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Abstract 

Reliable information on the decomposition of polysaccharides is important to evaluate the 

evolution and properties of hydrothermally carbonized chars. Hyperspectral imaging offers a 

quick and robust alternative to expensive and time-consuming laboratory methods to 

determine the polysaccharide contents of biomass and biomass-derived chars. Here, we show 

that the decomposition of hemicellulose and cellulose were visible in the acquired 

hyperspectral images even without image calibration. Image regression based on sample 

holocellulose, glucan and the sum of xylan, galactan, arabinan and mannan provided good 

calibration models and enabled visualizing the decomposition of polysaccharides based on 

carbonization temperature. Hyperspectral imaging thus provides a non-destructive alternative 

to traditional polysaccharide analyses of hydrochars for laboratory and potential future 

industrial applications.     

Keywords: Chemometrics; Hydrothermal carbon; Hyperspectral imaging; Multivariate image 

regression; Near infrared  
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 3

1. Introduction 

The need to develop sustainable and cost-effective bioenergy has increased the innovation and 

technology development for sustainable energy application of biomass within the European 

Union. Thermochemical conversion of agricultural and agro-industrial residues into biofuels 

is particularly attractive, as they do not compete with food crops and are often seen as wastes 

generated during the primary production of other products. As an example, the olive oil 

industry generates significant quantities of wet industrial residues, which are currently not 

utilized to their full potential. A global production of over 2500 kilotons of olive oil per year 

is associated with the generation of 14,000 kilotons of effluents and 20,000 kilotons of tree 

prunings and trimmings, which could potentially be converted into low-cost solid biofuels.
1
 

Among different thermochemical conversion technologies, hydrothermal carbonization 

(HTC) is particularly suitable for wet residual biomass and heterogeneous organic residues.
2,3

 

HTC is performed in subcritical water under relatively low temperatures and self-generated 

pressure and does not require prior drying of wet feedstocks. During HTC, the hydrolysis of 

biomass hemicellulose and cellulose to soluble sugars leads to the formation of an 

increasingly aromatic solid hydrochar.
4
 Further degradation of soluble sugar monomers into 

furfurals and organic acids lowers liquid pH and can further catalyze the dehydration of 

remaining polysaccharides.
5
 The lack of repeated glycosidic bonds and a more heterogeneous 

structure makes hemicellulose more vulnerable to hydrothermal degradation than cellulose.
6,7

 

Several research groups have studied the behavior of polysaccharides under hydrothermal 

conditions and suggested reaction pathways using model compounds, such as cellulose
4,8-10

, 

glucose
4,11

, xylan
10,12

 and xylose
11

. Information on the decomposition of polysaccharides is 

valuable to evaluate the evolution and properties of hydrochars for energy or material 

applications.  
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 4

The decomposition of polysaccharides can also be studied using biomass or biomass-derived 

chars to acquire information on specific feedstocks. Several methods exist to determine the 

polysaccharide contents of lignocellulosic samples, based mainly on wet chemical 

analysis
13,14

 or thermogravimetry
15,16

. However, these methods are either expensive, time-

consuming and require the use of chemicals, or only provide information on pseudo-

components. Spectroscopic methods provide an alternative for quantitative determination of 

polysaccharides. As an example, near infrared (NIR) spectroscopy measures the overtones 

and combinations of fundamental vibrational modes of polar molecular bonds and can be used 

to determine the polysaccharide content of biomass and biomass-derived chars.
17-20

 Lower 

molecular absorptivity in the NIR requires longer path lengths than in mid-infrared (IR), but 

eliminates the need for laborious sample preparation. This opens up possibilities to perform 

quick and non-destructive spectral measurements on-line. 

