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Abstract-The pheromone trail metaphor is a simple and 

effective way to accumulate the experience of the past solutions in 

solving discrete optimization problems. Ant-based optimization 

algorithms have been successfully employed to solve hard 

optimization problems. The problem of achieving an optimal 

utilization of a hybrid genetic algorithm search time is actually a 

problem of finding its optimal set of control parameters. In this 

paper, a novel form of hybridization between an ant-based 

algorithm and a genetic-local hybrid algorithm is proposed. An 

ant colony optimization algorithm is used to monitor the 

behavior of a genetic-local hybrid algorithm and dynamically 

adjust its control parameters to optimize the exploitation

exploration balance according to the fitness landscape. 
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I. INTRODUCTION 

The power of genetic algorithms comes from their ability to 
combine both exploration and exploitation in an optimal way 
[1]. However, although this optimal combination may be 
theoretically true, there are problems in practice due to using 
limited population sizes [2]. Incorporating a local search 
method within the global genetic algorithm can be a solution 
for combating the effect of utilizing limited population sizes 
[3]. 

The correct balance between exploration and exploitation in 
a hybrid genetic algorithm (HGA) depends mainly upon the 
fitness landscape of the problem to be solved in addition to the 
algorithm setup [4]. The hybrid search can adapt to a variety of 
fitness landscapes through adapting the control parameters 
associated with the genetic operators, local search control 
parameters and a suitable learning strategy [5]. 

The problem of striking a balance between the global and 
local search tools in a hybrid, in order to adapt the algorithm to 
a given problem, can be viewed as a problem of finding 
optimal control parameter settings. Different techniques can be 
used to monitor the behavior of a HGA to dynamically adapt 
its control parameters to improve search performance. 
Evolutionary self-adaptation is one possible way to implicitly 
determine the exploration versus exploitation trade-off. 

  

A. Ant colony optimisation
Ant-based optimization algorithms are bio-inspired

population-based optimization techniques that have been 
applied to solve hard optimization problems. They simulate the 
collective behavior of ants, which exchange information using 
a simple form of indirect communication mediated by 
pheromone formation, known as stigmergy [6]. This form of 
communication plays a crucial role in finding the shortest path 
between nest and food sources and enables adaptation to 
changes in the environment. 

Ant colony optimization (ACO) algorithms are very 
effective in solving discrete optimization problems such as the 
travelling salesperson problem (TSP), the quadratic assignment 
problem, vehicle routing, sequential ordering, graph coloring, 
e-Iearning presentation problem and routing in communications
networks [7]. They have also been amended in order used to
solve real-parameter optimization problems [8] [9]. In the
Aggregation Pheromone System (APS) [10] and its enhanced
version (eAPS) [11], the pheromone trail was replaced by an
aggregation pheromone, whose density was represented by a
mixture of multivariate normal distributions. The ACOR [12]
and the DACOR [13] algorithms are also proposed for
optimizing continuous domains, in which a solution archive is
used as a form of pheromone trail for the derivation of a
probability distribution over the search space. A sampling
method for discretizing the continuous search space and an
incremental solution construction method based on the sampled
values is incorporated in SamCo to apply ACO to continuous
optimization problems [14].

B. Ant colony optimisation and genetic algorithms
Genetic algorithms and ant colony optimization algorithms

can be combined to improve the combination's performance in 
different ways. However, most of the proposed hybrids use 
only three different forms of hybridization. The first set of 
hybrids is based on viewing the genetic algorithm as a global 
search method and the ant colony algorithm as a local search 
method. The second set is based on the ability of the genetic 
algorithms to adapt the control parameters of other techniques. 
In the last form of intergeneration, some genetic concepts and 
operators are incorporated into ant colony optimization 
algorithms. 
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Incorporating an ant colony optimization algorithm as a 
local search method within a genetic algorithm can improve the 
search performance. An ant colony model for continuous 
search spaces has been used to improve the quality of the 
solutions produced by a genetic algorithm [8]. The optimal 
results from the ACO algorithm has been used as an initial 
population for a genetic algorithm to avoid being trapped in a 
local optimum. The GA-ACO algorithm [15] is used to 
enhance the performance of genetic algorithm (GA) by 
incorporating ACO as a local search method to solve the 
multiple sequence alignment problems. 

The search capabilities of both algorithms can be combined 
through executing them in parallel and exchanging solutions 
whenever an improved potential solution is found [16]. The 
same idea has been used to combine a special class of ACO 
entitled Adjacent Pairwise Interchange (API) and a GA to 
optimize continuous optimization problems [17]. 

