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Abstract

Compressive Sensing (CS) is a recently proposed signal processing technique that has

already found many applications in microwave and millimeter-wave imaging. CS theory

guarantees that sparse or compressible signals can be recovered from far fewer measure-

ments than those were traditionally thought necessary. This property coincides with the

goal of personnel surveillance imaging whose priority is to reduce the scanning time as

much as possible. Therefore, this thesis investigates the implementation of CS techniques

in personnel surveillance imaging systems with different array configurations.

The first key contribution is the comparative study of CS methods in a switched array

imaging system. Specific attention has been paid to situations where the array element

spacing does not satisfy the Nyquist criterion due to physical limitations. CS methods are

divided into the Fourier transform based CS (FT-CS) method that relies on conventional

FT and the direct CS (D-CS) method that directly utilizes classic CS formulations. The

performance of the two CS methods is compared with the conventional FT method in

terms of resolution, computational complexity, robustness to noise and under-sampling.

Particularly, the resolving power of the two CS methods is studied under various cir-

cumstances. Both numerical and experimental results demonstrate the superiority of CS

methods. The FT-CS and D-CS methods are complementary techniques that can be

used together for optimized efficiency and image reconstruction.

The second contribution is a novel 3-D compressive phased array imaging algorithm

based on a more general forward model that takes antenna factors into consideration.

Imaging results in both range and cross-range dimensions show better performance than

the conventional FT method. Furthermore, suggestions on how to design the sensing con-

figurations for better CS reconstruction results are provided based on coherence analysis.

This work further considers the near-field imaging with a near-field focusing technique
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integrated into the CS framework. Simulation results show better robustness against

noise and interfering targets from the background.

The third contribution presents the effects of array configurations on the performance of

the D-CS method. Compressive MIMO array imaging is first derived and demonstrated

with a cross-shaped MIMO array. The switched array, MIMO array and phased array are

then investigated together under the compressive imaging framework. All three methods

have similar resolution due to the same effective aperture. As an alternative scheme for

the switched array, the MIMO array is able to achieve comparable performance with far

fewer antenna elements. While all three array configurations are capable of imaging with

sub-Nyquist element spacing, the phased array is more sensitive to this element spacing

factor. Nevertheless, the phased array configuration achieves the best robustness against

noise at the cost of higher computational complexity.

The final contribution is the design of a novel low-cost beam-steering imaging system

using a flat Luneburg lens. The idea is to use a switched array at the focal plane of

the Luneburg lens to control the beam-steering. By sequentially exciting each element,

the lens forms directive beams to scan the region of interest. The adoption of CS for

image reconstruction enables high resolution and also data under-sampling. Numerical

simulations based on mechanically scanned data are conducted to verify the proposed

imaging system.
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Chapter 1

Introduction

1.1 Background

While terrorism is not new to the international community, the number of terror attacks

has dramatically increased over the past few years. According to the European Union

Terrorism Situation and Trend Report (TE-SAT) 2016 [1], a total of 1077 terror suspects

were detained in 2015 across the EU, significantly higher than that of 2014 when 774

were arrested. The UK had the highest number of failed, foiled or completed terror

attacks in 2015, racking up 103 attempted incidents, followed by France with 72 and

Spain with 25.

In response to the increasing threat of terrorism, personnel surveillance at public

places, such as airports, train stations, government buildings and shopping malls, is

becoming increasingly important. The priority is to have an efficient security system

that can detect concealed weapons and hidden explosives. Conventional X-ray imaging

systems have been very successful for luggage checking and are potentially effective for

personnel imaging. However, X-ray is ionizing radiation, and thus can pose health hazard

to human body. Electromagnetic signals at microwave and millimeter wave frequencies

are capable of inspecting dielectric materials and composite structures, thus are well

1



Chapter 1. Introduction 2

suited for penetrating clothing materials to image items concealed by common clothing.

Also, the radiation power of the electromagnetic imaging system could be 1000 times

lower than the EU standard (the UK policy is to comply with the EU standard) for

the maximum allowed radiation power density on an individual, which is 50 W/m2 [2],

relieving the concerns about adverse effect on the human body. These characteristics

make the microwave and Millimeter-wave (MMW) imaging techniques a good candidate

for personnel surveillance applications.

Existing microwave and MMW imaging systems fall into two categories: active

approach and passive approach. A typical passive imaging approach employs a focusing

lens and a receiving array near the focal region. Its operating principle is analogous to

an optical camera, in which the image is formed point by point, with each pixel directly

representing the naturally-emitted radiation from a point in the target scene. The main

advantage of the passive approach is that the system does not emit radio waves and thus

poses no radiation hazard to individuals. However, this feature also hinders its use in the

indoor environment, i.e. the natural illumination would be very weak and the emissivity

contrast between the target and its background could be very difficult to differentiate.

The fundamental difference between the passive approach and the active approach lies in

the fact that there is artificial illumination in the active approach, and because of this,

active imaging has more flexibilities in designing imaging algorithms with a variety of

transmitting waveforms to choose. The active approach usually includes a transmitter

for electromagnetic wave generation and a receiver for receiving backscattered data from

the target. The mechanism of active imaging relies on the reflectivity contrast from dif-

ferent materials in the target scene. In comparison, the active approach usually exhibits

much higher dynamic range than the passive approach.
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1.2 Motivation and Research Objectives

A coherent active imaging system operates by sampling the amplitude and phase of

backscattered field from a given scene. The sampled data is then used for image recon-

struction with Fourier Transform (FT) based algorithms [3]. However, due to the well-

known Nyquist sampling theorem, generating high-resolution images using FT techniques

requires data acquisition over a uniformly and densely sampled set of points, which will

introduce prohibitively long detection time for single transceiver systems. For example, it

took us approximately 2 hours to scan an area of 400mm×400mm with 2mm step using

an NSI 2000 x-y-z mechanical scanner. This issue can be alleviated by adopting more

complicated antenna array systems which enable fast electronic scanning. However, it is

still challenging to achieve high frame-rate like real-time video cameras, especially when

ultra-wide-band (UWB) signals are used to form three-dimensional (3-D) images. To

overcome this issue, one would consider more sparsely sampled data collection strategies

where the transceiver only samples a small fraction of required positions. For instance,

undersampling with certain trajectory is often adopted in magnetic resonance imaging

(MRI) to save scan duration [4]. However, when inverse Fourier transform (IFT) is

applied to sparsely sampled data with zero-filling, reconstruction quality can be poor,

e.g. aliasing artifacts, low spatial resolution, reduced signal-to-noise ratio (SNR).

The emerging field of Compressive Sensing (CS) [5, 6] has offered great insights into

how to solve this issue. CS theory guarantees signal reconstruction from highly under-

sampled data provided that the signal is sparse or compressible and proper sensing matrix

is adopted. As the 3-D scene to be reconstructed is a map of the spatial distribution

of the reflectivity function of stationary targets, the reconstruction can be sparse or

compressible in some representations. By utilizing this sparse nature, we can speed up

the data acquisition process by under-samping in the spatial and frequency domains while

satisfactory reconstruction can still be achieved with CS recovery algorithms. During the

last decade, CS techniques have been successfully applied to many imaging applications

including (but not limited to) MMW holography [7–9], synthetic aperture radar (SAR)
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imaging [10–13] and inverse scattering [14, 15]. Efficient sampling, increased resolution

and robustness to noise can be achieved.