Spatially resolved NIR spectra can be acquired through hyperspectral imaging, where the 

chemical information of spectrum is combined with the spatial information of an image.
21

 

Instead of recording a spectrum from an arbitrary point of a sample, entire images are 

acquired using a continuous range of several hundred different wavelengths. Each pixel then 

contains a spectrum, which allows evaluating the chemical properties of a sample surface in 

spatial dimensions. This is an important advantage with heterogeneous samples. One 

possibility to perform quantitative analysis on hyperspectral images is multivariate image 

regression, where one or several average spectra are collected from an image and regressed 

against external reference measurements. A calibration model is determined, which can then 

be used to predict analyte concentrations in individual image pixels. A useful property of 

hyperspectral images is that they contain many more pixel objects than spectral variables, 

which enhances signal to noise ratio and provides distributions of pixel values rather than just 
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 5

one average value.
22

 This together with predicted concentration images provides robust 

information on the properties of biomass and biomass-derived chars. 

Here we show that hyperspectral NIR imaging and multivariate image regression can be used 

to determine the polysaccharide contents hydrothermally carbonized agro-industrial residues 

from olive mills. This method provides a fast and non-destructive alternative to traditional 

laboratory methods. Our results also illustrate the hydrothermal decomposition of 

polysaccharides from olive mill residues, which has not yet been clearly shown in the HTC 

literature. In the future, the decomposition of polysaccharides could possibly be determined 

on-line at industrial installations that deal with HTC of agro-industrial wastes or other 

biomass streams for energy or material applications. This would provide rapid information on 

hydrothermal carbonization and reduce dependency on time-consuming and chemical-

intensive laboratory analyses.  

2. Materials and methods 

2.1. Carbon materials 

Hydrochars were produced by HTC of olive mill trimmings and olive mill pulp. A total of 16 

samples including untreated raw materials were produced through carbonization at 120, 150, 

180, 200, 220, 235 and 250 °C for 0.5 hours with a reactor solid load of 25%. In addition, 

hydrochars from HTC of Opuntia ficus indica at 180 °C for 0.5 hours and 250 °C for 3 hours 

and pyrochars from the pyrolysis of olive mill trimmings at 250, 300, 500 and 650 °C for 0.5 

hours were prepared. The hydrochars from olive mill pulp and Opuntia ficus indica and the 

pyrochars from olive mill trimmings were included for calibration purposes. This provided a 

population of 22 calibration samples. Details on the preparation of the samples have been 

given elsewhere.
23-25
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 6

2.2 Reference analyses 

The carbon contents of dried samples were determined with a LECO 628 CHN analyser 

(LECO Corp.) according to ASTM D-5373. Sample polymer and holocellulose contents were 

estimated based on respective glucose, xylose, galactose, arabinose, mannose and rhamnose 

contents determined through dilute acid hydrolysis. The samples were first extracted with 

acetone according to the guidelines of SCAN-CM 49:03. 250 mL acetone was used in a 

Soxhlet apparatus with approximately 0.5 g of sample for 2 hours to guarantee removal of 

extractives and potential oils remaining on char particles. The monosaccharide contents of the 

extractive-free samples were determined based on the National Renewable Energy Laboratory 

(NREL) procedure for determination of structural carbohydrates in biomass.
26

 Sugar recovery 

standards were prepared from analytical grade D-(+)-glucose, D-(+)-xylose, D-(+)-galactose, 

D-(+)-mannose, L-(+)-arabinose and L-(+)-rhamnose. Hydrolysed monomers were quantified 

after filtration based on respective peak areas using a Dionex ICS-3000 ion chromatograph 

(Dionex Corp.) and corrected to respective polymeric forms on a dried, as-received basis.
26

 

Replicate analyses were performed where sufficient sample was available. The root mean 

squared errors (RMSE) of replicate analyses were calculated and were 0.70% for the sum of 

xylan, galactan, arabinan and mannan including anhydro rhamnose, 0.39% for glucan and 

0.62% for holocellulose calculated as the sum of all oligomers (Table 1). Performed replicates 

were not evenly distributed within the sample population, but provided a rough estimate of 

the repeatability of the method. 