Since genetic algorithms are in practice a very effective 
optimization technique, they have been incorporated within ant 
colony optimization algorithms to optimize their control 
parameters, which are characterized by being highly problem 
specific and dependent on the required solution accuracy [18]. 
The ASGA algorithm [19] was the first algorithm that used a 
genetic algorithm to evolve the control parameters of an ant
based algorithm. A genetic algorithm can be applied to 
optimize the control parameters of ant colony optimization 
algorithms in a variety of ways [20] [21] [18] [22]. 

Genetic models and operators can be incorporated in many 
ways into ant colony optimization algorithms to improve their 
performance. Different selection mechanisms, fitness ranking 
and mutation operations that are used in genetic algorithms 
were implemented and tested with an ant colony optimization 
algorithm to solve optimization problems [23] [24] [25]. 

II. ANT OPTIMIZATION AND HYBRID SELF-ADAPTATION 

The success of a hybrid algorithm in solving a given 
problem efficiently depends on its success in achieving a 
balance between exploration and exploitation [26]. The 
appropriate balance of exploration and exploitation required for 
good performance can be achieved by finding an optimal set of 
the hybrid's control parameters for a given problem. The use of 
a mechanism to dynamically identify the effectiveness of 
different genetic and local operators and learning strategies for 
the problem currently being worked on can help to improve the 
hybrid's performance. Knowledge about previous and current 
solutions, the operators, and the learning strategies used can be 
utilized as a base to identify the strengths and the weakness of 
these operators and strategies. 

The basic idea of the proposed hybrid is that, as the search 
progresses, the effectiveness of the genetic operators, the local 
search method, the duration of local search, and the learning 
strategies, on the performance of a hybrid genetic algorithm in 
dealing with the current problem can be learnt by using an ant
based algorithm as a reinforcement learning approach. The 
pheromone trail metaphor can be used to accumulate the 
experience of the past solutions on the efficiency and the 
effectiveness of using different operators to find a solution of 
the current problem. 

 

Pheromone trail behavior can be applied to solve the 
problem of dynamically adjusting the probabilities of using the 
different genetic and local operators and learning strategies. 

A population or a colony of ants collectively searches for a 
sequence of genetic operations, local search operator with a 
suitable duration, and a learning strategy, that produces an 
effective and efficient solution to the problem under 
consideration. The search space and the neighborhood notion 
of the problem of adapting the performance of a genetic-local 
hybrid to a given problem can be viewed as shown in Figure 1. 
Each ant performs a sequence of local moves between the 
different states of its search task in order to find a sequence of 
operations that improves the solutions in an efficient way. Each 
state of the problem's search space has a complementary state. 
F or example, the complementary state of the "crossover" state 
is the "no crossover" state, while the complementary of the 
"Lamarckian" state is the "Baldwinian" state. 

Local! search 

Local search 

Fig. 1. The search space and the neighborhood notion 

An ant moves through adjacent states starting from the 
selection state, which is the only state without a 
complementary state, and ending its tour with either the 
"Lamarckian" or the "Baldwinian" state. Each movement of an 



 

ant is accompanied by performing one of the two alternatives 
on a solution. The path that is followed by an ant defines the 
sequence of genetic operations, local operation, its duration, 
and the learning strategy that is applied on a solution. This path 
is assigned a merit score, which is equal to the fitness 
improvement in the solution as a result of performing this 
sequence of operations. 

At the end of the ant's tour, it releases an amount of 
pheromone on the edges of the path it used to build a solution 
based on the merit score of the tour. The density of pheromone 
on the paths that lead to high improvements in fitness will be 
higher than the others which lead to less or no improvement. 
This change will probably encourage other ants to follow the 
paths with a high density of pheromone. As a result, the 
sequence of genetic and local operators and learning strategies 
that lead to solution improvements will be preferred by most of 
the new candidate solutions. These preferred sequences of 
operations will be dynamically built based on the fitness 
landscape of a given problem. This mechanism can promote 
competition amongst the different operators and learning 
strategies based on its ability to improve the fitness. It can also 
promote cooperation between the different operators and 
learning strategies in order to discover more effective 
sequences of operations. This technique can produce a hybrid 
genetic algorithm that is able to adapt itself to a given problem 
without the need for external control. 

An ant selects the next state from its adjacent states using a 
probabilistic decision policy. An ant decides to move from its 
current state to one of the available next two states, which will 
be referred to as the Next Do state or the Next Alternative state. 
The decision policy, as given in Equation 1, is based on the 
density of pheromone on the two branches that connect the 
current state to these states. 

p t C-NDo 
C -NDo = ----"--=-=""---

t C-NDo + t C-NAlter 

PC-NAlter = 1 - PC-NDo 

(1) 

(2) 

where Pc -NDo is the probability of moving from the

current state to the Next Do state, Pc -NAlter is the probability
of moving from the current state to the Next Alterative state, 

t C -NDo is the trail density on the edge connecting the

current state to the Next Do state, and t C -NAlter is the trail
density on the edge connecting the current state to the Next 
Alterative state. 

