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Cross-class Transfer Learning for Visual Data

Elyor Kodirov

Abstract

Automatic analysis of visual data is a key objective of computer vision research; and performing
visual recognition of objects from images is one of the most important steps towards understand-
ing and gaining insights into the visual data. Most existing approaches in the literature for the
visual recognition are based on a supervised learning paradigm. Unfortunately, they require a
large amount of labelled training data which severely limits their scalability. On the other hand,
recognition is instantaneous and effortless for humans. They can recognise a new object without
seeing any visual samples by just knowing the description of it, leveraging similarities between
the description of the new object and previously learned concepts. Motivated by humans recog-
nition ability, this thesis proposes novel approaches to tackle cross-class transfer learning (cross-
class recognition) problem whose goal is to learn a model from seen classes (those with labelled
training samples) that can generalise to unseen classes (those with labelled testing samples) with-
out any training data i.e., seen and unseen classes are disjoint. Specifically, the thesis studies and
develops new methods for addressing three variants of the cross-class transfer learning:

Chapter 3 The first variant is transductive cross-class transfer learning, meaning labelled
training set and unlabelled test set are available for model learning. Considering training set
as the source domain and test set as the target domain, a typical cross-class transfer learning
assumes that the source and target domains share a common semantic space, where visual fea-
ture vector extracted from an image can be embedded using an embedding function. Existing
approaches learn this function from the source domain and apply it without adaptation to the
target one. They are therefore prone to the domain shift problem i.e., the embedding function
is only concerned with predicting the training seen class semantic representation in the learning
stage during learning, when applied to the test data it may underperform. In this thesis, a novel
cross-class transfer learning (CCTL) method is proposed based on unsupervised domain adapta-
tion. Specifically, a novel regularised dictionary learning framework is formulated by which the
target class labels are used to regularise the learned target domain embeddings thus effectively
overcoming the projection domain shift problem.

Chapter 4 The second variant is inductive cross-class transfer learning, that is, only training
set is assumed to be available during model learning, resulting in a harder challenge compared
to the previous one. Nevertheless, this setting reflects a real-world setting in which test data is
available after the model learning. The main problem remains the same as the previous variant,
that is, the domain shift problem occurs when the model learned only from the training set is ap-
plied to the test set without adaptation. In this thesis, a semantic autoencoder (SAE) is proposed
building on an encoder-decoder paradigm. Specifically, first a semantic space is defined so that
knowledge transfer is possible from the seen classes to the unseen classes. Then, an encoder aims
to embed/project a visual feature vector into the semantic space. However, the decoder exerts a
generative task, that is, the projection must be able to reconstruct the original visual features. The
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generative task forces the encoder to preserve richer information, thus the learned encoder from
seen classes is able generalise better to the new unseen classes.

Chapter 5 The third one is unsupervised cross-class transfer learning. In this variant, no
supervision is available for model learning i.e., only unlabelled training data is available, leading
to the hardest setting compared to the previous cases. The goal, however, is the same, learning
some knowledge from the training data that can be transferred to the test data composed of
completely different labels from that of training data. The thesis proposes a novel approach which
requires no labelled training data yet is able to capture discriminative information. The proposed
model is based on a new graph regularised dictionary learning algorithm. By introducing a l1-
norm graph regularisation term, instead of the conventional squared l2-norm, the model is robust
against outliers and noises typical in visual data. Importantly, the graph and representation are
learned jointly, resulting in further alleviation of the effects of data outliers. As an application,
person re-identification is considered for this variant in this thesis.
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Chapter 1

Introduction

1.1 Scope of the Thesis

Being able to understand the content of an image via automated visual analysis is one of the ulti-

mate goals of computer vision research. The analysis could take many different forms depending

on the task that is to be performed. Among them, visual recognition, which is a main topic in this

thesis, is arguably the most important step in visual data analysis in which it allows to understand

and gain insights into the visual data e.g., recognising objects, scenes, and categories. It can

benefit tremendously a range of real-world applications that touch upon many areas of artificial

intelligence and information retrieval, for example, surveillance systems, content-based image

search, self-driving cars, or object identification for mobile robots.

There are in general two types of visual recognition tasks: (1) category recognition, and (2)

instance recognition. In the category case, one seeks to recognise different instances of a generic

category found in the visual data (images and videos) as belonging to same conceptual class such

as person, animal, or car. In contrast, the goal of instance recognition is to recognise instances

of a specific object or scene e.g., retrieving a specific person’s image from gallery images for the

purpose of verification.

Nevertheless, visual recognition is challenging. The key challenge is how to cope with the

large intra-class variation and small inter-class variation. As depicted in Figure 1.1: for the for-

mer, a single bird species can have large intra-class variation: pose variation, background varia-

tion and appearance variation (see Figure 1.1a) whilst, for the latter, two persons are very similar
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Pine Grosbeak 

Zone Tailed Hawk 

(a) Large intra-class variation (b) Small inter-class variation

Figure 1.1: The key challenges in the visual recognition. (a) Large intra-class variation: each row
shows images from the same species. For each bird species there are large intra-class variations:
pose variation, background variation and appearance variation. (b) Small inter-class variation:
although people have different identities (classes), they are visually very similar.

visually, although they have different identities (see Figure 1.1b). This challenge becomes even

harder when images are partially occluded, or composed of unrelated background ‘clutter’. A

great deal of effort have been taken by researchers to tackle this challenge. They mainly focus on

learning discriminative features and/or classifier that can maximise the inter-class variation, and

minimise the intra-class one. To accomplish that, one can follow a supervised learning paradigm

(Kotsiantis, 2007): first, typically enough examples with corresponding labels/annotations are

collected for training a model; labels are there to guide the learning process to ensure separa-

bility of the different classes. Then, the model is applied to the test data examples of the same

classes (see Figure 1.2).

A recent endeavour in visual recognition research is to perform large-scale recognition i.e.,

recognising thousands of category types. Unfortunately, conventional recognition algorithms

face the problem of scalability, meaning when conventional approaches are considered to large-

scale recognition, they require collecting large quantities of annotated instances for each class;

collecting unambiguously/high quality labelled image/video examples are prohibitively expen-

sive. For instance, the popular ImageNet large scale visual recognition challenge (ILSVRC),

mainly focuses on the task of recognising 1K classes, a rather small subset of the full ImageNet

dataset consisting of more than 21K classes with 14M images (Krizhevsky et al., 2012). This is

because many of the 21K classes are only composed of a handful of images including 296 classes
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with only one image. Furthermore, this is more problematic when visual recognition research

moves towards a finer granularity. For example, naming many fine-grained bird classes (e.g.,

‘Pine Grosbeak’) is very challenging for most people, let alone collecting instances. Moreover,

they cannot deal with the case that new classes may appear after the learning stage e.g., consider-

ing an ever growing set of classes, such as detecting new species of living beings and designing

new products.

On the other hand, humans has a remarkable ability to perform visual recognition effortlessly,

and instantaneously. There are a great deal of psychological/biological research on how humans

gain such ability. The researchers found that one of the main reasons is transfer learning in which

knowledge gained from one domain is abstracted and reused in other domains. This principle is

a central part of understanding how people learn in general. That is, the humans construct new

knowledge by integrating new concepts and propositions with related concepts and propositions

they already aware of Ausubel (1968). Concretely, they are great at recognising a new object

without seeing any visual samples by just knowing the description of it, leveraging similarities

between the description of the new object and previously learned concepts Romera-Paredes and

Torr (2015). For example, a human would have no problem of recognising a ’yellra’ if he has

seen zebra before and also learned that a ’yellra’ is like zebra but black-and-yellow strips on it.

The humans can easily generalise the knowledge learned in the past to recognise the classes never

seen before. This transfer learning behaviour of humans has been demonstrated in children as

young as 3 years by Brown and Kane (1988). Recently Canini et al. (2010) studied how human

learners exhibit transfer learning. To accomplish this, they proposed two laboratory experiments

that measure the degree to which humans engage in transfer learning. They particularly focus on

people who learn systems of inter-related categories consisting of shared clusters. They exper-

imentally confirmed that human learners engage in transfer learning in categorisation tasks. To

support the discussion above, Caas (2010) explains schematically the key memory systems in the

human brain. According to him, the brain is not an ’empty vessel’ to be filled with information,

rather it is an extremely complex system that integrates and stores sensory and semantic infor-

mation. In particular, information in short-term and ’working’ memory interacts with knowledge

in our long-term memory, in order to create new meanings and long-term memories.

Very recently, researchers in machine learning and computer vision community have started

to propose approaches that imitate the humans’ recognition ability, and this is known as cross-
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Figure 1.2: An illustration of conventional supervised learning for visual recognition. In the
learning stage, training set is used to learn a visual recognition model, then that model is applied
to perform recognition on a new test example, coming from the test set. The training set/testing
set is composed of observed examples (samples) and corresponding manually annotated labels.
The training set and test set belong to the same set of labels. That is, if training set contains
images labelled as ’cat’ or ’dog’, then in the inference stage, test set also contains images labelled
as either ’cat’ or ’dog’. ’Yes’ tick means that datum and corresponding label are given. ’No’ tick
for no correspondence between datum and label, and it needs to be found in the inference stage.

class transfer learning (CCTL) (Guo et al., 2016b). To this end, this thesis studies and develops

novel approaches for addressing the cross-class transfer learning problem.

1.2 Problem Definition

1.2.1 Cross-class Transfer Learning

In cross-class transfer learning (CCTL), the class labels for the training set and test set are dis-

joint, unlike standard supervised learning methods as shown in Figure 1.2. In CCTL, however,

there is an assumption that the training set and test set are related through a so called semantic

space. This space plays the role of a bridge (ontology) that connects between the training data

classes and the test data classes. The training data classes and the test data classes are often re-

ferred to as seen classes and unseen classes, respectively. Depending on the context the training

set and test set are also called as source domain and target domain, respectively. A typical ap-

proach to CCTL requires to extract the knowledge from the labelled training data (seen classes)

and to transfer that knowledge to the test set (unseen classes). This thesis focuses on cross-class

transfer learning problem whose aim is to learn a transferable knowledge in the training stage

that can generalise to test data (unseen classes) which is composed of completely different set of
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labels from the training set (seen classes). The name of ’cross-class’ is coming from the fact that

the training set and the test set are disjoint.

1.2.2 Variants of Cross-class Transfer Learning

There are different variants of the CCTL depending on the availability of supervision associated

with the data i.e., labels. In this thesis, three variants of the CCTL ranging from ‘easiest’ to

‘hardest’ are considered, and they are illustrated in Figure 1.3. The first two variants deal with

category recognition/classification problem, while the third one tackles instance-level verification

problem. In all variants, training classes and test classes are disjoint, unlike the conventional

transfer learning methods (Pan and Yang, 2010). Specifically,

1. Transductive cross-class transfer learning: The underlying aim is the category recogni-

tion. In this case, it is assumed that labelled training data and test set without correspond-

ing labels are available (see Figure 1.3a). The unlabelled test data is used to reduce the

distribution mismatch between training data and test data during a model learning so that

the model can generalise to the test data well. Note that the full test set is used for model

learning in this variant.

2. Inductive cross-class transfer learning: The underlying aim is the same as the previous

variant. However, more practical setting of CCTL is considered in which it is not assumed

that any unlabelled data from the test set is accessible (see Figure 1.3b). Zero-shot classi-

fication is considered as an application for this setting.

3. Unsupervised cross-class transfer learning: The goal is to learn a transferable knowledge

that can be used for instance recognition such as face/person verification. In this variant, it

is assumed that any means of labelled information associated with the data is unavailable in

the learning stage unlike previous two variants. Yet, knowledge is learned by only relying

on unlabelled training data in an unsupervised manner. The learned knowledge should be

applicable to the test set, even though it is composed of different sets of labels from the

training set (see Figure 1.3c).

1.3 Challenges and Solutions

In this section, challenges for the aforementioned problems (Section 1.2.2) are presented, and

subsequently corresponding solutions are discussed.



1.3. Challenges and Solutions 19

… 

Data Label 

Cat 

Dog 

 … … 

Data Label 

Zebra 

Panda 

 … 

Training Set Testing Set 

(a) Transductive cross-class transfer learning
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Figure 1.3: Three variants of cross-class transfer learning are studied in thesis, and they mainly
differ in the learning stage (red dotted area): (a) Transductive cross-class transfer learning –
labelled training data and unlabelled test set are accessible, (b) Inductive cross-class transfer
learning – only labelled training data is accessible, (c) Unsupervised cross-class transfer learning
– only unlabelled training data is available. ’Yes’ tick means that datum and corresponding label
are given. ’No’ tick for no correspondence between datum and label, and it needs to be found in
the inference stage.
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1.3.1 Transductive Cross-class Transfer Learning

In this variant, it is assumed that the full test data is available, but without corresponding labels.

The test data can be used to mitigate distribution mismatch between training data and test data.

Challenges Conventionally, a general pipeline to perform cross-class transfer learning is as

follows: It is assumed that the training set and the test set are connected in a semantic space.

During training process, the first step is to represent seen class labels as a vector in terms of

semantic information provided by human expert; the vector is also called a semantic represen-

tation or prototype, and it can be considered as a point in the semantic space. Then embedding

(a.k.a projection, mapping) function that parametrises the connection between feature space and

semantic space is learned with training data and corresponding semantic representation. During

testing, unseen class labels are also represented as the semantic representation, and the embed-

ding function is applied without any adaptation to the test samples to project them into the se-

mantic space. Finally, classification is realised in the semantic space (see Section 2.2 for details).

In this approach, the learned embedding function is biased towards the training data; thus it may

underperform when applied to the test data. In other words, there is a significant domain gap

between seen classes and unseen classes due to the fact that they are disjoint in terms of label

space, making the embedding function less generalisable to the seen classes. This is known as

projection domain shift problem (Fu et al., 2015a). Hence, the key is how to learn the projection

function given labelled training data, and the test set without corresponding labels so that the

embedding function is less prone to the domain shift problem (see Figure 1.4).

Solution The main idea is to learn a model that is regularised by semantic representations

of unseen classes, belonging to the test set. Note that the correspondences between the test

data and their semantic representations are unknown in the training phase. It is assumed that if

unseen class semantic representations are incorporated during the model learning, it forces the

model not only to respect the structure of the training set, but also the test set. The thesis shows

by comprehensive experiments that this helps to alleviate the domain shift problem effectively.

The proposed model is built on a dictionary learning/sparse coding, and unsupervised domain

adaptation methods: the dictionary learning is mainly used for learning the embedding function

in the form of dictionary (Mairal et al., 2009), and unsupervised domain adaptation is used to

make the embedding function domain-invariant across the training set and test test (Pan and

Yang, 2010; Margolis, 2011).
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Figure 1.4: An illustration of conventional visual feature embedding approach and how it suf-
fers from the domain shift problem without domain adaptation. When the embedding function
(which parametrises the connection between visual space and semantic space) learned using the
training set is applied to the test data samples coming from seen classes, it locates them closely to
their true semantic representations/prototypes. In contrast, if it is applied to the test data samples
coming from unseen classes, then it locates them far away from their true semantic representa-
tions/prototypes.
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1.3.2 Inductive Cross-class Transfer Learning

Most of the time, in real world scenarios, the test data is only available after the learning stage.

This setting considers that only labelled training set is given for the model learning.

Challenges The main challenge remains the same as the previous variant, that is, the domain

shift problem occurs when the model learned only from the training set is applied to the test

set. The fact that in this setting the test set is unavailable for the model learning results in even

‘harder’ challenge compared to the previous one. Then, the task is how to utilise the training set

only so that the learned model is less prone to the domain shift problem.

Solution Motivated by an encoder-decoder paradigm (Bengio et al., 2013), a novel method,

named semantic autoencoder (SAE), is proposed. The SAE consists of two functions: an encoder

and a decoder. (1) The encoder aims to embed a visual feature vector into the semantic space as

in the conventional CCTL models; basically the encoder is the embedding function mentioned

above. (2) However, the decoder exerts an additional constraint, that is, the embedding must be

able to reconstruct/generate the original visual feature. The additional reconstruction constraint

forces the embedding space to preserve richer information; thus the learned embedding function

from the seen classes is able to generalise better to the new unseen classes. Moreover, the SAE

is designed in a way that the encoder and decoder are linear and symmetric, resulting in an

extremely efficient learning algorithm.

1.3.3 Unsupervised Cross-class Transfer Learning

In this variant, an assumption is that no supervision is available for the model learning. In this

thesis, unsupervised cross-class transfer learning (UCCTL) refers to the unsupervised setting

of person re-identification (ReID) problem, since the setting of UCCTL is the same as that of

the person re-identification. Specifically, ReID is a matching problem across non-overlapping

cameras: a correct match of a probe image (captured from camera A) needs to be found from

gallery images (captured from different cameras such as B, C, D, and E) (see Figure 2.15).

Challenges Performing model learning in an unsupervised manner is intrinsically challenging

since any means of additional prior knowledge or supervision is unavailable for helping resolve

uncertainty. This is especially true in ReID due to the fact that person images are captured from

uncontrollable sources (surveillance cameras) at different locations and time, yielding significant

changes in illumination, context, occlusion, background clutters (see examples in Figure 1.5)
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(a) Cross-view lighting variations (b) Camera viewpoint changes

(c) Clothing similarity (d) Background clutter and occlusions

Figure 1.5: Person re-identification challenges in the wild: (a) Cross-view lighting variations, (b)
Camera viewpoint changes, (c) Clothing similarity, (d) Background clutter and occlusions. Two
images in each bounding box refer to the same person, but captured in different cameras (Zhu,
2015).

(Zhu, 2015). Therefore, trusting all available visual features extracted from the images blindly

for measuring data pairwise similarity is vulnerable to unreliable and noisy features. Conven-

tionally, to eliminate noises from features, most existing supervised methods attempt to learn a

subspace which is a lower-dimensional embedding space where the visual similarity relationship

is preserved. It is assumed that the subspace preserves discriminative patterns (structure), which

are good for differentiating the persons, after projecting the original features into it. However,

learning this subspace or discovering discriminative intrinsic structure without labels is a key

challenge.

Solution Given a unlabelled data the key is to discover some intrinsic structure that is common

across different classes so that cross-class transfer learning is possible. This thesis aims to learn

common structures in the form of latent attributes so as to facilitate cross-class transfer learning

in person re-identification, i.e., the latent attributes are invariant across classes. To this end,

robust graph regularised dictionary learning framework is proposed. The graph, which is built

from training set, encodes the pairwise connections between different persons across camera

views. The dictionary is learned by mining the graph and data; each atom of dictionary represents

a particular latent attribute. In the testing stage, the learned dictionary can be used to obtain

discriminative representation for a test example.
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Remarks Throughout this thesis, transductive cross-class transfer learning and transductive

zero-shot classification are used interchangeably. Inductive cross-class transfer learning, cross-

class transfer learning, and zero-shot classification are used interchangeably. Similarly, unsuper-

vised cross-class transfer learning refers to the unsupervised setting of person re-identification.

1.4 Contributions

The contributions made in this thesis are summarised as follows:

1. Cross-class transfer learning is formulated as an unsupervised domain adaptation prob-

lem. To this end, a regularised dictionary learning-based unsupervised domain adaptation

framework is proposed to solve the domain shift problem suffered by existing cross-class

transfer learning methods.

2. A novel semantic encoder-decoder model is proposed for inductive cross-class transfer

learning. A semantic autoencoder which learns a low-dimensional semantic representation

of input data that can be used for data reconstruction is formulated. An efficient learning

algorithm is also introduced.

3. A novel graph regularised dictionary learning model is formulated for unsupervised cross-

class transfer learning with a new robust l1-norm graph regularisation term and joint graph

and dictionary learning. The method is applied to person re-identification under unsuper-

vised setting (unsupervised cross-class transfer learning). The model only requires unla-

belled training data, which makes it suitable for large-scale person re-identification. In

addition, an efficient iterative optimisation algorithm is developed for the non-smooth and

non-convex objective function of the proposed model. During test time, the model is linear

and has a closed-form solution for inference; it is thus very efficient.

1.5 Thesis Outline

This thesis is organised as follows (see also Figure 1.6):

Chapter 2 starts with a brief overview of machine learning tools, and then a review on various

existing recognition methods is presented. Also, several common learning strategies which are

closely connected to the proposed approaches in this work are discussed.
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Chapter 3 explains how transductive cross-class transfer learning can be formulated as unsu-

pervised domain adaptation problem. Specifically, the chapter describes a dictionary learning

framework regularised by domain adaptation and visual-semantic similarity constraints. Exten-

sive experiments on four challenging object and action benchmark datasets validate the advan-

tages of the proposed model, and demonstrate that the proposed model outperforms the state-of-

the-arts naive transfer learning based models when applied to transductive zero-shot recognition.

Chapter 4 describes inductive cross-class transfer learning approach particularly designed for

solving domain shift problem in existing methods in an inductive manner. In particular, a novel

semantic autoencoder is proposed based on an encoder-decoder paradigm. Also, efficient opti-

misation method is presented. Furthermore, extensive experiments are carried out on six bench-

marks showing that the proposed SAE model achieves state-of-the-art performance on all the

benchmarks.

Chapter 5 presents unsupervised cross-transfer learning approach for person re-identification.

The method is based on dictionary learning with robust graph regularisation. In contrast to exist-

ing approaches that rely on large number of labelled data, the proposed model does not require

any person identity labels, yet it can extract discriminative transferable knowledge from largely

potentially noisy visual data. Extensive experiments are conducted on four large benchmark

datasets, and the results show that the proposed method significantly outperforms existing un-

supervised methods in terms of both matching accuracy and running cost. Furthermore, the

proposed model is very flexible in that it can make use of label information if available.

