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ABSTRACT

Automatic transcription of polyphonic music remains a challenging
task in the field of Music Information Retrieval. In this paper, we
propose a new method to post-process the output of a multi-pitch
detection model using recurrent neural networks. In particular, we
compare the use of a fixed sample rate against a meter-constrained
time step on a piano performance audio dataset. The metric ground
truth is estimated using automatic symbolic alignment, which we
make available for further study. We show that using musically-
relevant time steps improves system performance despite the choice
of a basic representation, although mostly because it quantises the
output durations. This is an encouraging result for further investiga-
tion of musically-motivated neural network designs.

Index Terms— Multi-pitch detection, automatic music tran-
scription, music language models, long short term memory net-
works.

1. INTRODUCTION

Automatic music transcription (AMT) is a canonic task in Music
Information Retrieval (MIR). Roughly, AMT is the task of extracting
from a music recording a symbolic representation describing what
notes were played and when, usually in the form of a time-pitch
representation called piano-roll. AMT is a widely discussed topic,
yet, unless it is constrained to a specific instrument and instrument
model [1], it remains a challenging task, in particular in the case of
polyphonic music: computers are far from carrying out this task as
accurately as human experts [2].

Most AMT systems use the following workflow. First, an acous-
tic model processes the audio signal, usually via a time-frequency
representation, to output a non-binary time-pitch representation, in
the form of a posteriogram. Then, a post-processing step is applied
to those estimates to obtain a binary piano-roll, typically through
thresholding. While the former task has been widely discussed in
the literature, the latter has received little attention until quite re-
cently (see Section 2 for a review of existing methods).

Recurrent neural networks (RNNs) have become increasingly
popular for sequence modelling in various domains such as text,
speech or video [3]. In particular, Long Short-Term Memory
(LSTM) [4] units’ ability to, theoretically, represent dependencies
between elements at arbitrarily long time-scales have made them
very popular for sequence transduction, i.e. transforming a given
input sequence into an output sequence. Typical examples include
speech recognition, machine translation, and chord recognition.

In this paper, we propose to use a simple, single-layer LSTM
network to transduct multi-pitch posteriograms into piano-rolls.
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Some quite complex neural architectures were developed for this
purpose [5], but very often, because they do not take into account
the unique nature of music signals, their potential is not fully ex-
ploited. In particular, we show that using musically-relevant time
steps, such as time-steps of a sixteenth-note, instead of shorter,
time-constant time steps can increase the performance of a system,
although mostly because it quantises the output durations. Using
tempo-related time steps requires to have at least beat annotations;
in a real-life setting, those annotations would have to be obtained by
a beat tracking method. In this study, we consider that the rhythmic
ground truth is given (see Section 3 for details). The main contri-
bution of this work is to show that by making musically-motivated
design choices, the performance of such systems can be increased.

The paper is organised as follows. In Section 2, we review ex-
isting post-processing techniques for time-pitch representations. In
Section 3, we describe the dataset we used and how it was obtained.
We present the models we used in the experiments in Section 4 and
the evaluation metrics in Section 5. We present the results of the ex-
periments in Section 6. Finally, in Section 7, we discuss the results
and propose some perspectives for future developments.

2. STATE OF THE ART

In the vast majority of AMT systems, a post-processing step, also
known as note tracking, is necessary to obtain a binary piano-roll
from a real-valued time-pitch representation. The most straightfor-
ward way to do so is to apply a threshold to the posteriogram, with
the risk of having false alarms and missing lower-activation notes.

One of the most commonly-used post-processing techniques is
described in [6]; for each note, the activation is represented as a
2-state on-off hidden Markov model (HMM). This technique is lim-
ited, as is considers each note independently, whereas pitches in mu-
sic do not occur randomly: they are strongly correlated, both in-
stantaneously and temporally. Techniques that allow to account for
those complex dependencies have also been proposed. Raczyński
et al. [7] designed a hierarchical model of harmony using Dynamic
Bayesian Networks to post-process the output of a multi-pitch esti-
mator. In [8], a model using linear dynamical systems was proposed
to post-process multi-pitch posteriograms.