Initially all the edges of the possible operations paths are 
assigned an equal trail density. Therefore, all the adjacent states 
have an equal opportunity to be visited. All the ants start from 
the selection state. After the genetic algorithm performs the 
selection operation, each ant is randomly assigned an 
individual from the mating pool. That ant will decide on the 
sequence of operations that the individual should perform. The 
decision is taken locally based on the current ant's state and 
using the decision policy given in Equation 1. The ant's tour 
ends by choosing one of the available learning strategies. At 
the end of that tour, the ant deposits an amount of pheromone 

 

on the edges of the path it followed. The amount of pheromone 
deposited is made equal to the improvement in the fitness of 
the associated solution. This pheromone can induce the ants 
towards promising search regions of effective sequences of 
operators. The change in trail density on each edge of the 
followed path is given by Equation 3. 

Llr 
. = pfitnessj (I,C- N) '\ 0 

if Llfitness> 0 

otherwise (3) 

where At (i,C-N) is the change in the trail density of the
edge connecting state C to state N as a result of following the 
path constructed by ant i. The aim of rewarding sequences of
operations that produce an improvement in fitness and not 
penalizing paths that reduce the performance is to encourage 
exploration of the search space. 

The algorithm updates the pheromone at the end of the ant 
colony iteration (i.e. after every member of the colony has 
completed its tour), which is known as offline updating, to bias 
the search from a global perspective. The amount of 
pheromone on the edge connecting the C state with the N state 
after updating it according to the results of the ant tour is given 
by Equation 4. 

t (i+l,C-N) = t (i,C-N) + At (i,C-N) (4) 

III. EXPERIMENTS 

For the purpose of evaluating the proposed Ant-based Self
Adaptive Hybrid Genetic (AntSAHG) algorithm, its 
performance was compared with an Evolutionary Self
Adaptive Hybrid Genetic (ESAHG) algorithm, which uses 
evolution to select the genetic operators, the local operator, its 
duration and the learning strategy that should be performed on 
each individual, For each operation (strategy), a digital bit is 
encoded into the individual's genetic structure which 
determines whether to perform that operation (use that 
strategy) or its alternative. The duration of local search is 
represented by two bits that specify the number of local 
iterations. 

The quality of the solutions produced by each algorithm 
was used as the main measure of the algorithm's performance. 
The percentage of experiments that converged to the global 
optimum was used as an indication of the ability of the 
algorithms to produce high quality solutions. The performance 
of the two algorithms is compared in terms of the speed of 
finding a global optimum. These algorithms were also 
evaluated in terms of their ability to adapt to different fitness 
landscapes and population sizes. 

A set of test functions has been chosen to evaluate the 
performance of the two self-adaptive algorithms. Three test 
functions have been used as a test suite. This suite of test 
functions includes the 20-dimensional ellipsoidal and the 20-
dimensional Rastrigin. 

The GA used is a simple elitist genetic algorithm with 
binary tournament selection, a two-point crossover operator, 
and a mutation operator with a probability of 0.01. The hybrids 



 

use a local search operator, which combines the steepest 
descent method and Brent's method to estimate the best step 
size to climb to the local optimum from the current position in 
the basin of attraction [27]. An adaptive initial step size based 
on the changes in the standard deviation of the population 
fitness was used. The use of an adaptive step size can add an 
exploring role to the local search method at the early stages of 
search. The Baldwinian search can benefit from the adaptive 
initial step size since it can improve the genetic sampling 
ability at the early stages and can combat the hindering effect 
as the search approaches the fitness-convergence-state. 

Population sizes of 100, 150, 200, 250 and 300 were used 
to optimize the test functions using the two self-adaptive 
hybrids. Each variable was represented by a string of 10 bits. 
The stopping criterion for all experiments was a maximum 
number of function evaluations. The value of this parameter 
was set to 5000 times the population size. Each experiment was 
repeated 50 times. 

In the AntSAHG algorithm, the number of ants was set 
equal to the number of individuals in the genetic population. 
The amount of pheromone released was made equal to the 
fitness improvement, as given in Equation 4, in order to ensure 
fair comparison with the evolutionary self-adaptive technique, 
which uses the individual's fitness to assess the effectiveness of 
a control parameter in solving a given problem. However, the 
ant algorithm divides the whole tour into two stages. The first 
one is the genetic stage, where the ants decide on the genetic 
operators to apply. The second one is the learning stage, where 
the ants decide on the local operator, its duration, and the 
learning strategy. In order to evaluate these stages fairly, each 
stage is evaluated separately due to the big differences in the 
number of function evaluations used. 