Chapter 6 concludes this thesis and provides a number of directions to be pursued as future

work.
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Figure 1.6: A summary of main chapters and structure of all chapters.
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Chapter 2

Literature Review

This chapter presents background on several important concepts used throughout this thesis,

and review related works. Specifically, Section 2.1 provides background information for under-

standing general machine learning techniques. Also, transfer learning and visual recognition are

reviewed briefly. Then, Section 2.2 provides related works that are closely related to transduc-

tive cross-class transfer learning. Similarly, Section 2.3 and Section 2.4 present works related to

inductive and unsupervised cross-class transfer learning, respectively. Section 2.2, Section 2.3,

and Section 2.4 correspond to Chapter 3, 4, and 5, respectively. Finally, Section 2.5 summarises

benchmark datasets used in this thesis.

2.1 Machine Learning Tools and Visual Recognition: An Overview

2.1.1 Machine Learning

The aim of machine learning is to design algorithms that can learn from data. Formally, according

to Mitchell et al. (1997), machine learning is ”A computer program is said to learn from expe-

rience E with respect to some class of tasks T and performance measure P, if its performance

at tasks in T , as measured by P, improves with experience E”. Depending on a specific appli-

cation, one can design various experiences E, tasks T , and performance measures P. E usually

consists of the experience of a set of observed examples encoded in a design matrix X ∈ Rd×N ,

which is also called a data matrix, where N is the number of examples. Each column of the data

matrix represents a different example, which is described by d-dimensional feature vector xi (i-th
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column); feature vector is a vector that contains information describing important characteristics

of an example. E may also include a corresponding label for each example. The labels for all

the examples are represented by a vector, denoted as y ∈ [1, ...,c]m, where yi indicates which of c

classes example i belongs to, meaning yi is associated with a numerical value that corresponds to

real-world category. For example, y1 = 0 and y2 = 1: 0 refers to ’dog’, and 1 for ’cat’. The label

could also become a vector e.g., semantic representation, multi-label (assigning to each sample

a set of target labels). The design matrix X, and corresponding labels y together constitute a

training set, {X,y}.

As mentioned above, there could be many different tasks T . In this thesis, the following tasks

are considered:

– Classification: In this task, a goal is to learn a function by using the training set f : Rd →

{1, ...,c}, where the function f takes an example x ( f (x))(e.g., feature vector extracted

from an image) as an input, then outputs the category of that example (e.g., ‘dog’).

– Verification : In this task, the algorithm takes the training set and outputs a matching func-

tion in which for the given two examples the function is asked to output ‘same’ or ‘dif-

ferent’, wherein ‘same’ indicates that two examples belong to the same classes, ‘different’

for different classes. For example, in person verification, for given two images, the task is

to identify whether they belong to the same class (identity) or different classes (identities).

Each of these tasks has a particular performance measure P. For the classification task, one

could define a new set of examples X(test) and their corresponding labels y(test), forming a test

set, and measure classification accuracy of the model based on the testing set. Specifically, first

f (X(test)) is performed in that it outputs estimated categories, and then they are compared to the

actual y(test) to find the correct number of matches. Similarly, the test set can be defined for the

verification task as well. Then, matching accuracy is calculated using the test set. As a evaluation

metric, so called cumulative matching curve (CMC) can be used in which it measures how well

the model (a verification system) ranks the identities in the enrolled database with respect to an

‘unknown’ example.

Generally, depending on the label availability, machine learning approaches are divided into

three learning paradigms:

1. Supervised Learning: The training set and corresponding labels are available for model

learning. This paradigm can be used for the classification and regression tasks. For in-
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stance, in the classification the learned model is a function f (x) that maps the examples to

class IDs. The proposed approaches in Chapter 3 and Chapter 4 of this thesis fall into this

learning paradigm.

2. Unsupervised Learning: The training set without corresponding labels is available during

model learning. System only relies on unlabelled design matrix. This type of learning is

mostly used to discover some hidden structure from the design matrix. In this thesis, this

learning paradigm is used to discover visual structure from the unlabelled data in Chapter

5.

3. Semi-supervised Learning: The training set with some corresponding labels is available.

This paradigm attempts to make use of both worlds the supervised learning and unsu-

pervised learning. In case that the design matrix is partially labelled, the system tries to

exploit the labelled in addition to unlabelled examples for model learning (Chapelle et al.,

2006). This paradigm is not considered in this thesis.

All the learning paradigms are generally treated as an optimisation problem e.g., squared error

loss, cross-entropy loss (Bishop, 2006; Goodfellow, 2015). In the supervised learning, for exam-

ple, the connection between the data examples and their corresponding labels can be parametrised

by the objective function. This function is then optimised in the learning stage.

2.1.2 Transfer Learning

The ability of transferring the knowledge learned from training data to test data (which is very

different from the training data) is the key factor in transfer learning. In the following (1) a basic

idea of transfer learning, and (2) one particular scenario of transfer learning related to this thesis

are given.

Transfer Learning vs. Conventional Machine Learning An assumption in conventional ma-

chine learning methods discussed in Section 2.1.1 is that the training set and test set are from

the same task (i.e., the task is the objective that a model aims to perform such as image classi-

fication) and domain (i.e., the domain is where the data is collected from such as images drawn

by people) (Figure 2.1). Unfortunately, this assumption fails due to many reasons in real world.

For instance, after a model for detecting pedestrians on night-time images is trained, it could

be applied to a different domain such as on day-time images. In practice, however, the model’s

performance deteriorate (often significantly) owing to the fact that the model has biased towards
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Figure 2.1: A conventional machine learning setting.
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Figure 2.2: An illustration of transfer learning setting.

its training data, thus does not generalise well to the new domain. To deal with such kind of

scenario, transfer learning comes to rescue; it attempts to leverage already existing labelled data

of related task (Ruder, 2017) i.e., the knowledge is learned from Domain S, and transferred to

new domain T (see Figure 2.2).

Formally, given a source domainDS, and a corresponding source task TS, and a target domain

DT , and a corresponding target task TT , the objective of transfer learning is to enable us to

learn the target conditional probability distribution P(YT|XT) in DT with the information gained

from DS and TS, where DS 6= DT or TS 6= TT . There are a variety of transfer leaning scenarios

depending on how knowledge should be learned, and how the knowledge should be transferred

to the target domain. A comprehensive survey on the conventional transfer learning can be found

in Pan and Yang (2010). Note that this thesis is different from conventional transfer learning
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Figure 2.3: An illustration of unsupervised domain adaptation (UDA) setting. In UDA, training
set and test set are referred as source domain and target domain, respectively. Similar to conven-
tional supervised learning, label space is the same for source domain and target domain, but the
data collected in different (environments) domains. For example, source domain is composed of
hand-drawn images, while target domain consists of images captured using high quality cameras.

settings. In all settings mentioned in Pan and Yang (2010), the task is the same for the source

domain and target domain; in other words training classes and test classes are joint, not cross-

class. To be more specific with regard to the naming of different variants of CCTL, ’transductive’

refers to the fact that both training data (labelled) and test data (unlabelled) are considered for

model learning, while ’inductive’ merely refers to the fact that only labelled training data is

used for model learning. Therefore, it is very different from the conventional setting of transfer

learning whether it is inductive or transductive (Pan and Yang, 2010).

Unsupervised Domain Adaptation: One particular scenario, which is closely related to the sce-

nario considered in this thesis, is unsupervised domain adaptation (UDA) (Pan and Yang, 2010).

In UDA, the source domain and target domain have the same task but different domains i.e.,

pedestrian detection on night-time and day-time images. The source domain consists of fully

labelled data, and target domain is totally unlabelled. The aim of UDA is to learn some knowl-

edge using the labelled source domain, and transfer that knowledge to the target domain. This is

accomplished in a transductive manner, meaning both source and target domain data are used for

model learning (see Figure 2.3).

A large variety of unsupervised domain adaptation approaches have been proposed rang-

ing from covariate shift, selflabelling, feature representation adaptation, to clustering based ap-

proaches (Margolis, 2011). Most of them are designed for text document analysis. However,

recently a number of methods are proposed for visual recognition (Ni et al., 2013; Fernando

et al., 2013; Patel et al., 2015). Specifically, Ni et al. (2013) proposed to interpolate subspaces

through dictionary learning to link the source and target domains. These subspaces are able

to capture the intrinsic domain shift and form a shared feature representation for cross-domain
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recognition. Similarly, Fernando et al. (2013) proposed to learn a mapping function which aligns

the source subspace with the target one. This thesis presents an approach that is closely related

to this type of transfer learning. However, the presented approach tackles more challenging case.

In UDA, the task for source and target domain is same, but only the domains are different. In

contrast, in this thesis both tasks and domains are different. Although UDA methods (Ni et al.,

2013; Fernando et al., 2013; Patel et al., 2015) are different, they are adapted, and compared with

the proposed approach in this thesis (see Table 3.3 in Chapter 3).

2.1.3 Visual Recognition

As mentioned in Section 1.1, the visual recognition can be divided into two types: category

recognition and instance recognition. Depending on a particular task the category recognition

could take different forms (comprehensive review of different visual recognition tasks is given

in Grauman and Leibe (2011)). Specifically, two category recognition tasks considered in this

thesis are as follows:

• Object1 recognition is a process for identifying a category of an object in visual data e.g.,

an image or video.

• Action recognition is a process of recognising a particular action in video. The action could

be ‘jumping’, ‘riding’, and ‘swimming’.

Similarly, for instance recognition, this thesis deals with instance(-level) verification problem.

Conventional Algorithms for Visual Recognition: In both types, most contemporary recognition

methods follow a common pipeline, which is depicted in Figure 2.4. Overall, it consists of two

main steps: (1) feature extraction, and (2) classification/categorisation model learning. Both

steps are detailed below:

1. Feature Extraction: Visual feature vector (a.k.a feature representation) is a vector that

contains information describing important characteristics of an object in relation to other

objects. Due to the fact that images are a very high dimensional, identifying what fea-

tures discriminative and useful is challenging. In the literature there are many kinds of

1Note that ‘object’ refers to ‘person’, ’scene’, ‘animal’, or a any material thing that can be seen and
touched.
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Figure 2.4: Pipeline for category recognition/classification (left), and instance verification (right).
Category recognition is a classification problem: for a given input image, the system should
output the category of that image. In instance verification, for given two images (Image-1 is a
probe image and Image-2 is from gallery), a system should identify whether two images belong
to the same class or not.

approaches were proposed. Overall, they can be divided into two groups: (1) ‘window-

based’ representation and (2) ‘part-based’ representation (Grauman and Leibe, 2011). The

window-based approaches take a whole image or a region of interest (‘window’) from the

image, and output a single feature vector (descriptor), summarising appearance of the im-

age in terms of texture, shape, color and geometric cues. Examples include Histogram

of Gradients (HOG) (Dalal and Triggs, 2005) (see Figure 2.5), Scale-invariant Feature

Transform (SIFT) (Lowe, 1999), Local Binary Pattern (LBP) (Ojala et al., 2002) and many

variants of these methods. For second group, they first define parts of the particular ob-

ject (e.g., human can be decomposed into different parts such as head, shoulders, hand,

...), and then for each part separate descriptor is obtained, and finally all descriptors are

combined. Examples include Star Model (Szummer and Picard, 1996), Pictorial Structure

Model (Felzenszwalb and Huttenlocher, 2005), and Sparse Flexible Model (Carneiro and

Lowe, 2006). The extracted features in both types are known as ‘hand-crafted’ (hand-

engineered or low-level) features, since these approaches require a great deal of super-

vision from human during the feature extraction. Both groups have their strength and

weaknesses. For example, in terms of time complexity, window-based approaches are

faster. In terms of robustness against occlusion and some background ‘clutter’, part-based

approaches are better. Main weakness of part-based approaches, however, is that defining

parts is problematic in real-world images Grauman and Leibe (2011). Formally, at this
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stage, f1 function is designed so that feature vector x can be obtained for a given image

I, f1 : I → x.

2. Model Learning: (1) Category recognition (classification): After having the feature extrac-

tion function, it applies to all images in the training set, and test set. Using the training set

with extracted features, one can learn a classification model by taking off-the shelf classi-

fication methods such as Support Vector Machines (Cortes and Vapnik, 1995) or Nearest

Neighbour classifier. Finally, the learned model is applied to test examples to categorise

them. Formally, at this stage the goal is to learn a function f2 that classifies the fea-

ture vector x extracted from image I into a particular category f2 : x → c , where c

indicates a particular category e.g., ‘cat’. (2) Instance verification: Similar to the classi-

fication, features are extracted for training set. Then, distance metric learning approaches

are applied to learn distance metric using the training set. The key idea of the metric

learning is to learn the similarity function from the data using some closeness constraints.

Ideally, the metric should bring examples that have the same category, while pushing far

away that of different categories. There are various approaches ranging from informaintro:

benchmarkstion-theoretic metric learning (Davis et al., 2007), large margin nearest neigh-

bour classifier (Domeniconi et al., 2005), to regressive virtual metric learning (Perrot and

Habrard, 2015). Formally, the goal is to learn a function f2 that identifies whether given

two images’ feature vectors (x1,x2) belong to the same category or different categories, es-

sentially a matching problem f2 : (x,x) → ′Same′ or ′Di f f erent ′, where ′Same′ indicates

they belong to the same class, ′Di f f erent ′ otherwise.

Deep Learning for Visual Recognition: Recently, deep learning approaches become significantly

successful for the visual recognition. In terms of performance it is much better than the ‘shallow’

methods Krizhevsky et al. (2012). Deep learning is a class of approaches that employ artificial

neural networks (ANN) with multiple layers of increasingly richer functionality. This is also

known as deep neural networks (DNN). The name ‘deep’ is owing to the fact that the multiple

layers are used in the network (see Figure 2.7). One of the successful types of DNN in computer

vision research is deep convolutional neural network (CNN). There are a wide variety of CNNs

were proposed including AlexNet (Krizhevsky et al., 2012), VGG (see Figure 2.7) (Simonyan

and Zisserman, 2014), GoogleNet (Szegedy et al., 2015), Inception (Szegedy et al., 2017), and

ResNet (He et al., 2016). Importantly, deep learning methods learn feature extraction and clas-
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Figure 2.5: Pipeline for HOG feature extraction (Dalal and Triggs, 2005).

sification model in an end-to-end manner, unlike the conventional ‘2-step’ methods (see Figure

2.6). Formally, in CNN, f function is learned so that f takes the image I as input, and echoes the

category of the image I, f : I → c, where c indicates a particular category e.g., ‘cat’. Similarly,

it can be applied to the verification. Representative approaches include Siamese network (Koch,

2015), Triplet network (Hoffer and Ailon, 2015).

One of the advantages of CNN is that it can be used as a generic feature extraction function.

That is, first CNN is trained with very large dataset consisting of millions of observing examples

in a supervised manner. During the training, CNN learns many common patterns across many

categories. Then, the trained model is used as a generic feature extraction function to extract

features for an image. The features extracted by CNN is often referred to as ‘deep’ features.

This thesis does not focus on feature extraction component, rather largely focus on model

learning for classification/verification. Therefore, both hand-crafted (window-based representa-

tion) and deep features used in this work are extracted by the methods mentioned above.

2.2 Transductive Cross-class Transfer Learning

The goal of the cross-class transfer learning for category recognition is to learn some knowledge

from the training set that can be applied to categorise data from the test set, which has different

labels from the training set. A common pipeline for performing CCTL for category recognition

is to establish a joint embedding (semantic space) for visual features and labels, and then per-
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Figure 2.6: Pipeline for category recognition/classification (left), and instance verification (right)
using deep neural networks.

Figure 2.7: An example of a deep learning model: VGG network (Simonyan and Zisserman,
2014). Any deep model architecture consists of several combinations of convolution, ReLU,
maxpooling, fully connected, and softmax layers.
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Figure 2.8: An illustration of dictionary learning: given training data, it learns hidden pattern-
s/structures from the data in an unsupervised manner.

forming nearest neighbour search Lazaridou et al. (2014). In the following, first an overview

for dictionary learning for sparse coding method (1) is presented, because Chapter 3 presents

a method that is build on this technique. Then, in order to present whole pipeline clearly for

performing CCTL for category recognition, the concept of label embedding (2) followed by a

linear regression-based cross-class transfer learning method (3) is presented; the projection do-

main shift problem (4) is also discussed. Finally, contemporary CCTL methods for category

recognition are discussed (5).

1) Dictionary learning for sparse coding: an overview

Dictionary learning is a method whose aim is to learn a set of basis vectors that can be used to

best approximate the data; the learned basis vectors are referred to as a dictionary. It is mainly

used to discover important hidden structure from the data. In fact, widely used k-means clustering

can be considered as a naive dictionary learning method, in which cluster centroids correspond to

the atoms of the dictionary. Formally, the dictionary learning is formulated (with proper matrix

dimensions) as follows:

min
D,Y
‖X−DY‖2

F +α||Y||1 (2.1)

where ‖X−DY‖2
F is the reconstruction error term evaluating how well a linear combination of

the learned atoms of dictionary D can approximate the input design matrix X, and ‖·‖F denotes

the matrix Frobenious norm; ‖·‖1 is the sparsity term favouring small number of atoms to be used

for reconstruction; this term is weighted by α , and Y is a sparse representation. The dictionary

learning is closely connected to a sparse coding (Wright et al., 2010). In the sparse coding, a
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Figure 2.9: Label embedding: attributes are used. Basically, the label is converted to a vector
representation based on a pre-defined set of attributes defined by an expert.

goal is to obtain sparse representation based on pre-defined dictionary. In contrast, in dictionary

learning, sparse representation and the dictionary are learned simultaneously. Both terms are

used interchangeably in this thesis.

The main advantage of dictionary learning framework is that it is easy to adapt to a new

problem at hand. Therefore, there are a variety of methods ranging from unsupervised, semi-

supervised dictionary learning to supervised dictionary learning methods. Guo et al. (2012)

proposed a method to learn discriminative dictionary learning for face verification with pairwise

constraints. Patel et al. (2014) applied the dictionary learning to face recognition. Wang et al.

(2016b) integrated the dictionary learning and deep learning. Beyond recognition tasks, it was

applied to tracking (Yang et al., 2014a), super resolution (Yang et al., 2012), compression (Nejati

et al., 2016) and more.

2) Semantic label embedding

Label embedding is used in all existing CCTL methods for category recognition. At higher

level, the label embedding is where human knowledge is represented. It is crucial for any existing

CCTL methods for category recognition because this helps to connect between seen classes and

unseen classes. In simple terms, the label embedding is transforming label name into a detailed

description based on a predefined ontology. Say ’cat’ is a label of a particular image, and it

can be described with a set of attributes such as ’is black’, ’is white’, ’has strips’, ’eats fish’

and the others. When attributes are used, this type of label embedding is referred to as attribute

label embedding (Lampert et al., 2009). More formally, ’cat’ label name is transformed to a

binary vector representation that consists of an array of numbers consisting of {0,1}, ′1′ indicates

the presence of particular attribute, ′0′ otherwise i.e., ‘cat’ → [0,0,0, ...,1,1]. The number of
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attributes, ontology, is determined by an expert as shown in Figure 2.9. In literature, this vector

is also called a semantic vector, because it captures semantically meaningful attributes. Also, the

semantic vector is considered as a point in the semantic space, and it is called a prototype (or

a signature (Romera-Paredes and Torr, 2015)). This is illustrated in Figure 2.10. Importantly,

in the label space, there is no notion of distance between labels, whereas the distance between

semantic vectors can be calculated in the semantic space. For example, it can be clearly seen

from Figure 2.10 that distance between ’cat’ and ’dog’ is less than that of between ’cat’ and

’horse’ indicating ’cat’ is more similar to ’dog’ than ’horse’ in terms of attributes.

Candidate semantic spaces: The semantic embedding spaces considered by most early works

are attribute spaces (Lampert et al., 2009; Liu et al., 2011b; Mensink et al., 2014; Jayaraman and

Grauman, 2014; Akata et al., 2013; Wang and Ji, 2013). However, as mentioned, to represent

an object class in an attribute semantic space, an attribute ontology has to be defined manually

(e.g., what attributes are needed to describe different types of animals) and each class needs to

be annotated by an attribute vector (e.g., an expert needs to define various attributes as shown

above). Such requirements hinder the scalability of an attribute semantic space based CCTL

method. To overcome this, more recent works explore the semantic word vector space (Frome

et al., 2013; Fu et al., 2015c), which is learned using large corpus of unannotated text for natural

language processing tasks such as sentence completion (Mikolov et al., 2013). The text corpus

is so big that any class label or textual description of the class can be embedded in this space,

effectively mitigating the scalability issue. Beyond semantic attribute or word vector, direin-

tro: benchmarksct learning from textual descriptions of categories has also been attempted, e.g.,

Wikipedia articles (Elhoseiny et al., 2013; Lei Ba et al., 2015), sentence descriptions (Reed et al.,

2016a). The semantic word and attribute label embeddings are exploited in this thesis.

Equipped with the understanding of the label embedding, the semantic vector, and the se-

mantic space, regression based cross-class transfer learning method is presented in the following.

3) Cross-class transfer learning by linear regression

Cross-class transfer learning can be realised by two steps (Lazaridou et al., 2014):

1) Learning stage: an embedding function from a visual feature space to a semantic space is

learned using the training set. The semantic space plays a role of bridge (as a knowledge

transfer) that connects the training set (seen) classes and the test set (unseen) classes.
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Figure 2.10: A semantic space. The labels named ’Dog’, ’Horse’, and ’Cat’ are embedded to the
semantic space S. The embedding of each class label constitutes a point in the semantic space,
and they are called prototypes.

2) Testing stage: the learned embedding function is transferred to the test set so that test data

can be embedded into the semantic space using this function, and then classification is

realised by simply performing nearest neighbour classification in the semantic space.