Please insert Table 1 here 

2.2. Hyperspectral imaging 

Hyperspectral images of the samples were taken with a Specim SWIR 3 (Specim, Spectral 

Imaging, Ltd.) camera equipped with a 105 mm OLES macro lens provided by Specim. In the 
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 7

camera setup, two rows of quartz halogen lamps generated polychromatic light and the 

reflected wavelengths were separated by a grating-prism monochromator followed by a 

HgCdTe detector array. The camera was operated in line-scanning mode where a line of 384 

pixels was continuously recorded on different wavelengths. The spectral range was limited to 

1000-2550 nm with a nominal spectral resolution of 5.6 nm, which provided 276 spectral 

variables. The field of view provided by the lens was 10 mm, which resulted in a pixel size of 

26 µm × 26 µm. A small pixel size provided a shallower depth of field, and the samples were 

pressed in spectrograph sample holders and imaged through quartz glass to minimize 

variations in surface depth and random light scattering, Fig. A.1 (Supplementary material). 

The acquisition time was 10 ms per line, resulting in approximately 30 s per an image that 

contained two samples. The absorbance in each pixel was calculated based on reflectance and 

measured Spectralon white reference and dark current intensities.  

2.3. Image and data analysis 

After the imaging procedure, a 576 × 384 pixel hypercube (spatial dimensions 15 × 10 mm) 

was cropped from the center of each sample image. The individual images of the olive mill 

trimming samples were then combined to one larger 1152 × 1576 pixel hypercube, which 

included all eight samples. Principal component analysis (PCA)
27

 was performed on the 

combined image after unfolding and spectral preprocessing by standard normal variate (SNV) 

transformation and mean-centering. Spectral calibration on measured reference values was 

performed by partial least squares (PLS) regression
28,29

 on each reference variable separately. 

The calibration spectra were obtained by vertically splitting each sample image in six parts 

and calculating the median absorbance on each wavelength. The obtained median spectra 

were further divided into separate calibration and validation sets. This resulted in a total of 88 

calibration and 44 validation objects from 22 samples. Spectral preprocessing was performed 

by SNV transformation and mean-centering.  
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 8

The PLS calibration models were validated by comparing the measured and predicted values 

of the validation set. The RMSE of prediction (RMSEP) were determined as: 

����� = �∑ (��
���)�����
�         (1) 

where �� and ��� denoted the measured and predicted values, respectively, and n the number of 

predictions. In addition, prediction bias was calculated as: 

���� = 	∑ (��
���)����
�           (2) 

Determined RMSEPs were used to describe model range error ratio (RER) and residual 

prediction deviation (RPD) parameters based on the validation set through: 

��� = (����
����)
� !"#          (3) 

��$ = �∑ (��
�%�)�����
�
& �����
&       (4) 

Data analysis and plotting were performed with the Matlab (The Mathworks, Inc.), Matlab 

PLS Toolbox (Eigenvector Research, Inc.) and OriginPro (Originlab Corp.) software 

packages.  

3. Results 

Spectral calibration models for sample carbon, the sum of xylan, galactan, arabinan and 

mannan, and glucan and holocellulose contents were successfully determined. The final PLS 

models were composed of 4-5 latent variables and explained 97-99% of the determined 

reference values during model validation (Table 2). Determined RMSEP values indicated the 

mean deviations of observed and predicted values during model validation and are given in 

the original reference units. The RMSEPs for the sum of xylan, galactan, arabinan and 
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 9

mannan, and glucan and holocellulose (0.90-1.7%) were higher, but in the same range as the 

reference RMSE values (0.35-0.70%) calculated from the performed replicate analyses. The 

models also showed low prediction bias. The RER and RPD parameters took into account the 

prediction error and the original range and variation of the determined reference values. The 

parameters values indicated that the models performed very well and were suitable for quality 

control.
21

 As shown in Table 2, the holocellulose model was the most reliable one from the 

three polysaccharide models. Examples of the used calibration spectra, spectral preprocessing 

and model predictions for holocellulose are given in Fig. 1.     

