table 2. For
reference, table 2 also gives the linear bias values at z = 0.55 and z = 0. The linear biases for
each halo mass bin are determined from the ratio of the large-scale halo-matter cross power
spectrum to the matter power spectrum at each redshift output.

We also rely heavily on a set of galaxy catalogs produced using halo occupation dis-
tribution (HOD) modeling from halo catalogs generated from the z = 0.55 RunPB re-
alizations. The halo catalog production and the HOD modeling is the same as in [36]:
halos are identified using a spherical overdensity (SO) algorithm and the HOD parame-
terization follows [65]. In [36], the RunPB simulations are denoted as the MedRes sim-
ulations. The HOD parameters used to generate the galaxy catalog used in this work
are {log10Mmin, σlog10M , log10M1, α, log10Mcut} = {12.99, 0.308, 14.08, 0.824, 13.20}. These
HOD parameters were chosen to reproduce the clustering of the BOSS CMASS sample [66],
i.e., a large-scale linear bias of b1 ∼ 2 at z ∼ 0.5.
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2.2 N-series

The N-series cubic boxes are a set of realizations from a large-volume, high-resolution N -body
simulation, used as part of a “mock challenge“ testing procedure by the BOSS collaboration
in preparation for publishing results as part of DR12 in [9]. Details of this mock challenge
can be found in [67]. Briefly, the N-series suite consists of seven independent, periodic box
realizations with the same cosmology, and a side length of Lbox = 2600 hMpc−1 at a redshift
zbox = 0.5. The cosmology is given by: Ωm = 0.286, ΩΛ = 0.714, σ8 = 0.82, ns = 0.96, and
h = 0.7. The N -body simulation was run using the GADGET2 code [68], with sufficient
mass and spatial resolution to resolve the halos that typical BOSS galaxies occupy. A single
galaxy bias model was assumed, and HOD modeling was used to populate halos from the
seven realizations with galaxies. The parameters of the HOD were chosen to reproduce the
clustering of the BOSS CMASS sample (i.e., linear bias b1 ∼ 2 at z ∼ 0.5).

An additional set of 84 mock catalogs were generated from the three orthogonal projec-
tions of each of the seven N-series cubic boxes using the make survey software2 [69]. Denoted
as the “cutsky” mocks, these mocks have the same angular and radial selection function as
the NGC DR12 CMASS sample [9, 70]. They model the true geometry, volume, and redshift
distribution of the CMASS NGC sample and provide a realistic simulation of the true BOSS
data set. Each catalog is an independent realization, and these mocks were also used as part
of the DR12 mock challenge.

2.3 Lettered Challenge Boxes

A second part of the BOSS DR12 mock challenge was performed on a suite of HOD galaxy
samples constructed from a heterogeneous set of high-resolution N -body simulations. There
are seven different HOD galaxy catalogs, constructed from large-volume periodic simulation
boxes with varying cosmologies. The seven catalogs are labeled A through G. Several of
the boxes are based on the Big MultiDark simulation [71]. The catalogs are constructed
out of simulation boxes with a range of 3 underlying cosmologies, and boxes with the same
cosmology have varying galaxy bias models, which varies the overall galaxy bias by ±5%.
The redshift of the boxes ranges from z = 0.441 to z = 0.562.

These cases were designed to quantify the sensitivity of RSD models to the specifics
of the galaxy bias model over a reasonable range of cosmologies, testing for any possible
theoretical systematics. The cosmology and relevant simulation parameters for each of these

2https://github.com/mockFactory/make survey

bin 1 2 3 4 5 6 7 8

log10M
min
fof 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0

log10M
max
fof 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4

b1(z = 0.55) 1.40 1.56 1.78 2.04 2.36 2.77 3.28 3.93

b1(z = 0) 1.00 1.07 1.19 1.33 1.51 1.74 2.03 2.41

Table 2: The halo mass bins used when comparing results from the RunPB simulations to
theoretical modeling of halo clustering. For each of the 10 redshift outputs ranging from
z = 0 to z = 1, we consider 8 fixed halo mass bins. We give the corresponding large-scale,
linear bias for each bin for two redshifts, z = 0.55 and z = 0.
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boxes is given in table 1. A comparison of the results from the mock challenge in context
of the BOSS DR12 results is presented in [9], and individual Fourier-space clustering results
from the challenge are discussed in [39, 40].

3 Analysis methods

In this work, we measure the 2-point clustering of galaxies as characterized by the power
spectrum multipoles, defined in terms of the 2D anisotropic power spectrum as

P`(k) =
2`+ 1

2

∫ 1

−1
dµP (k, µ)L`(µ), (3.1)

where L` is the Legendre polynomial of order `. We estimate the multipoles from catalogs of
discrete galaxies in periodic box N -body simulations and from more realistic, cutsky mock
catalogs, which mimic real survey data. We estimate the continuous galaxy overdensity field
using a Triangular Shaped Cloud interpolation scheme (see e.g., [72]) to assign the galaxy
positions to a 3D Cartesian grid.

For both periodic boxes and cutsky mocks, we employ Fast Fourier Transform (FFT)
based estimators to compute the multipoles. In the case of simulation boxes with periodic
boundary conditions, the line-of-sight is assigned to a specific box axis and the power spec-
trum P (k, µ) can be computed as the square of the Fourier modes of the overdensity field.
The desired multipoles are then found by computing equation 3.1 as a discrete sum over
P (k, µ). In the case of the cutsky mocks, we employ the FFT-based estimator described in
[73], which modifies the FFT estimator presented by [74] and [75]. Building on the ideas
of previous power spectrum estimators [76, 77], this estimator uses a spherical harmonic de-
composition to allow the use of FFTs to compute the higher-order multipoles, with 5 and 9
FFTs required to compute the quadrupole and hexadecapole, respectively. When computing
FFTs, we ensure that the grid configuration is such that our desired maximum wavenumber
is not greater than one-half of the Nyquist frequency of the grid, which should eliminate
any aliasing effects on our measured power spectra (i.e., [78]). The measured power spectra
are estimated on a discrete k-grid which makes the angular distribution of Fourier modes
irregular. This discreteness effect is especially important at low k and can be accounted for
by modifying equation 3.1 as

P`(k) =
2`+ 1

2

∫ 1

−1
dµP (k, µ)

Nmodes(k, µ)

Nbin(k)
L`(µ), (3.2)

where the N(k, µ) gives the total number of modes on the k-space grid, and the normalization
is

Nbin(k) =

∫ 1

−1
dµNmodes(k, µ). (3.3)

When computing the theoretical multipoles with the model in this work, which we compare
to simulation results, we use equation 3.2 to account for the discreteness effect present in the
simulation multipoles. This procedure has been shown to sufficiently correct for this effect
[39]. For all power spectrum calculations, we use the publicly-available software package
nbodykit3 [79], which uses massively parallel implementations of these estimators for fast
calculations optimized to run on high-performance computing machines.

3https://github.com/bccp/nbodykit
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We use the Markov chain Monte Carlo (MCMC) technique to derive the likelihood
distributions of the model parameters described in detail in section 4.4. We employ a modi-
fied version of the Python code emcee4 [80] to explore the relevant model parameter space.
The data vector used in these fits is the concatenation of the monopole, quadrupole, and
hexadecapole,

D = [P0(k), P2(k), P4(k)] , (3.4)

where we have measured the multipoles from simulations as previously described. The inclu-
sion of the hexadecapole P4(k) has been shown to offer significant improvements on RSD con-
straints, i.e., [39, 40]. In all fits, we use a bin spacing in wavenumber of ∆k = 0.005 hMpc−1,
and the maximum wavenumber included in the fits ranges from kmax = 0.2 hMpc−1 to
kmax = 0.4 hMpc−1. The likelihood fits require an estimate of the covariance matrix, and we
use the theoretical Gaussian covariance for the multipoles in Fourier space (i.e., [45]). In the
case of the cutsky mocks, we properly account for the redshift distribution and survey volume
of the mock catalogs when computing the expected covariance, using e.g., [77]. Our choice for
covariance matrix ignores non-Gaussian contributions produced by e.g., nonlinear structure
growth, and in the case of the cutsky mocks, correlations induced by the window function
due to the survey geometry. We have tested the impact of this choice for covariance matrix
by comparing the parameter fits obtained when using a covariance matrix derived from a set
of 1000 mock catalogs from the Quick Particle Mesh (QPM; [69]) simulations. While we do
find variations in the best-fit parameters found when using the simulation-based covariance,
the shifts are consistent with the derived errors.

4 The power spectrum model

In this section, we present the model for the anisotropic clustering of galaxies in Fourier space,
as characterized by the broadband, two-dimensional power spectrum. First, we connect the
clustering of galaxies to the clustering of halos, reviewing the halo model formalism presented
in [58] in §4.1. We describe our model for the redshift-space halo power spectrum and the
various modeling improvements from past work in §4.2. In §4.3, we discuss how we account for
various observational effects when modeling real galaxy survey data. Finally, we summarize
the complete set of model parameters in §4.4.

4.1 Halo model formalism for galaxies

Our treatment of the clustering of galaxies is based upon the model presented in [58]. The
clustering of a given galaxy sample is considered within the context of a halo model [46–
49, 81], which allows one to separately consider contributions to the clustering arising from
galaxies within the same halo and those from separate halos, known as the 1-halo and 2-
halo terms, respectively. This formalism is ideal when accounting for the effects of satellite
galaxies on the anisotropic power spectrum, where the radial distribution of satellites induces
both 1-halo and 2-halo effects. We describe the relevant model details from [58], used in this
work, below.

4https://github.com/dfm/emcee
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4.1.1 Galaxy sample decomposition

In redshift space, we can decompose contributions to the galaxy overdensity field δSg into
contributions from central and satellite galaxies as

δSg (k) = (1− fs)δSc (k) + fsδ
S
s (k), (4.1)

where fs = Ns/Ng = 1−Nc/Ng is the satellite fraction, Nc and Ns are the numbers of central
and satellite galaxies, respectively, andNg = Nc+Ns is the total number of galaxies. It follows
then that the power spectrum of the galaxy density field (2π)3PSgg(k)δ(k+k′) ≡

〈
δSg (k)δSg (k′)

〉
can be expressed as

PSgg(k) = (1− fs)2PScc(k) + 2fs(1− fs)PScs(k) + f2
sP

S
ss(k), (4.2)

where PScc, P
S
cs, and PSss are the centrals auto power spectrum, the central-satellite cross power

spectrum, and the satellite auto power spectrum in redshift space, respectively.
To fully separate 1-halo and 2-halo contributions to the power spectrum, we further

decompose the central and satellite galaxy samples. We decompose the central galaxy density
field into those centrals that do and do not have a satellite galaxy in the same halo, denoted as
types “A” and “B” centrals, respectively. For the latter type, a 1-halo contribution will exist
due to the central-satellite correlations inside the same halo. We use a similar decomposition
for satellite galaxies, where we consider satellites that only have a single satellite in a halo
(type “A”) and those satellites that live in halos with more than one satellite (type “B”). The
latter type will contribute a 1-halo term to the power spectrum, due to correlations between
multiple satellites in the same halo.

With these galaxy sample definitions, we can express the central-satellite and satellite-
satellite power spectra in terms of 1-halo and 2-halo correlations. Note that by construction,
a halo can only have a single central galaxy, and thus, the centrals auto spectrum is a purely
2-halo contribution. The central-satellite cross power spectrum can be expressed as

PScs(k) = (1− fcB )PScAs(k) + fcBP
S
cBs

(k),

= (1− fcB )
[
(1− fsB )PScAsA + fsBP

S
cAsB

]
+ fcB

[
(1− fsB )PScBsA + fsBP

S
cBsB

]
, (4.3)

where fcB = NcB/Nc is the fraction of centrals that have a satellite in the same halo, and
fsB = NsB/Ns is the fraction of satellites that live in halos with more than one satellite.
Because the sample cB consists of central galaxies that have satellite galaxies inside the same
halo, the term PScBs (and similarly, PScBsA and PScBsB ) contains a 1-halo contribution, so we

write it as PScBs = PS,1hcBs + PS,2hcBs . All other power spectra terms in equation 4.3 are purely
2-halo contributions.

Similarly, we can express the satellite auto power spectrum as

PSss(k) = (1− fsB )2PSsAsA(k) + 2fsB (1− fsB )PSsAsB (k) + f2
sB
PSsBsB (k). (4.4)

As in the case of PScBs, the term PSsBsB includes both 1-halo and 2-halo contributions, which

we can express as PSsBsB = PS,1hsBsB +PS,2hsBsB . All other terms in equation 4.4 include only 2-halo
contributions.

Combining the terms in equations 4.3 and 4.4, the galaxy power spectrum in redshift
space is
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PSgg(k) = PS,1hgg (k) + PS,2hgg (k), (4.5)

where the 2-halo contributions are given by

PS,2hgg (k) = (1− fs)2PScc

+ 2fs(1− fs)
{

(1− fcB )
[
(1− fsB )PScAsA + fsBP

S
cAsB

]}
+ 2fs(1− fs)

{
fcB

[
(1− fsB )PS,2hcBsA

+ fsBP
S,2h
cBsB

]}
+ f2

s

[
(1− fsB )2PSsAsA + 2fsB (1− fsB )PSsAsB + f2

sB
PS,2hsBsB

]
, (4.6)

and the 1-halo contributions are

PS,1hgg (k) = 2fs(1− fs)
{
fcB

[
(1− fsB )PS,1hcBsA

+ fsBP
S,1h
cBsB

]}
+ f2

s f
2
sB
PS,2hsBsB

. (4.7)

4.1.2 Modeling 1-halo and 2-halo terms in redshift space

In this subsection, we discuss how we model the 1-halo and 2-halo terms in redshift space
that enter into equations 4.6 and 4.7. Our modeling of these terms in redshift space largely
follows the work presented in [58]; for completeness, we reproduce the relevant results from
that work below.

Modeling complications arise due to the effects of the radial distribution of satellite
galaxies inside halos on the galaxy power spectrum. In real space, correlations between
galaxies on small scales give rise to the 1-halo term. In Fourier space, the 1-halo term
manifests as a white noise-like term at low k, with departures from white noise at larger k due
to the radial profile of satellites inside halos. As shown in [58], the deviations from white noise
are small on the scales of interest for cosmological parameter inference (k . 0.4 hMpc−1).
Thus, we treat all 1-halo terms in real space as independent of wavenumber. As discussed in
section 4.1.1, there are two sources of 1-halo terms: 1) the correlation between the cB sample
of centrals and satellites and 2) the auto-correlation between the sB sample of satellites. We
denote the real-space amplitude of these terms as NcBs and NsBsB , respectively.