More recently, RNNs have been applied to AMT. Boulanger-
Lewandowski et al. proposed in [9] an architecture for symbolic mu-
sic modelling combining a Restricted Boltzmann Machine (RBM) to
model instantaneous dependencies and an RNN to link them through
time. This model, first proposed as a symbolic music model, was
then used for AMT in [5], taking as input a Deep Belief Network-
based representation of the audio signal. The same architecture was
also used in [10], where it was combined with a variety of neural
acoustic models. Those networks have a large number of param-
eters, require large amounts of training data, and can be prone to
overfitting. Although good results are achieved, their design choices
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are often questionable musically. In particular, the original RNN-
RBM was used on quantised data, where durations are expressed in
fractions of a beat. However, both in [5] and [10], the architecture
was used as is, but with time steps of the order of 10ms, which is
short compared to the typical duration of a musical note, and does
not take into account the tempo of the music piece.

A variety of studies have looked into how, when used inappropri-
ately, neural networks bring little improvement over simpler meth-
ods. In [11], it was shown that better results than [10] can be ob-
tained on AMT with neural acoustic models without resorting to the
RNN-RBM, simply by carefully tuning hyperparameters and using
appropriate input representations. In [12], an RNN and HMM were
compared on a harmony modelling task. When the frame rate is high
(order of 10 fps), the RNN only has a smoothing effect, and is no
more efficient than simpler temporal models such as HMMs. They
suggest though that on the chord-level (i.e. one symbol per chord, no
matter how long), RNNs significantly outperform HMMs. In [13],
similar findings are reported for polyphonic symbolic music predic-
tion: using a small time-step only results in a smoothing effect due to
the predominance of self-transitions, and using a musically-relevant
time step allows the network to learn interesting musical properties
such as meter and tonality to some extent. We aim at following this
direction, extending those results to AMT.

3. DATASET

For experiments on transduction, we use the MAPS dataset [14],
which contains MIDI files of polyphonic piano music, along with
aligned audio renditions, generated using synthetic pianos and
Disklavier acoustic pianos. It contains 238 pieces of classical music
(18h total duration) with some pieces performed more than once,
on different pianos. Rhythmic ground truth is not available in this
dataset, which is however needed for our experiments, since we aim
to use a time-step of a sixteenth note.

The MAPS MIDI files were taken from from the Piano-Midi.de1

database. This database was made by manually editing the velocities
and the tempo curves of quantised MIDI files in order to give them a
natural interpretation and feeling. The MIDI performances contain
expressive timing, and at the same time, the rhythmic ground truth is
readily available (it was however not kept in the MAPS MIDI files).
We exploit this specificity to get the rhythmic ground truth from the
Piano-Midi.de dataset, and use it on the MAPS MIDI files.

To do so, directly copying the rhythm information from Piano-
Midi.de was not possible, since this dataset is continuously updated
by its creator, meaning many files have been slightly modified since
the creation of the MAPS database. We thus resort to a symbolic
MIDI-to-MIDI alignment method [15] to align pairs of files. In the
cases where the two versions are too different and the alignment
fails, some manual editing (e.g. modifying the pitches) is made on
the Piano-Midi.de files to make them match the MAPS files, while
still preserving the rhythm. Around 10 pieces were manually edited.
From these alignments, we deduce for each MAPS file a table link-
ing each sixteenth-note step to its time of occurrence, in the form of
a table T such that T [i] = [t, s] where t is a time in seconds and s is
a sixteenth-note step. We make the set of these tables available for
further use2. Some MAPS data was lost in the process, overall about
14 minutes of data. An example piano-roll and associated time-step
correspondence table is given in Fig. 1.

1http://piano-midi.de/
2http://c4dm.eecs.qmul.ac.uk/ycart/icassp18.html
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Fig. 1. A piano-roll, along with its rhythm table. A tempo change
can be noted at t = 1.76 (sixteenth notes get shorter).