Formally, assume a labelled training set is given asDtr = {Xtr,ytr,Str}, where Xtr is a design

matrix, ytr = {yi}m
i=1 and Str are corresponding labels and a semantic representation matrix,

respectively. Similarly, Dte = {Xte,yte,Ste} is for the test set. In both sets each class label yi is

associated with a pre-defined semantic vector si, referred to as prototype. For clarity, it is assumed

that all matrix and vectors have a proper dimension, thus they are omitted. In the learning stage,

using the training set, an embedding function embedding the example features to semantic space

is learned. During deployment, yte has to be estimated for Xte. Note that the training classes

(seen) and test classes (unseen) are disjoint: ytr∩yte =∅. Learning the embedding function can

be formulated as an optimisation problem by a linear ridge-regression as follows:

min
W
‖XtrW−Str‖2

F +λ‖W‖2
F (2.2)

W is the embedding function, and λ is a regularisation parameter. This formulation has a closed-

form solution. After learning the embedding function W using Eq. (2.2), a new test example can

be embedded x j into the semantic space as follows:

ŝ j = x jW (2.3)

After that, the classification/categorisation of the test data in the semantic space can be achieved
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Figure 2.11: Cross-class transfer learning for category recognition.

by simply calculating the distance between the estimated semantic representation ŝ j and test class

prototypes Ste:

Φ(x j) = argmin
k

D(ŝ j, sk) (2.4)

where D is a distance function, sk is the semantic representation of the k-th test class label, and

Φ(·) returns the class label of a sample. This procedure is illustrated in Figure 2.11.

4) Projection domain shift

Inherently, existing CCTL methods including regression-based method presented above suffer

from projection domains shift problem (Fu et al., 2014) in which the learned function is biased

towards the training set, thus it may underperform for the test data. Figure 2.12 depicts conven-

tional visual feature embedding approach and how it suffers from the domain shift problem. For

the two classes in the source domain (training data) and the two in the target (testing data), both

their visual feature vectors and class names are embedded in a semantic attribute space shared

between the two domains. When the feature embedding function is learned from the source and

applied without adaptation to the target, the target domain data and their class prototypes are

well separated, resulting in poor classification. This is due to domain shift − although both tiger

and zebra have the ‘has stripe’ attribute, their stripes are visually very different. To alleviate this

problem, recently transductive cross-class transfer learning methods, which are discussed in the

next section, are proposed. In this thesis, Chapter 3 and Chapter 4 are devoted to overcome the
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Figure 2.12: An illustration of conventional visual feature embedding approach and how it suffers
from the domain shift problem without domain adaptation. For the two classes in the source
domain and the two in the target, both their visual feature vectors and class names are embedded
in a semantic space (attribute in this case) shared between the two domains. When the feature
embedding function is learned from the source and applied without adaptation to the target, the
target domain data and their class prototypes are well separated, resulting in poor classification.
This is due to domain shift − although both tiger and zebra have the ‘has stripe’ attribute, their
stripes are visually very different.

domain shift problem.

5) Transductive cross-class transfer learning

There are a few transductive cross-class transfer learning approaches in the literature. Fu et al.

(2014) proposed a heuristic one-step self-training strategy to pull the prototype towards its closest

data points (not necessarily from the same class) followed by a multi-view embedding based on

canonical correlation analysis to align different semantic spaces with the feature space. Similarly,

Guo et al. (2016a) proposed shared model space to align source data and target data. All these

methods indeed help to resolve the domain shift problem to some extent. Both approaches are

fall into discriminative models. This thesis also proposes an approach to pursue this direction.

Specifically, a novel regularised dictionary learning framework inspired by the unsupervised do-

main adaptation methods is introduced. Also, for the first time, the dictionary learning framework

is uniquely applied to cross-class transfer learning, unlike Fu et al. (2014) and Guo et al. (2016a)

that use canonical component analysis, and label embedding approach, respectively.
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2.3 Inductive Cross-class Transfer Learning

The plan for this section is as follows: 1) first linear autoencoder is reviewed, because Chapter

4 presents a method that is based on this. 2) Then, related methods/concepts to inductive cross-

class transfer learning are given.

1) Autoencoder: an overview

There are many variants of autoencoders in the literature. They can be roughly divided into

two groups which are (1) undercomplete autoencoders and (2) overcomplete autoencoders. In

general, undercomplete autoencoders are used to learn the underlying structure of data and used

for visualisation/clustering. In contrast, overcomplete autoencoders are used for classification

based on the assumption that higher dimensional features are better for classification.

In its simplest form, an autoencoder is linear and only has one hidden layer shared by an

encoder and a decoder. The encoder projects the input data into the hidden layer with a lower

dimension (i.e., higher dimension for the overcomplete autoencoders) and the decoder projects

it back to the original feature space and aims to faithfully reconstruct the input data. Formally,

given an input design matrix X ∈ Rd×N , it is projected into k−dimensional latent space with

a projection matrix W ∈ Rk×d , resulting in a latent representation WX = h ∈ Rk×N . The ob-

tained latent representation is then projected back to the feature space with a projection matrix

W∗ ∈ Rd×k and becomes X̂ ∈ Rd×N , having k < d. i.e., the latent representation reduces the

dimensionality of the original data input. The aim is to minimise the reconstruction error, i.e.,

X̂ is as similar as possible to X (see Figure 2.13). This is achieved by optimising the following

objective function:

min
W,W∗

‖X−W∗WX‖2
F (2.5)

From this formulation, one can design many different variants. For example, non-linearity can

be introduced by φ(WX), where φ is a non-linear function, or regularisation can be added to

the objective Ω(WX), where Ω could be a sparsity constraint (Goodfellow et al., 2016). In this

thesis, the standard linear autoencoder is extended by introducing a novel regularisation so that

cross-class transfer learning is possible (see Chapter 4).

Autoencoder is only one realisation of the encoder-decoder paradigm. Recently deep encoder-

decoder has become popular for a variety of vision problems ranging from image segmentation
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Figure 2.13: A linear autoencoder: X is a design matrix, h is a hidden space, and X̂ is reconstruc-
tion. W is an encoder function, while W∗ for a decoder function.

(Badrinarayanan et al., 2015) to image synthesis (Yan et al., 2016; Reed et al., 2016b). Among

them, a few recent works proposed conditional autoencoder, which is closely related to the ap-

proach proposed in Chapter 2 by introducing label information into the latent embedding space

shared between the encoder and decoder (Yan et al., 2016; Reed et al., 2016b). There are several

differences compared to (Yan et al., 2016; Reed et al., 2016b): (1) In terms of goal/task: Their

goal is directed to more of a generative task. For example, (Yan et al., 2016) try to generate an

image given a semantic attribute vectorm while Reed et al. (2016b) try to generate image using

text for the same purpose. In contrast, this thesis focuses on a discriminative task, namely classi-

fication and verification tasks; (2) In terms of model architecture and optimisation: the methods

proposed in this thesis are not based on deep learning, therefore the objective functions and the

proposed optimisations for them are very different. Certainly, these methods can be applied to the

methods proposed in this thesis to generate samples for the training purposes so that the model

can generalise more by taking advantage of synthesised images. These are left for future work.

2) Inductive cross-class transfer learning

The assumption of test data availability is often invalid in the context of CCTL because new

classes typically appear dynamically and unavailable before model learning. Therefore, most

existing methods focus on the inductive setting of CCTL in which test data is unavailable during

a model learning. Existing CCTL models differ in how embedding from the visual space to the

semantic space (embedding function) is established. They can be divided into three groups as

depicted in Figure 2.14. Specifically, (1) Methods in the first group learn the embedding function

from a visual feature space to a semantic space either using conventional regression (as shown
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Figure 2.14: Different ways of embedding function learning.

above) or ranking models (Lampert et al., 2009; Akata et al., 2015) or via deep neural network

regression or ranking (Socher et al., 2013; Frome et al., 2013; Reed et al., 2016a; Lei Ba et al.,

2015). (2) The second group chooses the reverse projection direction, i.e., learning embedding

function from semantic space to the visual space (RRZSL – RR stands for reverse regression).

The motivation is to alleviate the hubness problem that commonly suffered by nearest neighbour

search in a high dimensional space (Shigeto et al., 2015). The hubness problem refers to the fact

that learned model frequently predicts the same labels (’hubs’). By changing direction, the label

distribution with smaller variance can be achieved helping allivate the hubness problem. (3) The

third group of methods learn a common space where both the feature space and the semantic

space are projected to (Lu, 2015; Zhang and Saligrama, 2016; Chao et al., 2016a). The proposed

method in this thesis (see Chapter 4) is built on an encoder-decoder paradigm in which it consists

of an encoder and a decoder function. The encoder in the model is analogous to the first group

of models, whilst the decoder does the same job as the second group. The proposed method can

thus be considered as a combination of the two groups of models.

2.4 Unsupervised Cross-class Transfer Learning

This section discusses unsupervised cross-class transfer learning (UCCTL) methods in which la-

bels are unavailable during model learning. This type of learning is closely related to clustering.

Often, the clustering is used to discover some intrinsic common structure from the data. Simi-

larly, unsupervised CCTL methods are designed to discover discriminative transferable features
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from the unlabelled data. Under this setting classification or regression cannot be performed,

since any kind of label information or ontology during the training is unavailable to connect be-

tween training set classes and test set classes unlike two previous variants of CCTL. However,

this setting can be applied to instance verification, since verification is a matching problem that

cares largely similarity metric function, thus class information/ontology is not required.

The structure of this section is as follows: (1) first conventional graph regularisation is pre-

sented, because Chapter 5 presents a method that is build on this regularisation. (2) Then, person

re-identification, which is considered as UCCTL problem in this thesis as well as related work

are discussed.

1) Graph regularisation: an overview

A graph regularisation is one of the most common regularisation terms in data representation

learning frameworks such as dictionary learning, autoencoder, and (robust) principal component

analysis. When this regularisation is integrated into model learning, it enforces the model to

respect the local data geometric structure (manifold). An idea of the graph regularisation is from

the spectral graph theory and manifold learning theory (Chung, 1997; Belkin and Niyogi, 2003).

Formally, let G = (V,E) be a sparsely connected undirected graph (a.k.a a nearest neighbour

graph) between a set of data points where V is a set of graph vertices representing the data points

and E the edge set. This graph can be encoded by a weight matrix Q ∈ RN×N for N data points

in which the matrix Q characterises the geometric structure of the data. The weight Qi j can be

defined in several ways:

1) 0-1 weighting: Qi j = 1 if nodes i and j are connected by an edge.

2) Heat kernel weighting: If nodes i and j are connected,

Qi j = e−
‖xi−x j‖

2

σ (2.6)

where xi and x j are data points.

3) Dot-product weighting: If nodes i and j are connected,

Qi j = x>i x j (2.7)
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Mathematically, the graph regularisation term Ω(V) is defined as:

Ω(V) =
N

∑
i j

Qi j‖vi−vj‖2
2 (2.8)

where ‖vi−vj‖2
2 measures distance between samples, vi is i-th column of V that needs to be

learned. Intuitively, Eq. (2.8) means that data points V in a some space should be smooth with

regards to the graph, that is, their distances need to conform to the visual similarity relationship

embedded in the graph i.e., Q is usually constructed using hand-crafted features before model

learning, while V needs to be learned with respect to Q.

Recently it has been shown that regardless what unsupervised learning model is taken, a

method can benefit significantly from introducing the graph regularisation term in its objective

function. For instance, Zheng et al. (2011) proposed to include the graph regularisation into the

dictionary learning. Similarly, Liao et al. (2017) considered to include this term into the autoen-

coder objective, and Jiang et al. (2013) integrated this regularisation into principal component

analysis (Jiang et al., 2013). Moreover, it is extensively used for semi-supervised learning and

label propagation (Zhu, 2005). For instance, in semi-supervised learning, when partial labelled

data are available, the graph can be constructed in a supervised manner with the labelled data,

while the remaining data are used to construct the graph in a unsupervised manner. This way,

during model learning the knowledge may be propagated from the labelled data to unlabelled

data resulting in a better model.

Despite the success of the graph regularisation term, this thesis found two critical limitations

of it. The first one is the use of squared l2 distance which is prone to outliers and noise. The next

one is use of the weight matrix Q for the model learning, that is, existing methods assume that Q

captures true manifold of the data. However, the fact that Q is constructed from noisy features

that are contaminated by noise and outliers results in noisy weight matrix that may not capture

true manifold structure of the data well. Solutions to both of them are presented in this thesis

(see Chapter 5).

2) Person re-identification (ReID)

Person re-identification (ReID) is a fundamental problem in surveillance system, and its aim is

to match people across non-overlapping camera views distributed at different physical locations

(Gong et al., 2014) (see Figure 2.15). Depending on the availability of images across camera

views, ReID can be performed in a singe-shot Xiong et al. (2014b); Wei et al. (2017); Xiao
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Figure 2.15: Person re-identification: a correct match of a probe image (from A) needs to be
found from gallery images from B, C, D, and E. A, B, C, D, and E are non-overlapping cameras.
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et al. (2016) (i.e., only one image per camera view) or a multi-shot manner Ma et al. (2017);

McLaughlin et al. (2016). In the following, first a number of conventional ReID studies under

unsupervised setting are discussed. Then, contemporary unsupervised deep learning methods

for ReID are presented. Finally, supervised ReID methods are presented briefly. More thorough

reviews can be found in (Zheng et al., 2016; Gong et al., 2014; Vezzani et al., 2013; Bedagkar-

Gala and Shah, 2014).

Conventional unsupervised learning for ReID. Generally ReID system consists of two

key components, like any visual conventional recognition system: (1) feature representations of

persons, and (2) a matching model. These components are detailed below.

1. Feature Representation In ReID, designing a discriminative feature representation that is

robust against large cross-view changes, illumination, background clutter and occlusion is chal-

lenging. Various feature representations have been designed based on colour, texture, gradient,

edge, pose, and shape cues (Gray and Tao, 2008; Farenzena et al., 2010; Hirzer et al., 2012;

Zheng et al., 2013; Liu et al., 2014; Paisitkriangkrai et al., 2015). It is found that spatial structure

information of person’s appearance is a very important cue, thus this information is integrated

into the feature representation. For instance, (Farenzena et al., 2010) (known as SDALF) pro-

posed to utilise symmetry and asymmetry in body structure to differentiate body parts from the

background. Similar in spirit, pictorial structures (PS) (Cheng et al., 2011) are proposed based

(Andriluka et al., 2009). Both methods attempt to suppress unnecessary background information

focusing on the body parts during the feature matching, looking for part-to-part correspondences.

Similar ideas are proposed: triangulated graphs in (Gheissari et al., 2006), uniform horizontal

strip in (Gray and Tao, 2008; Layne et al., 2012; Prosser et al., 2010; Zheng et al., 2013; Liu

et al., 2012), localised patches (Zhao et al., 2013c,b, 2014b; Liu et al., 2014; Li et al., 2014a; Bak

et al., 2010; Zheng et al., 2015b; Paisitkriangkrai et al., 2015; Liao et al., 2015).

2. Model Learning (Unsupervised) After designing features, model learning can be performed.

The aim of the model learning is to learn a function that projects the low-level (hand-crafted) fea-

ture representations into another subspace. This subspace is assumed to be more discriminative

than original low-level feature space. That is, after the data represented by low-level features

is projected into the subspace, the samples with the same identity are located closer than that

of different identities, which is essentially clustering. How to learn this discriminative subspace

in a unsupervised manner is the key to obtain a good performance. Towards this goal, there
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are several methods proposed for learning the subspace in different forms. Particularly, Wang

et al. (2016a) proposed a semi-supervised kernel subspace learning model that learns cross-view

identity-specific information from unlabelled data. Peng et al. (2016) proposed a novel method

based on dictionary learning framework. Specifically, a multi-task dictionary learning model was

formulated to transfer a view-invariant representation learned from a number of existing labelled

source datasets to an unlabelled target dataset. The transferring was achieved a graph regularisa-

tion. Note that the methods ( Wang et al. (2016a) and Peng et al. (2016)) used the conventional

graph regularisation and rely on the graph constructed using hand-craft features which are prone

to outlier and noise, whereas the thesis proposes a robust graph regularisation, and robust graph

is learned with the dictionary jointly. Recently, unlike these two approaches that use features ex-

tracted from static images to learn discriminative features, to take advantage of image sequence

information (multi-shot), Ma et al. (2017) proposed a new space-time person representation by

encoding multiple granularities of spatio-temporal dynamics in the form of time series. This

thesis does not focus on multi-shot person re-identification.

Unsupervised deep learning for ReID. Very recently deep learning methods for ReID have

also been proposed in the unsupervised setting. These methods learn person discriminative fea-

tures from raw visual data reducing the burden on feature engineering. In other words, the two

components of ReID that are feature representation and model learning are performed under a

single framework. Specifically, Hehe et al. (2017) proposed a progressive unsupervised learn-

ing (PUL) method to transfer pretrained deep representations to unseen domains. PUL mainly

learns features by iterating two steps: 1) pedestrian clustering and 2) fine-tuning of the convo-

lutional neural network to improve the original model trained on the irrelevant labelled dataset.

Similarly, Schumann et al. (2017) formulates a deep learning based novel approach to automatic

prototype-domain discovery for domain perceptive person re-identification. After that, a separate

model for each of the discovered prototype-domains is learned, and during model testing, use the

person probe image to automatically select the model of the closest prototype-domain. Overall,

all methods including the proposed approach in this thesis have a common pattern in which they

rely on clustering assumption e.g., similar persons in terms of features belong to the same class

(ID). All these aforementioned approaches are generic that they may readily be applied to other

kinds of visual verification tasks such as face/car verification (Cinbis et al., 2011).

Supervised ReID. Despite the success of usupervised CCTL methods for ReID, supervised
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learning methods are shown to be far better than unsupervised learning ones. When hand-crafted

features and corresponding pairwise constraints are utilised, the optimal cross-view matching

function is learned by either distance metric learning (Weinberger et al., 2005; Davis et al., 2007;

Guillaumin et al., 2009), learning to rank (Prosser et al., 2010), or discriminant subspace learn-

ing (Xiong et al., 2014b). Recently these learning methods are incorporated into the supervised

deep learning framework, achieving significant performance boost (Wei et al., 2017; Xiao et al.,

2016; Li et al., 2014b; Yi et al., 2014; Ding et al., 2015). Specifically, a filter pairing neural net-

work is particularly designed for jointly handling the misalignment, photometric and geometric

transforms, occlusions and background clutter issues in ReID (Li et al., 2014b). Yi et al. (2014)

applied a symmetric ‘siamese’ neural network to learn ReID features that are robust to the inher-

ent challenging cross-view changes. More recently, a triplet-based ReID feature learning model

is derived in (Ding et al., 2015; Hermans et al., 2017), where each triplet unit contains a query

image from one view, a true and false match from another view.

Nevertheless, supervised model learning requires a large number of exhaustively labelled

data. This assumption significantly limits their scalability in real-world scenarios. Therefore,

although unsupervised learning is very challenging, its impact is significant for practical verifi-

cation systems.

2.5 Benchmark Datasets

The proposed algorithms are evaluated on a number of benchmark visual datasets. They include

object and action recognition benchmark datasets. Table 2.1 and Table 2.2 list the datasets. Ex-

amples corresponding to the datasets are shown in Figure 2.16, Figure 2.18, and Figure 2.17. The

description of how each dataset is detailed in corresponding chapters.
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(a) AwA (b) CUB 

(c) aP&Y (d) SUN 

Figure 2.16: Examples: (a) AwA , (b) CUB, (c) aP&Y, and (d) SUN datasets.

Figure 2.17: Examples from UCF101 dataset.
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Dataset Instances SS SS-D Seen/Unseen Chapter

AwA (Lampert et al., 2009) 30,475 A 85 40 / 10 3, 4

CUB (Wah et al., 2011) 11,788 A 312 150 / 50 3, 4

aP&Y (aPascal-aYahoo) (Farhadi et al., 2009) 15,339 A 64 20 / 12 3, 4

UCF101** (Soomro et al., 2012) 13,320 clips A 115 51 / 50 3

SUN (Genevieve et al., 2014) 14,340 A 102 645 / 72 (∗) 4

ImageNet-1 (Russakovsky et al., 2015) 1,2 ×106 W 1,000 800 / 200 4

ImageNet-2 (Russakovsky et al., 2015) 218,000 W 1,000 1,000 / 360 4

Table 2.1: Benchmark datasets for evaluation of transductive and inductive cross-class transfer
learning methods. Notation: ‘SS’ – semantic space, ‘SS-D’ – the dimension of semantic space,
‘A’ – attribute, and ‘W’ – word vector. (∗) – another split of 707/10 is also used for SUN (Ja-
yaraman and Grauman, 2014; Zhang and Saligrama, 2016). Among datasets, aP&Y and SUN
datasets provide instance-level atribute vectors, while the remaining ones are class-level. Fol-
lowing the literature, partitions for seen/unseen in all datasets are fixed. ’**’ indicates the action
dataset.

Dataset Cameras Persons Instances Chapter

VIPeR (Gray et al., 2007) 2 632 1264 5

PRID (Hirzer et al., 2011) 2 749 949 5

CUHK01 (Li et al., 2012) 2 971 1,942 5

CUHK03 (Li et al., 2014b) 6 1,467 14,097 5

Table 2.2: Benchmark datasets for evaluation of unsupervised cross-class transfer learning
method (person re-identification).