In redshift space, satellite galaxies are spread out in the radial direction by their large
virial velocities inside halos, an effect known as Fingers-of-God [24]. Affecting both 1-halo
and 2-halo correlations, the FoG effect is a fully nonlinear process, and it is not possible to
accurately model it using perturbation theory. Quasi-linear perturbative approaches have
been developed which use damping functions, i.e., a Gaussian or Lorentzian, to model the
effect [20, 56, 82–84]. In previous studies, the effect is typically modeled with a single damping
factor G(kµ;σv), with σv corresponding to the velocity dispersion of the full galaxy sample.
In such a model, the redshift-space power spectrum of galaxies is modeled as PSgg(k, µ) =

G2(kµ;σv)P
S
hh(k, µ), where PShh is the redshift-space halo power spectrum.

We separately model the FoG effect from each of the galaxy subsamples defined in
section 4.1.1. As demonstrated in [58], the FoG effect on the 1-halo and 2-halo terms from
satellite galaxies can be accurately described using a damping function and the typical virial
velocity associated with the halos hosting the satellites. The functional form of the damping
function used in this work is
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G(kµ;σv) =
(
1 + k2µ2σ2

v/2
)−2

, (4.8)

which has a form slightly modified from the commonly-used forms used in the literature. As
shown in [58], this damping function can accurately model the FoG effect from satellites over a
wide range of scales, extending down to k ∼ 0.4 hMpc−1. The dominant FoG effect arises from
satellites, and we include velocity dispersion parameters for each of the satellite subsamples,
σv,sA and σv,sB . Recent clustering analyses, e.g., [36, 85], have also found evidence that
central galaxies are not at rest with respect to the halo center, giving rise to an additional
FoG effect (albeit smaller than the effect from satellites). To properly account for this
possibility, we also include a velocity dispersion parameter associated with central galaxies,
σv,c. We assume a single velocity dispersion for both the cA and cB galaxy samples.

There are five power spectra in equation 4.6 that include only 2-halo terms. Using the
above FoG modeling, these terms become

P scc(k, µ) = G(kµ;σv,c)
2PScc,h(k, µ), (4.9)

PScAsA(k, µ) = G(kµ;σv,c)G(kµ;σv,sA)PScAsA,h(k, µ), (4.10)

PScAsB (k, µ) = G(kµ;σv,c)G(kµ;σv,sB )PScAsB ,h(k, µ), (4.11)

PSsAsA(k, µ) = G(kµ;σv,sA)2PSsAsA,h(k, µ), (4.12)

PSsAsB (k, µ) = G(kµ;σv,sA)G(kµ;σv,sB )PSsAsB ,h(k, µ), (4.13)

where PSXX,h represents the auto power spectrum of halos in which the galaxies of types X

reside and PSXY,h the cross spectrum of halos in which galaxies of types X and Y reside. Under

the assumption of linear perturbation theory, PSXY,h converges to the linear redshift-space

power spectrum originally proposed by [19], PSXY,h(k, µ) = (b1,X + fµ2)(b1,Y + fµ2)PL(k),
where PL(k) is the linear matter power spectrum, and b1 is the linear bias factor of the
specified galaxy sample.

The three power spectra that include both 1-halo and 2-halo terms can be expressed as

PScBsA(k, µ) = G(kµ;σv,c)G(kµ;σv,sA)
[
PScBsA,h(k, µ) +NcBs

]
, (4.14)

PScBsB (k, µ) = G(kµ;σv,c)G(kµ;σv,sB )
[
PScBsB ,h(k, µ) +NcBs

]
, (4.15)

PSsBsB (k, µ) = G(kµ;σv,sB )2
[
PSsBsB ,h(k, µ) +NsBsB

]
, (4.16)

where NcBs is the 1-halo amplitude due to correlations between centrals and satellites in the
same halo, and NsBsB is the 1-halo amplitude between satellites inside the same halo.

4.2 Halo clustering in redshift-space

The remaining modeling unknown needed in equations 4.9 – 4.13 and 4.14 – 4.16 is the pre-
scription for the redshift-space halo power spectrum, PSXY,h(k, µ). In this section, we describe
our model for the halo power spectrum, which relies on a combination of perturbation theory
and simulations. The model is based on the formalism presented in [54], with important
differences and improvements discussed below.
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4.2.1 Distribution function model for redshift-space distortions

Our model for the power spectrum of halos in redshift space relies on expressing the redshift-
space halo density field in terms of moments of the distribution function (DF); the approach
has been developed and tested in a previous series of papers [50–55]. If we consider halo
samples X and Y , with linear biases b1,X and b1,Y , the redshift-space power spectrum in the
DF model can be expressed as a sum over mass-weighted, velocity correlators

PSXY,h(k, µ) =
∞∑
L=0

∞∑
L′=0

(−1)L
′

L!L′!

(
ikµ

H

)L+L′

PXY,hLL′ (k, µ), (4.17)

where H = aH is the conformal Hubble parameter, and PXY,hLL′ is the power spectrum of the
moments L and L′ of the radial halo velocity field, weighted by the halo density field. These
spectra are defined as

(2π)3PXY,hLL′ (k)δD(k + k′) =
〈
TX,L‖ (k)T Y,L

′

‖ (k′)
〉
, (4.18)

where TX,L‖ (k) is the Fourier transform of the corresponding halo velocity moment weighted
by halo density,

TX,L‖ (x) =
[
1 + δhX(x)

] (
vh‖,X

)L
, (4.19)

where δhX and vh‖,X are the halo density and radial velocity fields for sample X, respectively.
The velocity correlators defined in equation 4.18 have well-defined physical interpretations;
for example, PXX,h00 represents the halo density auto power spectrum of sample X, whereas

PXX,h01 is the cross-correlation of density and radial momentum for halo sample X. The DF
approach naturally produces an expansion of PSXY,h(k, µ) in even powers of µ, with a finite
number of correlators contributing at a given power of µ. For this work, we consider terms
up to and including µ4 order in the expansion of equation 4.17.

To evaluate the halo velocity correlators in equation 4.17, we largely follow the results
outlined in [53, 54], where the correlators are evaluated using Eulerian perturbation theory.
However, in order to increase the overall accuracy of the power spectrum model, our work
differs from the results presented in [54] in several crucial areas. These differences will be
discussed in the subsequent subsections of this section.

4.2.2 The modeling of halo bias

The spectra PXY,hLL′ (k, µ) in equation 4.17 are defined with respect to the halo field, and a
biasing model is needed to relate them to the correlators of the underlying dark matter density
field. Following the results of [54], we use a second-order, nonlocal Eulerian biasing model,
where the only nonlocal term results from the second-order tidal tensor. The nonlinear and
nonlocal biasing contributions have been demonstrated to improve the accuracy of theoretical
models, e.g., [86, 87].

As discussed in [54], the second-order bias in our biasing scheme is an effective bias,
accounting for several free bias parameters that enter at the 1-loop level, all with similar
scale dependence. The spectra PXX,h00 and PXX,h01 have distinct values for this effective bias
parameter, b2, and the biasing model in all higher-order correlators enters through these two
terms. The difference can be understood through effects of the third-order, nonlocal bias,
which appears to be equally important to b2 [87, 88].
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Figure 1: The dependence of the second-order nonlinear effective biases, b00
2 (blue, solid)

and b01
2 (red, dashed), on the linear bias b1 used in this work, as determined from the RunPB

simulations. For comparison, the best-fit bias parameters from [54] are shown as circles.

Our biasing scheme has four bias parameters for each halo sample: the linear bias b1,
the two effective second-order biases, b00

2 and b01
2 , and the nonlocal tidal bias bs. However,

we treat the higher-order biases as functions of b1, and thus, the only free bias parameter for
each halo sample is the linear bias. In the case of the local Lagrangian bias model, we can
predict the amplitude of the nonlocal tidal bias in terms of the linear bias [89, 90]

bs = −2

7
(b1 − 1). (4.20)

As shown in [54], the tidal bias does not play a prominent role in the biasing model, but
nonetheless, we include these terms in our model. The effective biases b00

2 and b01
2 have a

roughly quadratic dependence on the linear bias b1. Rather than freely varying these bias
parameters, we treat them as a function of b1, independent of redshift, and use simulations
to determine the exact functional form of this dependence. We use the set of halo mass bins
from the RunPB simulations described in section 2.1 and use Gaussian Process regression
(see, e.g., [91]) to predict the functional form of b00

2 (b1) and b01
2 (b1). For this purpose, we use

the public Gaussian Process package george5 [92]. The predictions for b00
2 and b01

2 used in
this work, as determined from the RunPB simulations, are shown in figure 1. We also show
the best-fit bias parameters used in [54] for several redshifts, which are consistent with the
results obtained from the RunPB simulations.

4.2.3 Improved modeling of dark matter correlators

We use the Halo-Zel’dovich Perturbation Theory (HZPT) approach of [59] to model the
dark matter density power spectrum P00(k) and the redshift-space cross-correlation of dark
matter density and radial momentum PS01(k). This differs from the results presented in [54],
which uses standard perturbation theory (SPT) to evaluate these terms (which is known to
break down at relatively large scales). Note that the density-momentum cross-correlation
can be related to P00 through PS01(k) = µ2dP00/dlna [53], so only an accurate model for

5https://github.com/dfm/george
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Figure 2: The accuracy of the dark matter HZPT modeling results used in this work, in
comparison to the results from the RunPB simulation. We compare the dark matter power
spectrum P00 (top), density – radial momentum cross-power PS01 (middle), and the small-scale
correlation function ξ00 (bottom). We give results for three redshift outputs: z = 1 (left),
z = 0.55 (center), and z = 0 (right). The updated HZPT model parameters are presented in
Appendix B.1.

P00 is required. The statistic PS01(k) plays a crucial role in the modeling of the µ2 angular
dependence of the redshift-space power spectrum.

The HZPT model connects the Zel’dovich approximation [61, 93] with a Padé expansion
for a 1-halo-like term that is determined from simulations using simple, physically motivated
parameter scalings. The model for the dark matter power spectrum has been demonstrated
to be accurate to 1% to k ∼ 1 hMpc−1 [59], and the Zel’dovich approximation performs
sufficiently well when modeling BAO, relative to other modeling techniques [61, 94].

We provide an update to the HZPT results presented in [59], using the dark matter
RunPB simulations detailed in section 2.1. We extend the analysis of [59] to include mea-
surements of PS01(k), as well as the small-scale matter correlation function. We also extend
the redshift fitting range, using a set of 10 redshift outputs from the RunPB simulations,
ranging from z = 0 to z = 1. We perform a global fit of the amplitude and redshift-
dependence of the 5 parameters in the HZPT model using the P00(k) and PS01(k) statistics
over the range k = 0.005 − 0.5 hMpc−1, as well as the small-scale correlation function over
the range r = 0.3−25 Mpc/h. Qualitatively, the results remain similar to those presented in
[59], but the use of additional statistics (in particular, the small-scale correlation function)
in the fit does allow some parameter degeneracies to be broken.
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Figure 3: The accuracy of the HZPT model for the auto power spectrum of the dark matter
radial momentum PS11[µ4] in comparison to the results from the RunPB simulations. We give
results for three redshift outputs: z = 1 (left), z = 0.55 (center), and z = 0 (right). The
best-fit HZPT model parameters are presented in Appendix B.2.

We review the HZPT model for P00 and PS01 in appendix B.1, and provide the updated
best-fit model parameters. We also detail the necessary calculation of PS01 in the Zel’dovich
approximation in appendix A. We show the accuracy of the HZPT model for the three
statistics considered in figure 2 for three redshift snapshots, z = 0, 0.55, and 1. It is evident
that the 5-parameter HZPT model can provide a consistent picture of the power spectra to
an accuracy of 1-2% over the range of scales considered in this work. Furthermore, keeping
in mind that the inclusion of baryonic effects can effect the parameters R1, R1h, R2h at the
5-10% level [95, 96], the model used in this work performs reasonably well at modeling the
notoriously difficult 1-halo to 2-halo regime of the correlation function.

We also extend the HZPT approach to model the dark matter radial momentum auto
power spectrum, PS11(k), which is important for modeling the µ4 angular dependence of
PSXY,h(k, µ). Specifically, we model the scalar component of PS11[µ4] with the sum of a
Zel’dovich term and Padé expression and the vector contribution using 1-loop SPT (as was
done in [53]). The full model is given by the sum of the scalar and vector contributions

PS11[µ4](k) = PS11,s[µ
4](k) + PS11,v[µ

4](k),

= P zel
11,s(k) + PBB11 (k)− f2I31(k), (4.21)

where the vector contribution I31(k) is defined in [53], and we discuss the Zel’dovich term
P zel

11,s in detail in Appendix A. We define the Padé term PBB11 and give the best-fit parameters
(fit using the RunPB simulations) in Appendix B.2. Figure 3 compares the accuracy of
the model in equation 4.21 with the results from the RunPB simulations for three redshift
snapshots. The figure shows the model to be accurate to 1-2% over the range of scales of
interest.

Finally, rather than using the 1-loop SPT expressions for the dark matter density –
velocity divergence cross power spectrum Pδθ(k) and the velocity divergence auto power
spectrum Pθθ(k), we use the fitting formula from [22]. While the 1-loop SPT expressions for
Pδθ and Pθθ diverge from truth at relatively large scales (k ∼ 0.1 hMpc−1), the model of [22]
achieves the necessary accuracy over the range of scales considered in this work.
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4.2.4 Halo stochasticity

The µ0 component of the redshift-space halo spectrum, PSXY,h(k, µ), in the DF model is

the isotropic, real-space auto spectrum of the halo density field, P hh00 (k). For a complete
description of this term, we must accurately model the contribution from the stochasticity
of halos, defined for two separate halo mass bins (h and h̄) as

Λ(k) = P hh̄00 (k)− b̄1(k)P hm00 (k)− b1(k)P h̄m00 (k) + b1(k)b̄1(k)P00(k), (4.22)

where P hm00 and P h̄m00 are the halo–matter cross power spectra for the halo mass bins h and
h̄, respectively, and P00 is the matter power spectrum (modeled using HZPT, as described
in section 4.2.3). The scale-dependent linear bias factors are defined as

b1(k) ≡ P hm00 (k)

P00(k)
, b̄1(k) ≡ P h̄m00 (k)

P00(k)
. (4.23)

In the Poisson model, the leading-order term of the stochasticity is given by the Poisson
shot noise, n̄−1, where n̄ is the halo number density. However, there are significant deviations
from this prediction that have complicated scale dependence. These corrections originate
from two competing effects: first, the halo exclusion effects due to the finite size of halos
and second, the nonlinear clustering of halos relative to dark matter [54, 86, 97]. In the
k → 0 limit, the stochasticity behaves close to white noise, where halo exclusion lowers
the stochasticity relative to the Poisson value and nonlinear clustering leads to a positive
contribution. However, in the high-k limit, the stochasticity must approach the Poisson
value, and these deviations vanish; thus, there exists a complicated scale dependence that is
not well-understood theoretically.