Please insert Table 2 here 

 

Fig. 1: (a) Original and (b) preprocessed calibration spectra for holocellulose calculated as the 

sum of xylan, galactan, arabinan, mannan and glucan. Observed vs. predicted holocellulose 

values based on model validation are illustrated in (c). Different colors in (a) and (b) illustrate 

the classes of included calibration samples; olive mill trimmings (OT), olive mill pulp (OP), 

Opuntia ficus indica (OFI) and pyrochars (PY). 

4. Discussion 

A false color image of untreated olive mill trimmings and the resulting hydrochars is given in 

Fig. A.2 (Supplementary material). PCA was first performed on the combined image to 

determine differences between the samples based on spectral information alone. This enabled 
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 10

to separate measurement noise and summarize relevant information in only a few dimensions 

before image calibration. The principal component model is essentially a series of linear 

combinations of pixel scores and the respective loadings, which indicate changes in 

absorbance on specific wavelengths. Individual principal components describe non-correlated 

variation in the image data, which enables to obtain information on the physical or chemical 

properties of the samples. With images, the PCA scores can also be refolded back to the 

original image dimensions which is helpful for visual interpretation. The first principal 

component explained 88% of data variation and mainly separated the images based on sample 

color (Fig. A.3). This was expected as short wave NIR approaches the visible range, where 

darker colors manifest as increased absorbance. 

The second principal component explained 10% of the remaining data variation and provided 

more detailed information on the chemical properties of the samples. As illustrated in Fig. 2a, 

clear pixel groupings were observed based on the scores. Hydrochars prepared within 180-

235 °C were separated from all the other samples based on positive score values, Fig. A.4. 

This was an initial indication that polysaccharides were visible in the images, as the 

temperature range generally corresponds with the hydrothermal degradation of cellulose.
4,20

 

The positive loading peaks at 2281, 2348 and 2487 nm in Fig. 2b also indicated increasing 

absorbance of the O-H, C-H and C-C bonds of cellulose
30

 likely due to the lack of 

hemicellulose. The peak at 2136 nm suggested that some extractives, acetyl groups of 

hemicellulose, or lignin was still present.
30

 Modes of aromatic C-H vibrations have been 

reported at 1417 nm,
30

 which together with the decreasing score values of the sample 

prepared at 250 °C suggested an increasingly aromatic character of the char from higher 

carbonization temperature. The third and fourth principal components respectively described 

0.6 and 0.4% of data variation and mainly seemed to separate differences between 

polysaccharides and lignin based on the loadings (not shown). However, as shown by the 
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 11

score images in Figs. A.5-A.6, they no longer described differences between but rather within 

the individual samples.  

 

Fig. 2: (a) Pixel score values on the second and the third principal component (PC) and (b) the 

second loading vector. The colors in (a) indicate pixel count density, calculated based on 1.8 

million pixels on a grid with square grid bin size.      

Calibration based on latent variables is especially suitable for spectroscopic applications as 

there are often more spectral variables than available samples. In addition, there is often 

serious collinearity in spectral data as the spectral variables are linearly dependent based on 

the absorbing constituents. This makes least squares regression based on the original spectral 

variables either impossible, or highly unstable. PLS regression avoids these problems by 

reducing the number of variables to a few latent variables that describe the internal 

dependencies of the data. Where a PCA model describes variation in the spectral data, a PLS 

model is determined based on covariance between the spectral data and the reference 

measurements. Thus, not all spectral variables are equally important for predicting the 

reference values.  