The main research question of this thesis is how to utilize CS techniques in personnel

surveillance imaging systems. A practical imaging system for personnel surveillance

will undoubtedly adopt an antenna array over a single antenna in order to remarkably

reduce scanning time. There are already many array based imaging systems in the

open literature and in some cases commercially deployed, such as the switched array

[16], multiple-input multiple-output (MIMO) array [17, 18] and phased array [19, 20].

The primary focus lies on the implementation of CS imaging algorithms for these array

systems. In order to obtain comprehensive understanding of CS imaging algorithms, a

comparative study between CS methods and conventional FT methods will be carried out

based on different imaging systems. It is well known that the resolution of conventional

Fourier imaging system is subject to fundamental limitations [21]. Whether or not CS

methods can break this limitation in aforementioned imaging systems is the first priority

to study. Many other fundamental aspects considered in traditional methods will also

be investigated, such as the robustness to noise and interference, data acquisition time

and computational complexity, etc. Both qualitative and quantitative comparisons are

considered in the simulation. Experiments are also conducted in the antenna lab to

verify numerical results.

1.3 Outline of the Thesis

This thesis is organized as follows.

Chapter 2 - Microwave and millimeter-wave array imaging. This chapter first intro-

duces fundamentals of a typical SAR imaging system and then presents the state of

the art of imaging systems for personnel surveillance in terms of different array con-

figurations. Conventional three-dimensional image reconstruction algorithm based on

the switched array is illustrated in detail, together with achievable resolution in x-y-z
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dimensions and the corresponding required sampling intervals in spatial and frequency

domains.

Chapter 3 Compressive sensing background and its application to imaging. This

chapter presents the mathematical foundation of the CS theory. Two mainstream CS

recovery algorithms that based on convex optimization and greedy pursuit are briefly

explained, with a summary of the state of the art optimization solvers. Then, the

basic framework of CS imaging is explained. Finally, a brief literature review of the CS

implementation to radar imaging applications is provided.

Chapter 4 Compressive switched array imaging. This chapter investigates CS imple-

mentations in a two-dimensional (2-D) switched array imaging system. Specific attention

is paid to situations where the array element spacing does not satisfy the Nyquist cri-

terion due to physical limitations. CS methods are divided into the FT-CS method

that relies on conventional FT and the D-CS method that directly utilizes classic CS

formulations. The performance of two CS methods is compared with the conventional

backpropagation method in terms of resolution, computational complexity, robustness

to noise and under-sampling. Particularly, the resolving power of two CS methods is

studied under various circumstances. Both numerical and experimental data are applied

to yield more conclusive results.

Chapter 5 Compressive phased array imaging. This chapter aims to study the

CS implementation in a 2-D phased array imaging system. A general forward model

is derived for array based imaging systems by taking into consideration of particular

antenna parameters. This model can be easily applied to other array configurations

with slight modifications. Thereafter, we introduce a 3-D compressive imaging method

based on conventional phased array configurations. Imaging performance comparison is

conducted in range and cross-range dimensions in a similar fashion to Chapter 4. Further-

more, suggestions on how to design sensing configurations for better CS reconstruction

results are provided based on a coherence analysis. This work is further extended for

near-field applications by integrating a near-field focusing technique into the CS frame-



Chapter 1. Introduction 6

work. A new scanning method has also been provided to focus array beams at different

spots with various depths such that they can fully cover the whole target region.

Chapter 6 Comparative study of compressive sensing methods in different array con-

figurations. This chapter gives a comparative study on the performance of CS methods

with different array configurations. The aim is to find the best array configuration that

fits the compressive sensing framework. A switched array with fixed beams, a MIMO

array with fewer antenna elements and a phased array with sharpened and steerable

beams are considered for various CS implementations.

Chapter 7 Compressive Luneburg lens imaging. This chapter presents a novel beam-

steering imaging system using CS techniques. The proposed system consists of a flat

Luneburg lens fed by an antenna array. By exciting antenna elements at different feeding

locations, the lens antenna forms directive beams to scan the region of interest. The CS

technique is integrated into the imaging algorithm for image reconstruction. Full-wave

simulated radiation patterns are used for the calculation of the system response matrix.

A fully automated approach for the generation of radiation patterns is given with Matlab

and Visual Basic for Applications (VBA) codes. Numerical simulations are provided to

demonstrate the effectiveness of the proposed imaging system.

Chapter 8 Conclusions and future work. This chapter concludes the main results of

the thesis and provides recommendations for future research.
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Chapter 2

Microwave and Millimeter-wave

Array Imaging

2.1 Introduction

Microwave and Millimeter-Wave (MMW) imaging have been widely used in many appli-

cations such as SAR, nondestructive testing and evaluation (NDT&E), concealed weapon

detection, ground-penetrating radar (GPR) and through-the-wall imaging (TWI) [1–5].

The first formation of SAR images can be traced back to the early 1960s at the Willow

Run Laboratories [6]. Ever since then, SAR imaging has become a field of intensive

research. Many subsequent applications like security imaging are more or less devel-

oped from the SAR imaging. An SAR system is usually implemented by mounting a

transmitter-and-receiver pair on a moving platform such as airplane or satellite, from

which a target scene is repeatedly illuminated with radio waves. The backscattered

waves received successively at different antenna positions are coherently detected, stored

and then post-processed together to reconstruct the target scene.

Figure 2.1 shows the block diagram of a typical SAR imaging system. The input

signal is mixed with the local oscillator (LO) signal to produce the required working

9
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Figure 2.1: Block diagram of a SAR imaging system.

frequency for imaging. The signal is then amplified and transmitted by the transmit

antenna. The backscattered signal that contains the target information is received and

amplified by the low noise amplifier. This signal is then split into two parts and mixed

with LO signal again, but with one of them shifted by π/2, to convert to baseband

frequency. The two baseband signals are then digitized into the real and imaginary

parts (also known as in-phase and quadrature components) of the complex radar signal

using Analog to Digital Converters (ADCs). The controlling system repeat this process

by translating the transmitter/receiver pair to scan the region of interest (ROI). After

the data acquisition, the signal processing unit can then reconstruct images with certain

algorithms.

In the area of security imaging, MMW frequency region from 30 to 300 GHz has

received considerable attention owing to its capability of penetrating dielectric materials

such as plastic and cloth while being strongly reflected by metallic materials. Relatively

small wavelengths and wide bandwidths associated with these signals enable high reso-

lution in both the range and cross-range dimensions. However, due to its relative short

wavelength, MMW circuits and array antennas are costly to implement in the early years.

Most imaging systems adopted a linear array configuration with mechanic scanning as

a tradeoff between system cost and scanning speed. For example, the authors in [2]
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designed a horizontal linear array with vertical mechanic scanning for concealed weapon

detection.

Thanks to the enormous advances made in semiconductor technology over the last few

years, highly integrated circuits with moderate costs are achievable at MMW frequencies

[7, 8]. Antenna array systems are thus becoming affordable in many imaging applica-

tions for high resolution and fast electronic scanning. An increased number of antennas

requires additional control components such as high speed switches, phase shifters and

power dividers, depending on different array configurations. To date, there are already

many array configurations which have been proposed in the open literature and in some

cases commercially deployed. As will be introduced in the following section, they can be

categorized into three groups: the switched array [2, 9], the MIMO array [7, 10, 11] and

the phased array [12, 13].

This chapter is organized as follows. Section 2.2 summarizes the details of three

different array configurations for security imaging applications. Then, based on the

switched array configuration, FT based imaging algorithm, sampling criteria and the

corresponding resolution are presented in Section 2.3. Section 2.4 concludes the chapter.