We use the RunPB simulations at several redshift outputs and the halo mass bins
defined in table 2 to investigate the functional form of the halo stochasticity Λ(k) as a
function of mass and redshift. In figure 4, we show the deviations of the halo stochasticity
from the Poisson shot noise when considering the same halo mass bin and different halo
mass bins. The trends are consistent with our theoretical understanding: as the average halo
mass increases, the stochasticity becomes sub-Poissonian, sourced by halo exclusion effects,
while positive contributions from nonlinear biasing become important for lower halo masses.
And as halos grow in time, the exclusion effects become more pronounced at lower redshifts
[54, 86, 97]. However, the scale dependence and redshift scaling remains non-trivial, and
there are significant differences in the scale dependence and amplitude when considering the
cases of auto and cross mass bins.

The halo stochasticity was studied in simulations in the context of the DF model in
[54], and the results presented here agree with those findings. [54] employs a simple model
with log scale dependence to model the auto stochasticity for several mass bins across three
redshifts. We extend those results with finer resolution in both redshift and halo mass.
In an attempt to capture as much complexity as possible, we treat the halo stochasticity
results from the RunPB simulations as a training set and use Gaussian Process regression to
predict the auto stochasticity Λ(b1, σ8(z)) and cross stochasticity Λ(b1, b̄1, σ8(z)), where we
have parameterized the redshift dependence of the stochasticity using the value of σ8 at each
redshift.
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Figure 4: The deviation of the halo stochasticity Λ(k), as defined in equation 4.22, from
the Poisson shot noise, for the case of (a) the same halo mass bin and (b) different halo mass
bins. Results are measured from the RunPB simulations for three separate combinations of
bins. The average halo mass increases from left to right; see Table 2 for halo mass bin details.
For each subplot, we show the results for 10 redshifts, ranging from z = 1 (dark) to z = 0
(light). Even when the mean halo mass is similar, the scale dependence and amplitude in
the cases of auto and cross halo stochasticity can differ significantly.

4.2.5 HZPT modeling for the halo-matter cross-correlation

The real-space halo-matter cross correlation P hm(k) plays a crucial role in accurately mod-
eling the halo auto spectrum using equation 4.22. We develop a model for the halo-matter
power spectrum using HZPT and calibrate the model using the suite of halo mass bins from
the RunPB simulations detailed in table 2. To model the Zel’dovich term of the model, we
employ a simple, linear bias model, such that the full HZPT model is given by

P hm(k) = b1P
zel
00 (k) + PBB00 (k,A0, R,R1, R1h, R2h), (4.24)

where b1 is the large-scale, linear bias of the halo field, P zel
00 is the matter density auto

spectrum in the Zel’dovich approximation, and PBB00 is a broadband Padé term, as given
by equation B.1. To fully account for the biased nature of the halo field, the HZPT model
parameters, {A0, R,R1, R1h, R2h}, now become a function of not only σ8(z) but also the
linear bias b1. We choose a simple power-law functional form for the b1 dependence, which
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Figure 5: The accuracy of the HZPT model used in this work for the halo-matter cross-
correlation, in comparison to the results from the RunPB simulation. We compare the cross
power spectrum Phm (top) and the correlation function ξhm (bottom) for 5 halo mass bins at
z = 0.55 (see table 2 for bin details). We show the measurement uncertainties as error bars
for P hm and as the grey shaded region for ξhm. The HZPT parameters have been fit using
only P hm(k) from 0.005 hMpc−1 < k < 0.5 hMpc−1. The model is a good description of
P hm on these scales, as well as ξhm down to r ∼ 5 Mpc/h, but fails once entering the 1-halo
regime on small scales.

performs well at modeling the bias dependence of P hm over the range of scales of interest
in this work. We perform a global fit across the 8 halo mass bins and 10 redshifts of the
RunPB simulations to determine the best-fit HZPT model parameters. In our parameter fit,
we have included the cross power spectrum P hm on scales ranging from k = 0.005 hMpc−1

to k = 0.5 hMpc−1. The best-fit parameters are presented in appendix B.3.
We show the accuracy of the halo-matter HZPT model in figure 5 for several halo mass

bins at z = 0.55. The trends evident at this redshift are consistent with the results from
the full range of redshifts explored (z = 0 − 1). The model reproduces the cross power
spectrum P hm at the ∼2% level, as well as the cross-correlation ξhm on scales r & 5 Mpc/h.
However, we see from the correlation function results on small scales that the model is
unable to reproduce the clustering on scales within the 1-halo regime, where halo profile
details become important. The model breakdown on these scales is due to the choice to
use a power-law dependence on b1 for the HZPT parameters that are related to the halo
profile. To better describe halo profiles and capture the effects of nonlinear and nonlocal
bias terms, i.e., [87], a more complicated functional form for the linear bias dependence is
required. However, because Fourier-space statistics are the main concern of this work and the
simplified model performs well when modeling the power spectrum on the scales of interest,
we leave the investigation of improved small-scale modeling to future work.

4.3 Modeling observational effects

In this section we discuss several details that arise when modeling data from real galaxy
surveys. In section 4.3.1, we describe how we account for the geometric distortions that
occur when an inaccurate fiducial cosmology is assumed due to the AP effect. Section 4.3.2
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discusses how we treat the survey geometry and window function when modeling realistic
“cutsky” mocks, which have a realistic survey geometry imposed.

4.3.1 The Alcock-Paczynski effect

When analyzing data from galaxy surveys, we must transform observed angular positions
and redshifts into physical coordinates, using a fiducial cosmological model to specify the
relation between the redshift and the LOS distance (i.e., the Hubble parameter) and between
the angular separation and the distance perpendicular to the LOS (i.e., the angular diameter
distance). If the fiducial cosmology differs from the true cosmology, an anisotropic, geomet-
ric warping of the clustering signal is introduced. This distortion, known as the Alcock-
Paczynski (AP) effect, [13] is distinct from RSD and can be used to measure cosmological
parameters. The presence of the BAO feature at a fixed scale in the power spectrum helps
distinguish the geometric AP effect and the dynamical RSD anisotropy, thus increasing the
constraining power of full-shape modeling [12, 98].

The difference between the assumed and true cosmological models results in a rescaling
of the wavenumbers transverse k⊥ and parallel k‖ to the LOS direction, such that

k′⊥ = q⊥k⊥ and k′‖ = q‖k‖, (4.25)

where the primes denote quantities that are observed assuming the fiducial (and possibly
incorrect) cosmology. The two distortion parameters q⊥ and q‖ are given by

q⊥ =
DA(zeff)

D′A(zeff)
and q‖ =

H ′(zeff)

H(zeff)
, (4.26)

which are the ratios of the Hubble parameter and angular diameter distance in the fiducial
and true cosmologies at the effective redshift of the survey. With these definitions, the
theoretical prediction for the multipole power spectrum when including the AP effect can be
expressed as

P`(k
′) =

2`+ 1

2q⊥q2
‖

∫ 1

−1
dµ PSgg

[
k(k′, µ′), µ(µ′)

]
L`(µ), (4.27)

where L` is the Legendre polynomial of order `, and we use the model prediction of equation
4.5 for PSgg[k

′(k, µ), µ(µ′)]. The true (k, µ) can be related to the observed (k′, µ′) via

k(k′, µ′) =
k′

q⊥

[
1 + (µ′)2

(
1

F 2
− 1

)]1/2

, (4.28)

µ(µ′) =
µ′

F

[
1 + (µ′)2

(
1

F 2
− 1

)
,

]−1/2

(4.29)

where F = q‖/q⊥. The normalization scaling of the power spectrum with q−1
⊥ q−2
‖ is due to

the volume distortion between the two different cosmologies.
For comparison with BAO distance analyses, a second set of AP parameters is usually

defined, given by
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Figure 6: The window function multipoles in configuration space (left) and the effects
of the window function on linear Kaiser power spectrum multipoles (right) for the DR12
CMASS NGC survey geometry. In the right panel, the solid grey lines show the unconvoled
multipoles, while the colored lines correspond to the model after convolution with the window
function, P̂`(k). The convolution procedure has large effects at small k, and we choose to use
kmin = 0.02 hMpc−1 in our data analysis to minimize these effects.

α⊥ ≡
DA(zeff)

D′A(zeff)

r′d
rd

= q⊥
r′d
rd

(4.30)

α‖ ≡
H ′(zeff)

H(zeff)

r′d
rd

= q‖
r′d
rd
, (4.31)

where we have defined rd ≡ rs(zd) as the sound horizon scale at the drag redshift zd. BAO
measurements are sensitive to the Hubble parameter and angular diameter distance relative
to the sound horizon scale of a fixed “template” cosmology, and this second set of parame-
ter definitions facilitates comparison of measurements using different template cosmological
models.

4.3.2 The survey geometry

When analyzing cutsky mock catalogs, we must account for the effects of the survey geometry
when comparing our theoretical model to the measured power spectrum. We do this by
convolving our theoretical model with the survey window function, rather than trying to
remove the effect of the survey geometry from the data itself. Our window function treatment
follows the method first presented in [99] and used in the analysis of BOSS DR12 data in
[39, 100].

Following [99], we compute the window function multipoles in configuration space using
a pair counting algorithm and the catalog of random objects describing the survey geometry.
We use the Corrfunc correlation function code [101] to compute the pair counts of the
random catalog via
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Q`(s) ∝
∫ 1

−1
dµRR(s, µ)L`(µ) '

∑
i

RR(si, µi)L`(µi), (4.32)

where the normalization is such that Q0(s) → 1 for s � 1. The resulting multipoles Q` for
the BOSS CMASS NGC sample are shown in the left panel of figure 6. The Q` vanish for
scales & 3000 h−1Mpc, as these are the largest scales in the volume of the NGC. Note that
on small scales, the clustering becomes isotropic, with the multipoles vanishing. In general,
the contribution of the higher-order multipoles decreases as ` increases, which guarantees the
convolution converges when including only the first few Q`. Here, we include results up to
and including Q8, and have verified that the inclusion of Q10 does not affect our results.

With the measured Q`, we compute the convolved theoretical correlation function mul-
tipoles in configuration space as

ξ̂0(s) = ξ0Q0 +
1

5
ξ2Q2 +

1

9
ξ4Q4 + ...

ξ̂2(s) = ξ0Q2 + ξ2

[
Q0 +

2

7
Q2 +

2

7
Q4

]
+ ξ4

[
2

7
Q2

100

693
Q4 +

25

143
Q6

]
+ ...

ξ̂4(s) = ξ0Q4 + ξ2

[
18

35
Q2 +

20

77
Q4 +

45

143
Q6

]
+ ξ4

[
Q0 +

20

77
Q2 +

162

1001
Q4 +

20

143
Q6 +

490

2431
Q8

]
+ ...., (4.33)

where ξ` are the theoretical correlation function mutipoles, computed from the power spec-
trum multipoles via a 1D Hankel transform, evaluated using the FFTLog software [102]. We
also perform the transformation from ξ̂`(s) to P̂`(k) using FFTLog.

The effects of the window function convolution can be seen in the right panel of figure 6,
where we illustrate the effects using linear Kaiser multipoles. The effects are most important
on scales of order the survey size; for the NGC CMASS sample, the window function effects
are only important on scales k . 0.05 hMpc−1. The impact of the survey geometry increases
for the higher-order multipoles, with the anisotropy of the window function leading to non-
trivial effects on our convolved model. In this work, we use a minimum wavenumber of
kmin = 0.02 hMpc−1 when comparing data and theory and have tested that the window
function convolution has minimal impact on our parameter fitting analyses. However, as
measurement errors decrease for future surveys, the window convolution will need to be
carefully tested, given both the constraining power of the ` = 2 and 4 multipoles and the
larger convolution effects.

4.4 Model parametrization

Table 3 gives a summary of the parameters of the model described in this work. We give both
the free parameters as well as the constrained parameters and the corresponding constraint
expressions. There are 13 free parameters detailed in table 3, and these parameters corre-
spond to the parameter space used in our RSD analyses. The table also lists the assumed
prior distribution for each parameter used during parameter estimation, which is either a
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Free Parameters
Name [Unit] Prior

α⊥ U(0.8, 1.2)
α‖ U(0.8, 1.2)

f U(0.6, 1.0)
σ8(zeff) U(0.3, 0.9)
b1,cA U(1.2, 2.5)
fs U(0, 0.25)
fsB U(0, 1)
〈N>1,s〉 N (2.4, 0.1)

σc [ h−1Mpc] U(0, 3)
σsA [ h−1Mpc] U(2, 6)

γsA N (1.45, 0.3)
γsB N (2.05, 0.3)
f1h
sBsB

N (4, 1)

Constrained Parameters
Name [Unit] Constraint Expression

b1,cB equation C.7
b1,sA γsAb1,cA
b1,sB γsBb1,cA
fcB equation C.2

σsB [h−1 Mpc] σsA
[
σmodel
v (b1,sB )/σmodel

v (b1,sA)
]

NcBs [h−3 Mpc3] equation C.12
NsBsB [h−3 Mpc3] equation C.16

Table 3: The parameter space of our full-shape RSD fits using the model described in
this work. There are 13 free parameters (left) that are varied during the fitting process,
with several additional parameters subject to constraint expressions (right). For all free
parameters, we provide the prior used when fitting, either a normal prior N (µ, σ) with mean
µ and standard deviation σ, or a uniform prior U(a, b) with lower bound a and upper bound
b. For a detailed description of the model parameters, see section 4.4.

flat (uniform) or Gaussian prior. We use physically motivated priors when possible and as-
sume wide, flat priors on all cosmological parameters of interest. We describe the model
parametrization in detail below.