Instead of the evaporation mechanism, the AntSAHG 
algorithm adaptively modifies the trail density of all the 
possible paths to ensure that the probability of each of the 
alternative operations or strategies does not exceed a specific 
threshold. In the case of exceeding this threshold an equal 
amount of pheromone is added to all the possible paths. 
Initially all the edges of the possible operations paths are 
assigned an equal trail density which was set to the absolute 
value of the average fitness of the initial genetic population. 

A. Search effectiveness and efficiency
The percentages of times each hybrid algorithm found a 

global optimum using different population sizes were 
compared. These percentages were used to evaluate the 
effectiveness of the two self-adaptive mechanisms in solving 
the test problems. 

The results of the experiments conducted on the ellipsoidal 
test function showed that both the self-adaptive techniques 
were able to find the exact global optimum of the function in 
every experiment. This observation clearly shows the 
effectiveness of both algorithms in solving this type of 
problem, which can obstruct the self-adaptive ability of the 
Baldwinian search. The combination of the adaptive initial step 
size of local search and adaptive ability of the two hybrids can 
explain the improvement in the hybrids' performance. The 
results of comparing the speed of finding the global optimum 

 

of the ellipsoidal function, as shown in Figure 2, show that the 
AntSAHG algorithm was slightly faster than the ESAHG 
algorithm. 

Ellipsoidal Function 
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Fig. 2. The speed of the AntSAHG and ESAHG algorithms in solving the 
Ellipsoidal problem. 

Figure 3 compares the percentage of times that the two self
adaptive hybrid algorithms found the global optimum of the 
Schwefel function. The graphs show that the AntSAHG hybrid 
algorithm was able to find the global optimum of the Schwefel 
function more often than the ESAHG hybrid algorithm. This 
can be explained by the fact that the ESAHG hybrid algorithm 
uses the fitness of an individual for evaluating both the quality 
of solutions and effectiveness of different operators and 
learning strategies in producing these solutions. On the other 
hand, the AntSAHG uses the improvements in fitness to judge 
the effectiveness of operators and strategies and at the same 
time the genetic algorithm uses the fitness to evaluate the 
solution's quality. The AntSAHG hybrid algorithm can easily 
discriminate between sequences of operators that improve the 
performance and sequences that do not improve it, whereas the 
ESAHG algorithm cannot distinguish between them. 

Figure 4 compares the convergence speed with the global 
optimum of the Schwefel function of both self-adaptive 
algorithms. These graphs show that the ESAHG algorithm was 
much faster than the AntSAHG algorithm in finding the global 
optimum of this function. However, the AntSAHG was able to 
find that optimum more frequently than the ESAHG algorithm. 

The AntSAHG algorithm outperformed the ESAHG 
algorithm on the Rastrigin function in terms of the percentage 
that converged to the global optimum using different 
population sizes, as depicted in Figure 5. The ESAHG was 
unable to find the global optimum of the Rastrigin function in 
most of the experiments, in contrast to the AntSAHG 
algorithm. This difference can be explained by the fact the 
evolutionary self-adaptive behavior can lead to the 
disappearance of useful genes of some of the control 
parameters and the algorithm can face some difficulties in 
restoring them. However, by ensuring that the probability of 
selecting one of the two alternatives does not exceed a 
threshold value in the AntSAHG algorithm, there is always a 
chance to select operations that do not improve the solutions' 



 

fitnesses. This characteristic enables the AntSAHG to escape 
local optima and improves its ability to recover from premature 
convergence. The nature of the fitness landscape of the 
Rastrigin function, where the optima are close to each other, 
makes the AntSAHG algorithm able to recover from premature 
convergence. However, such a recovery is more difficult in the 
case of the Schwefel function, where the second best optimum 
is far from the global optimum, once the whole population has 
converged to a non-global optimum. 
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Fig. 3. Finding the global optimum of the Schwefel function. 
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Fig. 4. The speed of solving the Schwefel function. 

IV. CONCLUSION 

The experiments conducted clearly show the effectiveness of 
the pheromone trail metaphor to utilize the experience of the 
past solutions for on-line learning of the effectiveness of the 
different combinations of operators and learning strategies in 
solving a given problem. The Ant-based self-adaptive 
mechanism was able find high-quality solutions for the test 
problems. It outperformed the evolutionary self-adaptive 
algorithm in terms of the solution quality and the convergence 
speed. The experiments suggest the suitability of the AntSAHG 
algorithm for dynamic environments. 
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