2.2 Array Configurations

2.2.1 Switched Array

The switched array is the most direct array approach that simply consists of an array of

transceiver antennas. During data acquisition, all elements are sequentially switched on

and off to transmit and receive radio waves. Figure 2.2(a) illustrates the array geometry

of a switched array scheme. The array elements are connected to a high speed switching

matrix that is controlled by a central unit. In an ideal situation, all antenna elements

share the same radiation pattern and the element spacing can follow the Nyquist sampling

theorem to ensure correct image reconstruction. The aperture size of the switched array
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Figure 2.2: Array geometry for (a) switched array (b) MIMO array and (c)
phased array.

should be roughly equal to the area being scanned.

In a practical design, there are many circumstances need to be considered and many

aspects might be compromised. For example, the design of monostatic transceivers is

usually replaced by a quasi-monostatic configuration which transmit and receive antennas

are separated, but in approximately the same location and they are assumed to be

coincident at the midpoint between the two antennas. The main advantage of separate

transmit and receive antennas is that the isolation in excess of 50 dB are easily achievable.

Another example is the array aperture size design. The required area for a full body scan
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Figure 2.3: L-3 ProVision full body scanner in an airport [14].

in an airport security check can be as large as 2 m × 1 m. To make a full switched array

at such size is still too expensive at the moment. Therefore, most commercially realized

products combined linear switched array with SAR concept. The most widely deployed

full body scanner L-3 ProVision is a good example that utilizes cylindrical scanning [14].

This security body scanner operates at frequencies between 24 and 30 GHz, requiring

only a single stationary position during a 1.5-second scan. Figure 2.3 shows the photo

of an L-3 ProVision doing full body scanning. The L-3 ProVision products have been

deployed in more than 250 airports across the world for counterterrorist detection.

2.2.2 MIMO Array

The main disadvantage of the switched array approach is its low efficiency. As each time

after a signal is transmitted, only one antenna is switched on for signal reception. The

switched array works as a single-input single-output (SISO) system. This is a waste

of other antennas who can also be used for reception. To improve the efficiency, the

idea of using the MIMO array for security imaging has attracted significant attention

in recent years [10, 15]. A MIMO array normally adopts sperate transmit and receive
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Figure 2.4: Fully electronic imaging prototype with 736 Tx and 736 Rx anten-
nas operating from 72 to 80 GHz [7].

subarrays to form a virtue aperture similar to a switched array. The big advantage of

the MIMO configuration is the increased spatial diversity enables a sparse array design

while preserving similar imaging performance as a switched array. In some cases, the

switched array and the MIMO array are also called monostatic array and multistatic

array systems, respectively.

There are already many MIMO array designs for security applications in existing

literature [10, 16, 17]. Conventional uniformly distributed MIMO arrays like rectangular

arrays and Mills Cross arrays suffer from element shadowing effect along certain direc-

tions. According to [18], array configurations that follow curvilinear geometries have

less shadowing effect and also decreased grating/sidelobe level in the near-field. Figure

2.2(b) gives an example of a MIMO array geometry, where circles represent transmitting

antennas and squares stand for receiving antennas. When each time a signal is transmit-

ted from the transmitter array, all the receive antennas will be switched on for reception

in parallel. By properly arranging the element placements, the effective aperture of a

MIMO array can be comparable to that of a switched array with far fewer elements.

This capability makes it possible to design a fully electronic MIMO array for real-time

imaging at an affordable cost.
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Figure 2.5: Rohde & Schwarz quick personnel security scanner deployed at the
London City Airport [19].

In [7], a new MMW multistatic array architecture was presented for concealed weapon

detection with real-time operation capability. This imager was designed and verified

from 72 to 80 GHz and demonstrated a lateral resolution of 2 mm. To achieve an array

aperture of around 50 cm × 50 cm, 25600 antennas are required using the switched array

configuration. The prototype in [7] managed to achieve the same aperture, at the same

base antenna spacing and array aperture size, using a total number of 736 Tx antennas

and 736 Rx antennas, which is only 5.75% of its switched array counterpart. Figure 2.4

shows the prototype of the imager that consists of 16 clusters of transmit and receive

subarrays. This prototype was later extended to a 2 m × 2 m aperture using 32 clusters

for personnel screening applications [8]. Recently, this millimetre-wave full-body scanner

is commercialized by Rohde & Schwarz and has been successfully deployed at London

City Airport to increase the speed of security screening and detection. Figure 2.5 shows

the Rohde & Schwarz QPS200 personnel screening system deployed at the London City

Airport [19] where the two imagers from left to right are responsible for the back and

front of a personnel under detection, respectively.
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2.2.3 Phased Array

From the transmit antenna point of view, the switched array and the MIMO array are

similar as antennas operate in a separate/sequential way. Each antenna in transmitting

mode is independent and interference free from other transmit antennas. Therefore, the

scanning process is actually a fixed (stationary) beam translating within the aperture.

On the other hand, a phased array is totally different in the essence that the antennas are

controlled by variable phase (very short time-delay) and variable amplitude to provide

constructive/destructive interference in different directions. Specifically, the array pat-

tern is sharpened by constructive interference in the main direction while suppressed by

destructive interference in undesired directions. Compared to the switched and MIMO

arrays, the main advantage of the phased array is its dynamic beam scanning capability.

The resulting high gain beam greatly maximizes the SNR [20] and makes the imaging

system more robust to noise.

The phased array scheme can be further discussed in two scenarios: an analog phased

array that can do beamforming in both transmitting and receiving array; a digital beam-

forming (DBF) array that normally only do beamforming in the receiving array. DBF

receiver consists of the spatial filtering of a signal where the phase shifting and ampli-

tude scaling are implemented digitally. ADCs and Digital Down-Converters (DDCs) are

required for each antenna to make the necessary transformations of the signal between

the Intermediate Frequency (IF) analog domain and the digital domain. In comparison,

a DBF receiver array has lower gain due to beamforming only in receiving mode, but

is easier to implement and can dramatically reduce the system cost. In fact, the MMW

MIMO array imaging system proposed in [7, 8] also adopted DBF techniques for image

reconstruction. However, without loss of generality and to avoid confusion, we consider

the phased array as a SISO system where the acquired data is the summation of signals

from all antenna elements, which is also to say the imaging algorithms do not have access

to the signals of individual antennas.
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Figure 2.6: SAR imaging configuration.

Figure 2.2(c) gives an example of a typical analog phased array. Although the array

geometry is the same as a switched array, there are more complex controlling components

like phase shifters and power dividers behind the array aperture. By carefully adjusting

the phase shift of each radiating antenna, the main beam of the array can be electronically

steered towards different directions. However, this cannot be extended unlimitedly. The

scanning angle of a phased array is normally within 120◦, e.g., 60◦ up and 60◦ down in

the y dimension.

2.3 Conventional Image Reconstruction

2.3.1 Imaging Algorithm

The fundamentals of an array imaging system are not much different from a typical

SAR imaging system. Therefore, we start with the 3D-SAR imaging configuration to

introduce the basic imaging algorithms. The example SAR imaging system is shown

in Figure 2.6. During the imaging process, a transceiver is scanned over a 2-D planar
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aperture with size Lx and Ly. It is assumed that the transceiver is at position (x′, y′, Z1)

and a general point (x, y, z) is at the target plane. The target region is characterized by

its reflectivity function g(x, y, z). Under Born approximation (BA), the scattering field

at the transceiver can be approximately represented by a linear superposition of reflected

waves from each point in the target region or

s(x′, y′, k) =

∫∫∫
V

g(x, y, z) exp(−j2k
√

(x− x′)2 + (y − y′)2 + (z − Z1)2) dx dy dz,

(2.1)

where k = 2πf/c is the wavenumber, f is the frequency and c is the speed of light.