4.4.1 Cosmology parameters

The free parameters specifying the cosmology in our model are the AP distortion parameters
(α‖ and α⊥), the growth rate f , and the amplitude of matter fluctuations σ8, where both f
and σ8 are evaluated at the effective redshift of the sample, zeff . During our fitting procedure,
we vary f and σ8 independently, although we only report results for the product fσ8, which
is the parameter combination most well-constrained by RSD analyses. The model requires
a linear power spectrum in order to evaluate several perturbation theory integrals. These
integrals are computationally costly (although see recent advances, [103–105]), and for this
reason, we do not vary any cosmological parameters affecting the shape of the linear power
spectrum during parameter estimation. We evaluate the linear power spectrum using the
fiducial cosmology and keep the shape fixed, allowing only the amplitude to vary through
changes in σ8.

4.4.2 Linear bias parameters

In the most general version of the model discussed in section 4.1, we must specify linear
bias parameters for each of the four galaxy subsamples: b1,cA , b1,cB , b1,sA , and b1,sB . As
discussed in section 4.2.2, the linear bias fully predicts the higher-order biasing parameters
for a given sample. When varying the linear bias parameters of the sA and sB satellite
samples, we enforce the expected ordering of the parameters: b1,cA < b1,sA < b1,sB . We use
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the relations b1,sA = γsAb1,cA and b1,sB = γsBb1,cA and choose to vary the parameters γsA
and γsB instead. We use relatively wide Gaussian priors for these parameters centered on
their expected fiducial values for a CMASS-like galaxy sample, γsA ∼ 1.45 and γsB ∼ 2.05.
For the linear bias of the cB sample, we use the expected scaling of the bias with the biases
of the satellite samples as given by equation C.7 and described in appendix C.2.

4.4.3 Sample fractions, velocity dispersions, and 1-halo amplitudes

There are three parameters specifying the fraction of all galaxies that are satellites fs, the
fraction of centrals that live in halos with a satellite fcB , and the fraction of satellites that live
in halos with multiple satellites fsB . We must also specify the 1-halo amplitudes (assumed to
be independent of k) that enter into equations 4.14 - 4.16. We denote the 1-halo amplitude
due to correlations between centrals and satellites in the same halo as NcBs, and between
satellites inside the same halo as NsBsB . And, finally, we must specify the velocity dispersion
parameters for each galaxy subsample in order to account for the FoG effect. We include a
single velocity dispersion for centrals, σc, and parameters for each of the satellite subsamples,
σsA and σsB . Thus, in the most general case, there are additional 12 model parameters needed
to fully evaluate our model, in addition to the 4 cosmological parameters.

There are dependencies between the parameters previously discussed that allow us to
parametrize the model in terms of alternative parameters that have well-behaved, physically
motivated priors. In particular, we use the constraints outlined in appendix C for the relative
fraction of the cB sample, fcB , in equation C.2, and for the 1-halo amplitudes, NcBs and
NcBcB , in equations C.12 and C.16. In the former case, the constraint allows us to vary the
parameter 〈N>1,s〉, which is defined as the mean number of satellite galaxies in halos with
more than one satellite. This parameter is typically centered on 〈N>1,s〉 ∼ 2.4 for CMASS-
like galaxy samples, with little variation around this center value. For the 1-halo amplitude
NsBsB we vary a normalization parameter f1h

sBsB
to account for uncertainty in the expected

value, which should have a value of order unity.
Finally, we do not vary the velocity dispersion of the sB sample, σsB , but rather use the

physically motivated scaling with halo mass, σ2
v ∝ M2/3, and the halo bias – mass relation

from [106]. We do not use this model function σmodel
v (b1) to predict the absolute amplitude

of σsB , but only the functional form. We always rescale the predicted value by the current
value of σsA (see table 3 for details).

5 Performance of the model

5.1 RunPB results

As a first test of the RSD model described in section 4, we use a set of HOD galaxy catalogs
constructed from 10 realizations of the z = 0.55 snapshot of the RunPB simulation, described
previously in section 2.1. The galaxy catalogs are made by populating halo catalogs according
to a halo occupation distribution with parameters comparable to the BOSS CMASS sample.
The halo catalogs are constructed in the manner described in detail in [36]. Briefly, the
halo finder uses the spherical overdensity implementation of [107], using an overdensity of
∆m = 200 relative to the mean matter density ρm to define the halo virial radius. Central
galaxies are not at rest with respect to the halo center-of-mass; they are assigned a velocity
computed from the halo particles in the densest region of each halo (see [36] for details).
Note that the halo catalogs used here are not the same as the FOF halo catalogs described
in section 2.1, which we use to calibrate certain components of the RSD model. Differences
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Figure 7: The best-fit monopole, quadrupole, and hexadecapole models (lines) as compared
to the measurements (points) from the mean of 10 RunPB HOD galaxy realizations at z =
0.55, fit over the wavenumber range k = 0.02 − 0.4 hMpc−1. The lower panels show the
model residuals for each multipole separately. The reduced chi-squared of the fit to all three
multipoles is χ2

red = 1.12. Note that the large variation from bin to bin in the hexadecapole
is due to discrete binning effects.

in the halo finder algorithms lead to important differences in the clustering of the resulting
galaxy catalogs. While we do not expect RSD fits to these galaxy catalogs to be a fully-
independent validation of the model, they do still provide a useful test of the accuracy of our
model.

Using the model parameterization discussed in section 4.4, we fit the mean of the mea-
sured monopole, quadrupole, and hexadecapole from 10 realizations at z = 0.55 as a function
of the maximum wavenumber included in the fits, kmax = [0.2, 0.3, 0.4] hMpc−1. The result-
ing best-fit model and residuals between measurements and theory are shown in figure 7 for
kmax = 0.4 hMpc−1. We are able to achieve excellent agreement between the model and
simulation multipoles to scales of k = 0.4 hMpc−1, well into the nonlinear clustering regime.

As a function of kmax, we report the mean and 1σ error for a subset of the model
parameters in table 4, as determined from the posterior distributions obtained via MCMC
sampling. We also show the 2D posterior distributions for fσ8, α‖, and α⊥ for each kmax

value in figure 8. As expected, we obtain significant decreases in parameter uncertainties
when including small-scale information in the fits. For the three cosmology parameters, fσ8,
α‖, and α⊥, we find decreases of 19%, 18%, and 18%, respectively, for kmax = 0.3 hMpc−1

and 38%, 24%, and 29% for kmax = 0.4 hMpc−1, relative to the fit using kmax = 0.2 hMpc−1.
These decreases are roughly consistent with the expected scaling in the nonlinear regime, σ ∝
k
−1/2
max (e.g., [55]). For the AP parameters, we find more modest decreases in the uncertainty

when ranging from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1. In particular, extending

– 22 –



kmax = 0.2 h/Mpc kmax = 0.3 h/Mpc kmax = 0.4 h/Mpc truth

fσ8 0.455 +0.015
−0.015 0.467 +0.012

−0.013 0.469 +0.010
−0.009 0.472

fσ8 [fixed AP] 0.457 +0.010
−0.010 0.466 +0.009

−0.008 0.468 +0.007
−0.007 0.472

α⊥ 1.003 +0.005
−0.006 1.004 +0.005

−0.005 1.005 +0.004
−0.004 1.000

α‖ 1.009 +0.010
−0.009 1.006 +0.008

−0.007 1.009 +0.007
−0.008 1.000

b1σ8 1.266 +0.009
−0.009 1.265 +0.008

−0.008 1.268 +0.008
−0.008 1.272

fs 0.122 +0.019
−0.018 0.143 +0.013

−0.013 0.143 +0.008
−0.008 0.104

fcB 0.104 +0.033
−0.030 0.124 +0.022

−0.023 0.122 +0.013
−0.015 0.089

fsB 0.438 +0.203
−0.197 0.438 +0.136

−0.123 0.466 +0.081
−0.079 0.399

σc 1.134 +0.214
−0.238 0.906 +0.088

−0.111 0.930 +0.062
−0.065 –

σsA 4.239 +0.476
−0.413 3.737 +0.372

−0.464 3.443 +0.278
−0.270 –

χ2/d.o.f. 113/(108− 13) = 1.19 159/(168− 13) = 1.03 241/(228− 13) = 1.12

Table 4: Parameter constraints obtained when fitting the 13-parameter RSD model to
[P0, P2, P4], as measured from the mean of the 10 RunPB galaxy catalogs at z = 0.55.
We show results determined as a function of the maximum wavenumber included in the
fits. Parameter posteriors are determined from MCMC sampling of the likelihood, assuming
Gaussian covariance between multipoles.

from kmax = 0.3 hMpc−1 to kmax = 0.4 hMpc−1 offers little improvement in the error on α‖.
The constraining power for the AP parameters results from a combination of the BAO signal
and information from the geometric distortion of the full broadband signal. As nearly all of
the information from the BAO signal is present below k = 0.2 hMpc−1, our more modest
decreases in uncertainty for the AP parameters are consistent with our expectations.

We have central/satellite information for each galaxy in the RunPB catalogs and can
assess the accuracy of the halo model decomposition described in section 4.1. As seen in
table 4, we find a non-zero velocity dispersion for centrals with an amplitude σc ∼ 1 h−1Mpc,
which is consistent with the expected amplitude present in the underlying halo catalogs.
The main discrepancy is that our recovered satellite fraction is significantly higher than the
expected value. This results from the fact that we rely on FOF halo catalogs for calibration
of the halo clustering in the model, while we are fitting galaxy catalogs created from SO
catalogs. The choice of halo finder alters the clustering on scales around the virial radius. A
FOF halo finder tends to over-merge halos on these scales into a single halo, whereas a SO
finder tends to preserve the multiple smaller halos. This effect manifests itself as an increase
in the model satellite fraction and is consistent with our fitting results. Thus, we are able to
absorb issues related to these simulation differences into the satellite fraction parameter.

We analyze the correlations between the posterior distributions to better understand
the constraining power of our 13-parameter model. We show these parameter correlations
for each fitting range in figure 9. As expected, we find that the main parameter combination
measuring the strength of RSD fσ8 is most correlated with the AP parameters α‖ and α⊥,
which measure geometric distortions of the clustering signal. For each of the kmax fitting
ranges, the correlation matrix for (fσ8, α⊥, α‖) is:
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Figure 8: The 2D posterior distributions for the cosmology parameters fσ8, q‖, and q⊥
obtained from fitting the mean of 10 RunPB HOD galaxy realizations at z = 0.55. We show
results when varying the maximum scale included in the fits: kmax = 0.2 (left), 0.3 (center),
0.4 (right) hMpc−1. The expected parameter values are marked with solid blue lines.

R0.2[fσ8, α⊥, α‖] =

 1.000 0.536 −0.583
0.536 1.000 −0.094
−0.583 −0.094 1.000

 , (5.1)

R0.3[fσ8, α⊥, α‖] =

 1.000 0.605 −0.361
0.605 1.000 0.133
−0.361 0.133 1.000

 , (5.2)

R0.4[fσ8, α⊥, α‖] =

 1.000 0.377 −0.418
0.377 1.000 0.292
−0.418 0.292 1.000

 . (5.3)

As we extend the maximum wavenumber included in our fits, small-scale information
does help break degeneracies between fσ8 and the AP parameters, reducing the correlation
between fσ8 and (α⊥, α‖). For comparison, [39] reports a correlation between fσ8 and α⊥
of 0.503 and fσ8 and α‖ of 0.547 for the middle redshift bin for the combined DR12 BOSS

sample, where they have fit [P0, P2] to kmax = 0.15 hMpc−1 and P4 to kmax = 0.1 hMpc−1.
This level of correlation is similar to our values obtained when fitting to kmax = 0.2 hMpc−1,
however we find a significant reduction in correlation fitting to kmax = 0.4 hMpc−1. We
can assess the freedom of our RSD modeling using the Fisher formalism, which predicts a
correlation coefficient of unity between α‖ and α⊥ in the case where we perfectly understand
RSD [12, 108, 109]. In the opposite limit, we expect r ∼ −0.4 when only BAO information
is used and RSD information is fully marginalized over. Thus, the correlation between α‖
and α⊥ provides a measure of the constraining power of our RSD parametrization, with the
correlation decreasing from unity as additional freedom is introduced into the RSD model.
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Figure 9: Parameter correlations as measured from the posterior distributions when fitting
the mean of the 10 RunPB galaxy catalogs. We show the correlations as a function of the
maximum wavenumber included in the fit, illustrating the changes in parameter dependencies
when fitting to smaller scales.

Our results are consistent with this expectation, as we find the correlation increase for large
kmax. To model results only to kmax = 0.2 hMpc−1, our model contains too much freedom, in
comparison to the requirements of modeling to kmax = 0.4 hMpc−1. Again for comparison,
[39] finds a correlation of r = 0.257 between α‖ and α⊥. Thus, our value of r = 0.292
indicates that we are able to recover a similar amount of information using our RSD model
parametrization to kmax = 0.4 hMpc−1.

5.2 Independent tests on high resolution mocks

To fully assess the accuracy and precision of our RSD model, we perform independent tests
using two sets of mocks based on high-fidelity, periodic N -body simulations. The first,
described in §5.2.1 is a homogenenous set of 21 galaxy catalogs derived from 7 realizations of
a N -body simulation with fixed cosmology and bias model. The second, described in §5.2.2,
is a set of 7 heterogenous HOD galaxy catalogs where both the bias model and underlying
cosmology varies from box to box. For details on the cosmology and simulation parameters
for these mocks, see table 1.

5.2.1 Cubic N-series results

Our first independent tests utilize the cubic N-series simulation, the large-volume (Lbox =
2600 h−1Mpc) periodic box simulations described in section 2.2. We perform fits to the
monopole, quadrupole, and hexadecapole from 21 HOD galaxy catalogs, constructed from 7
realizations at z = 0.5 and 3 orthogonal line-of-sight projections per box. The cosmology of
these boxes is given in table 1. As in section 5.1, we perform fits to the data vector [P0, P2, P4]
over a range of kmax values. The best-fitting parameters for each of the 21 catalogs are
obtained by maximum a posterior (MAP) estimation using the LBFGS algorithm.
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Figure 10: The mean of the best-fit monopole, quadrupole, and hexadecapole models (col-
ored) as compared to the individual measurements (gray) from the 21 N-series cubic boxes
at z = 0.5, fit over the wavenumber range k = 0.02 − 0.4 hMpc−1. The lower panels show
the scatter in the recovered values for the 3 cosmology parameters, fσ8, α⊥, and α‖, across
the 21 boxes. The error bar shows the standard deviation of these results (not the error on
the mean).