Figure 2.18: Examples: VIPeR (row-1), PRID (row-2), CUHK01 (row-3), and CUHK03 (row-4).
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Chapter 3

Transductive Cross-class Transfer Learning by

Unsupervised Domain Adaptation

Cross-class transfer learning (CCTL) requires to extract the knowledge from the labelled training

dataset (source domain) and to transfer that knowledge to the test dataset (target domain). Since

the target domain has no labelled data, existing CCTL methods adopt a naive transfer learn-

ing approach in which a model learned from the source domain is applied to the target domain

blindly without any model adaptation. More specifically, existing CCTL methods typically as-

sume that there is a semantic embedding space within which both the feature space and the class

label spaces of the source and target domains can be embedded e.g., the class label ’cat’ can be

represented as a binary attribute vector in attribute space, or as a high-dimensional word vector

in word vector space. The embedded label vector in any given semantic space is called a class

prototype. Given a semantic embedding space, most existing methods take a visual feature em-

bedding approach. Specifically, the knowledge extracted from the source data is represented in

the form of the embedding function that embeds each feature vector to its class prototype as an

attribute or word vector. The embedding function can then be applied to the target image data to

embed/project them into the same semantic space. After such embeddings, the classification of

these target images can be simply nearest neighbour distance matching to the target class proto-

types in the semantic space (see Section 2.2). Without adapting the learned embedding function

to the target domain, existing methods are prone to the projection domain shift problem (see

Figure 2.12).
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In this chapter, in order to alleviate the domain shift problem, a novel method is proposed

by developing a new unsupervised domain adaptation model under the transductive setting, thus

transductive cross-class transfer learning 1 (TCCTL). TCCTL itself is not a unsupervised domain

adaptation problem because the two domains have different tasks/classes. Note that the definition

of the unsupervised domain adaptation (transductive transfer learning) in Pan and Yang (2010)

is that two domains have the same task/classes. However, taking a visual feature embedding

approach, the learning of embedding function for the target domain is a standard domain adap-

tation problem – both domains are embedded into the same semantic space (attribute or word

vector) – albeit an unsupervised one as no label is available in the target domain. Uniquely, in-

stead of learning a typical classification/regression function as in most previous works (Lampert

et al., 2009; Frome et al., 2013; Fu et al., 2015b; Akata et al., 2015), learning of the embedding

function is treated as a dictionary learning problem: Each dimension of the semantic embedding

space corresponds to a dictionary basis vector and the coefficients/sparse code of each visual

feature vector is a semantic representation in the semantic space. To learn a meaningful dictio-

nary/embedding function for the target data, two important regularisation terms are introduced

into the dictionary learning objective function, making a regularised dictionary learning model

designed specifically for unsupervised domain adaptation. The first term controls the adaptation

strength from the source domain to the target domain, whilst the second term rectifies explicitly

the domain shift problem in CCTL, forcing the embedded target data to be near to the unseen

class prototypes.

This chapter is organised as follows: Section 3.1 presents the details of the proposed ap-

proach for transductive cross-class transfer learning. Then, description of benchmark datasets,

experimental settings, results with comparison to state-of-the-art methods, and ablation study are

given in Section 3.2. Finally, a conclusion is presented in Section 3.3

3.1 Methodology

3.1.1 Problem Formulation

Suppose a source domain (a training set) is composed of cs source classes with ns labelled in-

stances denoted as Ds = {Xs,Ss,zs}, and similarly ct target classes with nt unlabelled instances

for target domain (a test set) denoted as Dt = {Xt ,St ,zt}. Each instance is represented using a

1Transductive cross-class transfer learning and transductive zero-shot recognition/classification terms
are used interchangeably, since they have the same meaning in this thesis.
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d−dimensional visual feature vector, that is, Xs = [x1, . . . ,xns ] ∈ Rns×d and Xt = [x1, . . . ,xnt ] ∈

Rnt×d , where xi ∈ Rd . zs ∈ Rns and zt ∈ Rnt are class label vectors for the source and target data

respectively. It is assumed that the source and target classes are disjoint: zs ∩ zt = ∅. Given a

semantic space, Ss = [s1, . . . ,sns ] ∈ Rns×m and St = [s1, . . . ,snt ] ∈ Rnt×m are the m−dimensional

semantic representations, si ∈ Rm, of each class label in the source and target domains respec-

tively (e.g., m-dimensional binary attribute vectors). For the source domain, Ss is given because

each visual instance xi of the source data is labelled by either a binary attribute vector or a word

vector representing its corresponding class label zi
s. In contrast, St has to be estimated because

the target domain is unlabelled. The problem of transductive cross-class transfer learning (trans-

ductive zero-shot recognition) is thus to estimate St and zt given Xt , Xs, and Ss. Note that in

the transductive setting, the unseen classes and the corresponding semantic prototypes need to be

known in advance, but their equivalent images are not given.

3.1.2 Dictionary Learning for Embedding Function Learning

The aim is to learn an embedding function to map each d-dimensional visual feature vector xi

in Xs or Xt to a m-dimensional semantic embedding vector si, i.e., m < d a lower dimensional

subspace is sought to embed xi into. In the context of cross-class transfer learning (cross-class

recognition), the subspace is the semantic space (attribute or word). In this work, the learning of

the visual space to semantic space embedding is formulated as a dictionary learning and sparse

coding problem. Sparse coding aims to represent a data vector as a sparse linear combination of

basis elements, which are atoms of a learned dictionary. Taking attribute space as an example,

to embed a data point from the visual feature space (higher dimensional) to an attribute space

(lower dimensional), it is considered that each basis element (atom) corresponds to an attribute

(or an axis in the attribute space). For example, to represent the attribute of ‘has fur’ in an

animal image, a corresponding sparse coding coefficient of the image is the weight of that basis

element in the image which represents how much fur is present in that image2. Denote the

dictionary as D∈Rd×m, a visual feature vector xi can be reconstructed as Dsi using its coefficient

vector/projection si and the dictionary/embedding matrix D. Dictionary learning is thus to learn

D and si to minimise the reconstruction error. Since each dictionary basis has clear semantic

meaning based on the definition given above, the learned dictionary is referred to as semantic

dictionary.

2This is related to the concept of relative attributes (Parikh and Grauman, 2011).
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Next, the dictionary learning problem is formulated separately for the source and target do-

mains respectively, and highlight the difference in their formulations. First, in the source domain

the sparse coding coefficient vector for each visual instance is known: For each xi, its correspond-

ing si is the embedding (attribute or word vector) of its class label zi
s in the semantic space. This

is very different from the conventional dictionary learning by sparse coding whereby si needs to

be estimated together with D. Let us denote the source domain semantic dictionary as Ds, the

dictionary learning problem can be solved by quadratic optimisation:

Ds = min
Ds
‖Xs−DsSs‖2

F , s.t. ||di||22 ≤ 1, (3.1)

where ‖ · ‖F is Frobenius norm of a matrix. It is a standard least squares minimisation problem

with a closed-form solution. To avoid trivial solutions, a regularisation term is added to favour a

solution of smaller norm. Eq. (3.1) thus becomes:

Ds = min
Ds
‖Xs−DsSs‖2

F + λ ||Ds‖2
F s.t. ||di||22 ≤ 1, (3.2)

where λ controls the strength of the regularisation term. This is known as a least squares problem,

also with a closed-form solution (Hoerl and Kennard., 1970).

Second, contrary to the source domain, the formulation for dictionary/embedding function

learning by sparse coding in the target domain requires the conventional sparse coding mecha-

nism as both the dictionary and the coefficient vectors are unknown and need to be learned from

data:

{Dt ,St}= min
Dt ,St
‖Xt −DtSt‖2

F + λ‖St‖1 s.t. ‖di‖2
2 ≤ 1, (3.3)

where ‖St‖1 = ∑
nt
i=1 ||st

i‖1. In this formulation, the model is essentially learning a sparse repre-

sentation of the data in an unsupervised fashion. Since both Dt and St are unknown and uncon-

strained (apart from enforcing St to be sparse), there is no guarantee that the learned representa-

tion captures a suitable semantic embedding space so that Dt is the correct embedding function

for Xt and the embedding St in the semantic space is meaningful for CCTL. Therefore, learning

Dt without any regularisation is undesirable meaning Dt has no use for CCTL.

Such a regularisation could come from the labelled source domain. Following the con-

ventional naive transfer/non-adaptation CCTL approach, Ds is learned from the source domain

(Eq. (3.1)) and then applied directly to the target data. This method, which forces Dt = Ds rather

than allowing Dt to be adapted from Ds, is prone to the domain shift problem. To overcome this

problem, both Ds and the target domain class prototypes are used to regularise the learning of Dt .
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This results in a novel unsupervised domain adaptation method for TCCTL based on regularised

dictionary learning.

3.1.3 Domain Adaptation by Regularised Dictionary Learning

Now, it is time to introduce two critical regularisation terms into Eq. (3.3) to impose (a) an adap-

tation regularisation constraint: The Dt learned from the unlabelled target data should be similar

to Ds learned from the labelled source data; and (b) a visual-semantic similarity constraint: The

‘closeness’ of the embeddings of target data (si) to their true class labels in the semantic space

(i.e., unseen class prototypes denoted as pt
i and i ∈ {1, . . . ,ct}). This defines the new regularised

dictionary learning framework:

min
Dt ,St
‖Xt −DtSt‖2

F +λ1‖Dt −Ds‖2
F +λ2 ∑

i, j
wi j‖si−pt

j‖2
2 +λ3‖St‖1 s.t. ‖di‖2

2 ≤ 1. (3.4)

Adaptation regularisation constraint (AR). Compared to Eq. (3.3), the new regularisation term

‖Dt−Ds‖2
F in Eq. (3.4) regularises the amount of adaptation (closeness) of the learned dictionary

Dt to the supervised learned dictionary Ds. This term makes sure that the learned Dt is also a

semantic dictionary that projects a target data point from the feature space to the same semantic

space as Ds. In this regard, Ds is treated as a basis for learning the dictionary Dt so that Dt is

not deviated freely from Ds. Without this regularisation, Ds could be adapted towards a trivial

solution especially when nt > ns, i.e., the target data outnumbers the source data.

Visual-semantic similarity constraint (VSS). The second new regularisation term ∑i, j wi j‖si−

pt
j‖2

2 in Eq. (3.4) enforces the visual-semantic similarity constraint. This is used to ensure that

the learned coefficient vector si for each target data (its embedding in the semantic space) is close

to its true class label zt
i , embedded in the semantic space as pt

i . Since zt
i is unknown, an estimate

is obtained by visual-semantic similarity matching using the indirect attribute prediction (IAP)

method (Lampert et al., 2009), where a probability is computed for xi being labelled as zt
j which

defines the closeness of si to pt
j. Formally, the probability of xi being the j-th unseen class is used

as weight wi j to enforce a closeness in the distance between the embedding/projection si and the

j-th unseen class prototype pt
j, resulting in this regularisation term defined as ∑i, j wi j‖si−pt

j‖2
2.

Note that this constraint utilises visual-semantic similarity matching whilst the dictionary aims

to estimate the optimal visual feature embedding function. In the following, the proposed model

is referred to as DTCCTL in which first letter ‘D’ stands for dictionary.

Discussion. Above Dt is regularised by Ds, however one may ask whether the opposite possible.
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It is common in literature that learning Dt subject to source domain knowledge is desirable,

because the ultimate goal is to perform well in the target domain Fernando et al. (2013) not in

the source domain.

3.1.4 Optimisation

It is important to point out that Eq. (3.4) is not convex for Dt and St simultaneously, although

it is convex for each of them separately (biconvex). Thus an alternating optimisation method is

deployed to solve it. In particular, the following two subproblems are solved alternatingly:

1. Fix St , update Dt . Ds is computed using Eq. (3.1), and St is initialised randomly.

D∗t = argmin
Dt

‖Xt −DtSt‖2
F +λ1‖Dt −Ds‖2

F (3.5)

This is a standard least squares problem, having a closed-form solution:

D∗t = (XtST
t +λ1Ds)(StST

t +λ1I)−1. (3.6)

2. Fix Dt , update St

S∗t = argmin
St

‖Xt −DtSt‖2
F +λ2 ∑

i, j
wi j‖si−pt

j‖2
2 +λ3‖St‖1 (3.7)

In this equation, the first two terms can be combined into a single quadratic form and it

becomes a conventional sparse coding problem. To solve it Lasso (Tibshirani, 1996) solver

from the SPAMS toolbox (Mairal et al., 2010) is used.

The iterations will terminate when the objective function in Eq. (3.4) converges or after a fixed

number of iteration. Note that a positive constraint is set on coefficients if the attribute space is

used because it does not make sense to have a negative attribute value. For semantic word space,

this constraint is removed.

3.1.5 Cross-class Recognition

Single Semantic Space: Once the dictionary coefficients St is estimated, cross-class recognition

can be performed. In this work, two classification strategies are considered: 1) a nearest neigh-

bour (NN) classifier (see Section 2.2) and 2) a semi-supervised label propagation (LP) frame-

work. For the NN classifier, given a target data xi, its coefficients si
t is directly used to compare
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with the unseen prototypes. It is then labelled as the nearest unseen class. For the LP classifier,

the method in (Fu et al., 2014) is adopted. Specifically, the unseen data and the unseen prototypes

(as the labelled data) are exploited to set up a graph, then the label information is propagated from

the unseen prototypes to each unseen data. The performance of the proposed algorithm (DTC-

CTL) on both strategies are reported.

Combining Multiple Spaces: Multiple semantic spaces can be easily combined in the proposed

framework to exploit their complementarity. For example, after estimating SA
t and SW

t for at-

tribute and word space, respectively, the similarity matrices from these two spaces can be com-

bined by a simple strategy: For the NN classifier, the distances to neighbours are averaged; for

the LP classifier, the graph similarity matrix are averaged before label propagation.

3.2 Experiments and Evaluations

3.2.1 Datasets and Settings

Datasets. Four datasets are used in the experiments. (a) AwA (Lampert et al., 2009) consists

of 30,475 animal images belonging to 50 classes. An 85D attribute vector is provided for each

class. (b) CUB (Wah et al., 2011) is a fine-grained dataset, containing 200 different bird classes,

with 11,788 images in total. The class level attribute annotations are given with 312 visual

attributes (e.g., color, part pattern). (c) aPascal-aYahoo (Farhadi et al., 2009) consists of two

datasets: aPascal is a 12,695 images subset of the PASCAL VOC 2008 dataset and aYahoo has

2,644 images. A 64D attribute vector is provided for each image. There are 20 object classes for

aPascal, and 12 for aYahoo and they are disjoint. aPascal-aYahoo is used for cross-dataset cross-

class transfer learning (see Section 3.2.4). (d) UCF101 (Soomro et al., 2012) is one of the largest

datasets for action recognition with 101 classes, containing 13,320 video clips and 27 hours

of video data in total. The videos are collected from YouTube with large camera motions and

cluttered background making them particularly challenging. A 115D attribute vector is provided

for each action e.g., body posture, body part motion. The summary of these datasets is given in

Table 2.1.

Features. Two types of features are used: deep features (CNN) and hand-crafted features (L).

For the AwA, OverFeat is used to extract 4,096D feature vectors (Sermanet et al., 2013). For the

hand-crafted features, publicly available features are used, the same as in previous work (Lampert

et al., 2009; Akata et al., 2013; Fu et al., 2014). For CUB, deep features are extracted the same as
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AwA. Since hand-crafted features are not provided with the dataset, based on the setting of (Akata

et al., 2013), 96 color descriptors are extracted from regular grids at three scales, and aggregate

them into fisher vectors (FVs) using 256 Gaussians. For aPascal-aYahoo, 9,751D hand-crafted

features provided by (Farhadi et al., 2009) is used. For the UCF101, the features provided by

the THUMOS challenge (Jiang et al., 2014) which contain 4,000D Motion Boundary Histogram

(MBH) features (Wang and Schmid, 2013) are used.

Settings. Two types of semantic embedding spaces are used: (a) An attribute space where each

class is represented as a binary attribute vector. (b) An 100D semantic word space learned by the

skip-gram model (Mikolov et al., 2013) using a text corpus containing 4.6M Wikipedia pages.

For the source/target class split, the standard 40/10 split is used for AwA, while 150/50 split for

the CUB as in (Akata et al., 2013). For aPascal-aYahoo, standard split is used with 20/12, in that,

aPascal (20) is used for training, and aYahoo for testing (12). For the UCF101, two types of split

are used: 81/20 and 51/50. In each experiment, the average recognition accuracy with standard

errors is reported over 10 trials with different random splits.

There are four parameters in Eq. (3.4) and Eq. (3.2): λ λ1, λ2, and λ3. It is found that λ and

λ3 have little influence on performance, and they thus set to 0.05 and 0.05 respectively. Other

parameters are set by 5-fold cross validation technique with training data. In detail, A and W are

attribute space and word space respectively: λ A
1 = 0.001, λ A

2 = 0.005; λW
1 = 0.03, λW

2 = 0.005

for AwA; λ A
1 = 0.05, λ A

2 = 0.001; λW
1 = 0.01, λW

2 = 0.02 for CUB; λ1 = 0.02 λ2 = 0.005 for

aPascal-aYahoo; λ A
1 = 0.05 λ A

2 = 0.001; λW
1 = 0.5 λW

2 = 0.01 for UCF101. LP parameters are

set empirically: the number of neighbours to construct similarity is 5, the parameter for balancing

the propagation rate is 0.8 Fu et al. (2014). For the zero-shot classifier (see Section 3.1.5), LP is

used for the reported results unless stated otherwise. More detailed analysis are left for the future

work.

3.2.2 Comparative evaluation

Comparative models. For AwA, 11 most recent and competitive CCTL methods are selected

for comparison, as shown in Table 3.1.

• IAP (Lampert et al., 2009) is probabilistic approach in which it assumes that all attributes

are independent and equally important for learning the cross-class recognition. The con-

nection between the seen and unseen classes is established indirectly by attributes as mid-
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level layers (see more details in C). Note that IAP cannot utilise semantic word vector,

since it treats every attribue individually.

• DAP (Lampert et al., 2009) is also probabilistic approach, similar to IAP. The only dif-

ference is establishing the connection between the seen and unseen classes wherein all

classes are treated equally based on the attributes’ results in the attribute layer. Similar to

IAP, DAP also cannot use semantic word vector.

• DS (Rohrbach et al., 2010) performs knowledge transfer by representing unseen object

classes relative to known ones. More specifically, DS learns a model based on similarities

between an unseen object class and known object classes. In DS, semantic word or attribute

vector can be used to measure semantic relatedness between known and unseen classes.

• AHLE (Akata et al., 2013) views cross-class recognition as a label-embedding problem,

that is, each class is embedded in the space of attribute vectors. To achieve this, on max-

margin ranking loss is proposed which measures the compatibility between an image and

a label embedding. This model can use multiple semantic information such as semantic

attribute vector, word vector, and class hierarchies.

• HEX (Deng et al., 2014) is based on graph paradigm. Specifically, Hierarchy and Exclu-

sion (HEX) graphs is introduced that captures semantic relations between any two labels

applied to the same object including mutual exclusion, overlap and subsumption. For this

method, only semantic attributes are used to build graphs.

• TMV-BLP (Fu et al., 2014) is transductive approach which is closely realted the appraoch

proposed in this chapter. This method can use both semantic word vector and attribute

vector (see Section 2.2 for details).

• Yu et al. (2013) proposed a novel formulation to automatically design ’category-level at-

tributes’, which can be encoded by a category-attribute matrix. Then, they proposed a

framework of using attributes as mid-level cues for multi-class recognition on seen classes.

Finally, the error of such recognition scheme is used to measure the discriminativeness of

attribtes. Only attribute vectors are used for this model, while other semantic embeddings

is difficult to incorporate.
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• Jayaraman and Grauman (2014) proposed a novel random forest approach to train cross-

class recognition models that explicitly takes care of the unreliability of attribute predici-

tons. Unrealibility is measured by statistics about each attribute’s error tendencies – the

attribute classifiers receiver operating characteristics. This approach uses attributes as se-

mantic information.

• CNNSVM (Ozeki and Okatani, 2014) proposed a simple method: first features are

learned with a deep convolutional neural network (CNN), and after learning the network,

it is used a feature extractor. Finally, attribute classifiers are built by a linear SVM on

top of the features extracted from the network. Only attributes are used for cross-class

recognition.

• AMP (Fu et al., 2015b) is a method that models the semantic manifold in an embedding

space using a semantic class label graph. The semantic manifold graph is used to re-

define the distance metric in the semantic embedding space for more effective cross-class

recognition. The semantic manifold distance is computed using a observing Markow chain

process (AMP). This model can use both semantic word vector and attribute vector.

• SJE (Akata et al., 2015) is a method that uses structured joint embedding. SJE relates

input data such as image features and output embeddings such as semantic information

through a compatibility function, thus accounting for a structure in the output sapce. This

model uses atributes, word vector and WordNet hierarchy for cross-class recognition.

These 11 models can be divided into several groups depending on various aspects: (1) Fea-

tures: Most reported results on the dataset-provided hand-crafted features, although more re-

cently the deep features have been used CNNSVM (Ozeki and Okatani, 2014), HEX (Deng

et al., 2014), AMP (Fu et al., 2015b), SJE (Akata et al., 2015); (2) Side information (SI): This

refers to what semantic information extracted from human knowledge is used. In addition to em-

bedding each class label into either an attribute space (A) or word vector space (W), the Wordnet

hierarchy (H) is used in AHLE (Akata et al., 2013) and SJE (Akata et al., 2015). Some methods

such as (Yu et al., 2013; Jayaraman and Grauman, 2014) also use a different form of annotation,

learned from the given category-attribute matrix, that is, instead of class attribute annotation, a

class similarity (CS) matrix is used; (3) Most of them are based on the visual feature embedding

approach, with the only exception of IAP (Lampert et al., 2009) which uses visual-semantic sim-
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ilarity matching. Mainly, the proposed approach (DTCCTL) in this chapter is very different from

all the comparative models: (1) DTCCTL is based on dictionary learning framework, and (2) the

paradigm of unsupervised domain adaptation is used. Also, DTCCTL is very flexible: can utilise

unlabelled target data, similar to TMV-BLP; can use whatever semantic information if available

simiarl to SJE , and use different features.

In contrast, far fewer studies have been reported on the more challenging CUB dataset (more

and fine-grained classes). For the UCF101 action recognition dataset, no results have been re-

ported so far, although Liu et al. (2011a) has tackled a similar CCTL problem for action recog-

nition, albeit using different (much smaller) datasets. The method in (Liu et al., 2011a) is essen-

tially based on learning embedding function to the attribute space using the source data and then

using the embedding function to embed the target data in the attribute space followed by nearest

neighbour-based classification. In addition to (Liu et al., 2011a), to obtain the results on DAP and

IAP, the code in (Akata et al., 2013) is used. For all the competitors, kernelised SVMs are used to

learn the attribute classifiers (embedding function to the attribute space, DAP) and source class

classifiers (for IAP). In contrast, in the proposed model (DTCCTL), the learned dictionary acts

as attributes classifiers. The use of the kernelised SVM for the attribute and class classifiers are

as follows: say there are k number of attributes, and SVM is used to learn k number of attribute

classifiers for each attribute; n-way class classfiers are learned for each class.