The BA is a necessary assumption to simplify the original complicated inverse scattering

problem into (2.1). However, if the BA is not well satisfied, for example, strong multiple

scattering exists, the reconstruction based on (2.1) will no longer be accurate. Note that

the amplitude attenuation with range is not considered since it will have little impact

on image reconstruction. According the dispersion relation, the wavenumber k here can

also be expressed as k2x + k2y + k2z = (2k)2, where kx, ky and kz are wavenumbers in x,

y and z dimension, respectively. The exponential term in (2.1) represents a spherical

wave, which can be decomposed into an infinite superposition of plane waves [2]

exp(−j2k
√
(x− x′)2 + (y − y′)2 + (z − Z1)2) =∫∫

exp(−jkx′(x− x′)− jky′(y − y′)− jkz(z − Z1)) dkx′ dky′ , (2.2)

where kx′ and ky′ are the Fourier-transform variables corresponding to x′ and y′, respec-

tively. The spatial wavenumbers will range from −2k to 2k for propagating waves.
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Substituting (2.2) into (2.1) and rearranging yields

s(x′, y′, k) =

∫∫ [∫∫∫
g(x, y, z) exp(−j(kx′x+ ky′y + kzz)) dx dy dz

]
× exp(jkzZ1) exp(jkx′x′) exp(jky′y

′) dkx′ dky′

=

∫∫
G(kx′ , ky′ , kz) exp(jkzZ1) exp(j(kx′x′ + ky′y

′)) dkx′ dky′

= FT−1
2D{G(kx′ , ky′ , kz) exp(jkzZ1)}. (2.3)

where FT2D {·} and FT−1
2D {·} represent 2-D FT operator and its inverse, respectively.

The triple integral in the first line of (2.3) represents a 3-D Fourier transform of the

reflectivity function and are expressed as G(kx′ , ky′ , kz) in the third line. Taking the 2-D

Fourier transform of both sides and dropping the distinction between the primed and

unprimed coordinate systems yields

FT2D{s(x, y, k)} = S(kx, ky, k) = G(kx, ky, kz) exp(jkzZ1). (2.4)

Moving the exponential term in (2.4) to the left and taking the 3-D inverse Fourier

transform of both sides we have the reflectivity function as

g(x, y, z) = FT−1
3D

{
FT2D{s(x, y, k)} exp(−j

√
4k2 − k2x − k2yZ1)

}
. (2.5)

The final image of the target can be acquired by computing the amplitude of the

complex-valued reflectivity function g(x, y, z). In order to perform the inverse 3-D FFT

in (2.5), the data need to be uniformly sampled in kx, ky and kz. This can be easily

satisfied in the kx and ky domains by uniformly sampling in the x, y dimensions. How-

ever, due to the dispersion relation, the data in the kz domain becomes non-uniformly

spaced when its uniformly sampled in the frequency dimension. Therefore, before we

can take inverse 3-D FFT, we need to use interpolation techniques to resample the data

to have uniform intervals in kz. The most well known interpolation technique is the

Stolt interpolation that originates from computer based processing of seismic data [21].
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The Stolt interpolation compensates the curvature of the wavefront by mapping the data

from ω domain to kz domain for each frequency component of the measured data. Con-

sequently, this technique is also known as the frequency-wavenumber (F-K) migration

algorithm or the range-migrations algorithm (RMA). The original RMA [21] is a 2-D

algorithm that was first designed for seismic engineering and then extended to 2-D SAR

for space-borne applications [22]. Its 3-D modification was proposed in 2000 by Juan

M. Lopez-Sanchez based on the method of the stationary phase (MSP) [23]. The 3-D

RMA shows some similarities with the synthetic aperture focusing technique (SAFT)

[24, 25]. The SAFT is also a 3-D SAR imaging algorithm which was originally developed

from acoustic holography based on angular spectrum decomposition [26]. Its 2-D version

(single frequency imaging in the cross-range domain) of is also known as the Backward

propagation (BP) algorithm [27]. According to [23], both RMA and SAFT techniques

are supposed to have the same order of computational complexity since they both make

an extensive use of FFTs. From the electromagnetism point of view, these algorithms

are actually a simplification of the complicated inverse scattering problem derived from

the Maxwell’s equations. Interested readers are referred to [28] for a detailed discussion

of these algorithms in the inverse scattering point of view.

2.3.2 Spatial and Frequency Sampling

Data acquisition for image reconstruction without aliasing requires the sampling interval

to satisfy the Nyquist criterion. Specifically, the Nyquist criterion states that the phase

shift from one sample point to the next is less than π rad. As illustrated above, the data

for 3-D imaging is acquired from x, y and frequency dimensions. This Nyqusit sampling

in the aperture and the frequency domains need to be discussed separately.

The sampling interval along the aperture is determined by a number of factors includ-

ing the wavelength, size of the aperture, size of the target, and distance to the target.

The most restrictive case is that the target is very close to the aperture and the sample

point is near the edge of the aperture. In such case, the maximum phase shift will be
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2k∆x when the sampling interval is ∆x. Therefore, the required sampling interval in

the x and y domains should be

∆x,∆y <
λ

4
, (2.6)

where λ = 2π/k. However, for a practical imaging system that usually has a moderate

aperture-to-target distance, λ/2 sampling interval is sufficient [2].

The sampling interval in the frequency domain can be determined in a similar way.

The maximum phase shift from a change in wavenumber ∆k will be 2∆kDmax, where

Dmax is the maximum target range. Therefore, by substituting the ∆k with 2π∆f/c,

the required sampling interval in the frequency domain should be

∆f <
c

4Dmax
. (2.7)

2.3.3 Range and Cross-Range Resolution

The above imaging algorithm based on Fourier transform is a diffraction-limited tech-

nique which is imposed by the wavelength, transmit and receive antenna beamwidths,

size of aperture, and distance to the target. More specifically, the resolution is deter-

mined by the extent or width of the coverage in the wavenumber domain. As similar to

many other radar imaging systems, the range resolution in the z dimension is dependant

on the frequency bandwidth

δz =
2π

2(k2 − k1)
=

c

2B
, (2.8)

where k2 and k1 are the wavenumbers at highest and lowest frequencies, respectively.

The cross-range resolution is usually approximated by [13]

δx,y =
2π

Range(kx,y)
≈ λD

2Lx,y
, (2.9)

where D is the target range.
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2.4 Summary

This chapter first presents the background of microwave and millimeter-wave imaging by

describing the SAR imaging system. Its application in the security imaging is then dis-

cussed and summarized in terms of the switched array, the MIMO array and the phased

array. A three-dimensional image reconstruction algorithm based on FT is explained

in detail using the switched array example. Resolution of this imaging algorithm is

diffraction-limited which depends on wavelength, bandwidth, distance and aperture size.

The required sampling step in spatial and frequency dimensions which is determined by

the Nyquist theorem is also presented.
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Chapter 3

Compressive Sensing and its

Application to Imaging

3.1 Introduction

Over the past few years, compressive sensing (CS) [1, 2], also known as compressed sens-

ing or compressive sampling, has attracted considerable attention in the research areas of

applied mathematics, computer science, and electronic engineering. This rapidly devel-

oping field of sparse signal recovery is already changing the way engineers think about

data acquisition and reconstruction. The purpose of this chapter is to provide a general

background on the CS theory and its application to radar imaging. Section 3.2 to Section

3.5 introduce the mathematical fundamentals of the CS in terms of signal sparsity, basic

CS framework, properties of sensing matrix and CS recovery algorithms. Section 3.6

first introduces the framework of CS imaging and then presents a brief literature review

of CS applied to radar imaging. Section 3.7 summarizes this chapter.