Figure 10 shows the measured ` = 0, 2, and 4 multipoles from the individual N-series
catalogs, and we have over-plotted the mean of the best-fitting model from each fit using
kmax = 0.4 hMpc−1. We report the mean (with the expected value subtracted) and standard
deviation for the best-fitting fσ8, α⊥, and α‖ values from the 21 fits as a function of fitting
range in table 5. We also include the results for fσ8 when holding the AP parameters fixed
to their true values.

We find similar trends in our recovered cosmological parameters for the N-series boxes
as for the RunPB results in §5.1. We obtain good fits to the measured ` = 0, 2, 4 multipoles
using our RSD model up to kmax = 0.4 hMpc−1. However, we do find some evidence for
small systematic biases present in our RSD model, although it is difficult to properly assess
the level of statistical significance with only seven fully independent realizations (clustering
from boxes that vary only the line-of-sight projection are correlated). When using kmax =
0.4 hMpc−1, we find that are fσ8 value is biased low by ∆fσ8 = 0.008 and α‖ is biased high
by ∆α‖ = 0.011. These correspond to ∼0.8σ and ∼0.9σ shifts, respectively, relative to the
box-to-box dispersion, as determined by the standard deviation of the 21 fits. Although it
is important to note that, again, with only 7 independent realizations and 21 total fits, the
standard deviation across the fits remains noisy. When fixing the AP parameters to their
true values, we see a relatively large upwards shift in the mean fσ8 value across the fits.
As our model prefers a slightly larger α‖ value than expected, when its value is fixed to its
correct value, the recovered value for fσ8 shifts upwards, due to the anti-correlation between
the parameters.
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kmax ∆〈α‖〉 Sα‖ ∆〈α⊥〉 Sα⊥ ∆〈fσ8〉 Sfσ8 ∆〈fσ8〉 Sfσ8
[ hMpc−1] fixed AP

0.2 0.005 0.011 −0.002 0.005 −0.016 0.014 −0.010 0.013
0.3 0.007 0.011 −0.003 0.004 −0.009 0.013 −0.000 0.011
0.4 0.011 0.012 −0.003 0.004 −0.008 0.010 0.003 0.010

Table 5: The mean (with expected value subtracted) and standard deviation S of the best-
fitting values for fσ8, α⊥, and α‖ found when fitting [P0, P2, P4] from the 21 cubic N-series
catalogs. Results are reported as a function of the maximum wavenumber included in the
fit. We also give results for fσ8 when holding the AP parameters fixed to their true values.

5.2.2 Lettered challenge box results

We perform additional tests of our model using a heterogeneous set of seven HOD galaxy
catalogs, labeled A through G, which were constructed from high-fidelity cubic N -body
simulations. These catalogs are described in detail in section 2.3, and the cosmology and
simulation parameters are reported in table 1. The box size for these mocks is ∼2.5 h−1Gpc;
a single box has roughly 4 times the volume of the DR12 BOSS CMASS sample and 60%
of the volume of the mean of the 10 RunPB realizations. They were designed to provide
stringent stress-tests of full-shape RSD modeling analyses, and as such, they cover a range
of redshifts (z = [0.441, 0.5, 0.562]), fσ8 values, and galaxy bias models. As was done in
previous sections, we compute fits to the monopole, quadrupole, and hexadecapole for each
of the seven lettered challenge boxes, as a function of the maximum wavenumber included
in the fits. We obtain full posterior distributions for each of our 13 model parameters using
MCMC sampling. We report the recovered values for the cosmological parameters (with the
expected value subtracted) and the 1σ parameter uncertainties for all seven boxes in table 6.
Figure 11 illustrates the fractional deviation of our recovered cosmology values from their
reference values for each kmax value.

The recovered values show similar trends as a function of kmax as the results from the
RunPB and cubic N-series results. We generally find ∼20− 30% improvements in the error
on fσ8 when extending the fit from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1. We find
more modest decreases in the error for the AP parameters, with little improvement extending
from kmax = 0.3 hMpc−1 to kmax = 0.4 hMpc−1. Within the expected 1σ uncertainty of each
mock, we recover fσ8 and α⊥ values consistent with the truth for all seven boxes, and the
best-fitting values generally remain stable as a function of kmax. However, the recovered
values for α‖ show a systematic positive bias for all boxes, relative to the truth, which can
be most easily seen in figure 11. This bias is present for each value of kmax used. It is
difficult to assess the statistical significance of this potential bias, as several of the seven
mocks are built on the same underlying N -body simulation, which introduces the derived
parameters. Weighting each derived α‖ by the inverse uncertainty, we find a mean positive
bias of ∆α‖ = 0.02, independent of kmax. This bias is slightly larger than was found for
either the RunPB or cubic N-series mocks, where both results show a ∼0.01 positive bias in
α‖.

We also include in figure 11 and table 6 the results for fσ8 when fixing the AP parameters
to their true values. As expected, we see substantial (∼20-30%) error decreases since the
correlation between fσ8 and the AP parameters degrades constraints when α‖ and α⊥ are
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box kmax ∆α‖ ∆α⊥ ∆fσ8 ∆fσ8

[ hMpc−1] fixed AP

A

0.2 0.031 +0.012
−0.012 −0.001 +0.006

−0.007 −0.026 +0.018
−0.016 −0.003 +0.011

−0.012

0.3 0.029 +0.011
−0.011 0.001 +0.007

−0.008 −0.015 +0.015
−0.014 −0.001 +0.011

−0.010

0.4 0.031 +0.010
−0.013 0.004 +0.006

−0.006 −0.009 +0.013
−0.014 0.005 +0.008

−0.007

B

0.2 0.029 +0.012
−0.013 −0.004 +0.007

−0.007 −0.010 +0.018
−0.018 0.009 +0.014

−0.013

0.3 0.032 +0.013
−0.012 −0.003 +0.008

−0.007 −0.009 +0.016
−0.018 0.014 +0.010

−0.009

0.4 0.032 +0.012
−0.011 −0.001 +0.007

−0.007 −0.004 +0.015
−0.014 0.019 +0.010

−0.011

C

0.2 0.045 +0.014
−0.014 −0.002 +0.007

−0.007 −0.035 +0.020
−0.020 −0.005 +0.012

−0.014

0.3 0.048 +0.011
−0.012 −0.002 +0.006

−0.007 −0.030 +0.016
−0.017 0.002 +0.011

−0.013

0.4 0.045 +0.013
−0.013 −0.000 +0.006

−0.006 −0.012 +0.016
−0.014 0.021 +0.010

−0.010

D

0.2 0.002 +0.012
−0.011 0.003 +0.007

−0.006 0.011 +0.016
−0.018 0.006 +0.012

−0.012

0.3 0.002 +0.010
−0.010 0.002 +0.005

−0.006 0.011 +0.017
−0.015 0.012 +0.010

−0.009

0.4 0.009 +0.009
−0.008 −0.001 +0.005

−0.005 0.013 +0.011
−0.012 0.017 +0.009

−0.009

E

0.2 0.000 +0.013
−0.012 0.006 +0.006

−0.007 0.015 +0.018
−0.020 0.007 +0.010

−0.009

0.3 −0.001 +0.010
−0.010 0.002 +0.006

−0.005 0.008 +0.016
−0.017 0.005 +0.009

−0.009

0.4 0.009 +0.011
−0.011 0.002 +0.006

−0.006 0.012 +0.017
−0.015 0.016 +0.010

−0.009

F

0.2 0.032 +0.013
−0.012 −0.002 +0.007

−0.007 −0.025 +0.020
−0.019 0.005 +0.011

−0.012

0.3 0.034 +0.011
−0.011 0.003 +0.006

−0.006 −0.012 +0.015
−0.017 0.015 +0.006

−0.006

0.4 0.015 +0.010
−0.009 0.008 +0.006

−0.006 0.006 +0.014
−0.013 0.009 +0.005

−0.004

G

0.2 0.014 +0.010
−0.010 −0.000 +0.007

−0.007 −0.022 +0.017
−0.017 −0.014 +0.012

−0.012

0.3 0.012 +0.009
−0.011 0.001 +0.005

−0.005 −0.015 +0.015
−0.017 −0.004 +0.010

−0.011

0.4 0.020 +0.011
−0.011 0.007 +0.006

−0.006 0.006 +0.010
−0.010 0.007 +0.008

−0.007

Table 6: The best-fitting values for fσ8, α⊥, and α‖ obtained when fitting our RSD model to
the measured monopole, quadrupole, and hexadecapole from the 7 lettered challenge boxes.
We report results as a function of the maximum wavenumber included in the fits. The 1σ
uncertainties obtained via MCMC sampling are also shown.

allowed to vary. Similar to previous results, we also find a systematic positive shift in the
recovered fσ8 values when holding α‖ and α⊥ fixed to their true values. This is expected
due to the correlation between fσ8 and α‖ and the systematic positive shift found for α‖.

5.3 Tests on realistic DR12 BOSS CMASS mocks

Finally, we test our RSD model using BOSS DR12 CMASS mock catalogs, using the 84
independent, N-series cutsky catalogs described in §2.2. This set of catalogs offers a chance
to test the performance of our model in a realistic setting with a large enough number of
catalogs to identify systematic biases up to the level of

√
84 = 9.16 times smaller than the
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Figure 11: The fractional deviation of the best-fitting fσ8, α⊥, and α‖ values from their
true values for each of the seven lettered challenge boxes. We also show the deviations for fσ8

obtained when the AP parameters are fixed to their true values. For each box, we show results
obtained using (from left to right) kmax = 0.2 (blue), 0.3 (green), and 0.4 (orange) hMpc−1.
Error bars show the 1σ uncertainty as obtained via MCMC sampling.

measurement uncertainty from a single mock. The 84 N-cutsky catalogs accurately model
the geometry, volume, and redshift distribution of the DR12 CMASS NGC sample [70]. We
use the window function convolution procedure outlined in section 4.3.2 to properly account
for effects of the selection function on the measured power spectrum multipoles. We measure
the monopole, quadrupole, and hexadecapole for each of the 84 catalogs and estimate the
best-fitting model parameters using MAP optimization via the LBFGS algorithm. The power
spectra have been measured using FKP weights with a value of P0 = 104 [h−3Mpc3]. Similar
to previous fits, we report parameter constraints as a function of the maximum wavenumber
included in the fits. The minimum wavenumber included in the fits is kmin = 0.02 hMpc−1,
chosen to minimize any large-scale effects of the window function on our parameter fits.

We plot the best-fitting ` = 0, 2, 4, and 6 theoretical model and the measurements
multipoles from a single catalog of the full 84 N-series cutsky test suite in figure 12. Here, the
best-fit model has been estimated using the data vector [P0, P2, P4] with kmax = 0.4 hMpc−1,
but we also show the tetra-hexadecapole (` = 6) to illustrate that the model can accurately
predict this higher-order multipole and that it contains little measurable signal. For this
single mock, we find good agreement between theory and data, with a reduced chi-squared
of χ2

red = 1.01.
We give the mean (with the expected value subtracted) and standard deviation of the

best-fitting cosmological parameters from fits to each of the 84 cutsky mocks in table 7. We
also show the the 1D histograms and 2D correlations of fσ8, α⊥, and α‖ for the individual
fits in figure 13, illustrating the constraining power of our model for these parameters as well
as the correlations between the parameters. When fitting the monopole, quadrupole, and
hexadecapole, we find good agreement between the mean of the recovered values for fσ8,
α⊥, and α‖. When including scales up to kmax = 0.4 hMpc−1, we find modest mean biases
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of ∆〈fσ8〉 = 0.005, ∆〈α⊥〉 = −0.004, and ∆〈α‖〉 = 0.004, which represent 14%, 28%, and
17% of the expected mock-to-mock dispersion of each parameter, respectively. The statistical
precision of the mean values due to the finite number of catalogs is 84−1/2 ' 0.1 times the
mock-to-mock dispersion. Thus, the results show evidence for a small bias in the derived α⊥
value and marginal evidence for small biases in α‖ and fσ8. We also show results in table 7
when fitting only the monopole and quadrupole in order to help quantify the impact of the
hexadecapole on our final constraints. The mean best-fitting parameters remain consistent
with the results obtained when fitting [P0, P2, P4], and we find the standard deviation of our
best-fitting fσ8 values inflates by roughly 30%, consistent with the findings of [39]. When
fixing the AP parameters to their true values, we find that the hexadecapole adds negligible
further information to our parameter constraints.

5.4 Comparison to published models

The set of 84 N-series mocks described in the previous section were utilized as part of the
BOSS collaboration’s internal RSD modeling tests in preparation for the DR12 parameter
constraint analyses. This enables us to perform a direct comparison of our model with the
main Fourier space RSD models used in the DR12 consensus results, which are described
in the companion papers in [39] and [40] and the main DR12 consensus paper in [9]. The
model used in [40] was also applied to BOSS DR12 data in configuration space, with results
presented in [38]. These analyses differ in a number of ways from ours. In particular,
these models have significantly fewer parameters (7-8 instead of 13) and use a smaller kmax

value in their fits. We limit our fitting range to the same as those used in these works and
directly compare the derived parameter constraints for the N-cutsky mocks in table 8. For
comparison, this table also includes results from fits using our model that include scales to
kmax = 0.3 hMpc−1 and kmax = 0.4 hMpc−1, which goes beyond the scales used in [40]
and [39]. When using comparable fitting ranges, we find that our model yields a standard
deviation for fσ8 that is larger by ∼10% and ∼20% as compared to when using the models of
[39] and [40], respectively. We find comparable constraints on fσ8 when extending our model
to kmax = 0.3 hMpc−1 and a modest 5-10% improvement when using kmax = 0.4 hMpc−1.

For the AP parameters, we find a comparable constraint on α⊥ and a slighter worse
constraint on α‖ as compared to the model of [39]. We find modest 5% and 10% reductions
in the error on α‖ and α⊥ as compared to the model of [40]. Extending the fits with our

model to kmax = 0.4 hMpc−1 does not provide much gain for the uncertainty of α‖, but we
do find a roughly 20% reduction in the uncertainty of α⊥ as compared to the models of [39]
and [40]. As seen in the results of [9], the most powerful method for constraining the AP
parameters, and thus DA(z) and H(z), remains a BAO-only analysis that takes advantage
of the additional statistical precision gained by the process of density field reconstruction.
However, some additional constraining power can be gained from full-shape RSD analyses
due the AP effect on sub-BAO scales. Here, the extra information provided by extending
the modeling to kmax = 0.4 hMpc−1 will aid the constraints on DA(z) and H(z) and help
de-correlate these parameters.