4. MODEL

In this section, we describe the multi-pitch detection and transduc-
tion models. We use the transduction model in two configurations:
using time steps of 10ms (that we call time-based steps), and using
time steps of a sixteenth note (that we call note-based steps).

4.1. Acoustic Model

To obtain the posteriograms, we use the multi-pitch detection system
of [16], which is based on Probabilistic Latent Component Analysis.
The system decomposes an input spectrogram into several proba-
bility distributions for pitch activations, instrument source contribu-
tions and tuning deviations, using a fixed dictionary of pre-extracted
spectral templates. For this experiment, a piano-specific system is
used, trained using isolated notes from the MAPS database [14].
The output of the acoustic model is a real-valued matrix M of size
88 × T , each of the 88 rows corresponding to activations of one of
the 88 keys of a piano over time, with a time step of 10ms.

In the case of note-based time steps, we have to downsample
these posteriograms, in order to get one value per sixteenth note step
(we remind the reader that in this study, we consider the locations
of the sixteenth note marks given). Formally, we have to transform
M [p, t] into N [p, s], where t is a time index and s is a sixteenth-
note step index, given a correspondence table T . To do so, we use
3 different methods, to be described as follows. For each T [i] =
[t1, s1], T [i+ 1] = [t2, s2] and for each pitch p :

avg: N [p, s] =
∑t2

n=t1
M [p,n]

t2−t1

step: k = t1 +
t2−t1

4
, N [p, s] =

∑k
n=t1

M [p,n]

k−t1

exp: w[n] = 0.1
n∗ 1

t2−t1 , N [p, s] =
∑t2

n=t1
w[n]∗M [p,n]

t2−t1

The step downsampling allows to focus on the note attacks,
while exp accounts for the exponentially-decaying nature of piano
notes. The parameters of exp were determined heuristically.

4.2. Transduction Model

The goal of this study is to demonstrate how using musically-
relevant time steps can improve the performance of a multi-pitch
detection system. For simplicity, and to limit interference with other
techniques, we deliberately use a simple LSTM architecture for the
transduction model. In particular, we choose not to use multiple
layers, nor to use dropout or any other regularisation method during
training. These will be investigated in future work.
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Fig. 2. Single-layer LSTM network architecture.

We thus use an LSTM with 88 inputs, one single hidden layer
with N hidden nodes, and 88 outputs, one for each piano key, which
are sent through a sigmoid function. An LSTM unit is defined as
follows (biases are omitted for simplicity):

ft = σ(Wfht−1 + Ufxt) ct = tanh(Wht−1 + Uxt)

wt = σ(Wwht−1 + Uwxt) h′t = h′t−1 ◦ ft + wt ◦ ct
ot = σ(Woht−1 + Uoxt) ht = ot ◦ tanh(h′t)

where ◦ is the elementwise product, σ is the sigmoid function, ft,
wt, ot are the forget, write and output functions respectively (func-
tions of IRN ), ht and ct are the hidden state and the candidate at
time t respectively (vectors in IRN ). The network is trained using the
Adam optimiser [17], using the cross-entropy between the output of
the sigmoid and the ground truth as cost function, with learning rate
l. We use four sets of hyper-parameters, as a simpler alternative to
extensive grid search: N ∈ {128, 256} and l ∈ {0.001, 0.01}.

The output of the network is then thresholded to obtain a binary
piano-roll. The threshold is determined by choosing the one that
gives the best results on the validation dataset (see Sec. 6 for more
information). The network architecture is provided in Fig. 2. An
example comparing the input posteriogram, the thresholded output
of the LSTM and the ground truth is available in Fig. 3.

5. EVALUATION METRICS

We evaluate the performance of our system using two sets of met-
rics, following MIREX guidelines [18]. With frame metrics, the out-
put and the ground truth are compared frame-by-frame. With note
metrics, the system outputs a list of notes, that are compared to the
ground truth note list (using the mir eval implementation [19]).
In both cases, the precision (P), recall (R) and F-measure (F) are
computed for each file, and then averaged over groups of recordings.