26
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Figure 3.1: Example of a spares signal with only 6 non-zeros.

3.2 Sparsity and Compressibility

Sparse signals that having only a few nonzero entries, as shown in Figure 3.1, are of

great importance in signal processing for the purpose of compression. Mathematically,

a discrete signal x ∈ Rn is said to be k-sparse, where k ≤ n and k is an integer, if the

support of x, defined by supp(x) = {i : xi ̸= 0} contains at most k indices. We define a

set of k-sparse signals as:

∑
k
= {x ∈ Rn : |supp (x)| ≤ k}. (3.1)

Sparsity can also be found in a canonical basis or transformed basis or a combination

of bases. In such cases, the transform coefficients vector of the original signal is sparse.

For example, a signal x ∈ Rn which is sparse in a dictionary represented by an m × n

matrix Ψ can be written as

x =
∑n

i=1
siΨi = Ψs, (3.2)

where Ψi are the column vectors of Ψ, s is the sparse representation.

Typically, real-world signals are not exactly sparse in any orthogonal basis. Instead,
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Figure 3.2: Example of a compressible signal.

most entries of these signals or their transform coefficients are approximately zero, as

shown in Figure 3.2. Such signals are called compressible. For example, natural images

are compressible through wavelet transformation. Specifically, a signal x ∈ Rn is said to

be compressible if the magnitudes of coefficient vector s sorted in decreasing order follow

the power law |si| ≤ C1i
−q , i = 1, 2, · · · , n. The larger q is, the faster the magnitudes

decay, and the more compressible a signal is.

3.3 The Basic Framework of Compressive Sensing

In a traditional signal acquisition method, one measures the full length of a signal but

only keeps the nonzero coefficients, thereby wasting many of the measurements. CS

overcomes this issue by combining compression and sensing (measuring) at the same time.

Moreover, it guarantees us to recover the signal from the under-sampled measurements.

Suppose we have a signal x ∈ Rn, that is k-sparse in a basis (or a Dictionary) Ψ, such

that x = Ψs, with s ∈ Rn being a k-sparse vector. In the case when x is compressible in

Ψ, it can be well approximated by the best k-term representation. Consider a random

m×n sensing matrix Φ with m ≪ n, We observe a set of measurements y ∈ Rm through
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the following system:

y = Φx. (3.3)

Then we want to recover signal x from the measurements y. By substituting x = Ψs

into (3.3) we have:

y = ΦΨs. (3.4)

We define Θ = ΦΨ as the new sensing matrix and rewrite (3.4) as:

y = Θs. (3.5)

As m < n, the underdetermined system (3.5) admits infinitely many solutions. Ide-

ally, we want to solve this underdetermined system of equations and find s that has the

fewest number of non-zeros. The search of sparsest vector s then amounts to solving the

following optimization problem

min
s

∥s∥0 s.t. y = Θs, (3.6)

where ∥·∥0 is the best measure of sparsity. That is, among infinitely many s’s that

satisfy y = Θs, we choose the one that has the fewest nonzero components. However,

∥·∥0 is not convex and it has been shown that the search for such an s is an NP hard

problem that requires an exhaustive combination of all
(
n
k

)
possible locations of the

non-zero components of s [3]. Alternatively, we look for another measure for sparsity

which is convex but still induces sparsity of s as close as possible to ∥s∥0. The following

optimization problem, known as Basis Pursuit (BP) [4], does exactly that.

min
s

∥s∥1 s.t. y = Θs, (3.7)

where ∥s∥1 =
∑n

i=1 |si|. The reason why the ℓ1 norm can promote sparsity is illustrated

in Figure 3.3. Assuming an underdetermined system y = Ax, where the sparse signal

x ∈ R2. The solid lines represent the linear constraint and the dotted lines are the ℓp-
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ball with p = 1 and p = 2. Then the solution x̂ takes place at the intersection between

the ℓp-ball and y = Ax. It can be observed that the solution based on ℓ1-norm tends

to be sparse as it’s on the axis, whereas for the case with ℓ2-norm, the solution will

have nonzero values for both elements in x̂. Although ℓp-norm with 0 < p < 1 can also

introduce sparsity, they are not convex anymore. Therefore, the ℓ1 norm is the closest

norm that makes the problem convex and still preserves the sparsity of the solution
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Figure 3.3: Signal recovery using ℓp-norm with (a) p = 1 and (b) p = 2.

The BP method in (3.7) is considered without noise, which is too ideal to be used in

real scenarios. Considering the noise corrupted model: y = Θs+ η, where η is the noise

vector with bounded energy ∥η∥2 ≤ ϵ. The modified version of (3.7) is then given as:

min
s

∥s∥1 s.t. ∥Θs− y∥2 ≤ ϵ. (3.8)

This modified optimization is known as basis pursuit with inequality constraints (BPIC).

The Lagrangian relaxation of this quadratic program is written as

min
s

1

2
∥Θs− y∥22 + λ ∥s∥1 , (3.9)

and is known as basis pursuit denoising (BPDN). There exists many solvers to find
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solutions for (3.6), (3.7), (3.8) and (3.9). They will be introduced later in this Chapter.

3.4 Properties of Sensing Matrix

Section 3.3 has provided several approaches for sparse signal recovery. However, whether

or not the signal can be uniquely identified from its measurements y = Θs also depends

on the property of the sensing matrix Θ. In other words, one has to carefully design the

sensing matrix accordingly such that the reconstruction can be successful. This section

describes how to evaluate the property of a sensing matrix in terms of the well-known

spark, mutual coherence, and Restricted Isometry Property (RIP).

3.4.1 Spark

The definition of spark is described as follows.

Definition 3.4.1. Let a matrix Θ ∈ Rm×n. The spark of the matrix Θ, denoted by

spark(Θ), is the smallest number of columns of that are linearly dependent [5].

For instance, if a matrix Θ has r linearly independent columns, but there exists a

subset of r + 1 columns that are linearly dependent then spark(Θ) = r + 1. Generally,

the following relation holds for the spark and the rank of a matrix Θ ∈ Rm×n, with

m ≥ 2.

2 ≤ spark(Θ) ≤ rank(Θ) + 1. (3.10)

This definition allows us to pose the following straightforward theorem that guarantees

uniqueness of representation for k-sparse signals.

Theorem 3.4.1. If spark(Θ) > 2k, then for each measurement vector there exists at

most one signal s (k-sparse) such that y = Θs.

It is easy to see that for the m×n matrix Θ, spark(Θ) ∈ [2,m+1]. So, to make the

solution unique, the number of measurements taken must satisfy m ≥ 2k.
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3.4.2 Mutual Coherence

While Theorem 3.4.1 guarantees uniqueness of the reconstruction, it is computational

expensive to compute the spark of a general matrix, since one must verify that all sets of

columns are linearly independent. On the contrary, the coherence property of the matrix

Θ provides an easily computable recovery guarantee [6].

Definition 3.4.2. The mutual coherence of a matrix Θ, denoted as µ (Θ), is the largest

absolute normalized inner product between different columns of the matrix:

µ (Θ) = max
1≤i ̸=j≤n

∣∣θTi θj∣∣
∥θi∥2 · ∥θj∥2

, (3.11)

where θi is the i-th column of Θ.