It is also instructive to compare our results for the N-cutsky mocks to the results pub-
lished in [110], which fits the monopole and quadrupole of the DR12 CMASS sample with
kmax = 0.24 hMpc−1. The comparison yields similar conclusions as previously. In particular,
[110] finds errors of σfσ8 = 0.038 and σfσ8 = 0.022 when varying and fixing the AP param-
eters, respectively. These errors are both smaller than the uncertainties derived from our
model by ∼30% when fitting the monopole and quadrupole over similar wavenumber ranges.
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Figure 12: The best-fitting ` = 0, 2, 4, and 6 theory (grey lines) and measurements (points
with errors) from a single catalog of the N-series cutsky test suite, which accurately simulates
the BOSS DR12 CMASS data set. The best-fit model has been estimated using the data
vector [P0, P2, P4] while fitting over the wavenumber range k = 0.02− 0.4 hMpc−1. We also
show the tetra-hexadecapole (` = 6) to illustrate that the model can accurately predict this
higher-order multipole and that it contains little measurable signal. The reduced chi-squared
of the fit for this mock catalog is χ2

red = 1.01.

statistics kmax ∆〈α‖〉 Sα‖ ∆〈α⊥〉 Sα⊥ ∆〈fσ8〉 Sfσ8 ∆〈fσ8〉 Sfσ8

[ hMpc−1] fixed AP

[P0, P2, P4]

0.2 0.007 0.024 −0.004 0.016 −0.020 0.041 −0.008 0.034

0.3 0.007 0.025 −0.005 0.015 −0.008 0.039 0.005 0.030

0.4 0.004 0.023 −0.004 0.014 0.005 0.036 0.013 0.027

[P0, P2]

0.2 −0.004 0.039 −0.001 0.019 −0.014 0.052 −0.013 0.035

0.3 0.005 0.041 −0.004 0.019 −0.005 0.053 0.005 0.030

0.4 0.012 0.036 −0.008 0.016 −0.010 0.040 0.007 0.025

Table 7: The mean and standard deviation of the best-fitting values for fσ8, α⊥, and α‖ from
fits to the 84 N-series cutsky catalogs. Results are reported as a function of the maximum
wavenumber included in the fit. We show results obtained when including or excluding the
hexadecapole from our fits in order to quantify the influence of the hexadecapole on our
derived constraints.

The constraints for the AP parameters in [110] are similarly smaller than those from our
model by a comparable amount.

And, finally, it is worth noting that the fσ8 constraints using the model in this work
are not competitive with the 2.5% constraint on fσ8 published in [36], which remains the
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Figure 13: The best-fitting fσ8, α⊥, and α‖ parameters from fitting our RSD model to the
measured [P0, P2, P4] multipoles from the 84 N-series cutsky mocks. We include wavenumbers
in the range 0.02 hMpc−1 ≤ k ≤ 0.4 hMpc−1. The diagonal panels show the histogram of
the recovered parameters, with the mean best-fitting parameters indicated as black dashed
lines and the true values as gray dotted lines. The panels below the diagonal show 2D plots
with the 84 individual best-fitting parameters as blue dots and the mean as a filled circle.
We also show a Gaussian fit to the marginalized parameter distributions in all panels.

kmax for [P0, P2, P4] ∆〈α‖〉 Sα‖ ∆〈α⊥〉 Sα⊥ ∆〈fσ8〉 Sfσ8

[39] [0.15, 0.15, 0.1] 0.0049 0.0338 −0.0014 0.0180 −0.0049 0.0375

[40] [0.2, 0.2, 0.2] 0.0089 0.0253 −0.0030 0.0175 0.0001 0.0383

This work

[0.15, 0.15, 0.1] 0.0003 0.0403 0.0011 0.0183 0.0043 0.0447

[0.2, 0.2, 0.2] 0.0065 0.0239 −0.0041 0.0157 −0.0198 0.0409

[0.3, 0.3, 0.3] 0.0074 0.0254 −0.0050 0.0152 −0.0077 0.0385

[0.4, 0.4, 0.4] 0.0041 0.0231 −0.0043 0.0143 0.0050 0.0356

Table 8: The mean (with expected value subtracted) and standard deviation of the best-
fitting cosmology parameters for the 84 N-cutsky mocks using the model in this work as well
as the Fourier space models described in [39] and [40]. Results in all cases were computed
using FKP weights with P0 = 104 h−3Mpc3.
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tightest measurement of fσ8 in the literature to date. With fixed AP parameters, the work
used a simulation-based analysis to model the small-scale correlation function of the DR10
CMASS sample well into the nonlinear regime, down to scales of ∼0.8 h−1Mpc. They relied
on simulations to accurately model the galaxy-halo connection whereas we use the analytic,
halo model decomposition described in section 4.2. Given the tight constraint on fσ8 found
by [36], one might hope that Fourier space models could be similarly extended into the
nonlinear regime and yield comparable increases in precision. However, while acknowledging
the number of differences in the two analyses, we note that we do not find such large increases
in precision in our measurement of fσ8 when including small-scale information down to
k = 0.4 hMpc−1.

6 Discussion

The results presented in section 5 provide tests of the RSD model presented in this work
for a suite of simulations that span a wide range in both cosmology and galaxy bias models.
Given the measurement uncertainties and the degrees of freedom in our model, we are able to
achieve excellent agreement between the ` = 0, 2, 4 multipoles measured from simulations and
our best-fitting theory down to scales of k = 0.4 hMpc−1. To quantify the impact of small-
scale physics on our model, we perform fits for kmax = 0.2, 0.3, and 0.4 hMpc−1. The results
across the different sets of simulations indicate a positive systematic shift in the parallel AP
parameter α‖ at the level of 0.01− 0.02 that is independent of the kmax value used. For fits

using kmax = 0.4 hMpc−1, we find small biases at the level of ∼0.005 for fσ8 and α⊥. These
deviations are small and can be effectively calibrated with simulations. The amplitude of the
shifts is similar to the level of theoretical systematics present when using other RSD models
in the literature, i.e., [9]. The positive bias in α‖ propagates into a small bias in fσ8 when
fixing the AP parameters to their expected values, due to the anti-correlation between fσ8

and α‖. The exact amplitude of the bias in α‖ can be robustly estimated from a larger set of
simulations than is considered in this work and the best-fitting α‖ value modified accordingly,
while accounting for the systematic uncertainty in the error budget.

A primary goal of this work is to ensure that any model parameters that we introduce
have physically meaningful values and are not just nuisance parameters. We attempt to
capture the complex effects of satellite galaxies on the clustering signal in redshift space
by considering separately the clustering of isolated satellites and those that live in halos
with at least two satellites. This parametrization leads to a total of 13 model parameters,
significantly more than other Fourier space RSD models in the literature, i.e., [39, 40], which
typically only have 7-8 parameters. In addition to differences in the treatment of RSD and
perturbation theory choices, perhaps the most significant difference is the use of a single
parameter to model the nonlinear FoG effect of the full galaxy sample, instead of separately
modeling the effects for central and satellite subsamples, as is done in this work. They also
typically float a constant, shot noise parameter, designed to absorb any potential deficiencies
in the model. In some sense, these models are a limit of the more general parametrization
considered in this work and are only valid over a certain range of scales and galaxy bias
values.

As demonstrated in the analysis of [9], the level of theoretical errors in fσ8 measurements
from full-shape RSD analyses ranges from ∼25-50% of the statistical precision for the three
redshift bins considered for the completed BOSS DR12 sample. Another recent analysis
[111] provides evidence for the possible shortcomings of the RSD model of [39]. The work
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extends the modeling to include the relative velocity effect of baryons and cold dark matter
at decoupling but fails several null tests. The systematics situation is perhaps even more dire
when considering the fact that background cosmology model is essentially fixed by the Planck
results (see Fig. 11 of [9]), indicating that a more relevant test of systematics should be done
with the AP parameters fixed, often resulting in a ∼20-30% smaller error on fσ8. This
suggests that RSD analyses from full-shape modeling are already systematics dominated and
will certainly be so for future galaxy surveys, without subsequent modeling improvements.
While the model presented in this work has its own shortcomings, one such avenue for
improvement is exploring more physically motivated model descriptions.

As discussed in section 5.4, our parametrization leads to a derived uncertainty of fσ8

that is roughly 10-20% larger than the constraint from the models of [39, 40], which use
fewer parameters. Each of our parameters has a physical motivation, and we apply reasonable
priors based on these motivations when appropriate. Thus, we find no clear path to reduce the
number of parameters in our model and do not believe that additional constraining power can
be gained through the use of stronger priors. As such, RSD models in the literature are likely
too-limited in their parametrization, with the uncertainty on fσ8 underestimated by ∼10-
20%. For a galaxy sample such as the BOSS CMASS sample with a satellite fraction fs ∼ 0.1,
the clustering is dominated by the 2-halo correlations of centrals. However, we find the
inclusion of parameters to properly treat the 1% effects of satellite-satellite correlations to be
crucial to modeling the clustering down to scales of k ∼ 0.4 hMpc−1. Using a Fisher analysis,
we find similar errors on fσ8 as found by the models of [39, 40] for the N-cutsky mocks (see
table 8) when fixing the relative fraction of non-isolated satellites fsB and the central galaxy
velocity dispersion σc. In this case, we only vary a single FoG velocity dispersion, as is the
case for the models of [39, 40], and fix the ∼1% contribution to the overall power spectrum
from satellites living in halos containing multiple satellites.

Fully perturbative modeling approaches cannot accurately capture the effects of nonlin-
earities, i.e., the FoG effect from satellites, on small scales, and at some point, the modeling
must become sensitive to the poorly-understood physics of galaxy evolution. Presently, it is
unclear how sensitive cosmological growth of structure measurements are to such small-scale
physics. In particular, assembly bias remains a worrying potential systematic for galaxy clus-
tering analyses [112, 113]. The most promising avenue for including small-scale information
(k ∼ 0.4 hMpc−1) in growth of structure analyses appears to be simulation-based modeling
efforts. The most competitive constraint to date for fσ8 published in [36] uses a simulation-
based model to describe the correlation function down to scales of r ∼ 0.8 h−1Mpc. In order
to achieve the desired accuracy for the RSD model presented in this work, we also find it
necessary to include calibrations from simulations for key components of the model. The
combination of perturbation theory with simulation-based calibration in our model likely
limits the applicability of the model in comparison to a fully general, simulation-based ap-
proach. An emulator-based approach for the nonlinear clustering of galaxies in redshift-space
using the FastPM simulation method [114] is under active development.

An alternative approach for maximizing the constraining power of RSD analyses relies on
limiting the effects of satellites on the modeling. These so-called halo reconstruction methods
attempt to modify the measurement procedure to preferentially exclude satellites galaxies,
thus measuring the clustering of the underlying halo density field, rather than the galaxy
density field [27, 115, 116]. The difficulty of these methods remains achieving a transformation
accurate enough such that the added modeling complications from the transformation itself
do not outweigh the benefits gained by removing satellites. The advantages include limiting
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Figure 14: The best-fitting model and measured simulation points for the monopole (darkest
shade), quadrupole, and hexadecapole (lightest shade) from the mean of 10 RunPB galaxy
catalogs at z = 0.55 for all galaxies P gg` (blue), all centrals P cc` (green), and isolated centrals
with no satellites in the same halo P cAcA` (orange). Linear biases for each sample are b1,g =
2.05, b1,c = 1.93, and b1,cA = 1.84.

the effects of nonlinearities, which simplifies the modeling and could allow use of models closer
to purely linear theory. Reducing FoG effects raises the overall amplitude of the quadrupole
and boosts the signal-to-noise of the measurement, although removing satellite galaxies does
lower the overall bias, which reduces the constraining power of a given measurement.

As an illustration, we have compared our RSD constraints when fitting our 13 param-
eter model to the clustering of centrals and type A centrals (isolated centrals that have no
satellites) from the RunPB simulations. We show the best-fit multipoles for these cases in
comparison to the spectra of the full galaxy sample in figure 14. As expected, the small-scale
quadrupole shows a significant reduction in the effects of RSD, and we find a reduction in
the linear bias due to the removal of the highly biased satellites. Corresponding parameter
constraints for fσ8, α⊥, and α‖ are presented in table 9. We find the largest decreases in un-
certainty when considering centrals only – the error on fσ8 decreases by 31%, 19%, and 15%
when fitting to kmax = 0.2, 0.3, and 0.4 hMpc−1, respectively. Similarly, we find decreases of
16%, 7%, and 25% for α‖ and 19%, 10%, and 0% for α⊥. While we find diminishing benefits

to extending the fitting range from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1, the constraints
using centrals only are in all cases better than using when using all galaxies. Furthermore,
fitting the clustering of only centrals to kmax = 0.2 hMpc−1 is roughly as competitive in
constraining fσ8 as fitting the clustering of all galaxies to kmax = 0.4 hMpc−1, and the latter
is significantly more challenging to model than the former. While we recognize that this is
certainly an idealized demonstration, we view halo reconstruction methods as an important
area of future research for both their constraining power and simplified theoretical modeling.
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kmax all galaxies centrals only type A centrals only

kmax = 0.2 hMpc−1

∆α‖ 0.0090 +0.0095
−0.0086 0.0096 +0.0076

−0.0076 0.0101 +0.0081
−0.0081

∆α⊥ 0.0029 +0.0054
−0.0063 0.0023 +0.0048

−0.0046 0.0023 +0.0047
−0.0047

∆fσ8 −0.0174 +0.0149
−0.0154 −0.0042 +0.0108

−0.0100 −0.0089 +0.0116
−0.0108

kmax = 0.3 hMpc−1

∆α‖ 0.0065 +0.0078
−0.0074 0.0049 +0.0072

−0.0070 0.0038 +0.0069
−0.0067

∆α⊥ 0.0042 +0.0049
−0.0046 0.0044 +0.0043

−0.0043 0.0046 +0.0045
−0.0046

∆fσ8 −0.0048 +0.0122
−0.0128 0.0066 +0.0100

−0.0104 0.0031 +0.0093
−0.0093

kmax = 0.4 hMpc−1

∆α‖ 0.0089 +0.0068
−0.0077 0.0030 +0.0055

−0.0054 0.0012 +0.0061
−0.0068

∆α⊥ 0.0050 +0.0042
−0.0040 0.0029 +0.0044

−0.0039 0.0012 +0.0044
−0.0041

∆fσ8 −0.0031 +0.0097
−0.0091 0.0031 +0.0085

−0.0076 0.0059 +0.0083
−0.0081

Table 9: The best-fit fσ8, α⊥, and α‖ values and 1σ uncertainties obtained when fitting
the monopole, quadrupole, and hexadecapole from the mean of 10 RunPB galaxy catalogs
at z = 0.55 when including all galaxies, centrals only, and type A centrals only, which are
isolated with no satellites in the same halo.