Performance Comparison.

AwA and CUB benchmarking – Table 3.1 shows that overall the proposed method (DTCCTL)

has the best performance on these two image datasets. In particular, it is observed that: (1) On

AwA, if the same hand-crafted features are used, DTCCTL’s result (49.7%) is the highest; (2)

The results of TMV-BLP give the most competitive alternative to DTCCTL in this setting. As

discussed in Section 2.2, TMV-BLP and DTCCTL are the two which aim to rectify the projection

domain shift problem by utilising the unlabelled target domain data. These results suggest that

the proposed new regularised dictionary learning-based formulation is more effective than the

two-step (projection followed by adaptation) approach taken by TMV-BLP; Note that the pro-

posed approach in this thesis is different from the two-step approach: the proposed method does

adaptation and learns a mapping function at the same time, while TMV-BLP projects all the data

into some space first, and then perform adaptation; (3) When the more powerful deep features

are used, DTCCTL gains a significant performance boost, rising from 49.7% to 75.6% and the
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Method F SI AwA CUB

IAP (Lampert et al., 2009) L/C A 42.2/44.5 5.60/19.5

DAP (Lampert et al., 2009) L/C A 41.4/53.2 10.5/31.4

DS (Rohrbach et al., 2010) L/C W/A 35.7/52.7 -

AHLE (Akata et al., 2013) L A+H 43.5 18.0

HEX (Deng et al., 2014) L/C A 38.5/44.2 -

TMV-BLP (Fu et al., 2014) L A+W 47.1 -

Yu et al. (2013) L CS 48.3 -

Jayaraman and Grauman (2014) L A+CS 48.7 -

CNNSVM (Ozeki and Okatani, 2014) C A 62.4 -

AMP (Fu et al., 2015b) C A+W 66.0 -

SJE (Akata et al., 2015) L/L+C A+W+H 42.3/67.8 19.0/47.1

DTCCTL L/C A 47.5/73.2 26.7/ 39.5

DTCCTL L/C A+W 49.7/75.6 28.1/ 40.6

Table 3.1: Cross-class recognition results on AwA and CUB on the target domain (%). Notations
– ’F’: features; ’L’: hand-crafted features; ’SI’: side information; ’C’: deep features; ’A’: attribute
space; ’W’: semantic word vector space; ’H’: WordNet hierarchy; ’CS’: class similarity. When
two results are reported, they correspond to the two types of features used.

gap to the best alternative (67.8% SJE) becomes bigger; (4) The same conclusion can be drawn

on the CUB – DTCCTL’s overall results are superior to the compared methods. Note that SJE

obtained better result using the deep features (47.1% vs. 40.6%) but its result on hand-crafted fea-

ture is much weaker than DTCCTL (19.0% vs. 28.1%). It is worth pointing out that SJE employ

combined hand-crafted features and deep features, and use more than two semantic spaces. In

contrast, other methods including the proposed model use only one type of features and no more

than two semantic spaces. Richer features and more complementary semantic spaces would cer-

tainly help the proposed method as well but were not used to be fair to other compared methods.

Analysing combining different features and trying more semantic spaces are left for future work.

UCF101 benchmarking – For this dataset, the results are shown in Table 3.2. Comparing Table

3.2 with Table 3.1, it is apparent that CCTL for action recognition from videos is a much harder

task than object recognition on images. In particular, with 50 target classes in both CUB and
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Method SI 51/50 (%) 81/20 (%)

DAP A 02.2 ± 0.5 06.1 ± 1.5

IAP A 06.9 ± 1.1 11.1 ± 1.9

Liu et al. (2011a) A 02.5 ± 1.2 06.2 ± 2.1

DTCCTL A 13.2 ± 1.9 20.1 ± 3.1

DTCCTL A+W 14.0 ± 1.8 22.5 ± 3.5

Table 3.2: Transcductive cross-class recognition results on the UCF101 dataset.

UCF101, the same DAP and IAP methods yielded much poorer results, close to the chance level

(2%) in the case of DAP. In addition, the following observations can be made: (1) DTCCTL

performs much better than the three compared alternatives, almost doubling the recognition rates

of the best competitor (IAP) under both settings. Note that although an additional semantic

embedding space (word space) is used, DTCCTL’s results with attributes alone is still much

better; (2) The very poor results from both DAP and Liu et al. (2011a) suggest that embedding

without adaptation fails completely on this dataset. Moreover, it also suggests that using the

source data to learn a n-way classifier for measuring the visual similarity is more sensible for

video actions given the larger domain shift problem at hand. This explains the better performance

of IAP than DAP and Liu et al. (2011a).

3.2.3 Comparison with Unsupervised Domain Adaptation Methods

In this experiment, it is demonstrated that unsupervised domain adaptation helps cross-class

transfer learning, and the proposed regularised dictionary learning-based adaptation is better than

the alternatives.

Competitors. For all three datasets, DTCCTL is compared with three most recent and relevant

subspace alignment-based unsupervised domain adaptation methods: 1) Geodesic flow kernel

(GFK) (Gong et al., 2012), 2) Subspace alignment domain adaptation (SADA) (Fernando et al.,

2013), and 3) Subspace interpolation dictionary learning (SIDL) (Ni et al., 2013). All three

methods attempt to align the data distributions of the two domains. When applied to the TCCTL

problem, the projection function (based on the same dictionary learning model) learned in the

source domain can thus be used directly for the target domain after they are aligned. In addi-
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Method AwA (%) CUB (%) UCF101(%)

GFK (Gong et al., 2012) 65.2 31.7 16.3

SIDL (Ni et al., 2013) 64.3 33.2 18.7

SADA (Fernando et al., 2013) 65.7 31.4 17.4

DTCCTL-no-adapt 62.1 34.5 18.1

DTCCTL 75.6 40.6 22.5

Table 3.3: Evaluations on unsupervised domain adaptation methods. Deep features are used.

tion, the DTCCTL is also evaluated without adaptation constraint, that is, setting Dt = Ds (see

Section 3.1.2), denoted as DTCCTL-no-adapt.

Performance Comparison. Table 3.3 shows the comparative results. It can be seen that adap-

tation certainly helps in the DTCCTL: comparing DTCCTL with DTCCTL-no-adapt, a clear

improvement can be observed thanks to the adaptation of Ds to Dt using Eq. (3.4). The results

also show that the alternative subspace alignment-based adaptation methods are much weaker

than DTCCTL. The results are slightly better than that without adaptation on AwA; but on the

more challenging CUB dataset, their adaptations have an adverse effect. These results thus sug-

gest that existing unsupervised domain adaptation methods are not effective under the CCTL

setting. This is because that they are designed for visual recognition problems where each data

can only have a single class label. In a multi-label scenario such as cross-class transfer learning

(e.g., each AwA image can have dozens of attributes present), the subspace alignment strategy

would not be a good strategy. This is particularly true for CUB where all images contain a bird

and aligning the distributions of two sets of bird images will have little effect because the two

distributions may have already been similar. The alignment thus would not help to solve the

more subtle domain shift problem that the beak of a seagull is different from that of a pigeon. In

contrast, the DTCCTL utilises the unseen class prototypes to regularise the learning of target do-

main embedding function which is specifically designed for rectifying the domain shift problem

for cross-class transfer learning.
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Figure 3.1: Evaluation of the contributions of each component of the DTCCTL on AwA, CUB
and UCF101 (deep features).

3.2.4 Further Analysis

Ablation Study. In Figure 3.1, the proposed full model (DTCCTL) is compared with various

stripped-down versions of the model to validate the contributions of the two regularisation terms

in Eq. (3.4). Specifically DTCCTL (Eq. (3.4)) is compared with DTCCTL without the visual-

semantic similarity constraint, i.e., Eq. (3.4) without the regularisation term ∑i j wi j‖si− pt
j‖2

2

(denoted DTCCTL–VSS, ‘–’ for minus) and DTCCTL without the adaptation regularisation

constraint (DTCCTL–AR). The results in Figure 3.1 show clearly that both regularisation terms

contribute to the superior performance of DTCCTL.

Effects of Combining Multiple Semantic Spaces. In the proposed model, the attribute and

semantic word vector space are combined in the label propagation-based cross-class recognition

algorithm (see Section 3.1.5). Figure 3.2 shows the results of the DTCCTL when only one of the

two semantic embedding spaces is used. It can be seen that the model performance is notably

improved by utilising both semantic spaces. It is also noted that using just one semantic space,

the model already achieves very competitive performance. Moreover, the performance in the

attribute space is stronger compared to the word vector space because the latter is unsupervised

and does not benefit from human annotation. In particular, it is observed that the semantic word

space is much weaker for UCF101. This is because the action names such as ‘apply lipstick’
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Figure 3.2: Effectiveness of combining multiple semantic embedding spaces (deep features are
used).

and ‘ski-jet’ are much more abstract and ambiguous to describe the rich content of the associated

actions, compared to the nouns in the image datasets (e.g., ‘giant panda’). Simply embedding the

class names to the semantic word space may not be the best way to explore the word space for

cross-class (zero-shot) action recognition especially for subtle and complex actions.

Effects of the classification methods. The results reported so far are obtained using the label

propagation (LP) classifier after domain adaptation. Table 3.4 shows that when the nearest neigh-

bour classifier (NN) with cosine distance is used the performance is only slightly worse, by about

2%.

AwA(%) CUB(%) UCF101(%)

NN 74.1 38.4 20.1

LP 75.6 40.2 22.5

Table 3.4: Classification methods: nearest neighbour (NN) vs. label propagation (LP).

The effects of the amount of target data used. One of the key differences between the pro-

posed model and the alternatives except (Fu et al., 2014) is that unlabelled target data is used

for the model learning. This is determined by the nature of the proposed approach – a transfer

learning method with any form of adaptation to the target data needs to use the target data. In this

experiment, it is evaluated that how the learned embedding function is affected by the amount

of target data used in the model learning. Figure 3.3 suggests that the impact is very small. The

performance on all three datasets only drops slightly with as few as about 2% of the target data.

Furthermore, it is important to note that when no target data is used, that is, Dt = Ds, the dictio-
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Figure 3.3: The effect of the amount of target data used.

Method aP&Y (%)

IAP 16.9

DAP 16.8

DTCCTL 26.5

Table 3.5: Evaluations on cross-dataset cross-class transfer learning.

nary learning just by using source data itself gives very competative performance compared to

using the target data showing the dictionary learning is indeed a very promising direction. How-

ever, to achieve the full performance the proposed model need to use all target data, this is due to

the transductive setting of the proposed model as mentioned in the introduction section.

Cross-dataset cross-class transfer learning. In this experiment, by following the same setting

as in (Lampert et al., 2009), the proposed model is evaluated on using aPascal as source data

and aYahoo as target data (Farhadi et al., 2009). Since these datasets have per-image attribute

annotations dictionary is learned with per-image labels. Cross-class recognition accuracy of

26.5% is obtained by the proposed model with NN as classifier, while with exactly the same

features, the DAP and IAP results in (Lampert et al., 2009) are 16.8% and 16.9% respectively -

about 10% lower than the proposed model (see Table 3.5).

Attribute prediction with and without domain adaptation. The attribute prediction accuracy

on the target data of the proposed model with and without domain adaptation is evaluated using

the AUC metrics as in (Lampert et al., 2009). Without domain adaptation, the results on AwA,

CUB, aPascal-aYahoo are 65.5%, 54.1%, and 56.7%, respectively, whereas the results with do-
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Method AwA (%) CUB (%) aP&Y (%)

DTCCTL-no-adapt 65.5 54.1 56.7

DTCCTL 69.1 57.8 59.2

Table 3.6: Attribute prediction with and without domain adaptation.

main adaptation are 69.1%, 57.8%, and 59.2%, respectively (see Table 3.6). This suggests that

domain adaptation leads to better attribute prediction accuracy, which in turn contributes to the

better CCTL performance.

Dictionary visualisation. Figure 3.4 shows visualisation of the learned dictionary on AwA and

CUB datasets. The dictionary basis is visualised via exemplar images from dataset. Each row

in the Figure shows five example images whose features are closest to a certain basis (a column

vector in the learned dictionary). Specifically, d-dimensional feature vectors xi ∈Rd are extracted

for all given images. Then, a basis is chosen which is also a d-dimensional vector di ∈Rd . After

that, the distance between the feature vectors and the basis is computed, and top 5 nearest feature

vectors are chosen in terms of distance. The exemplars suggest that the learned basis capture

certain common properties across multiple categories. For example, the basis in row-1 may

be described by the ’brown colour’ texture pattern, row-2 may be viewed close to concepts of

’dotted and striped’ pattern, row-3 may be described by the ’blue texture’ pattern. Similarly,

certain concepts can be seen in the CUB dataset.

Qualitative results on UCF101 dataset. Some qualitative results are given in Figure 3.5. The

proposed model is compared to DAP, IAP, and Liu et al. (2011a) methods.

3.3 Conclusion

This chapter proposed a novel cross-class transfer learning framework under transductive setting.

The framework is build on dictionary learning for sparse coding with two novel critical regulari-

sations. The regularisations are shown to play a major role in which they enable the model learn

an embedding function from a visual space to a semantic space using labelled source, unlabelled

target data, and target class prototypes. Therefore, compared with most existing cross-class

transfer learning methods that perform naive transfer, the proposed model can be considered as

essentially an unsupervised domain adaptation model for cross-class transfer learning.

Extensive experiments are conducted on action and image benchmark datasets with both
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(a) 

(b) 

Figure 3.4: Semantic dictionary visualisation. Example images whose features are closest to a
certain basis. Each row corresponds to a certain dictionary basis.
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Figure 3.5: Qualitative results on UCF101 dataset. For each example, the top-5 unseen predic-
tions of the DTCCTL and the Euclidean distance are shown. The predictions are ordered by
decreasing score, with the correct predictions in bold.

hand-crafted features and deep features. Firstly, it is found that performing cross-class recog-

nition for action is more challenging than image-based cross-class recognition, due to complex

nature of actions requiring more research. Secondly, the experimental results demonstrated that

the proposed method is superior over existing methods. This is indeed attributed with the pro-

posed regularisations which enable domain adaptation, and making use of the dictionary learning

for sparse coding. Thirdly, it is found that the dictionary learning framework itself is promising.

This is because the dictionary learning can achieve very competitive performance compared to

state-of-the-art methods without any regularisation and unlabelled target data. Also, visualisation

of the learned dictionary with the proposed model shows that dictionary atoms capture specific

semantic information across a variety of classes. Finally, some qualitative results validate supe-

rior performance of the proposed approach.
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Chapter 4

Inductive Cross-class Transfer Learning

by Semantic Autoencoder

As discussed in the previous chapter, existing cross-class transfer learning models mostly suffer

from the projection domain shift problem. In order to overcome this problem, transductive cross-

class transfer learning approaches including the approach presented in Chapter 3 were shown to

be promising. Their assumption is that unlabelled test data and test prototypes (without corre-

spondence) are available for model learning. However, this assumption is often invalid in the

context of cross-class transfer learning because new classes typically appear dynamically and

unavailable before model learning. In this chapter, instead of assuming availability of all test

unseen class data for transductive learning, a novel method is proposed based on inductive learn-

ing, thus inductive cross-class transfer learning1. Specifically, the novel approach is proposed

to inductive cross-class transfer learning based on the encoder-decoder paradigm. An encoder

projects a visual feature representation of an image into a semantic space such as an attributes

space, similar to a conventional cross-class transfer learning model. However, the visual feature

embedding as an input to a decoder is also considered in which the decoder aims to reconstruct

the original visual feature representation. This additional reconstruction task imposes a new con-

straint in learning the visual → semantic embedding function so that the embedding must also

preserve all the information contained in the original visual features, i.e. they can be recovered by

the decoder. It is shown that this additional constraint is very effective in mitigating the domain

1Cross-class transfer learning, inductive cross-class transfer learning, and zero-shot recognition/clas-
sification are used interchangeably.
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Figure 4.1: The proposed semantic autoencoder (SAE) leverages the semantic side information
such as attributes and word vector, while learning an encoder and a decoder.

shift problem. This is because although the visual appearance of attributes may change from seen

classes to unseen classes, the demand for more truthful reconstruction of the visual features is

generalisable across seen and unseen domains, resulting in the learned embedding function less

susceptible to the domain shift.

Mathematically, a semantic autoencoder (SAE) is formulated with the simplest possible en-

coder and decoder model architecture (see Figure 4.1): Both have one linear projection to or

from a shared latent embedding/code layer, and the encoder and decoder are symmetric so that

they can be represented by the same set of parameters. Such a design choice is motivated by

computational efficiency – the true potential of a cross-class transfer learning model is when ap-

plied to large-scale visual recognition tasks where computational speed is essential. Even with

this simple formulation, solving the resultant optimisation problem efficiently is not trivial. In

this work, one such solver is developed whose complexity is independent of the training data size

therefore suitable for large-scale problems. Notably, the proposed semantic autoencoder differs

from conventional autoencoder the latent layer has clear semantic meaning: It corresponds to the

semantic space and is subject to strong supervision. Therefore the proposed model (SAE) is not

unsupervised.

This chapter is organised as follows. The detailed explanation of the proposed approach is

presented in Section 4.1. This is followed by experiments with comprehensive evaluations with

comparison to various state-of-the-art inductive cross-class transfer learning methods on both

mid-scale and large-scale benchmark datasets in Section 4.2. Finally, Section 4.3 concludes this
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chapter.

4.1 Methodology

4.1.1 Linear Autoencoder

First the formulation of a linear autoencoder (AE) is introduced for completeness, and then ex-

tending AE into a semantic one is presented. In its simplest form, an autoencoder is linear and

only has one hidden layer shared by the encoder and decoder. The encoder embeds the input

data into the hidden layer with a lower dimension and the decoder projects it back to the original

feature space and aims to faithfully reconstruct the input data. Formally, given an input data ma-

trix X ∈Rd×N composed of N feature vectors of d dimensions as its columns, it is projected into

a k-dimensional latent space with a projection matrix W ∈ Rk×d , resulting in a latent represen-

tation S ∈ Rk×N . The obtained latent representation is then projected back to the feature space

with a projection matrix (embedding function) W∗ ∈Rd×k and becomes X̂ ∈Rd×N i.e. k < d the

latent representation/code reduces the dimensionality of the original data input. It is wished that

the reconstruction error is minimised, i.e. X̂ is as similar as possible to X. This is achieved by

optimising against the following objective:

min
W, W∗

‖X−W∗WX‖2
F (4.1)

4.1.2 Semantic Autoencoder

A conventional autoencoder is unsupervised and the learned latent space has no explicit semantic

meaning. With the proposed Semantic AutoEncoder (SAE), it is assumed that each data point

also has a semantic representation, e.g., class label or attributes. To make the latent space in the

autoencoder semantically meaningful, the simplest approach is taken, that is, the latent space S

is forced to be the semantic space, e.g., each column of S is now an attribute vector given during

training for the corresponding data point. In other words, the latent space is not latent any more

during training. The learning objective thus becomes:

min
W, W∗

‖X−W∗WX‖2
F s.t. WX = S (4.2)

To further simplify the model, tied weights are considered as in (Boureau et al., 2008), that is:

W∗ = W>
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The learning objective is then rewritten as follows:

min
W
‖X−W>WX‖2

F s.t. WX = S (4.3)

Now that only one projection matrix is left to be estimated, instead of two. Furthermore, since

WX = S, S is substituted to the first term, and Eq. (4.3) becomes:

min
W
‖X−W>S‖2

F s.t. WX = S (4.4)

Solving an objective with a hard constraint such as WX = S is difficult. Therefore, following

standard principle, relaxing the hard constraint into a soft one is considered and the objective is

rewritten as:

min
W
‖WX−S‖2

F︸ ︷︷ ︸
Encoder

+λ ‖X−W>S‖2
F︸ ︷︷ ︸

Decoder

(4.5)

where λ is a weighting coefficient that controls the importance of the second term which is

reconstruction loss. Now it is a good time to reiterate the main idea of the the proposed model

in terms of Eq. (4.5): first term corresponds to the encoder which is embedding the data from

feature space to the semantic space, while second term is the decoder regenerating the original

data from semantic space (see Figure 4.1).

4.1.3 Optimisation

Eq. (4.5) is a convex function hence it has a global optimal solution. By taking simply a derivative

of Eq. (4.5) and setting it zero, one can obtain an optimal solution. Specifically, first, Eq. (4.5) is

re-organised using trace properties Tr(X) = Tr(X>) and Tr(W>S) = Tr(S>W):

min
W
‖WX−S‖2

F +λ‖X>−S>W‖2
F (4.6)

Then, the derivative of Eq. (4.6) is obtained as follows:

(WX−S)X>−λS(X>−S>W) = 0

λSS>W+WXX> = SX>+λSX> (4.7)

By denoting A = λSS>, B = XX>, and C = (1+λ )SX>, the following equation can be derived:

AW+WB = C, (4.8)

which is a well-known Sylvester matrix equation that can be solved efficiently by the Bartels-

Stewart algorithm (Bartels and Stewart, 1972) (See for Appendix A for details). In MATLAB,

it can be implemented with a single line of code: sylvester2. Importantly, the complexity of
2https://uk.mathworks.com/help/matlab/ref/sylvester.html
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Algorithm 1 SAE in MATLAB

function W = SAE(X,S,lambda)

% SAE - Semantic AutoEncoder

% Input:

% X: dxN data matrix.

% S: kxN semantic matrix.

% lambda: regularisation parameter.

%

% Return:

% W: kxd projection matrix.

A = lambda*S*S';

B = X*X';

C = (1+lambda)*S*X';

W = sylvester(A,B,C);

end

Eq. (4.8) depends on the size of feature dimension (O(d3)), and not on the number of samples; it

thus can scale to large-scale datasets. Algorithm 1 shows a 6-line MATLAB implementation of

the proposed solver.