The metrics are computed in 3 conditions: using the time-based
time steps, the note-based time steps, and in a note-to-time setting.
The frame metrics are computed the same way in the 3 settings, al-
though with different frame sizes: 10ms in time-based and note-to-
time setting, and a sixteenth-note in note-based setting. In the note-
to-time setting, the model computations are made with note-based
time steps (a sixteenth note), and then the results are converted back
to time-based steps (10ms) using the correspondence table, and com-
pared to the ground truth, as in the time-based setting. We can only
compare results using the same time steps.

Regarding note metrics, in the time-based setting and the note-
to-time setting, a note is correctly detected if its pitch matches the

Fig. 3. An example of input posteriogram (top) and thresholded out-
put (middle) of the LSTM, compared to the ground truth (bottom).
Computations were made with 10ms time steps.

ground truth and the onset is within 50ms of the correct onset. In the
note-based setting, since the onsets are aligned to the metric grid,
both the pitch and the onset of the note have to be exact. It should
be noted that when using note-based time steps, all notes are aligned
to a grid of a sixteenth note, which means that notes outside of this
grid (tuplets, trills, ornaments) will be misrepresented.

6. EXPERIMENTS

We train our transduction model using the posteriogram output of
the acoustic model as input, cut in 30-second chunks. We randomly
pick and set aside 15% of those chunks for validation. We train two
different networks: one operating on inputs with time-based time
steps, one on inputs with note-based time steps. Both networks are
trained for 100 epochs. The evaluation is only performed on the 30
first seconds of each file in the test set, as is typically done in related
work, to allow comparison of results. We evaluate our system using
4-fold cross-validation, using the folds referred to as Configuration 1
in [10]. Those folds were built to have no overlap in terms of music
pieces between training and testing sets, but the piano models used
can be found in both sets. The acoustic model is trained using the
same folds as the transduction model.

We compare our model against: median filter & thresholding
(Baseline) and HMM smoothing [6] (HMM). In both above cases,
model parameters were estimated on the MAPS training folds. To
obtain note-based results from those systems, we downsample their
binary outputs by activating a note for the considered time step if it
is active for more than 5% of the corresponding sixteenth note time
interval, or for more than 2 frames. We choose this criterion because
of the imprecision of the alignment: sometimes, the true onset of a
note occurs slightly before the time indicated in the correspondence
table, which we do not want to result in a note shifted by a whole
sixteenth note. The results, averaged across 4 folds, are reported in
Table 1. It turns out that in the vast majority of the experiments, the



Time-based setting Note-based setting Note-to-time setting
F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%)

Fr
am

e
m

et
ri

cs Baseline 63.8 71.0 61.6 69.4 70.5 71.3 65.2 64.8 69.9
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LSTM 66.3 67.0 67.8 70.2 70.8 71.8 67.1 65.9 71.0
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HMM 61.8 86.2 50.9 64.9 85.9 54.9 58.5 81.9 48.0

LSTM 57.2 51.1 69.3 65.8 60.5 73.9 62.2 59.6 67.0

Table 1. Multi-pitch detection results for the MAPS dataset across 3 step conditions and post-processing methods.

best performing configuration for the LSTM overall was 128 hid-
den nodes with a learning rate of 0.01, and the best downsampling
method was step: we only report the results for these parameters.

When evaluated on a frame basis, the LSTM is the best perform-
ing architecture. The improvement is particularly significant with
time-based time steps. The LSTM gets better results in note-to-time
setting compared to time-based setting, which corroborates the idea
that using a musically-relevant time step improves performance.