7 Conclusion

We present a new model for the redshift-space power spectrum of galaxies and demonstrate
its accuracy in modeling the monopole, quadrupole, and hexadecapole of the galaxy density
field down to k = 0.4 hMpc−1 through a series of tests on high-fidelity N -body simulations.
The model describes the clustering of galaxies in the context of a halo model, building upon
the formalism presented in [58]. We decompose galaxies into four subsamples: centrals with
and without satellites and satellites with one or more neighboring satellite. We then model
the clustering of the underlying halos in redshift space using a combination of Eulerian
perturbation theory and N -body simulations. The modeling of RSD via the mapping from
real space to redshift space is done using the so-called distribution function approach. In
order to achieve sufficient accuracy in the modeling down to k = 0.4 hMpc−1, we utilize a set
of simulations to calibrate the most important terms of the model. To this end, we extend
the Halo-Zel’dovich Perturbation Theory of [59], which combines Lagrangian perturbation
theory with physically motivated corrections calibrated from simulations. We improve the
accuracy of this model for the dark matter density power spectrum and develop models for
the dark matter velocity correlators P01 and P11. Our final model has 13 free parameters,
each of which is physically motivated, as described in table 3. The model accounts for the
FoG effect from each of our galaxy subsamples, rather than using a single velocity dispersion
to describe the combined effect. We account for the linear bias of each of the subsamples and
describe the shot noise contributions to the power spectrum via the amplitude of the 1-halo
galaxy correlations.

We fit our 13 parameter model to the monopole, quadrupole, and hexadecapole mea-
sured from several sets of simulations to test the accuracy and precision of the recovered
parameters. These mock catalogs cover a range of cosmologies and galaxy bias models, pro-
viding stringent tests of our model. The test suite also includes realistic mock catalogs of the
BOSS DR12 CMASS sample, properly modeling the volume and selection effects of this data
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set. We perform fits as a function of the maximum wavenumber included in the fit, using
kmax = 0.2, 0.3, and 0.4 hMpc−1. The results of these tests can be summarized as follows:

(i) Given the measurement covariance and degrees of freedom in the model, we find excel-
lent agreement between our model and the measured ` = 0, 2, and 4 multipoles from
simulations down to scales of k = 0.4 hMpc−1.

(ii) A systematic shift in the best-fitting value of α‖ is identified at the level of 0.01 −
0.02, independent of the kmax value used when fitting. Such a systematic shift can be
calibrated from a large set of simulations and a correction applied to the best-fitting
value.

(iii) The level of systematic bias in the parameters fσ8 and α⊥ is found to be small, at
the level of ∼0.005, which is similar to other published RSD models in the literature,
i.e., [9]. However, considering that the Planck results essentially fix the background
cosmology model, comparisons between this level of systematics and the error on fσ8

for fixed AP parameters indicate that RSD analyses are nearly systematics dominated
today. This will certainly be the case for the next generation of galaxy surveys, unless
analyses are limited to the largest scales or substantial modeling improvements are
made.

(iv) Using a set of BOSS DR12 CMASS mock catalogs as a benchmark for comparison, we
estimate an uncertainty on fσ8 that is ∼10-20% larger than when using the models
of [39, 40], when fitting over similar wavenumber ranges. With 5-6 fewer parameters,
these models likely have a too-limited parametrization and are underestimating the
resulting uncertainty of fσ8.

(v) Extending the fitting range to kmax = 0.4 hMpc−1 provides 15-30% gains in the sta-
tistical precision of the fσ8 constraint relative to kmax = 0.2 hMpc−1. The gains are
more modest when our model is compared to published models, which use a more lim-
ited parametrization; the error on fσ8 is roughly 5-10% smaller with our model using
kmax = 0.4 hMpc−1 than constraints found when using the models of [39, 40] (with
kmax ' 0.2 hMpc−1) for the BOSS DR12 CMASS sample.

(vi) We find a ∼10-15% improvement in the constraint on α⊥ and only marginal gains for
α‖ when extending from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1. The constraint
on α⊥ represents a 20% improvement relative to the results found when the published
models of [39, 40]. This improvement will further help constrain and de-correlate the
parameters DA(z) and H(z) when combined with post-reconstruction BAO-only anal-
yses.

Extending full-shape RSD modeling of galaxy clustering to smaller scales in both an
accurate and precise manner remains a complicated endeavor. Applying models such as the
one presented here will be necessary at the minimum to fully capitalize on the cosmological
information contained in future galaxy surveys, such as Hobby Eberly Telescope Dark Energy
Experiment [117], the Dark Energy Spectroscopic Instrument (DESI)[118], the Subaru Prime
Focus Spectrograph [119], and the ESA space mission Euclid [120]. For example, we expect
our model to perform well on the DESI Emisson Line Galaxy sample, which has a lower bias
and high satellite fraction as compared to the BOSS CMASS sample. Conversely, the gains
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when applying our model to next generation quasar samples would likely be more modest
due to the high shot noise and lower impact of one-halo correlations.

There are several intriguing modeling approaches that can go beyond our analytic mod-
eling approach and potentially improve the constraints further. Simulation-based approaches
can leverage advances in high-performance computing to accurately model nonlinear cluster-
ing on small-scales. Complementary approaches such as halo reconstruction can simplify
modeling and reduce the need to include small-scale information by mitigating the compli-
cated effects of satellite galaxies on the modeling procedure. It remains to be seen if these
further advances will improve cosmological constraints, or whether with our model we have
reached the limit due to the effects of nonlinear evolution and poorly known small-scale
physics.
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A Velocity correlators in the Zel’dovich approximation

In this section, we use Lagrangian perturbation theory (LPT) to compute two dark matter
velocity correlators that enter into the DF model: the density – radial momentum cross
spectrum, P01, and the radial momentum auto spectrum, P11. We closely follow the nota-
tion of [94]; see e.g, [94, 121, 122] and references therein for further review of Lagrangian
perturbation theory.

A.1 P01 and P11 using LPT

Following the definitions of [54], the velocity correlators that we wish to compute are given
by

(2π)3P01(k)δD(k + k′) = 〈δ(k)|p‖(k′)〉,
(2π)3P11(k)δD(k + k′) = 〈p‖(k)|p‖(k′)〉, (A.1)

where p‖ is the momentum projected along the line-of-sight, i.e., p‖ = p · ẑ. The scalar
component of the dark matter momentum (which correlates with density) can be computed
using the continuity equation: δ̇(k)− ik · p = 0, where the dot in δ̇ represents the derivative
with respect to conformal time τ . Using this equation, we can express the velocity correlators
of interest as

P01(k) =
iµ

k
Pδδ̇(k), (A.2)

P11,s(k) =
µ2

k2
Pδ̇δ̇(k), (A.3)
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where µ is defined as k‖/k. Here, we explicitly note that P11,s only includes scalar contribu-
tions, as only the scalar component of momentum enters into the continuity equation. The
total contribution from these terms to the redshift-space power spectrum PS(k, µ) is given
by:

PS01(k) = 2Re

(−ikµ
H

)
P01(k) = 2

µ2

H Pδδ̇(k), (A.4)

PS11,s(k) =

(
kµ

H

)2

P11,s(k) =
µ4

H2
Pδ̇δ̇(k). (A.5)

These are the spectra that we wish to compute in the Zel’dovich approximation. In linear
theory, these spectra are the anisotropic terms of the well-known Kaiser formula: PS01(k) =
2fµ2PL(k) and PS11,s(k) = f2µ4PL(k) [19].

We can compute δ and δ̇ using Lagrangian perturbation theory. In the Lagrangian
clustering description, the overdensity field is given by

(2π)3δD(k) + δ(k) =

∫
d3q eik·q exp[ik ·Ψ(q)], (A.6)

where Ψ(q) is the Lagrangian displacement field. The derivative of this equation with respect
to conformal time is given by

δ̇(k) =

∫
d3qeik·q

(
ik · Ψ̇

)
exp[ik ·Ψ(q)]. (A.7)

The quantity of interest for P01 is

(2π)3Pδδ̇(k)δD(k + k′) = 〈δ(k)|δ̇(k′)〉,

=

∫
d3qd3q′eik·q+ik′·q′

〈(
ik′ · Ψ̇′

)
eik·Ψ+ik′·Ψ′

〉
, (A.8)

where we have used the definition Ψ′ ≡ Ψ(q′). Similarly, for P11,s we need to compute

(2π)3Pδ̇δ̇(k)δD(k + k′) = 〈δ̇(k)|δ̇(k′)〉,

=

∫
d3qd3q′eik·q+ik′·q′

〈(
ik · Ψ̇

)(
ik′ · Ψ̇′

)
eik·Ψ+ik′·Ψ′

〉
. (A.9)

A.2 A generalized velocity generating function

To facilitate the calculation of equations A.6 and A.7, we introduce a generalized velocity gen-
erating function in this section. First, let us define the sum and difference of the displacement
field Ψ(q) defined at points q1 and q2 in space:

∆−i = Ψi(q2)−Ψi(q1), ∆+
i = Ψi(q2) + Ψi(q1). (A.10)

Now we can define the generalized velocity generating function G as

(2π)3δD(k) = G(k, γ, λ) =

∫
d3qeik·q

〈
e−ik·∆

−−iγk·∆̇−−iλk·∆̇+
〉
. (A.11)
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Note that the case of γ = λ = 0 gives the well-known matter power spectrum Pδδ in the LPT
formalism [123]. We define the following moments of G:

G10(k) =
d

dγ
G(k, γ, λ)

∣∣∣
γ=0,λ=0

=

∫
d3qeik·q

〈(
ik · ∆̇−

)
e−ik·∆̇

−
〉
, (A.12)

G20(k) =
d2

dγ2
G(k, γ, λ)

∣∣∣
γ=0,λ=0

=

∫
d3qeik·q

〈(
ik · ∆̇−

)2
e−ik·∆̇

−
,

〉
, (A.13)

G02(k) =
d2

dλ2
G(k, γ, λ)

∣∣∣
γ=0,λ=0

=

∫
d3qeik·q

〈(
ik · ∆̇+

)2
e−ik·∆̇

−
,

〉
. (A.14)

Substituting the definitions of ∆+ and ∆− into these equations yields the following relations,

G10(k) = 2Pδδ̇(k), (A.15)

G20(k) +G02(k) = 4Pδ̇δ̇(k). (A.16)

We can evaluate G using the cumulant expansion theorem,

〈
eiX
〉

= exp

[ ∞∑
N=0

(−i)N
N !

〈
XN

〉]
, (A.17)

where X = k ·∆− + γk · ∆̇− + λk · ∆̇+. In the Zel’dovich approximation (tree-level LPT),
the displacement field remains Gaussian, so only the N = 2 term is non-zero in the above
expansion. Thus, the quantity of interest is

〈(
k ·∆− + γk · ∆̇− + λk · ∆̇+

)2
〉

= kikj

[
Aij + γȦij + γ2B−ij + λ2B+

ij + ...
]

= kikj [Aij + ...] , (A.18)

where we have explicitly ignored terms that vanish upon taking the derivatives in the expres-
sions for G10, G20, and G02. The relevant definitions are

Aij(k) =
〈

∆−i ∆−j
〉
c
, (A.19)

B−ij (k) =
〈

∆̇−i ∆̇−j
〉
c
, (A.20)

B+
ij (k) =

〈
∆̇+
i ∆̇+

j

〉
c
. (A.21)

Note that this definition of Aij matches the notation used in the recent LPT work of [94, 121].
Finally, using equations A.18, A.17, and A.11, the velocity generating function becomes

(2π)3δD(k) + G(k, γ, λ) =

∫
d3qeik·q exp

[
−1

2
kikjAij

]
. (A.22)
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A.3 The Zel’dovich approximation

In the Zel’dovich approximation, the displacement field and its time derivative are given

Ψ(k) = −ikδL(k)/k2, (A.23)

Ψ̇(k) = fHΨ(k), (A.24)

where δL is the linear overdensity field which scales in time as the linear growth function D,
H = d ln a/dτ is the conformal Hubble parameter, and f = d lnD/d ln a is the logarithmic
growth rate.

With these relations, we can now compute the expressions for term of A.18 (for a more
in-depth discussion of this procedure, see Appendix B of [121]). The relevant expressions are:

Aij(q) = I−ij (q), (A.25)

Ȧij(q) = 2fHI−ij (q), (A.26)

Ḃ−ij (q) = (fH)2I−ij (q), (A.27)

Ḃ+
ij (q) = (fH)2I+

ij (q), (A.28)

where we have defined the integral

I±ij (q) = 2

∫
d3k

(2π)3
[1± cos(k · q)]

kikj
k4

PL(k), (A.29)

where PL(q) is the linear power spectrum. Here, I−ij is the same quantity that enters into
the LPT calculation of the density auto power spectrum; for example, our expression is the
same as equation A6 of [94] (restricting to tree-level).

Equation A.29 can be expressed in terms of two scalar functions as

X±ij (q) = X±(q)δKij + Y ±(q)q̂iq̂j , (A.30)

We can compute X±ij and Y ±ij by performing the angular integration in equation A.29. To
facilitate comparisons with previous work (e.g., [94, 121]), we define

X±ij (q) = 2σ2 ± 1

π2

∫
dkPL(k)

j1(kq)

kq
≡ 2σ2 ±X0(q),

X−ij (q) = X(q),

Y ±ij (q) = ∓Y (q), (A.31)

where the σ2 = 1/(6π2)
∫
dqP (q) is the square of the linear displacement field dispersion,

and the well-known Zel’dovich integrals X(q) and Y (q) are

X(q) =

∫
dk

2π2
PL(k)

[
2

3
− 2

j1(kq)

kq

]
,

Y (q) =

∫
dk

2π2
PL(k)

[
−2j0(kq) + 6

j1(kq)

kq

]
, (A.32)
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where jn is the spherical Bessel function of order n.
With these integral expressions, we can now compute the relevant moments of G in

order to evaluate PS01 and PS11,s. First, for PS01, we have

PS01(k, µ) =
µ2

HG10(k),

= 2fµ2

∫
d3qeikqµ̄

[
−1

2
k2
(
X + µ̄2Y

)]
e−

1
2
k2(X+µ̄2Y ), (A.33)

where we have introduced the angle between the given k-mode and separation vector µ̄ = q̂ ·k̂.
Similarly, for PS11,s, we have

PS11,s(k, µ) =
µ4

4H2
[G20(k)−G02(k)] ,

=
1

4
f2µ4

∫
d3qeikqµ̄k2

[
−2X0 + k2X2 + 2(k2X − 1)Y µ̄2 + k2Y 2µ̄4

]
e−

1
2
k2(X+µ̄2Y ).