Complexity analysis The complexity of Eq. (4.8) is O(d3) as mentioned above. However,

before solving Eq. (4.8), we need to obtain A,B and C. The complexities of A,B and C are

O(k2N), O(d2N), and O(kNd), respectively, where N is the number of training samples, and k

is the dimension of semantic space. All in all, the overall complexity is approximately O(N) in

terms of the number of samples if k� N and d� N, while in terms of size of feature dimension

it is O(d3) if k� d and N� d.

4.1.4 SEA for Cross-class Recognition

Problem formulation Let Y = {y1, ... ,ys} and Z = {z1, ... ,zu} denote a set of s seen and

u unseen class labels, and they are disjoint Y∩Z = ∅. Similarly SY = {s1, ... ,ss} ∈ Rs×k

and SZ = {s1, ... ,su} ∈ Ru×k denote the corresponding seen and unseen class semantic repre-

sentations (e.g. k-dimensional attribute vector). Given training data with N number of samples
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XY = {(xi,yi,si)} ∈ Rd×N , where xi is a d-dimensional visual feature vector extracted from

the i-th training image from one of the seen classes, cross-class transfer learning aims to learn

a classifier f : XZ → Z to predict the label of the image coming from unseen classes, where

XZ = {(xi,zi,si)} is the test data and zi and si are unknown.

SAE for cross-class recognition Given semantic representation S such as attributes, and the

training data XY, using the SAE, first the encoder W and decoder W> are learned by Algorithm

1. Subsequently, cross-class recognition can be performed in two spaces:

1) Encoder: With the encoder projection matrix W: a new test sample xi ∈XZ can be embed-

ded to the semantic space by ŝi = Wxi. After that, the classification of the test data in the

semantic space can be achieved by simply calculating the distance between the estimated

semantic representation si and the embedded prototypes SZ:

Φ(xi) = argmin
j

D(ŝi,SZ j) (4.9)

where SZ j is j-th prototype attribute vector of the j-th unseen class, D is a distance function,

and Φ(·) returns the class label of the sample.

2) Decoder: With the decoder projection/embedding matrix W>: Similarly, the prototype

representations can be embedded to the visual feature space by x̂i = WT si where si ∈ SZ

and x̂i ∈ X̂Z is the embedded prototype. Then, the classification of the test data in the fea-

ture space can be achieved by calculating the distance between the feature representation

xi and the prototype embeddings in the feature space X̂Z:

Φ(xi) = argmin
j

D(xi, X̂Z j) (4.10)

where X̂Z j is j-th unseen class prototype embedded in the feature space.

In the experiments it is found that the two testing strategies yield very similar results (see Sec-

tion 4.2). Results with both strategies are reported unless otherwise specified. Note that LP is

not used in this case, since this is an inductive setting.

4.1.5 Relations to Existing Models

Now this thesis reveals interesting relations between the SAE and existing methods. Many exist-

ing cross-class transfer learning models learn an embedding function from a visual feature space
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(a) 𝐹 → 𝑆 
 

𝐗 

(b) 𝑆 → 𝐹 
 

(c) SAE 
 

𝐖 𝐖

Figure 4.2: Different ways of learning embedding space: (a) F → S, (b) S → F, and (c) Both
(SAE). ’F’ – Feature space, and ’S’ – Semantic space.

to a semantic space (see Figure 4.2(a)). If the embedding function is formulated as a linear ridge

regression as follows:

min
W
‖WX−S‖2

F +η‖W‖2
F , (4.11)

It can be seen that comparing Eq. (4.11) with Eq. (4.5), this is the encoder in the SAE with an

additional regularisation term on the embedding matrix W.

Recently, Shigeto et al. (2015) proposed to reverse the embedding direction: They embed the

semantic prototypes into the features space:

min
W
‖X−W>S‖2

F +η‖W‖2
F (4.12)

so this is the decoder of the SAE but again with the regularisation term to avoid overfitting (see

Figure 4.2(b)).

The proposed approach, SAE, can thus be viewed as the combination of both models when

ridge regression is chosen as the embedding function and without considering the ‖W‖2
F reg-

ularisation as depicted in Figure 4.2(c). This regularisation is unnecessary in SAE due to the

symmetric encoder-decoder design – since W∗ = W>, the norm of the encoder embedding ma-

trix ‖W‖2
F cannot be big because it will then produce large-valued projections in the semantic

space, and after being multiplied with the large-norm decoder projection matrix, will result in

bad reconstruction. In other words, the regularisation on the norm of the embedding matrices

have been automatically taken care of by the reconstruction constraint (Boureau et al., 2008).

4.1.6 Deep SAE

SAE can be extended to a deeper version by adding more layers into SAE (DSAE). Figure 4.3

shows a variant of deep SAE with three mid-level layers. Since introducing more layers means
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Semantic 

Information 

Figure 4.3: Deep semantic autoencoder with three mid-level layers.

learning different weights in different layers, the proposed optimisation method above is inap-

plicable. Therefore, following the standard deep learning methods, stochastic gradient decent

(SGD)3 is adapted (Goodfellow et al., 2016).

4.2 Experiments and Evaluations

4.2.1 Datasets and Settings

Datasets Six benchmark datasets are used. Four of them are small-scale datasets: AwA (Lam-

pert et al., 2009), CUB (Wah et al., 2011), aPascal&Yahoo (aP&Y) (Farhadi et al., 2009), and

SUN (Genevieve et al., 2014). The two large-scale ones are ILSVRC2010 (Deng et al., 2009)

(ImageNet-1), and ILSVRC2012/ILSVRC2010 (Russakovsky et al., 2015) (ImageNet-2). In

ImageNet-2, as in (Fu and Sigal, 2016), the 1,000 classes of ILSVRC2012 are used as seen

classes, while 360 classes of ILSVRC2010, which are not included in ILSVRC2012, for unseen

classes. The summary of these datasets is given in Table 2.1.

Semantic spaces Attributes are used as the semantic space for the small-scale datasets, all of

which provide the attribute annotations. Semantic word vector representation is used for large-

scale datasets. A skip-gram text model is trained on a corpus of 4.6M Wikipedia documents to

obtain the word2vec4 (Mikolov et al., 2013) word vectors.

3This can also be applied to optimise SAE objective.
4 https://code.google.com/p/word2vec/
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see

Features All recent CCTL methods use visual features extracted by deep convolutional neural

networks (DCNNs). In the experiments, GoogleNet (with batch normalisation) is used to extract

deep features (Szegedy et al., 2015) which is the 1024D activation of the final pooling layer. The

only exception is for ImageNet-1: For fair comparison with published results, Alexnet architec-

ture is used, and it is trained from scratch using the 800 seen classes, resulting in 4096D visual

feature vectors computed using the FC7 layer (Krizhevsky et al., 2012).

Implementation details for DSAE TensorFlow toolbox is used with GeForce GTX TITAN X

GPU. Adam optimiser is used with β1 = 0.5, β2 = 0.999, and ε = 10−8. A learning rate and the

number of iterations are set to 0.0002 and 60,000, respectively. All images are scaled to 299×299

pixels.

Parameter settings The SAE model has only one hyperparameter: λ (see Eq. (4.5)). As in

(Zhang and Saligrama, 2016), its value is set by class-wise cross-validation using the training

data. The dimension of the embedding (middle) layer always equals to that of the semantic

space. Only SUN dataset has multiple splits. The same 10 splits are used as in (Changpinyo

et al., 2016), and the average performance is reported.

Evaluation metric For the small-scale datasets, multi-way classification accuracy is used as in

previous works, while for the large-scale datasets flat hit@K classification accuracy is used as

in (Frome et al., 2013). hit@K means that the test image is classified to a ‘correct label’ if it is

among the top K labels. hit@5 accuracy is reported in the experiments as in other works, unless

otherwise stated.

Competitors 12 existing cross-class transfer learning models are selected for the small-scale

datasets and 6 for the large-scales ones (much fewer existing works reported results on the large-

scale datasets). The selection criteria are: (1) Not use of target data: all selected methods do

not use unlabelled target data for model learning; (2) recent work: most of them are published

in the past several years; (3) competitiveness: they clearly represent the state-of-the-art; and (4)

representativeness: they cover a wide range of models.



4.2. Experiments and Evaluations 84

The brief descriptions of the compared methods are as follows:

• DAP (Lampert et al., 2009), SJE (Akata et al., 2015), and AMP (Fu et al., 2015c): See

Section 3.2.2 for details.

• ESZSL (Romera-Paredes and Torr, 2015) is an approach that is built on a more general

framework which models the relationships between features, attributes, and classes as a

two linear layers network, where the weights of the top layer are not learned but are given

as a semantic information by the environment. Only attributes are used for cross-class

recognition.

• SynCstruct (Changpinyo et al., 2016) is an approach that is based on manifold learning. The

main idea is to align the semantic space deriving from external information to the model

space concerning itself with recognizing visual features. For this, a set of ’phantom’ object

classes are introduced in which their coordinates live in both the semantic space and the

model space. The phantom classes serve as a dictionary bases to synthesise real object

classifiers. Only attributes are used as semantic information.

• MLZSC (Bucher et al., 2016) is a method that attempts to control the semantic embed-

dings of images using metric learning. To do this, they propose a framework with two

constraints: metric discriminating capacity handled by metric learning (Thomas et al.,

2012), and accurate attribute prediction. Only attributes are used.

• DS-SJE (Reed et al., 2016a) and Lei Ba et al. (2015) are methods that are able to use the

description that is considered to contain richer information that semantic words. For this,

they introduce a model that train end-to-end to align with the fine-grained and category-

specific content of images. At higher level, the model consists of mainly two networks:

deep convolutional neural network for images and recurrent neural network for description.

With two networks, they try to learn a similarity function that align an image with its true

description.

• DeViSE (Frome et al., 2013) and MTMDL (Yang and Hospedales, 2015) are very similar

in spirit to DS-SJE, however they use word representation instead of the description, and

different network artitechtures.

• RRZSL (Shigeto et al., 2015): See Section 2.3 for details.
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• SS-voc (Fu and Sigal, 2016) is a method based on a maximum margin framework. Specifi-

cally, classification is done through nearest neighbor distance to class prototypes in the se-

mantic embedding space, and a set of constraints is encoded ensuring that labelled images

project into semantic space such that they become closer to the correct class prototypes

than that of incorrect ones.

• Rohrbach et al. (2011) DS (Rohrbach et al., 2010) is used for evaluation (see Section

3.2.2 for details ).

• NCM (Thomas et al., 2012) uses nearest class mean (NCM) as a metric for cross-class

recognition.

• ConSE (Norouzi et al., 2014) is a simple method for building an embedding system (im-

age) from any existing n-way image classifier and a semantic embedding model (word),

which contains the n-class labels in its vocabulary. This method embeds images into the

semantic embedding space via convex combination of the class label embedding vectors,

and requires no additional training.

As can been known from description of the compared methods, the main difference of SAE

compared to comparaed method is that none of them is based on auto-encoder paradigm. Note

that the proposed method in the previous chapter (DTCCTL) is not compared with SAE, due to

a number of reasons: (1) DTCCTL is transductive; (2) if DTCCTL is considered with no data

from the target domain, it is similar to (Shigeto et al., 2015) (RRZSL) in terms of the objective

function meaning achieving similar performance with the SAE (provided the same fatures used).

4.2.2 Comparative evaluation

From the results in Table 4.1 the following observations can be made: (1) The SAE achieves

the best results on all 6 datasets. (2) On the small-scale datasets, the gap between the SAE’s

results to the strongest competitor ranges from 3.5% to 6.5%. This is despite the fact that most

of the compared models use far complicated nonlinear models and some of them use more than

one semantic space. (3) On the large-scale datasets, the gaps are even bigger: On the largest

ImageNet-2, the proposed model improves over the state-of-the-art SS-Voc by 8.8%. (4) Both

the encoder and decoder embedding functions in the SAE (W and W>) respectively) can be used

for effective cross-class recognition. The encoder projection function seems to be slightly better
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overall.

4.2.3 Ablation Study

The key strength of the SAE comes from the additional reconstruction constraint in the autoen-

coder formulation. Since most existing cross-class transfer learning models use more sophis-

ticated embedding/projection functions than the proposed linear mapping, in order to evaluate

how important this additional constraint is, CCTL baselines that use the same simple embed-

ding functions as the SAE are considered. As discussed in Section 4.1.5, without the constraint

both the encoder and decoder can be considered as conventional CCTL models with linear ridge

regression as embedding function, and they differ only in the embedding directions. Table 4.2

shows that, when the embedding function is the same, adding the additional reconstruction con-

straint makes a huge difference. Note that comparing to the state-of-the-art results in Table 4.1,

simple ridge regression is competitive but clearly inferior to the best models due to its simple

linear embedding function. However, when the two models are combined in the SAE, a much

more powerful model is obtained in which it beats all existing models.

Projection AwA CUB aP&Y SUN

F→ S 60.6 41.1 30.5 71.5

F← S 80.4 52.4 48.8 84.5

SAE 84.7 61.4 55.4 91.0

Table 4.2: The importance of adding the reconstruction constraint. Both compared methods are
based on ridge regression and differ in the embedding direction between the visual and semantic
spaces. Attributes are used. The encoder is used (see Section 4.1.4).

4.2.4 DSAE results

For DSAE, experiments on AwA and CUB datasets are conducted. The number of mid-level

layers are varied from 3 to 7. Table 4.3 shows the results, and the following observations are

made: (1) DSAE can learn better encoder function with enough amount of data. For example,

DSAE with three mid-level layers (DASE-3) outperforms SAE with about 1.5% increase on

AwA. However, with less amount of data this performance gain cannot be accomplished which is

the case on CUB dataset, with slight .1% increase; (2) However, as expected the time for training

increases considerably, as the number of layers increases: {90, 140, and 167} seconds for DSAE-
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{3, 5, and 7}, respectively while SAE takes only 1.3 seconds. (3) By introducing more layers,

the model performance decreases. That is, the network architecture becomes more complex, and

overfits the training data. (4) It is noted that there are cases that mini-batch stochastic gradient

descent gives slightly higher performance than the proposed optimisation in AwA dataset: 84.7 %

(this thesis), and 85.3 (SGD). Indeed, there are several things which could be applied to improve

the generalisation of the network such as batch normalisation, different activation functions, and

dropout regularisation. Analysis of different techniques are left for future work.

AwA

SAE DSAE-3 DSAE-5 DSAE-7

Accuracy (%) 85.3 87.0 86.4 85.0

Training Time (s) 10.3 90 140 167

CUB

SAE DSAE-3 DSAE-5 DSAE-7

Accuracy (%) 61.4 61.5 58.5 58.6

Training Time (s) 5.2 66 104 131

Table 4.3: Deep SAE results on AwA and CUB. Accuracy and training time are reported. DSAE-
3 - ’3’ refers to the number of mid-level layers.

4.2.5 Further Analysis

Generalised cross-class transfer learning Another cross-class transfer learning setting that

emerges recently is the generalised setting5 under which the test set contains data samples from

both the seen and unseen classes. By following the same setting of (Chao et al., 2016b), 20%

of the data samples from the seen classes are held out and they are mixed with the data samples

from the unseen classes. In this setting, the evaluation metric is Area Under Seen-Unseen accu-

racy Curve (AUSUC), which measures how well a cross-class recognition method can trade-off

between recognising data from seen classes and that of unseen classes (Chao et al., 2016b). The

upper bound of this metric is 1, not the same as the accuracy (%) used for cross-class classi-

fication. The results on AwA and CUB are presented in Table 4.4 comparing the SAE with 5

other alternatives. It can be seen that on AwA, the SAE is slightly worse than the state-of-the-

art method SynCstruct . However, on the more challenging CUB dataset, the proposed method

5This setting is also called generalised zero-shot learning/recognition in the literature.
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Method AwA CUB

DAP (Lampert et al., 2009) 0.366 0.194

IAP (Lampert et al., 2009) 0.394 0.199

ConSE (Norouzi et al., 2014) 0.428 0.212

ESZSL (Romera-Paredes and Torr, 2015) 0.449 0.243

SynCstruct (Changpinyo et al., 2016) 0.583 0.356

SAE 0.579 0.448

Table 4.4: Comparative evaluation on generalised cross-class transfer learning on AwA and CUB.
Encoder is used. Note that Area Under Seen-Unseen accuracy Curve (AUSUC) metric is used,
and upper bound for this metric is 1.

significantly outperforms the competitors.

Computational cost The following experiments were conducted in MATLAB on a PC with

two 3.40 GHz CPUs and 16G RAM. The computational cost of SAE is evaluated with compari-

son to two linear CCTL models: ESZSL and AMP which are among the more efficient existing

CCTL models (all of them are implemented in MATLAB). Table 4.5 shows that for model train-

ing, the SAE is at least 10 times faster. For testing, the SAE is still the fastest, although ESZSL

is close.

Method Training (in seconds) Test (in seconds)

ESZSL (Romera-Paredes and Torr, 2015) 16 0.08

AMP (Fu et al., 2015c) 844 0.23

SAE 1.3 0.07

Table 4.5: Evaluating the computational cost (in seconds) on AwA. Encoder is used.

4.3 Conclusion

In this chapter, a novel cross-class transfer learning model based on a semantic autoencoder

(SAE) is proposed. The SAE is built on an encoder-decoder paradigm. It is very simple and com-

putationally fast linear embedding function, and introduces an additional reconstruction objective

function for learning a more generalisable embedding function. Very efficient optimisation for

the proposed objective function is also proposed in which the solution of the objective function
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requires only solving Sylvester matrix equation. Importantly, the complexity of the solution is

analysed and it is shown that it is only dependent on the feature dimension, not the number of

samples. The interesting connection to existing methods are demonstrated as well e.g., ridge

regression, reverse regression. It is demonstrated through extensive experiments that this new

SAE model outperforms existing standard cross-class transfer learning methods and generalised

cross-class transfer learning methods on four mid-scale and two large-scale benchmark datasets

in terms of recognition accuracy and computational cost. Also, the SAE is extended to deep

version named deep SAE by introducing hidden layers into the SAE architecture. Early experi-

mental results indicate that the deep SAE could perform better in some datasets, because it could

learn more complex an embedding function.
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Chapter 5

Unsupervised Cross-class Transfer Learning by

L1 Graph Learning

The preceding Chapters ( 3 and 4) describe transductive and inductive cross-class transfer learn-

ing methods. They both fall into supervised learning paradigm, meaning they require labelled

data for model learning. Because labels can be used to connect seen and unseen classes in seman-

tic space, those methods are suitable for category recognition. In contrast, this chapter deals with

the case that no labelled data is available during model learning, meaning there is no way of con-

necting seen class and unseen classes. Therefore, the category recognition cannot be performed

under this setting. However, this setting can be used for instance recognition, whose goal is a

matching image pairs. The matching largely requires robust and discriminative representation so

that it can be successfully accomplished. To this end, this chapter proposes a novel method for

the unsupervised cross-class transfer learning with application to person re-identification (ReID).

Most recent ReID methods are based on supervised learning Wei et al. (2017); Xiao et al.

(2016). Given a set of labelled training data consisting of images of people paired across camera

views according to identity, a distance metric is learned either using hand-crafted features or end-

to-end fashion using deep learning methods Zheng et al. (2016); Xiong et al. (2014a); Ahmed

et al. (2015). However, they require images of hundreds or more people to be paired across

each pair of camera views which is both tedious and sometimes not possible – some people do

not reappear in other camera views. This severely limits the scalability of the existing methods

making them unsuitable for practical large scale ReID tasks. To overcome this problem, a number
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(a) (b)

Figure 5.1: An illustration of graph learning for ReID. (a) A graph constructed in the hand-
crafted feature space; (b) A graph learned using the proposed model in this work. One graph
node and its five connected neighbours are shown, with the neighbour capturing the same person
highlighted in red. See Figure 5.5 for the actual graph encoded in a similarity matrix W.

of unsupervised ReID methods have been proposed Zhao et al. (2013a); Wang et al. (2014); Hehe

et al. (2017); Wang et al. (2016a). However, without labelled training data, they can only focus

on learning salient and view invariant representations. Their performance is thus much weaker

compared to the supervised methods. This is because they are unable to learn the cross-view

discriminative information effectively, critical for matching the same person whilst separating

the person from imposters of similar appearance. Due to their uncompetitiveness in published

benchmarking metrics, these unsupervised learning models have received little attention when

practicality and scalability are not considered in current benchmarking. It is true that recently

more and more large labelled datasets are becoming available publicly Zheng et al. (2015a).

However, they could not be used at this point of time, due to a bias of the dataset. That is, every

dataset is collected under a certain environment, thus learning a model with those datasets and

applying the model to a new environment does not generalise well Peng et al. (2016).

This chapter introduces a novel model that can learn discriminative low-dimensional feature

representation from a set of unlabelled data that can cope well with view-invariance. The pro-

posed method is built on dictionary learning models that are shared across camera views. It is

easy to understand how a representation obtained by dictionary learning can be view-invariant

and low-dimensional – dictionary learning is widely used as an unsupervised model for dimen-
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sionality reduction (Kenneth et al., 2003; Aharon et al., 2006); and by sharing the same dictionary

across camera views, it intrinsically requires that the learned representation to be view-invariant.

It is the discriminative part that is non-trivial: How can we enforce that the learned representation

is good for matching people across camera views, without the discriminative information from a

set of paired training data?

The solution proposed in this chapter is to relax the definition of discriminativity. Consider

each dictionary atom as a new feature dimension, a learned dictionary defines a subspace, into

which the original data points represented by high-dimensional hand-crafted feature vectors are

projected. Instead of enforcing that data points corresponding to the same person to be as close

as possible whilst being further away from other people in the learned subspace as in supervised

learning, the visually similar people are constrained to be close to each other. Without identity

labels, this is obviously a weaker constraint but the best available. Specifically, discriminativity is

achieved unsupervised via a visual similarity constraint, which is enforced by introducing a graph

Laplacian regularisation term in the dictionary learning objective function (Nie et al., 2011).