We chose the NREL method based on dilute acid hydrolysis
26

 to determine the 

monosaccharide contents of the samples and corrected the results to respective polymeric 

forms for use as reference values for image calibration. Although the polymerization of sugars 
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 12

can bias the estimation of solid residual lignin during acid hydrolysis,
31

 the method has been 

reported to provide reliable estimates of soluble polysaccharides if sugar recovery standards 

are used.
32

 In our case the total mass yields including extractives, polysaccharides, soluble 

and Klason lignin, and ash were incomplete and ranged from 62% to 95% in the calibration 

samples. Of the determined monomers, glucose (≤28%) and xylose (≤15%) were the major 

species followed by arabinose (≤4%), galactose (≤2%) and mannose (≤1%) on an extractive-

free basis. Rhamnose was only found in minute concentrations (<1%) in all samples. The 

resulting concentrations for glucan and the sum of xylan, arabinan, galactan and mannan 

could not be used as an absolute measure of cellulose and hemicellulose without further 

information, but provided reliable indirect estimates on the decomposition of polysaccharides 

during hydrothermal carbonization. Rhamnose was included in the calculation of mannan. 

The sum of all corrected polymers however included both hemicellulose and cellulose derived 

oligomers and could be used as a direct measure of holocellulose in the samples.  

The selection of spectral variables for the final polysaccharide models was performed after 

outlier removal using a combination of genetic algorithms and interval PLS using a window 

width of 20 variables. Variables were selected based on internal cross-validation, a method to 

test calibration models without a separate validation set.
33

 Due to the random nature of 

genetic algorithms, the final decision on inclusion was based on interval PLS except for the 

holocellulose model where the algorithm suggested a continuous spectral range (Table 2). The 

final number of PLS model components was chosen based on RMSEP and visual inspection 

of the predicted concentration images. For all three polysaccharide models, internal  

cross-validation overestimated the required number of components based on image 

inspection. This is a known property of cross-validation.
33

 A higher number of variables 

increased image noise, an indication of over-fitting. Future work will be performed with 

genuine validation samples to verify the performance of the prediction models. 
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A predicted concentration image of the holocellulose contents of the olive mill trimmings 

residue and the respective hydrochars is illustrated in Fig. 3a. As shown in the image, a 

decrease in holocellulose content was already observed in the char prepared at 150 °C 

followed by complete decomposition in the char from 250 °C. The exact spatial properties of 

the subimages cannot be compared as they represent different samples, but the images provide 

an important visualization of the gradual decomposition of holocellulose. Each sample image 

contained approximately 220,000 pixels providing a total of 1.8 million pixels for the whole 

image. This provides robust information on the variation of holocellulose contents within the 

samples (Fig. 3b).     

 

Fig. 3: (a) Predicted holocellulose concentrations (%) for the olive mill trimmings samples 

and (b) the respective image histogram. The color scale in (a) was based on 256 levels within 

0-50%. Outlier pixels were removed from (b) by excluding values that situated >|3| standard 

deviations from the mean based on a normal distribution. This still enabled plotting 99.7% of 

the predicted pixel values.  

Models for the decomposition of glucan and the sum of xylan, galactan, arabinan and mannan 

were also determined individually. Part of the glucan could have derived from 

galactoglucomannans or glucomannan commonly found in the hemicellulose fractions of 
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 14

wood, but the low mannose contents suggest that the glucan was mainly cellulose-based. As 

illustrated in Fig. 4, glucan and the sum of xylan, galactan, arabinan and mannan also showed 

very different degradation behavior based on carbonization temperature. As also seen in Fig. 

3, decrease in the content of xylan and the other oligomers was observed already at 150 °C 

whereas a significant change in glucan was not observed until 200 °C. Most of the former 

were also decomposed in the chars prepared at 200°C, as the char from 235 °C still showed 

considerable contents of glucan.  

   

Fig. 4: Predicted xylan, galactan, arabinan and mannan, and glucan contents (%) of the olive 

mill trimmings samples. The color scale in was based on 256 levels within 0-30%.  