On the other hand, with note metrics, the baseline model out-
performs our system. Upon inspection of the output of the LSTM,
it appears that several notes are fragmented by the system (see Fig.
3), hence the low precision. In note-based and note-to-time settings,
the coarser granularity diminishes the risk of fragmentation, which
improves the results, and in particular the precision. Recall slightly
decreases in note-to-time setting compared to the time-based one.
This is due to the fact that the size of the note-based time steps does
not allow to represent non-metrical notes properly. An analysis of
the dataset has determined that around 13% of the note onsets in the
dataset, when quantised to a twentieth of a quarter note, do not fall
on the metric grid used. The decrease in recall is thus quite low com-
pared to the proportion of notes that could theoretically be missed.

Surprisingly, the HMM model yields quite poor results, lower
than the baseline. It has the highest precision of all systems, but its
recall is particularly poor. The HMM threshold was optimised on the
note-based F-measure. Upon inspection of the outputs for various
activation thresholds, it appears that when lowering the threshold,
the HMM has a tendency to merge consecutive notes. To prevent
that effect, a high threshold had to be chosen, which explains the
high precision and low recall. Results would have been different if
the optimisation had been performed on the frame metrics.

7. DISCUSSION

In this paper, we have presented a LSTM-based system to transduct
time-pitch posteriograms into piano-rolls, as a post processing step
for AMT systems. We studied the influence of time-based (fixed
length of 10ms) and note-based (musical length of a sixteenth note)
time steps, evaluated on an updated version of the MAPS dataset
[14], which now includes metrical ground truth. The metrical ground
truth for MAPS was determined using a symbolic alignment method,
and we make it available for further study. We compared our ap-
proach to a baseline model and an HMM-based model. Our ap-
proach outperformed both when evaluated on a frame basis, but was
outperformed by the baseline approach when evaluated on a note ba-
sis. However, using note-based time steps improved the results over
time-based time steps, which is an encouraging result towards using

more musically-motivated system designs.
The improvement brought by the note-based time steps is two-

fold. It allows to better take into account dependencies between
successive notes, and it quantises the transcription. To determine
the relative importance of both effects, we perform another exper-
iment. We compare the results of the note-to-time setting with a
new setting, where the computations are made using the time-based
LSTM, and the binary outputs are quantised using a 16th note grid as
a post-processing step (majority voting over the binary time frames).
The results are equivalent in terms of F-measure for both settings for
frame metrics, and even slightly better for the second setting with
the note metrics. This suggests that the only improvement brought
by the note-based time steps is the quantisation of the output; it actu-
ally doesn’t help modelling temporal dependencies, or at least, not in
the current experiment. Using a more sophisticated architecture and
data augmentation techniques might help the network make sense
out of temporal dependencies and improve the results over a simple
post-quantisation of the output.

Given that the same piano models are present in the training and
testing datasets, it is also possible that the network learns how to
correct the errors the acoustic model makes on a specific piano and
does not generalise to other piano models. This question will be
investigated in future work.

A limitation of the note-based time steps is their inability to rep-
resent notes with durations that are not an integer multiple of a six-
teenth note. To take into account tuplets, we could use as time step
the greatest common divisor between all the note values we wish to
represent. For instance, using a time step of a 24th note would allow
to represent triplets as well as sixteenth notes. The more note values
we want to take into account, the smaller the time step, which could
lead to the same problem as time-based time steps: mostly self tran-
sitions, and no learning of temporal dependencies [13]. Moreover,
in our representation, we do not differentiate between note onsets
and continuations. As a consequence, repeated notes are represented
the same way as held notes. We assume that by using two different
symbols, we could prevent over-fragmentation of notes in the output.

Additional future directions include extending the use of note-
based time steps to more complex architectures, such as the RNN-
RBM [5]. Finally, in all our experiments, when using note-based
time steps, we consider that the rhythmic ground truth is given. We
made this choice to assess, as a proof-of-concept experiment, the
improvement that note-based time steps can bring in an ideal case.
A real-life system would obviously have to rely on an beat tracking
algorithm to use those time steps. It will be the object of future work
to assess if, even with the potential errors made by beat-tracking
algorithms, the use of note-based time steps can still increase the
performance of a system compared to time-based time steps.
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