However, two problems remain when the conventional graph Laplacian constraint is used in

the ReID: (1) The conventional term has a squared l2-norm, which makes the term susceptible

to data outliers. This is particularly unsuitable for the ReID problem as there are plenty of data

outliers in ReID, caused by various reasons such as the person detection boxes being imperfect

and severe (self-)occlusions. (2) The visual similarity is encoded in a graph whose topology

and edge weights are all determined by distances computed using the original high-dimensional

hand-crafted features. However, these features are not ideal for people matching, hence learning

a new representation in the first place. As illustrated in Figure 5.1(a), a graph constructed us-

ing the hand-crafted features connects many visually dissimilar neighbours to each node. This

diminishes the power of the graph regularisation term as a visual similarity constraint.

To overcome these two problems, this chapter introduces robust graph regularisation term,

and propose to learn the new representation and the optimal graph jointly. Specifically, a l1-

norm is introduced in the proposed graph regularisation term to make it robust against outliers.

With this l1-norm and joint graph and dictionary learning, the learning objective function is both

non-smooth and non-convex. Solving this optimisation problem is thus non-trivial. An efficient

iterative optimisation algorithm is formulated in this work to solve it. Once learned, the proposed

model can be used to compute a representation for each image much more efficiently than any
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existing unsupervised ReID method. The final matching is done by computing a simple cosine

distance between a pair of the representation vectors. Moreover, the proposed method requires

very weak data annotation: since cross-view information is crucial for ReID, graph is constructed

by restricting the graph edges to connecting cross-view nodes only.

The remainder of this chapter is structured as follows. Section 5.1 provides the details of the

proposed graph regularised dictionary learning framework for ReID. Comprehensive experiments

and evaluations with comparison to contemporary ReID methods are presented in Section 5.2.

Finally, concluding remarks are presented in Section 5.3.

5.1 Methodology

5.1.1 Problem Formulation

Suppose a set of unlabelled training examples collected from two camera views1. They are

denoted as X = [Xa, Xb] ∈ Rn×m, where Xa = [xa
1, ... ,x

a
m1
] ∈ Rn×m1 contains n-dimensional

feature vectors of m1 images in view A, and Xb = [xb
1, ... ,x

b
m2
] ∈ Rn×m2 of m2 images in view B,

thus having m = m1 +m2 data examples in total. The objective of unsupervised person ReID is

to learn a matching function f from X, so that given xa and xb as two test person images from A

and B respectively, f (xa,xb) can match their identities.

5.1.2 Robust Graph Regularised Dictionary Learning

The problem defined above is solved by learning a dictionary D∈Rn×k shared by the two camera

views using X. Every atom of the learned dictionary (column of D) can be considered as a latent

appearance attribute that is invariant to camera view condition changes. Therefore, with this

dictionary, each n-dimensional hand-crafted feature vector, regardless which view it comes from,

is represented by the coefficients of the k dictionary atoms. This is equivalent to projecting the

original n-dimensional hand-crafted feature vectors to a lower-dimensional (k < n) latent attribute

space. The matching is done by computing a simple cosine distance between two coefficient

vectors in the space. Formally, the aim is to learn the optimal dictionary D, such that the latent

attribute representation of X, denoted as S = [Sa, Sb] ∈ Rk×m, where Sa = [sa
1, ... ,s

a
m1
] ∈ Rk×m1

and Sb = [sb
1, ... ,s

b
m2
] ∈ Rk×m2 , are optimised for matching the training data. It is expected that

the same D can be generalised to match unseen test data across camera views.

1In practice the proposed model is not restricted by the number of camera views. Two here is used
purely for notational simplicity.
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Conventional dictionary learning methods estimate the dictionary D and the representation S

simultaneously by solving the following optimisation problem:

(D∗,S∗) = min
D,S
‖X−DS‖2

F +λ1Ω(S) s.t. ‖di‖2
2 ≤ 1, (5.1)

where ‖X−DS‖2
F is the reconstruction error evaluating how well a linear combination of the

learned atoms can approximate the input data, and ‖ · ‖F denotes the matrix Frobenious norm.

Ω(S) is a regularisation term that is weighted by λ1. Existing models differ mainly in the choice

of the regularisation term on S. The sparsity term, Ω(S) = ‖S‖1 is widely used which favours

a small number of atoms for reconstruction. The constraint ‖di‖2 ≤ 1 (di is a column of D,

i = 1, ...,k) enforces the learned dictionary atoms to be compact. It is clear from this formula-

tion that a conventional dictionary learning model only cares about how to best reconstruct X

using D and S, without taking into account whether the representation S is discriminative. For

learning a discriminative dictionary for cross-view ReID, one must exploit cross-view identity

discriminative information.

A learned dictionary can be made discriminative by using a graph regularisation term which

dictates that visually similar people will be close to each other in the learned latent attribute space

(Chung, 1997). Let G = (V,E) be an undirected graph connecting between the data points where

V and E are a set of graph vertices representing the data points and an edge set, respectively. This

graph can be encoded by an affinity matrix W ∈ Rm×m for m data points where Wi j 6= 0 if the

two vertices are connected, i.e. the corresponding data points are in a local neighbourhood. Note:

(1) In the context of ReID, the goal is to learn the cross-view discriminative dictionary, thus

restricting the graph edges to connecting cross-view nodes only. (2) the graph regularisation

term is used to replace the commonly used sparsity constraint ‖S‖1, for reasons to be explained

later (see robust graph regularisation paragraph). A standared graph regularisation term Ω(S) is

defined as:

Ω(S) =
m

∑
i j

Wi j‖si− s j‖2
2. (5.2)

This regularisation essentially requires that the projected data points in the learned latent attribute

space to be smooth with regards to the graph, that is, their distances need to conform to the vi-

sual similarity relationship embedded in the graph. However, it is found that Eq. (5.2) has two

critical limitations that make it unsuitable for the unsupervised ReID problem. First, the distance

between two projected data points is calculated with a squared l2-norm. It is well-known that a
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square-based regularisation function can be easily dominated by outlying data samples. Unfor-

tunately outlying samples are commonplace in ReID because of background in person detection

bounding boxes, detector errors, and (self-)occlusions. Another limitation arises from how the

graph is constructed. Most existing methods build the graph in the original high dimensional

hand-crafted feature space using X. This is suboptimal – if the hand-crafted feature space is

good for measuring cross-camera visual similarity, the ReID problem would have already been

solved. Learning a discriminative latent attribute space is precisely due to the fact that measuring

visual similarity in the original space is unreliable and error-prone, as illustrated in Figure 5.1.

To tackle both limitations simultaneously, this chapter introduces a robust graph regularisation

formulation and a joint graph and dictionary learning method.

Robust graph regularisation. This new term is designed to alleviate the effect of outlying sam-

ples during model learning. To derive the robust graph regularisation, let’s first rewrite Eq. (5.2)

in a matrix form with trace notation:

Ω(S) =
m

∑
i j

Wi j‖si− s j‖2
2 = Tr(SLWS>) (5.3)

where LW = D−W is the Laplacian matrix, Dii = ∑ j Wi j is a degree matrix. Let LW =

UWHWU>W using the eigen-decomposition technique, and after some matrix manipulation:

Tr(SLWS>) = Tr(SUWHWU>WS>) = Tr(SUWH
1
2
WH

1
2
WU>WS>) = ‖SAW‖2

F (5.4)

where AW = UWH
1
2
W. Eq. (5.4) above is quadratic. To promote sparsity and suppress effects of

outlying samples, a l1-norm is adopted instead of the Frobenius norm James et al. (2013); Kim

et al. (2009). This gives the proposed graph weighted l1-norm regularisation term:

ΩR1(S) = ‖SAW‖1. (5.5)

Replacing Ω(S) with ΩR1(S) in Eq. (5.1), a robust graph regularised dictionary learning model

is obtained:

min
D,S

1
2
‖X−DS‖2

F +λ1‖SAW‖1 s.t. ‖di‖2 ≤ 1 (5.6)

The key advantages of the proposed robust graph regularisation in this work over the conventional

regularisation formulation, including the existing dictionary learning based ReID model DLLAP

(Kodirov et al., 2015), and UCDTL (Peng et al., 2016), are as follows:



5.1. Methodology 96

1. Non-linearity. Robust graph regularisation introduces non-linearity into the objective, i.e.

S is non-linear with respect to the original data matrix X, whilst the conventional graph

regularisation is linear.

2. Sparsity. It is well-known that l1-norm has a shrinkage property thus promotes sparsity

(James et al., 2013; Kim et al., 2009). Intuitively, in the presence of noise and outliers,

the magnitude of ‖SAW‖2
F of the regularisation becomes very big for those outlying data

points, and as a result the whole objective function could be dominated by the noise and

outliers. In contrast, ‖SAW‖1 becomes sparse due to the use of l1-norm, consequently sup-

pressing the impact of outliers and noises. Moreover, in the proposed robust regularisation

model, explicit sparsity constraint such as ‖S‖1 is no longer needed2.

Joint graph and dictionary learning. Instead of computing W using X and fixing it during

model learning, it is assumed that W (hence the graph G as W depends on the topology of G) is

unknown and has to be learned together with D and S. The objective function thus becomes:

min
D,W,S

1
2
‖X−DS‖2

F +λ1‖SAW‖1 +λ2‖W‖2
F

s.t. ‖di‖2
2 ≤ 1, W>i 1 = 1, Wi ≥ 0.

(5.7)

where λ2‖W‖2
F is a regularisation term on W weighted by λ2 to prevent trivial solutions. The

constraints, W>1 = 1 and W ≥ 0, ensure the validity of the learned graph. It is shown in the

experiments (Section 5.2.2) that this novel joint learning of graph and dictionary has significant

advantage over the existing dictionary learning based ReID model DLLAP (Kodirov et al., 2015).

In the following, the proposed model is referred to as L1Graph for convenience unless otherwise

stated.

5.1.3 Optimisation

The optimisation problem in Eq. (5.14) is non-convex and non-smooth. Solving it is thus more

difficult than Eq. (5.1) due to the l1-norm used in ΩR1(S) and the additional unknown variable W.

Next, an efficient solver is developed for Eq. (5.14) based on the Alternating Direction Method

of Multipliers (ADMM) (Boyd et al., 2011).

2Empirically it is found in this work that adding an extra ‖S‖1 term makes little difference to the ReID
performance, but results in more complex solver and higher computational cost.
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First, Eq. (5.14) is transformed by letting U = SAW, then the Augmented Lagrangian func-

tion of Eq. (5.14) with the introduced constraint is:

L(D,S,U,W) =
1
2
‖X−DS‖2

F +λ1‖U‖1 + 〈F,U−SAW〉

+
γ

2
‖U−SAW‖2

F +λ2‖W‖2
F

s.t. ‖di‖2 ≤ 1, W>1 = 1, W≥ 0.

(5.8)

where F is Lagrangian multiplier, and γ is a penalty parameter. Now, it can be solved alternatingly

with the following five steps with respect to D, S, U, and W, respectively. S, F, and U are

initialised randomly in the first iteration.

1) Solving for D: To learn D for a given S , the objective function reduces to:

min
D

1
2
‖X−DS‖2

F s.t. ‖di‖2
2 ≤ 1 (5.9)

To solve this, the Lagrange dual method is used as in (Lee et al., 2006). The analytical

solution of D can be computed as: D∗ = XST(SS>+Λ)−1, where Λ is a diagonal matrix

constructed from all the optimal dual variables.

2) Solving for S: For given D, F, W, and U, solve the following objective to estimate S:

min
S

1
2
‖X−DS‖2

F +
γ

2
‖U− (SAW−

F
γ
)‖2

F .

Since each term in this objective is quadratic, its derivative can be obtained and it is set to

zero which gives

(DTDS+ γSAWA>W) = D>X+ γUA>W +FA>W.

This is a standard Sylvester equation, which is solved using the Bartels-Stewart algorithm

(Bartels and Stewart, 1972).

3) Solving for U: For a given S, solve the following objective to estimate U:

min
U

λ1‖U‖1 +
γ

2
‖U− (SAW−

F
γ
)‖2

F .
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The soft-thresholding operator can be used to get U:

U = sign
(

SAW−
F
γ

)
max(

∣∣∣∣SAW−
F
γ

∣∣∣∣− λ1

γ
). (5.10)

4) Solving for W: Given S, the objective function with respect to W is:

min
W

λ1

m

∑
i j

Wi j‖si− s j‖1 +λ2‖W‖2
F s.t. W>i 1 = 1,Wi ≥ 0.

λ1 = 1 is chosen for easiness, and denote di j =
‖si−s j‖1

2λ2
and ‖W‖2

F = ∑i j W2
i j, then

min
W

m

∑
i j

Wi jdi j +
m

∑
i j

W2
i j s.t. W>i 1 = 1,Wi ≥ 0.

The above optimisation problem is composed of independent problems with respect to i,

and therefore can be rewritten in a vector form:

min
Wi
‖Wi +di‖2

2 s.t. Wi1 = 1,Wi ≥ 0.

There is a closed-form

min
D,W,S

1
2
‖X−DS‖2

F +λ1‖SAW‖1 +λ2‖W‖2
F

s.t. ‖di‖2
2 ≤ 1, W>i 1 = 1, Wi ≥ 0.

(5.11)

solution using Lagrange multipliers (Nie et al., 2014) for this problem:

Wi =

(
1+∑

K
j=1 d̃ j

K
1−di

)
+

(5.12)

where the operator (q)+ projects negative elements in q to 0. K is the parameter that

controls the number of neighbours. d̃i is di but with ascending order. After obtaining W, it

is symmetrised, and eigen-decomposition is done to get UW and SW. Then, AW = UWH
1
2
W.

Note that the regularisation parameter λ2 can be determined by (Nie et al., 2014):

λ2 =
1
m

m

∑
i=1

(
K
2

di,K+1−
1
2

K

∑
j=1

di j). (5.13)
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5) Updating multipliers: F,γ ,

F = Fold + γ(U−SAW), γ = ργ
old

min
D,W,S

1
2
‖X−DS‖2

F +λ1‖SAW‖1 +λ2‖main f ormulation f inalW‖2
F

s.t. ‖di‖2
2 ≤ 1, W>i 1 = 1, Wi ≥ 0.

(5.14)

In this work, ρ is set to 1.1, while 0.1 for γ . Typically the value for ρ is set between 1.0

and 1.8 (Boyd et al., 2011).

5-step iteration is continued for D, S, U, W until a maximum number of iterations is reached

or a predefined threshold (10−3) is satisfied.

Convergence Analysis. The theoretical convergence proof of ADMM does not exist. However,

in practice it is guaranteed that the objective function converges to at least a stable point (Boyd

et al., 2011). This is validated by the experiments. In particular, it is observed that the proposed

algorithm has a stable convergence behaviour, in all tested datasets converging after 10-25 itera-

tions (see Figure 5.3).

Remark on Computational Complexity and Scalability. The optimisation problem of the

proposed model (Eq. (5.8)) is solved by dividing it into five optimisation subproblems and solving

them alternatingly. Among those subproblems, there are three operations that give rise to high

computational cost, whilst the remaining parts have linear complexity O(m), where m is the

number of samples. The three operations are: (1) Before solving any of the 5 subproblems,

Eigendecomposition of the Laplacian matrix needs to be performed, L, in order to derive Eq. (5.4)

from Eq. (5.3), which has a complexity of O(m3); (2) The second subproblem (“Solving for S”)

requires solving of Sylvester equation which has a complexity of O(m3); (3) Note that before

solving the Sylvester equation matrix multiplication operation of AwAT
w needs to be computed.

This operation also has a complexity of O(m3).

Since the aforementioned operations are very common in the matrix analysis and numerical

algebra fields, fast solutions have been considered in several previous works. Specifically, for the

first one, since the Laplacian matrix is sparse, specific sparse analysis methods can be employed

as in (Fokkema et al., 1998). In this way, the complexity can be reduced to O(rm2), where r is

the ratio of nonzero samples in L to the total number of samples m and in this work this ratio
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is usually very small e.g., it is 0.016 for VIPeR dataset. For the second one which is solving a

Sylvester equation, the recently proposed method can be readily adopted in (Rao et al., 2015)

which reduces a complexity of O(m2). For the last one, the eigendecomposition of the L matrix

can be leveraged. That is, the first k largest eigenvalues are chosen to get AW, and k can be very

small compared to the number of samples – AW ∈ Rm×m matrix becomes AW ∈ Rm×k. With the

reduced AW, the cost is O(km2). All in all, the fact that all three operations have a complexity of

O(m2) brings down the complexity of the whole algorithm to O(m2).

5.1.4 Bayesian Interpretation

The conventional sparse coding formulation is:

min
D,S

1
2
‖X−DS‖2

F +λ‖S‖1 (5.15)

It is straightforward that Eq. (5.15) has an equivalent interpretation in the Bayesian framework

according to Huang and Aviyente (2007); Bishop et al. (2003). That is, the sample xi is assumed

to be generated by:

xi = Dsi + ε (5.16)

where ε is white Gaussian noise. The prior distribution of si is assumed to follow the Laplacian

distribution:

p(S|λ )∝ exp
(
−λ‖S‖1

)
(5.17)

where λ is a hyperparameter. This prior has been shown to encourage sparsity, which is desirable

in many situations, because of its heavy tails and sharp peak. Given the prior, Bayes’ theorem

can now be used to express the posterior distribution for S as the product of the prior distribution

and the likelihood function:

p(S|X,D,λ )∝ p(S|λ )p(X|S,D) (5.18)

where p(X|S,D) = ‖X−DS‖2
F is the likelihood function, when viewed as a function of S. Then,

maximum a posteriori (MAP) estimation of S can be formulated as follows:

S? = argmax
S

p(S|X,D,λ )

=−argmin
S
[− log p(X|S,D)− log p(S|λ )]

= argmin
S
‖X−DS‖2

F +λ1‖S‖1 (5.19)
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Based on the discussion above, it is straightforward to show the Bayesian interpratation of the

proposed model, Eq. (5.14, in this chapter. In particular, for the sake of simplicity, let’s assume

that W is fixed, and thus removed from Eq. (5.14). Also, AW is denoted as A. Then, Eq. (5.14)

becomes

min
D,S

1
2
‖X−DS‖2

F +λ1‖SA‖1 (5.20)

Following the same principle in Eq. (5.19), we can write:

S? = argmax
S

p(S|X,D,A,λ )

=−argmin
S
[− log p(X|S,D)− log p(S|λ ,A)]

= argmin
S
‖X−DS‖2

F +λ1‖SA‖1 (5.21)

The only difference of Eq. (5.21) compared to Eq. (5.19) is the additional graph matrix A: Eq.

(5.20) considers underlying data structure during the model learning, while Eq. (5.15) is not.

5.1.5 Cross-view Matching

After learning the dictionary D using the unlabelled training data X, given a pair of test sam-

ples xa
i and xb

i , first their collaborative representations sa∗
i and sb∗

i are computed by solving the

following problems:

sa∗
i = argminsa

i
‖xa

i −Dsa
i ‖2

F +λ‖sa
i ‖2

2 (5.22)

sb∗
i = argminsb

i
‖xb

i −Dsb
i ‖2

F +λ‖sb
i ‖2

2 (5.23)

These are standard l2−norm regularised least squares problems with closed-form solutions: sa∗
i =

Pxa
i and sb∗

i = Pxb
i , where P = (D>D+λ I)−1D>. Then, after obtaining sa∗

i and sb∗
i their cosine

distance is used to measure the visual similarity for ReID. Hence, the proposed model is very

efficient in testing.

5.1.6 Extension to Supervised ReID

Although the proposed model in this work is tailored for unsupervised ReID, it can be easily

extended if labelled cross-view pairs become available. More specifically, the label information

can be encoded in the graph W. That is, instead of learning W, it is now fixed so that if the

corresponding cross-view pair (i, j) is labelled as containing the same person, Wi, j is set to 1,
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otherwise it is set to 0. This essentially gives thus the ideal graph and the relaxed visual similarity

constraint becomes a more stringent identity constraint which requires that people of the same

identity to be close in the learned attribute space and vice versa. Note that in this case, the

learning graph is not performed, that is, constraints regarding to W are also removed in Eq. (5.14

) – only learning of D and S. That is,

min
D,S

1
2
‖X−DS‖2

F +λ1‖SAW‖1‖ s.t. ‖di‖2
2 ≤ 1 (5.24)

In fact, the empirical experiments show that after constructing the graph with supervised infor-

mation, there is no significant performance difference between Eq. (5.24) and Eq. (5.14).

5.2 Experiments and Evaluations

5.2.1 Datasets and Settings

Datasets. Four widely used benchmark datasets are used for the experiments. VIPeR (Gray

et al., 2007) contains 632 image pairs of people captured outdoor from two non-overlapping

camera views. Following the standard setting which is single-shot i.e., one image per person per

view, the dataset is randomly split into two sets of 316 image pairs, one for training and the other

for testing. For the test set, all images from one view is used as the gallery set and the others

as probe set. Note that the identities of people in training set is completely different from that

of the test set. The results for all evaluations were obtained by averaging over 10 splits. PRID

(Hirzer et al., 2011) is different from the other available datasets in that the gallery and probe

sets have different numbers of people. There are two version of it: multi-shot and single-shot

(basically first frame is taken from multi-shot). In the experiments, the single-shot version of

the dataset is used as in (Giuseppe et al., 2014; Hirzer et al., 2012; Paisitkriangkrai et al., 2015),

while multi-shot version is used in video-based ReID McLaughlin et al. (2016).