The decomposition of biomass polysaccharides is often discussed but rarely reported in the 

HTC literature. The hemicellulose and cellulose contents of loblolly pine and respective 

hydrochar prepared at 200-260 °C have been determined based on the Van Soest method.
34

 

This method provided direct estimates of the hemicellulose and cellulose content of biomass, 

but its selectivity for biomass-derived chars has been questioned.
35,36

 The authors reported 

complete degradation of hemicellulose by 200 °C, while the char from 260 °C still contained 

34% cellulose. Hemicellulose and cellulose have also been determined from sawdust and 

sawdust-derived chars prepared by HTC at 200-260 °C without detailed specification of the 
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 15

used method.
37

 Hemicellulose was also almost entirely decomposed by 200 °C, as the char 

prepared at 260 °C still contained 11% cellulose. Our results on holocellulose and glucan are 

in closer agreement with the cellulose content of HTC chars from maize silage, another agro-

industrial residue.
38

 Although maize silage chars from 230 °C showed higher cellulose 

content than suggested by Figs. 3 and 4 within 220-235 °C, the results from 250 °C are 

comparable.  

Conclusions 

The properties of biomass-derived HTC chars are governed by the hydrolysis of 

hemicellulose and cellulose. Although their hydrothermal degradation is often discussed in 

the HTC literature, laboratory methods to determine the polysaccharide contents of biomass 

and biomass-derived chars are expensive, time-consuming and require the use of chemicals. 

Hyperspectral imaging provides a robust and reliable alternative for quantitative 

determination of polysaccharides in biomass and biomass-derived chars. As illustrated by our 

results, spectral PCA alone provided clear evidence on the decomposition of hemicellulose 

and cellulose based on carbonization temperature. Further calibration models for sample 

holocellulose, glucan and the sum xylan, galactan, arabinan and mannan showed good 

prediction performance and enabled visualizing the decomposition of polysaccharides as a 

result of HTC. Although the model results for glucan and the sum of xylan, galactan, arabinan 

and mannan can only be used as indirect estimates for cellulose and hemicellulose, the 

holocellulose parameter included all cellulose and hemicellulose derived oligomers and also 

showed the best prediction performance. In the future the decomposition of polysaccharides 

could possibly be determined and visualized on-line at industrial installations that deal with 

HTC of agro-industrial residues or other biomass streams for energy and material 

applications.   
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Tables 

Table 1: Repeatability of polysaccharide analyses based on the performed replicates. 

Parameter N:o of replicates Range (%) RMSE (%) 

Xylan, galactan, 

arabinan and mannan 

14 0-16.5 0.70 

Glucan 14 0-18.0 0.39 

Holocellulose 14 0-29.5 0.62 

RMSE = root mean squared error. 
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Table 2: PLS calibration results. All spectra were preprocessed with SNV transformation and mean-centering. The tabulated values have been 

rounded.  

Parameter Calibration / 

validation 

objects 

Range 

(%) 

Spectral 

variables (nm) 

Model 

components 

R
2

CAL RMSECAL 

(%) 

R
2

PRE RMSEP 

(%) 

Prediction 

bias 

RER RPD 

C (%) 88 / 44 41.8-

73.1 

1005-2548 6 0.98 1.1 0.99 0.95 0.17 32.6 8.0 

Xylan and 

others (%) 

86 / 44 0-16.6 1005-2236 5 0.99 0.71 0.98 0.90 -1.4⋅ 10
-2

 18.5 7.2 

Glucan (%) 84 / 44 0-24.9 1345-1900; 

2018-2236; 

2354-2459 

5 0.98 1.25 0.97 1.2 -0.31 21.2 6.9 

Holocellulose 

(%) 

84 / 44 0-38.2 1345-2459 4 0.99 1.4 0.98 1.7 0.15 22.6 7.3 

CAL = calibration. 

PRE = prediction. 

RMSE = root mean squared error. 

RMSEP = root mean squared error of prediction. 

RER = range error ratio. 

RPD = residual prediction deviation. 
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Table of contents 

 

Hyperspectral imaging and multivariate image regression can replace expensive and time-

consuming laboratory analyses of biomass and hydrochar polysaccharides. 
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