It can be shown that µ (Θ) ∈
[√

n−m
m(n−1) , 1

]
; the lower bound is known as Welch

bound [7]. By applying the Gersgorin disk theorem [8] to the Gram matrix G = ΘT
ΩΘΩ,

it is straightforward to obtain

spark(Θ) > 1 +
1

µ (Θ)
. (3.12)

Therefore, we have the following condition on Θ for the unique recovery.

Theorem 3.4.2 ([9, 10]). If

k <
1

2

(
1 +

1

µ (Θ)

)
, (3.13)

then for each measurement vector y ∈ Rm there exists at most one signal s ∈
∑

k such

that y = Θs.

3.4.3 Restricted Isometry Property

The previous two sensing matrix properties provide guarantees of uniqueness when the

measurement vector is obtained without error. In practice, the measurement process is

always accompanied with noise and system errors. In such scenarios, it is desirable to
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have a property that allows us to guarantee that, for small enough noise, two sparse

vectors that are far apart from each other cannot lead to the same (noisy) measurement

vector [11]. The RIP is such a property that has been widely used for analysing the

performance of a CS system [12].

Definition 3.4.3. (Restricted Isometry Property (RIP)): A matrix Θ ∈ Rm×n satisfies

the RIP of order k if there exists a constant δk ∈ (0, 1) such that

(1− δk) ∥s∥22 ≤ ∥Θs∥22 ≤ (1 + δk) ∥s∥22 , (3.14)

for any s ∈
∑

k.

One implication of RIP is that if δ2k is sufficiently small, then the sensing matrix Θ

preserves the distance between any pair of k-sparse signals. Therefore, we can bound

the error of signal recovery when noise is present. In fact, if δ2k <
√
2− 1, then for some

constants c1 and c2 the solution ŝ to the BPIC problem (3.8) satisfies [12, 13]

∥ŝ− s∥2 ≤ c1
∥s− sk∥1√

k
+ c2ϵ, (3.15)

where sk is the vector s with all but the largest k elements set to zero. It should be noted

that, although RIP provides strong guarantees for the recovery of k-sparse vectors, it is

commonly impractical to check whether a sensing matrix satisfies the RIP due to the

high computational complexity.

3.5 Recovery Algorithms

Recall that the CS framework is a sample and recover system, we now focus on solving

the recovery problem. After acquiring the signal through the sensing matrix Φ, we get

the measurement vector y. Given signal x is sparse in transform basis Ψ, we want to find

a signal within the class of interest such that y = Φx exactly or approximately. There

are two major algorithmic approaches to solve this underdetermined system: Greedy
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pursuit [6] and Convex optimization [2]. In comparison, convex optimization algorithms

require fewer measurements at the cost of higher computational complexity, especially

when the signal dimension is large.

3.5.1 Convex Optimization

As stated in subsection 3.3, solving the ℓ0 minimization (3.6) directly is NP-hard. Alter-

natively, convex optimization algorithms relax (3.6) to a ℓ1 minimization (3.7). The

convexity of ℓ1 norm makes it possible to reformulate the original problem as a linear

programming problem, which is computational acceptable. There exists many algo-

rithms that can solve ℓ1 minimization problems including (3.7), (3.8) and (3.9). These

algorithms are based on different techniques such as linear programming methods [2],

projected gradient methods [14], iterative shrinkage-threshold (IST) algorithm [15], alter-

nating direction method of multipliers (ADMM) algorithms[16], etc. Table 3-A summa-

rizes some well-known solvers that are capable of solving above three ℓ1 minimization

problems. Most of these solvers offer online Matlab toolboxes. Particulary, two-step IST

(TwIST) [17] and split augmented Lagrangian shrinkage algorithm (SALSA) [18] have

been extensively used in this thesis as the imaging reconstruction algorithms. TwIST is

a variant of the IST. The term two-step comes from the fact that the update equation

depends on the two previous estimates rather than only on the previous one like con-

ventional methods. This algorithm exhibits much faster convergence rate than IST for

ill-conditioned problems [19]. SALSA is based on a variable splitting to obtain an equiv-

alent constrained optimization formulation, which is then addressed using the ADMM

method. According to [20], SALSA is consistently and considerably faster than the

previous state of the art methods FISTA, TwIST, and SpaRSA.
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Table 3-A: ℓ1 minimization problems and solvers

Minimization problems Solvers
min
s

∥s∥1 s.t. y = Θs ℓ1-magic [21]

min
s

∥s∥1 s.t. ∥Θs− y∥2 ≤ ϵ NESTA [22]
SPGL1 [23]

min
s

1
2∥Θs− y∥22 + λ ∥s∥1

FISTA [24]
FPC [25]

Bregman [26]
GPSR [14]

SpaRSA [27]
TwIST [19]
SALSA [20]

3.5.2 Greedy Algorithms

While the convex optimization relies on the linear programming of the ℓ1 minimiza-

tion (3.7), greedy algorithms aim to solve the ℓ0 minimization by iteratively refining the

approximate solution of (3.6). The most common greedy algorithm for CS is the Orthog-

onal Matching Pursuit (OMP) [6]. Algorithm 1 gives a mathematical description of it.

In each iteration, the column of Θ that is most strongly correlated with the residual will

be selected. The index of this column is recorded in the index set Ω which gives the

indices of nonzero coefficients of the estimated sparse vector s. Then the best coefficients

for approximating s are computed by minimizing ∥ΘΩs− y∥22 with respect to s. Finally,

the residual is updated by subtracting the contribution of the selected columns so far.

Commonly, we set the stopping criterion as a fixed number usually the sparsity of the

signal. We can also set a threshold when the residual has small magnitude: ∥ri∥ ≤ ϵ.

As we can see from the algorithm, OMP method greatly relies on the identification of

the correct columns. In some cases, wrong columns are chosen in the first few iterations,

and therefore the remaining iterations are spent on correcting the first few mistakes. This

concept is also the basis of some other developed greedy algorithms such as Regularized

OMP [28], Stagewise OMP [29], Compressive Sampling Matching Pursuit (CoSaMP)

[30] and Subspace Pursuit [31].
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Algorithm 1 Orthogonal Matching Pursuit
Input: Measurement vector y, sensing matrix Θ = ΦΨ ∈ Rm×n

1) Initialize: Set the index set Ω0 = ∅, the residual r0 = y, count number i = 1,
s0 = 0.
2) Identify: Find a column j of Θ that is most strongly correlated with the residual:

j = arg max
j=1,··· ,n

|⟨ri−1, θj⟩| and update the index set: Ωi = Ωi−1 ∪ {j}

3) Estimate: Find the best coefficients for approximating with the columns chosen
so far subject to supp (v) = Ωi

si = argmin
v

∥y −ΘΩiv∥
2
2

4) Iterate: Update the residual and count number:

ri = y −ΘΩisi

i = i+ 1

Repeat (2)-(4) until stopping criterion holds.
Output: Return the estimation s with components s(k) = si(k) for k ∈ Ωi and
s(k) = 0 otherwise.

3.5.3 Probabilistic Methods

Convex optimization and greedy algorithms are computationally practical and give prov-

ably correct solutions under well-defined conditions. However, it is important to note

that the validity of widely adopted RIP assumptions in these approaches, cannot be

always granted in many engineering problems, whose properties are often constrained by

the underlying physics [32]. Under such circumstances, the use of these approaches may

not be an optimal choice.