(A.34)

Equations A.33 and A.34 represent the desired solution for PS01 and PS11,s in the Zel’dovich
approximation. The angular integration over µ̄ in these expressions can be performed using
the following expression [123]∫ 1

−1
dµeiAµeBµ

2
= 2eB

∞∑
n=0

(
−2B

A

)n
jn(A), (A.35)

and the subsequent derivatives of this expression with respect to B yields

∫ 1

−1
dµµ2eiAµeBµ

2
= 2eB

∞∑
n=0

(
−2B

A

)n
jn(A)

[
1 +

n

B

]
, (A.36)

∫ 1

−1
dµµ4eiAµeBµ

2
= 2eB

∞∑
n=0

(
−2B

A

)n
jn(A)

[
1 +

n

B2
(n+ 2B − 1)

]
. (A.37)

With equations A.35, A.36, and A.37, we can compute the desired quantities in equations
A.33 and A.34 as a quickly-converging sum of one-dimensional integrals, where the one-
dimensional integrals can be computed rapidly with the aid of software such as FFTLog
[102]. Typically, the sum over n can be truncated at n < 15 for k < 1 hMpc−1.

B Improved HZPT modeling

In this section, we give the best-fit parameters for the updated HZPT modeling used in this
work (as described in section 4.2.3).

B.1 Dark matter correlators P00 and P01

For the dark matter power spectrum P00, we follow the parameterization of [59] and pro-
vide updated best-fit parameters. We use a Padé expansion with nmax = 2, such that the
broadband term is given by
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PBB00 (k) = A0

(
1− 1

1 + k2R2

)
1 + (kR1)2

1 + (kR1h)2 + (kR2h)4
, (B.1)

where the free parameters of the model are given by: {A0, R,R1, R1h, R2h}. For these pa-
rameters, we find the best-fit parameters to be:

A0 = 708

(
σ8(z)

0.8

)3.65

(h/Mpc)3, (B.2)

R = 31.8

(
σ8(z)

0.8

)0.13

(Mpc/h), (B.3)

R1 = 3.24

(
σ8(z)

0.8

)0.37

(Mpc/h), (B.4)

R1h = 3.77

(
σ8(z)

0.8

)−0.10

(Mpc/h), (B.5)

R2h = 1.70

(
σ8(z)

0.8

)0.42

(Mpc/h). (B.6)

As first shown in [50] and discussed in Appendix A (see equation A.2), P01 is fully predicted
from P00 through the relation

PS01(k, a) = µ2dP00(k, a)

d ln a
, (B.7)

where a is the scale factor. Thus, the appropriate time derivative of equation B.1, combined
with the Zel’dovich expression for P01 discussed in detail in Appendix A amounts to a full
model for PS01(k), using the same 5 parameters defined in equations B.2 - B.6.

We also include measurements of the small-scale dark matter correlation function when
finding the best-fit parameters discussed in this section. For reference, we provide the full
relation for ξBB(r), the Fourier transform of equation B.1,

ξBB(r) = − A0e
−r/R

4πrR2(1−R2
1h/R

2 +R4
2h/R

4)

×
[

1−R2
1/R

2

+A exp

[
r

{
R−1 −R−2

2h

√
(R2

1h − S)/2

}]
+B exp

[
r

{
R−1 −R−2

2h

√
(R2

1h + S)/2

}]]
, (B.8)

where we have defined the following quantities:
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S ≡
√
R4

1h − 4R4
2h, (B.9)

A ≡ (2R4
2hS)−1

[
R2
(
−2R4

2h +R2
1(R2

1h − S)
)

+R4
2h(R2

1h − S)

+R2
1(−R4

1h + 2R4
2h +R2

1hS)
]
, (B.10)

B ≡ −(2R4
2hS)−1

[
R4

2h(R2
1h + S)−R2

1(R4
1h − 2R4

2h +R2
1hS)

+R2
(
−2R4

2h +R2
1(R2

1h + S)
) ]
. (B.11)

B.2 Dark matter radial momentum power spectrum, P11

We model the µ4 term of the scalar component of the radial momentum auto power spectrum,
P11[µ4], with a HPZT model, as the sum of a Zel’dovich term and a Padé sum

PS11,s[µ
4](k) = P zel

11,s(k) + PBB11 (k), (B.12)

where P zel
11,s is the Zel’dovich approximation expression for the radial momentum power spec-

trum discussed in detail in Appendix A. For PBB11 (k), we use a Padé sum of the form

PBB11 (k) = A0

(
1− 1

1 + k2R2

)
1

1 + (kR1h)2
. (B.13)

The redshift-dependence of the parameters enters into the model through both σ8(z) and
f(z), where f is the logarithmic growth rate. The best-fit parameters used in this work are
given by

A0 = 659

(
σ8(z)

0.8

)3.91(f(z)

0.5

)1.92

(h/Mpc)3, (B.14)

R = 19.0

(
σ8(z)

0.8

)−0.37(f(z)

0.5

)−0.25

(Mpc/h), (B.15)

R1h = 0.85

(
σ8(z)

0.8

)−0.15(f(z)

0.5

)0.77

(Mpc/h). (B.16)

Note that in the large-scale, linear perturbation regime, we have PS11,s[µ
4](k) = f2Plin. As

discussed in [59], the density auto spectrum in both SPT and the Zel’dovich approximation
scales as the square of the linear power spectrum. Noting the additional factor of f2 in the
case of P11,s, the low-k amplitude scalings predict A0 ∝ f2σ4

8; this result is close to the
best-fit values found in equation B.14.

B.3 Halo-matter power spectrum, P hm

The HZPT model for the halo-matter power spectrum, as discussed in Section 4.2.5, is

P hm(k) = b1P
zel
00 (k) + PBB

00 (k,A0, R,R1, R1h, R2h), (B.17)

where PBB
00 is the broadband Padé term, as given by equation B.1. The best-fit parameters

for the Padé term used in this work are
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A0 = 752 b1.66
1

(
σ8(z)

3.75

)3.65

(h/Mpc)3, (B.18)

R = 16.9 b−0.12
1

(
σ8(z)

0.8

)−1.07

(Mpc/h), (B.19)

R1 = 5.19 b−0.57
1

(
σ8(z)

0.8

)0.16

(Mpc/h), (B.20)

R1h = 8.25 b−0.84
1

(
σ8(z)

0.8

)−0.13

(Mpc/h), (B.21)

R2h = 3.05 b−1.03
1

(
σ8(z)

0.8

)−0.36

(Mpc/h). (B.22)

C Relation between model parameters in the halo model

In this section, we describe the relations between parameters of our model in the context of
the halo model, as discussed in section 4.1. We apply previous analyses of clustering in the
halo model, i.e., [124–127], to the specific notation used in our model. In particular, we are
able to constrain the linear bias (section C.2) and the relative fraction (section C.1) for the
sample of centrals with satellites in the same halo. We also derive expressions for the 1-halo
amplitudes, NcBs and NsBsB , in terms of other model parameters using the halo model in
section C.3.

C.1 The fraction of centrals with satellites

The relative fraction for the cB sample fcB , which gives the fraction of central galaxies that
live in halos with at least one satellite galaxy, can be related to the other galaxy sample
fractions. The number of galaxies in the cB sample is equal to the number of centrals with
only one satellite plus the number of centrals with greater than one satellite. Assuming each
halo has exactly one central galaxy, we can express this as

fcB =
NcB

Nc
=
NsA

Nc
+

1

〈N>1,s〉
NsB

Nc
, (C.1)

where we have defined 〈N>1,s〉 to be the mean number of satellites galaxies in halos with
greater than one satellite. This parameter normalizes the number of sB galaxies to the
number of centrals, such that 〈N>1,s〉−1NsB gives the number of centrals with greater than
one satellite in the same halo. For a HOD similar to the BOSS CMASS galaxy sample, we
typically have 〈N>1,s〉 ∼ 2.4.

Using the definitions fs = Ns/Ng and fsB = NsB/Ns, and noting that Ns = NsA +NsB

and Ng = Nc +Ns, we can simplify equation C.1 as

fcB =
fs

1− fs

[
1 + fsB

(
〈N>1,s〉−1 − 1

)]
. (C.2)

C.2 The linear bias of centrals with satellites

Using the halo model, we can express the bias of a specific galaxy sample as an integral over
the halo mass function, weighted by bias
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bX =
1

n̄X

∫
d lnM

dn̄h
d lnM

N̄x(M)b(M)u(k|M), (C.3)

where n̄x is the mean number density of the sample, dn̄h/d lnM is the halo mass function,
N̄x gives the mean halo occupation for the sample as a function of halo mass, b(M) is the
halo bias – mass relation, and u(k|M) describes the halo profile in Fourier space.

For the sample of central galaxies with satellites in the same halo (denoted as cB),
we are able to express the mean occupation N̄cB in terms of quantities defined for the two
satellite samples, sA and sB. In particular, we can write

N̄cB = NsA + 〈N>1,s〉−1NsB , (C.4)

where NsA is the occupation of satellites with only a single satellite in a halo, and NsB is
the occupation of satellites with multiple satellites in the same halo. Here, we have defined
〈N>1,s〉 to be the mean number of satellites galaxies in halos with greater than one satellite.
Using equations C.3 and C.4, we can relate the linear biases as

n̄cBb1,cB = b̄sA + 〈N>1,s〉−1 n̄sBb1,sB . (C.5)

We can relate the number density of individual samples to the total galaxy number density
n̄g as

n̄cB = fcB (1− fs)n̄g
n̄sA = fs(1− fsB )n̄g

n̄sB = fsfsB n̄g.

Finally, we obtain the expression for b1,cB

b1,cB =
(1− fsB )fs
fcB (1− fs)

b1,sA +
fsBfs

〈N>1,s〉 fcB (1− fs)
b1,sB . (C.6)

Using the expression for fcB from equation C.2, we can simplify this equation as

b1,cB =
1− fsB

1 + fsB (〈N>1,s〉−1 − 1)
b1,sA +

fsB
〈N>1,s〉 (1− fsB ) + fsB

b1,sB . (C.7)

Note that, as expected, the weights in this linear combination, b1,cB = w1b1,sA +w2b1,sB , sum
to unity such that w1 + w2 = 1.

C.3 1-halo term amplitudes

In this section, we express the 1-halo amplitudes NcBs and NsBsB in terms of other model pa-
rameters using a description of the shot noise in terms of pair counts of galaxies. Generically,
we can write the shot noise of galaxies as

P shot = V

∑
halosN

2
i

(
∑

halosNi)
2 = V

∑
halosN

2
i

N2
g

, (C.8)

where V is the volume of the survey, Ni represents the number of galaxies in the ith halo,
Ng is the total number of halos, and we sum over all halos. Note that in the limit of a
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single object per halo, this simplifies to the usual expression for the Poisson shot noise,
P shot = V Ng/N

2
g = n̄−1

g , where n̄g = V/Ng is the number density of the galaxy sample.
We can decompose the sum in the numerator of equation C.8 as

∑
halos

N2
i = Ng +

∑
halos

Ni(Ni − 1),

= Ng +
∑

halos,N=2

Ni(Ni − 1) +
∑

halos,N=3

Ni(Ni − 1) + . . . ,

= Ng + 2Nhalos
N=2 + 6Nhalos

N=3 + . . . ,

= Ng +

halos,j=∞∑
halos,j=2

j(j − 1)Nhalos
N=j , (C.9)

where Nhalos
N=j is the total number of halos with exactly j galaxies in the halo.

To mirror our definitions of galaxy subsamples, we can decompose the sum over halos
with greater than one galaxy member in equation C.9 into the contributions from central -
satellite pairs and those between only satellites. For the former case, we can consider the
number of pairs between centrals and satellites as

Npairs
cs = 2

∑
halos

Ns,i = 2Ns = 2fsNg, (C.10)

where Ns,i is the number of satellite galaxies in the ith halo. And then using using equa-
tion C.8, the total contribution of this term to the shot noise is

P 1h
cBs

=
V

N2
g

Npairs
cs =

2fs
n̄g

, (C.11)

and using the fact that P 1h
cBs

= 2fs(1− fs)fcBNcBs, we have

NcBs =
f1h
cBs

n̄g
[(1− fs)fcB ]−1 , (C.12)

where n̄g is the number density of the full galaxy sample, and we have introduced an order-
unity, normalization nuisance parameter to allow for possible variations in the 1-halo ampli-
tude.

Similarly, we can consider the contribution to equation C.9 from the correlations between
satellites. The contribution to the shot noise from satellite-satellite pairs is

P shot
ss = V

∑
Ns,i>1Ns,i(Ns,i − 1)

N2
g

, (C.13)

=
V

N2
g

〈Ns,i(Ns,i − 1)〉>1,sN
halos
>1,s , (C.14)

where we have defined 〈Ns,i(Ns,i − 1)〉>1,s as the mean number of satellites in a halo, aver-

aging over halos with greater than one satellite, and Nhalos
>1,s is the total number of halos that

have more than one satellite. We can express the latter quantity as
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Nhalos
>1,s = Ng [fcB (1− fs)− fs(1− fsB )] , (C.15)

where the first term represents the total number of halos with at least one satellite, and
the second term is the number of halos with exactly one satellite. Here, we have explicitly
assumed that every halo has exactly one central galaxy.

Using the fact that P 1h
sBsB

= f2
s f

2
sB
NsBsB , the 1-halo amplitude becomes

NsBsB =
f1h
sBsB

n̄gf2
s f

2
sB

[fcB (1− fs)− fs(1− fsB )] , (C.16)

where we have defined a normalization nuisance parameter f1h
sBsB

, which allows for variations
in the unknown quantity 〈Ns,i(Ns,i − 1)〉>1,s. Typically, for a CMASS-like galaxy sample, we

find f1h
sBsB

∼ 4. For comparison, if Ns,i = 2 (3) for all halos with greater than one satellite,
then f1h

sBsB
= 2 (6).
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