Specifically, out of the 749 people captured in two camera views, only 200 people appear in

both views. In each data split, 100 out of that 200 people are chosen randomly for training, while

the remaining 100 of one view are used as the probe set, and the remaining 649 people’s images

of the other view are used as gallery, which thus includes the 100 people in the probe set. Exper-

iments are carried out on the same 10 splits as in (Giuseppe et al., 2014; Hirzer et al., 2012) with

the average results reported. CUHK01 (Li et al., 2012) consists of 971 people with two images

per person per camera view i.e. multi-shot. The standard setting is used as in (Li et al., 2012):

486 persons for training, while 485 persons for test. CUHK03 (Li et al., 2014b) contains 13,164
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images of 1,467 people. Two versions exist which differ in whether the images were obtained

by manual cropping or automatically by applying the DPM person detector (Felzenszwalb et al.,

2010). The detector-generated images are used as they reflect better the real-world application

scenarios for testing the robustness of the proposed model in this work against outliers. There

are in total six camera views but each person is observed in only two out of the six views, and

has 4.8 images on average for each view. The same setting and random splits are used as in (Li

et al., 2014b) with a single-shot setting: for the test set 100 people are randomly selected with

two images each, whilst images of the remaining people are used for training. Note that out of

the four datasets, CHUK03 is much bigger than the other three in terms of both the number of

identities and the number of images in the training set. The summary of these datasets is given

in Table 2.2, and examples are shown in Figure 2.18.

Settings. Features: The features introduced in (Giuseppe et al., 2014) are adopted. Each image

is scaled to 128×48 in all datasets, and then histogram-based image descriptors (window-based

representation) are computed consisting of three types: (1) Colour histogram using HS, RGB, and

Lab colour spaces (2880-D colour vector), (2) HOG (1040-D), and (3) LBP (1218-D) (Ahonen

et al., 2004). The final image feature vector, 5138-D, is obtained as the concatenation of these

three types of features. Evaluation metrics: the Cumulative Matching Characteristics (CMC)

curves are obtained as an evaluation metric. Matching accuracies at Rank 1 in all datasets and

the full CMC curves for VIPeR and CUHK01 are reported. Parameter settings: There are a

number of parameters in the proposed model in this work. As an unsupervised learning method,

there are no other means but setting them manually. For the dictionary size k, it is not tuned

carefully and it is set to 256 for the two small datasets VIPeR and PRID, and 512 for the larger

CUHK01 and CUHK03 dataset. Its effects on the performance will be discussed later. In the

objective function (Eq. (5.14)), there are two weights λ1 and λ2 for the two regularisation terms

respectively. As explained in Section 5.1.3, λ2 is set automatically using Eq. (5.13) in the ADMM

algorithm, whilst for λ1 it is set to 1 throughout, as it is found that the algorithm is insensitive to

its value. Similarly for the initial construction of graph G, a KNN (K-nearest neighbour) graph

is used with cosine distance and K = 5 for all datasets.
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5.2.2 Evaluation of Unsupervised Learning based ReID

Compared methods. Under this setting, the proposed approach (L1Graph) is compared with

state-of-the-art unsupervised alternatives which fall into four categories:

1) The hand-crafted feature-based methods: SDALF (Farenzena et al., 2010) and CPS (Cheng

et al., 2011). Both methods use human structure while designing the feature representation.

For example, CPS detects body parts, extract features from each part, and concatenate

the features to obtain high dimensional feature representation. After that any distance

measurement can be used over the representations.

2) The saliency learning-based methods: eSDC (Zhao et al., 2013a) and GTS (Wang et al.,

2014). Bot methods try to make use of saliencyt information to handle misalignment prob-

lem in pedestrian images.

4) The codebook learning-based method: BGG (Zheng et al., 2015a) uses bag-of-visual

words to learn a feature representation (Csurka et al., 2004).

3) The dictionary learning-based methods: DLLAP (Kodirov et al., 2015), and UCDTL (Peng

et al., 2016) which use the same 5138-D features for fair comparison. Both methods in-

cluding the proposed approach in this thesis attempt to learn feature representation out

of low-level features. The learned features are then assumed to be discriminative across

non-overlapping camera views. Note that DLLAP and UCDTL use a conventional graph

regularisation, thus prone to noises and outliers, whereas this thesis uses robust graph reg-

ularisation with combination to dictionary learning as well as graph learning.

Results. Table 5.1 compares the results of the L1Graph against the six alternatives and a non-

learning l1 distance based baseline. From Table 5.1, the following observations can be made: (1)

The proposed robust graph regularised dictionary learning model (L1Graph) outperforms all ex-

isting unsupervised methods on all four datasets, and often by a large margin. (2) The margin is in

general bigger on the two larger datasets CUHK01 and CUHK03, which indicates that L1Graph

can benefit more from larger unlabelled training data. (3) Among the alternatives, the dictionary

learning based methods such as DLLAP and UCDTL are the most competitive. Thanks to the

introduced two novel components: robust graph regularisation and joint graph and dictionary
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Figure 5.2: CMC curves for VIPeR and CUHK01. The curves correspond to Table 5.1. Legends
states the rank 1 performance.
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Datasets VIPeR PRID CUHK01 CUHK03

l1 15.6 13.9 10.9 12.5

SDALF (Farenzena et al., 2010) 19.9 16.3 9.9 4.9

eSDC (Zhao et al., 2013a) 26.7 - 26.6 7.7

CPS (Cheng et al., 2011) 22.0 - - -

GTS (Wang et al., 2014) 25.2 - - -

BGG (Zheng et al., 2015a) 21.7 - - 18.9

DLLAP (Kodirov et al., 2015) 29.6 21.1 28.4 22.3

UCDTL (Peng et al., 2016) 31.5 24.2 27.1 -

L1Graph 33.5 25.0 41.0 30.4

Table 5.1: Unsupervised ReID results measured in Rank-1 matching accuracy (%) on VIPeR,
PRID, CUHK01, CUHK03, where ‘-’ denotes no reported result.

learning. This result also suggests that learning a low-dimensional latent attribute representation

is more suited for unsupervised ReID than the alternative models. In particular, the difference

between L1Graph and l1 is large which means that matching people is made much easier in

this learned discriminative subspace with less than one tenth of the original dimensions. Fur-

thermore, Figure 5.2, which corresponds to Table 5.1 shows the CMC curves of L1Graph for

VIPeR and CUHK01 with comparison to the state-of-the-arts. Compared methods for VIPeR: l1

distance, SDALF, DLLAP, eSDC, CPS, BGG, and for CUHK01: l1 distance, SDALF, DLLAP,

eSDC. Overall, as it can be seen from the Figure 5.2, L1Graph outperforms all its competitors

in all ranks. The advantage of L1Graph’s computational efficiency over other methods will be

discussed later.

5.2.3 Evaluation of Supervised Learning based ReID

Compared methods. Since the performance of different existing methods on different datasets

often vary drastically3, the best methods were chosen for each dataset separately to better reflect

the state-of-the-art. All methods are published in the last three years. Note that multi-feature

fusion-based methods are separated from single feature or deep models as typically any method

can benefit from multi-feature fusion. As mentioned in Section 5.1.6, L1Graph can also operate

3For example, deep learning based methods often perform stronger on the large datasets than the small
ones due to the need for large training data.
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in the supervised mode; denoted as L1Graph sup, this can be considered as the upper bound of

L1Graph’s performance under the unsupervised setting when the graph is learned perfectly.

Results. The following key findings are observed from Table 5.2: (1) The gap between L1Graph un

and L1Graph sup is moderate. This indicates that L1Graph is very effective and the performance

of the unsupervised model is not far off from its upper bound. (2) On the two smaller datasets,

VIPeR and PRID, L1Graph is very competitive under the supervised setting: on VIPeR it beats all

single feature-based methods, and on PRID it outperforms all existing supervised methods, often

significantly. Even L1Graph outperforms some very recent supervised models. (3) On the two

larger datasets CUHK01 and CUHK03 (with detected person images), the gap between L1Graph

and the state-of-the-art begins to appear. L1Graph (both in supervised and unsupervised cases)

remains competitive on CUHK01, but on CUHK03, the gap is big, in particular to L1Graph un-

der unsupervised setting. This is expected: with over 10,000 labelled training images from 1,367

people, an unsupervised model cannot compete with a supervised one, especially those based on

deep learning. However, it is noteworthy to point out that in practice collecting hundreds of la-

belled training samples is very difficult and collecting thousands would be near impossible across

even just a handful of camera views. Moreover, current large-scale datasets, were collected from

very constrained environments under about 2-10 cameras Zheng et al. (2015a).

5.2.4 Further Analysis

Ablation study. The proposed L1Graph has two key components and to see the impact of each

the full model it is compared with various striped-down versions of the model under the unsuper-

vised setting: (1) L1Graph DL – without graph regularisation which is the same as conventional

dictionary learning; (2) L1Graph l2 – the graph is fixed and l2-norm is used for graph regulari-

sation; (3) L1Graph l2 graph – the graph is learned and l2-norm is used for graph regularisation;

(4) L1Graph l1 – the graph is fixed and l1-norm is used for graph regularisation; (5) L1Graph full

– the full proposed model in which the graph is learned and l1-norm is used for graph regulari-

sation. Table 5.3 shows that both using robust l1-norm graph regularisation and joint graph and

dictionary learning contribute positively toward the final performance. The result (comparing

L1Graph DL with the other models) also shows that adding a graph regularisation term to learn

cross-view discriminative information in general is critical for dictionary-learning-based ReID.
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Methods L1Graph DL L1Graph l2 L1Graph l2 graph L1Graph l1 L1Graph full

VIPeR 19.6 29.4 30.1 32.0 33.5

CUHK01 17.4 36.9 37.5 38.7 41.0

Table 5.3: The contributions of individual model components.
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Figure 5.3: (Left) Rank 1 accuracies with different dictionary sizes on VIPeR dataset; (Right)
Objective function value with respect to the number of iterations on CUHK01.

Effect of dictionary size and convergence analysis. The only parameter that needs to be tuned

for each dataset is the dictionary size. Figure 5.3(Left) shows that when the size is over 100, its

effect is small. Furthermore, Figure 5.3(Right) shows the proposed method converges rapidly.

Although there is no theoretical proof, convergence is observed in all the experiments within 25

iterations.

Running cost. All the experiments were conducted in MATLAB on a PC with two 3.40 GHz

CPUs and 16G RAM. The training of the model on VIPeR takes 178.3 seconds but during test it

is very efficient: once the 5138-D features are extracted, it takes only 0.01 second to match one

probe image against 316 images from the gallery. Table 5.4 compares the running time of feature

extraction and matching during test time against a number of alternative unsupervised methods

(whose source codes in MATLAB are publicly available). It is clear that L1Graph is often a few

magnitudes faster than its competitors.

Stage SDALF eSDC BGG L1Graph

Feature Extraction (s) 2.92 0.76 0.62 0.03

Matching (s) 550.80 9.7 0.44 0.01

Table 5.4: Average testing time of different methods on VIPeR
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Figure 5.4: Dictionary visualisation. Example images whose features are closest to a certain
basis. Each row corresponds to a certain dictionary atom.

Dictionary visualisation. Visualisation of the learned dictionary is given in Figure 5.4. The

dictionary basis is visualised via exemplar images from dataset. Each row in Figure shows five

example images whose features are closest to a certain basis. The exemplars suggest that the

learned dictionary discovers certain common structures across multiple persons. For example,

the basis in the first row depicts ‘back’ view (latent attribute), and the middle row images has

’wearing jeans’ (latent attribute), and ‘front’ view (latent attribute) of persons. Specifically, d-

dimensional feature vectors xi ∈ Rd are extracted for all given images. Then, a basis is chosen

which is also a d-dimensional vector di ∈Rd . After that, the distance between the feature vectors

and the basis is computed, and top 5 nearest feature vectors are chosen in terms of distance. The

images are retrieved according to the indices of the top 5 feature vectors are shown in Figure

5.4).

5.3 Conclusion

This chapter presented a novel unsupervised ReID model based on dictionary learning. The key

contributions: (1) the introduction of a robust l1-norm graph regularisation term which is robust
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(a) Before (b) After

Figure 5.5: An illustration of the graph W before and after learning process. Ideally, W should
be identiy matrix. VIPeR dataset is used: 316 persons from Camera A and 316 persons from
Camera B.

against outliers and noise abundant in person ReID. This robust regularisation is then integrated

into the standard dictionary formulation to learn latent attributes (as dictionary atoms) which

are invariant across different camera views. In other words, latent attributes capture cross-view

discriminative information which are essential for finding a correct match of the person across

non-overlapping cameras. Although the proposed robust graph regularisation is advantageous

over the conventional robust regularisation according to the extensive experiments conducted in

this chapter, it still relies on the graph constructed from the original data, meaning the graph

itself may contain some connected edges which do not reveal actual data graph topology. To this

end, (2) a joint graph and dictionary learning algorithm is developed which further improves the

ability of the proposed model to deal with outlying samples. In addition, Bayesian interpretation

of the proposed regularisation is discussed. Extensive experiments on four benchmark datasets

show that the proposed method significantly outperforms existing unsupervised methods in terms

of cumulative matching curve and computational cost. Also, the proposed method is compared to

supervised models to show how far the unsupervised models are, showing the supervised models

are far superior than the unsupervised ones. Nevertheless, it needs to be stressed that considering

scalability unsupervised methods are more important given hundreds of cameras, while obtaining

annotated information for supervised models for hundreds of cameras are prohibitively expensive

if impossible.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has presented three variants of cross-class transfer learning for visual recognition.

In particular, transductive, inductive and unsupervised settings are investigated and explored.

Specifically,

1. In Chapter 3, Transductive cross-class transfer learning framework is formulated based on

regularised dictionary learning for taking into account available target data without labels.

Compared with most existing CCTL methods that perform naive transfer, the proposed

model is essentially an unsupervised domain adaptation model which learns an embedding

function from a visual space to a semantic space using both labelled source and unlabelled

target data. Extensive comparative evaluations validate the advantages of the model over

the state-of-the-arts.

2. In Chapter 4, Inductive cross-class transfer learning method, SAE, is presented, which

is more practical. That is, the proposed model is characterised with the ability of learning

more generalisable knowledge without accessing to unlabelled target data. The SAE model

uses very simple and computationally fast linear embedding function and introduce an

additional reconstruction objective function for learning a more generalisable embedding

function. Thesis demonstrates through extensive experiments that this new SAE model

outperforms existing CCTL models on six benchmarks. Furthermore, the model is further

extended to a deeper SAE by introducing more layers.
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3. In Chapter 5, Unsupervised cross-class transfer learning method is proposed for instance

recognition. This model is applied to person re-identification which is an instance of the

verification problem. Different from most contemporary person re-identification methods,

the proposed method does not require labelled data, yet learn an identity discriminative

patterns for recognising people across non-overlapping cameras at different locations and

time. The key contributions are the introduction of a robust l1-norm graph regularisation

term in the dictionary learning formulation so that cross-view discriminative information

can be learned. In addition, a joint graph and dictionary learning algorithm is developed

which further improves the ability of the proposed model to deal with outlying samples

abundant in person ReID data. Extensive experiments on four benchmark datasets show

that the proposed method significantly outperforms existing unsupervised methods.

Although the newly proposed methods have explored several issues and challenges in vi-

sual recognition, they need to be further explored and investigated from different directions and

perspectives, and a few of them are discussed below.

6.2 Future Work

The future research directions beyond the proposed methods in this thesis are summarised as

follows:

1. (Chapter 3) Transductive cross-class transfer learning: The proposed model in this set-

ting is based on dictionary learning. There are several ways of extending current approach.

Firstly, this chapter proposed a method that learns a semantic dictionary that cares only

semantic attributes. In practise, however, since the images is often occluded or have back-

ground clutter, true semantic dictionary could not be obtained. To alleviate this, latent

attributes can also be discovered along with the semantic dictionary simultaneously (Yang

et al., 2014b). In this case, latent attributes try to capture occlusion or different patterns,

resulting in better semantic dictionary. Secondly, current approach is linear and cannot

capture nonlinearity of the data. Hence, non-linear version could also be considered for

further extension (Van Nguyen et al., 2013).

2. (Chapter 4) Inductive cross-class transfer learning: By only relying on labelled data,

yet achieving a good generalisation model is ultimate goal in this setting. However, since

visual data is very high dimensional, capturing various characteristics of real world visual
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data by only relying on training set is very challenging. To this end, recently deep genera-

tive models gain significant attention. So, one possible extension could be integrating the

current model into generative models. Also, it is interesting to see the other applications

of the proposed approach such as supervised clustering (Law et al., 2016), and supervised

learning-based person re-identification methods (Ahmed et al., 2015). Furthermore, the

proposed regularisations in Chapter 3 can be explored in combination with the SAE to

see whether they are effective in the SAE. The proposed deep SAE also needs further in-

vestigation. Extending deep SAE to learn en embedding function an end-to-end manner

meaning features and semantic embedding are learned jointly.

3. (Chapter 5) Unsupervised cross-class transfer learning: Discovering discriminative pat-

terns in an unsupervised manner remains an open issue although large strides have been

made recently. Indeed, more further research effort is still needed. Two lines of exten-

sion work can be considered with regards to the proposed approach. Firstly, current model

can be extended to semi-supervised learning paradigm (Kingma et al., 2014) in which

some partial labelled data is assumed to be available. The labels could be not only IDs of

persons, but also semantic information such as attributes or pose information. Also, since

deep generative models have significant success (Goodfellow et al., 2016), it is desirable to

see the combination of the proposed approach and deep learning generative models (Raina

et al., 2004).
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Appendix A

Bartels-Stewart Algorithm

Solution of equation Eq. (A.1) was presented in (Bartels and Stewart, 1972).

AX+XB = C (A.1)

where A of size m×m, B of size n× n, and C of size m×m are matrices with real elements.

The solution is based on Schur decomposition. Bartesl-Stewart algortihm consists of mainly four

steps, and they are as follows:

1) Transforming A and B to real Schur form:

SA = Q>AQ (A.2)

SB = Q>BQ (A.3)

where Q and P are orthogonal matrices, and SA and SB are in real Schur form.

2) Updating C with respect to the two Schur decompositions:

C̃ = Q>CP (A.4)

3) Solving the resulting reduced triangular matrix:

SAX̃+ X̃SB = C̃ (A.5)

4) Transforming the obtained solution back to the original coordinate system.

X = QX̃P> (A.6)

For more infomation please refer to the original paper (Bartels and Stewart, 1972).
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Appendix B

Label Propagation

A main idea of label propagation (LP for short) is that data points that are close to have similar

labels. Definition: Let {(x1,zl), ... ,(xl,zl)} be labelled data, where XL = x1, ...,xl are examples,

and ZL = z1, ... ,zl are the corresponding labels. It is assumed that the number of classes C is

known, and all classes are present in the labelled data. Similarly, let {(xl+1,zl+u), ... ,(xl+1,zl+u)}

be unlabelled set (unobserved), where XU = {xl+1, ...,xl+u} and ZU = {zl+1, ... ,zl+u}. Let

X = {XL,ZU}. The goal is to estimate ZU from X and ZL – a transductive learning setting.

Firstly, a fully connected graph where the nodes are all data examples are created using X.

The edge between any noes {i, j} is weighted so that the closer the nodes are in local Euclidean

distance, the larger the weight gi j. The weights are controlled by a parameter σ :

gi j = exp

(
−

d2
i j

σ2

)
= exp

(
∑

D
d=1(xd

i −xd
j )

2

σ2

)
(B.1)

All nodes have soft labels due to the exp function that can be treated as distributions over

labels. It is let that the labels of a node to propogate to all nodes through the edges. Larger

edge weights allow labels to travel through easier. Define of size (l + u)× (l + u) probabilistic

transition matrix P as follows:

Pi j = P( j→ i) =
gi j

∑
l+u
k=1 gk j

(B.2)

where Pi j is the probability to jump from node j to i. Also, let’s define (l +u)×C label matrix

Y, whose ith row representing the label probability distribution of node xi. The initialisation of
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rows of Y corresponding to unlabelled data examples is unimportant.

The LP algorithm (Xiaojin and Zoubin, 2002) is composed of three steps: (1) all nodes

propagate their labels for one step; (2) Row-normalising Y to maintain the label probability

interpretation; (3) This step is critical in which persistent label sources from labelled data is

desired. Therefore, instead of letting the initially labelled nodes fade away, they are replenished

by clamping their label distribution to Yic = δ (yi,c), that is, the probability mass is concentrated

on the given class. With this constant ’push’ from labelled nodes, the class boundaries will be

pushed through high density data filaments and settle in low density gaps.

A brief summary of the LP algorithm is as follows:

1) Propagate Y← PY.

2) Normalise Y in terms of rows.

3) Clamp the labelled samples. Repeat from step 1 until Y converges.

For detailed explanation and convergence analysis of the LP algorithm, please see (Xiaojin and

Zoubin, 2002; Fu et al., 2014).
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Appendix C

Indirect Attribute Prediction

Indirect Attribute Prediction (IAP) is a classic probabilistic approach for cross-class recognition

(Lampert et al., 2009). It uses attributes to transfer knowledge between classes. IAP is illustrated

in Figure C.1 in which the attributes ({a1, ... ,aM}) form a connecting layer between two layers

of labels, one for training classes ({y1, ... ,yK}), and the other for test classes ({z1, ... ,zL}). The

training phase of IAP is standard multi-class classificaiton. During test time, the predictions for

all the training classes induce a labeling of the attribute layer, from which a labelling over the

test classes can be inferred.

Figure C.1: Indirect attribute prediction (IAP). The figure is taken from (Lampert et al., 2009)

More formally, in the first stage, a probabilistic multi-class classifier estimating p(yk|x) is

learned for all training classes y1, ..., yk. Then, it is assumed that there is a deterministic depen-
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dence between attributes and classes, thus p(am|y) is et to [am = ay
m]. Both stages yields

p(am|x) =
K

∑
k=1

p(am|yk)p(yk|x) (C.1)

From Eq. C.1, inferring the attribute posterior probabilities p(am|x) requires only a matrix-

vector multiplication (these probabilities have been used in Chapter 3). Afterwards, classifying

test examples can be performed by the following equation:

f (x) = argmax
l=1, ..., L

Π
M
m=1

p(azl
M|x)

p(azl
m)

(C.2)

where p(am) =
1
K ∑

K
k=1 ayk

m is empirical means over the training classes as attribute priors.
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