Recently, a probabilistic CS method that does not rely on the RIP of the sens-

ing matrix to yield accurate and stable results has been proposed [33]. This method

introduces the sparse Bayesian learning to CS signal reconstruction and outperforms

traditional deterministic reconstruction approaches. Apart from the advantage of deal-

ing with RIP violated sensing matrix, Bayesian CS (BCS) methods can also provide

an estimation on the confidence level of the estimated solution. Moreover, the multi-

task version of the BCS can be utilized to solve complex-valued CS applications in the
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Figure 3.4: Single-pixel camera and data under-sampling.

multiple measurement vectors (MMV) framework [34], which can be more efficient than

solving the real and imaginary parts separately. Although BCS methods do not cur-

rently offer theoretical guarantees, they have been successfully applied and verified in

many EM problems where RIP cannot be satisfied, for instance, sparse array synthesis

[35, 36], array diagnosis [37] and inverse scattering [38–41].

3.6 Compressive Sensing for Imaging Applications

3.6.1 Compressive Sensing Implementation in Array Imaging

Natural images are compressible by sparse representations such as those from a wavelet

transform and discrete cosine transform (DCT). The ability to recover under-sampled

sparse signals makes CS a perfect tool for designing novel imaging systems. One of

the most well known CS imaging system is the single-pixel CS camera developed in Rice

University [42]. As shown in Figure 3.4, this new imaging architecture combines sampling

and compression into a single non-adaptive linear measurement process. Rather than

using an array of imaging sensors to measure the scene, the CS camera uses a single sensor
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Figure 3.5: From imaging model to CS model.

to measure inner products between the scene and a set of test functions. By randomly

choosing these test functions, the CS theory enables stable reconstruction from fewer

measurements than the number of reconstructed pixels. In this manner, sub-Nyquist

data acquisition has been achieved in the imaging system.

The single-pixel camera is just one example of many CS imaging applications. Due to

the distinct theories and physical limitations behind different imaging systems, their ways

of incorporating CS can vary a lot. Recall that the CS framework can be simplified as

y = Φx, where y is the measurements, Φ is the sensing matrix and x is the sparse signal.

For any imaging system, if its forward imaging model can be reformulated in a similar

way like the CS model, then we can solve for the unknown x using CS algorithms. Figure

3.5 illustrates such a transformation from traditional imaging to CS imaging. Clearly,

apart from vectorizing and discretizing the measured samples and target scene, the most

crucial part of CS imaging is to reformulate the system responses into a matrix form

that serves as the sensing matrix.

The primary goal of this thesis is to investigate the CS implementation in array

imaging systems for security applications. In essence, we are trying to reformulate the

original imaging models of different array systems into a CS-like model. Unlike the

single-pixel CS camera that utilizes a spatial light modulator to build a totally different

imaging device, we focus our research on the CS implementation in existing array systems

without altering the hardware. In this regard, the main difference in applying CS to the
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three array configurations introduced in Chapter 2 lies in the construction of the system

response matrix. Specifically, the difference comes from the different array geometries

and antenna patterns. For instance, in the switched array system, the response matrix is

mainly determined by the location arrangement of the transceiver antennas. Similarly, in

the MIMO array, the response matrix is determined by the design of transmit sub-array

and receive sub-array. However, in the phased array, the response matrix is determined

by not only the array geometry but also the used array patterns in the beamforming

process. According to the CS theory, the well condition of these response matrices will

play an important role in the latter image reconstruction process.

3.6.2 Compressive Sensing for Radar Imaging

During the past few years, CS theory has been successfully applied to a wide range of

radar imaging applications including; terahertz imaging [43–45], MMW imaging [46–49],

SAR imaging [50–58], through-wall imaging [59, 60], medical imaging [61, 62] and even

inverse scattering [40, 41, 63].

Among these CS methods, there are basically two ways to implement the CS frame-

work. The first is to utilize the conventional FT reconstruction algorithms. Specifically,

in [48], CS was adopted in single frequency MMW indirect holographic imaging to reduce

spatial sampling data. FT based forward and backward operators were used instead of

matrix multiplication in each CS iteration. Three-dimensional imaging from 2-D scan-

ning data was realized by applying total variation (TV) regularization. The same strat-

egy was then extended to 2-D direct MMW holography where both the amplitude and

phase are acquired for image reconstruction [49]. As opposed to the indirect holography,

the processed data for direct holography and typical radar imaging is complex-valued

and thus needs special care to explore image sparsity. In the mean time, this FT and CS

combination concept has also been used in wide-band 3-D SAR imaging systems [56–58].

The main difference is the single frequency 2-D FT forward and backward operators have

been replaced by their multi-frequency 3-D versions. As these methods share the same
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principal on combining existing FT imaging models with CS theory, they are referred to

as the Fourier transform based CS (FT-CS) method in this thesis. The FT-CS method

inherits the computational efficiency from FFT and thus is capable of real-time image

reconstruction.

While the FT-CS method greatly relies on FT reconstruction algorithms, a more

direct way is to integrate the forward imaging model into the classic CS framework.

This is simply done by reformulating the forward imaging model into a matrix form.

In [51], CS was introduced to stepped frequency GPSs for compressed data acquisition

both in frequency dimension and spatial dimension. The same idea was later applied to

2-D SAR imaging in [52] and [53]. We refer to this kind of CS methods as the direct

CS (D-CS) method in our thesis. Since the D-CS imaging model is a straightforward

expansion of the scattering model, it can be easily implemented for different scanning

apertures, e.g., planar aperture, circular aperture and cylindrical aperture. However,

the main drawback is the high computational complexity since 2-D data or 3-D data has

to be vectorized during the algorithm implementation. In [54], a low complexity 3-D

imaging method was presented. The complexity reduction is based on small bandwidth

and narrow-angle measurement assumption which makes the multi-dimensional scattered

data becomes separable and thus can be processed with Kronecker CS [55]. Another

attempt to reduce complexity was made in [64] for multiple frequency 2-D imaging.

A near-field approximation of the distance from antenna to each scattering center was

proposed to make the angularly sampled data separable for 2-D FFT operation. However,

as these two methods rely on single transceiver to scan with very small angle interval and

frequency interval, they become invalid in other scanning apertures like planar aperture

in personnel imaging.

Both FT-CS and D-CS methods have their pros and cons. The detailed performance

the two methods will be discussed in the next chapter in the context of switched array

imaging.
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3.7 Summary

This chapter first presents the mathematical foundation of the CS theory, including

sparsity, CS framework and sensing matrix. Then the state of the art recovery algorithms

are briefly explained and summarized. Finally, CS imaging applications are discussed

and summarized.
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Chapter 4

Compressive Sensing for Switched

Array Imaging

4.1 Introduction

A practical imaging system for security scanning will undoubtedly adopt antenna array

over single transceiver for the remarkably reduced scanning time. Applying CS tech-

niques to array imaging systems is very different from applying them to single transceiver

systems like SAR imaging. Firstly, to realize an antenna array such that the under-

sampling pattern can be completely arbitrary is not practical. Because the array elements

are fixed on a platform, the under-sampling pattern should be designed according to the

feeding locations of the array elements. Secondly, CS methods enables sub-Nyquist sam-

pling by randomly under-sampling the locations on a full grid that satisfy the Nyquist

criterion. However, due to many physical limitations, the engineering realization of such

an antenna array is quite challenging. Commonly, a tradeoff is to increase the array

element spacing, which is to say the full sampled data already violates the Nyquist

criterion.

To the authors’ knowledge, existing D-CS methods that have been extensively studied

48
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for wideband 2-D imaging and 3-D imaging is rarely mentioned in a near-field switched

array for security imaging. These CS-SAR literature claims D-CS methods have much

better efficiency than traditional Fourier based methods due to their random under-

sampling feature. Considering the aforementioned practical conditions, this may not be

the case for antenna array imaging systems when Fourier based methods are combined

with the CS theory. More importantly, many papers only give sparse targets compar-

ison between CS methods and Fourier methods with oversimplified qualitative results.

Therefore, the objective of this chapter is to evaluate the FT-CS method and the D-CS

method in near-field switched array imaging systems and find an efficient way that aims

at less imaging time and better image quality.

This chapter first gives the single frequency 2-D forward imaging model for switched

array in Section 4.2. The CS implementation to this model is then discussed in Section

4.3. Section 4.4 demonstrates the numerical analysis of the two CS methods and the

conventional FT method. Experimental verification is presented in Section 4.5 while

conclusions are drawn in Section 4.6.

4.2 Switched Array 2-D Forward Imaging Model

As we are more interested in the image reconstruction in the two cross-range dimensions,

we simplify our question by considering 2-D cross-range imaging with single frequency

data. Similar to the algorithm introduced in Chapter 2, we assume the transceiver is at

position (x′, y′, 0) and a general point (x, y, z0) is at the target plane. The reflectivity

function of the target plane is characterized by g(x, y, z0). Under the BA and ignoring

the amplitude attenuation, the scattering field at the transceiver can be approximately

represented by

s(x′, y′) =

∫∫
g(x, y) exp(−j2kR) dx dy, (4.1)

where R = [(x − x′)2 + (y − y′)2 + (z0 − 0)2]1/2, k0 = 2πf0/c is the wavenumber, f0 is

the adopted frequency and c is the speed of light.
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To avoid aliasing in image reconstruction, the sampling interval has to satisfy the

Nyquist theorem during the data acquisition process. This sampling interval is deter-

mined by a number of factors including the wavelength λ, antenna beamwidth θa, aper-

ture size L, target size and aperture-to-target distance D. Although there is no good

criterion so far with strict mathematical formulation considering these physical param-

eters for near field imaging systems, Joseph et al. [1] has suggested that the optimal

sampling interval should be smaller than the theoretical resolution in order to achieve

it. The theoretical cross-range resolution of the switched array imaging system can also

can be expressed as

δ ≈ λ

4 sin(θ/2)
|θ = min(θa, θb), (4.2)

where θb = 2arctan(L/2D) is the angle subtended by the scanning aperture.

4.3 Compressive Sensing Implementation to Switched Array

CS based approaches enable image reconstruction from far fewer measurements by just

randomly measuring a small fraction of positions on the scanning aperture. The D-CS

and FT-CS methods for switched array will be introduced in this section.

4.3.1 D-CS Model

The D-CS model can be directly derived from the signal model in (4.1) by discretizing the

target plane into a grid of point scatterers and then reshape the switched array signal

matrix and reflectivity function matrix into long 1-D column vectors. Therefore, the

2-D imaging problem can be solved using standard 1-D CS reconstruction algorithms.

Suppose the target plane reflectivity function g is discretized as a P × Q matrix G

and the array signal matrix S has M × N sampling positions, as shown in Figure 4.1.
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Figure 4.1: Switched array imaging system.

According to (4.1), a discrete version of s(x, y) can be represented as

S(m,n) =
P∑

p=1

Q∑
q=1

G(p, q) exp(−j2kR(m,n, p, q)), (4.3)

where S(m,n) is the received signal of the antenna at the m-th row and n-th column

of S and G(p, q) is the reflectivity of the grid point at the p-th row and q-th column

of G. R(m,n, p, q) is the distance between the antenna at S(m,n) and the grid point

at G(p, q). By vectorizing S and G, e.g., concatenating the columns of a matrix into a

single column, (4.3) can be reformulated as

s = Hg

s(1, 1)

...

s(M, 1)

...

s(1, N)

...

s(M,N)



=



H(1, 1)T

...

H(M, 1)T

...

H(1, N)T

...

H(M,N)T





g(1, 1)

...

g(P, 1)

...

g(1, Q)

...

g(P,Q)



,
(4.4)
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where

H(m,n) = [exp(−j2kR(m,n, 1, 1)), . . . , exp(−j2kR(m,n, P, 1)), . . . ,

exp(−j2kR(m,n, 1, Q)), . . . , exp(−j2kR(m,n, P,Q))]T ,

and H is the system response matrix.

Suppose we are using a single transceiver system, the total number of measurements

can be reduced by programming the transceiver to randomly sampling a fraction of all

the positions on the grid. Mathematically, this amounts to introducing a binary mask

as

Y = B ◦ S, (4.5)

where ◦ represents the Hadamard product (element-wise multiplication), Y is the under-

sampled data and S is the fully sampled data. Binary mask B is an M × N sampling

matrix which only contains 1 (sample) and 0 (ignore). Suppose the number of sampled

points is K, then the sampling rate can be computed as the ratio of K to MN . Before

applying reconstruction, B needs to be transformed to fit the vectorized S. We denote

by A the transformed version of B. Then the vectorized under-sampling process can be

summarized as

y = As = AHg, (4.6)

where y is the K × 1 vector representation of Y and A is a K ×MN matrix.

The resolution of the reconstructed image is directly related to the discretization of

the target plane. Intuitively, finer grid size will provide higher resolution. However, this

operation leads to significantly increased size of H and thus introduce higher computa-

tional complexity. This problem gets more serious when dealing with 3-D (x−dimension,

y−dimension and frequency dimension) data. Complexity reduction methods based on

small angular scanning aperture with different approximations of the scattered data [2, 3]

become invalid here since in the case of planar scanning aperture, the square root phase
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term cannot be easily separated. In addition to the increased complexity, finer grids

will also weaken the performance of CS reconstruction. Firstly, as can be seen from

(4.4), the only difference among the entries in H is the distance R, which means the

closer the adjacent points on the grid, the more similarities among the columns in H.

In the CS framework, more similar columns means higher mutual coherence [4], which

should always be avoided. Secondly, finer grids will increase the number of unknowns

and thus require more measurements for stable CS reconstruction. This analysis will

also be discussed later with simulation results.

4.3.2 FT-CS Model

The FT-CS model is based on the conventional BP algorithm that takes advantage of

the FFT. Similar to the D-CS model, all data for the FT-CS model must be vectorized

before applying recovery algorithms. Such vectorization process introduce unnecessary

complexity and memory requirement in algorithm deployment. Alternatively, we can

directly use the matrix formulation in computation if the forward operator and backward

operator can be utilized.

The forward process in (4.1) can also be written as

s(x, y) = FT−1
2D[FT2D[g(x, y)] exp(jkzz0)]. (4.7)

To better describe the FT-CS method, we denote the forward process in (4.7) as

S = O[G], (4.8)

where O = FT−1
2D[FT2D[·] exp(jkzz0)] is an operator. Similarly, the adjoint system model

of (4.8) (backward process) is

G = O†[S], (4.9)

where O† = FT−1
2D[FT2D[·] exp(−jkzz0)]. Therefore, by adding the under-sampling mask,
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the FT-CS model can be written as

Y = B ◦ S = B ◦O[G], (4.10)

The matrix formulation of the FT-CS model avoids the vectorization process and thus

reduces its complexity. Moreover, due to the adoption of the Fourier transform in the

forward and backward operators, each iteration of the algorithm runs much faster than

that of the D-CS method. It is worth mentioning that the massive space requirement of

the H matrix has also been eliminated here in the FT-CS method.

4.3.3 Reconstruction Algorithms

There are many choices in choosing a CS algorithm to solve the underdetermined system

in (4.6) and (4.10). Greedy pursuit [5] and ℓ1 optimization [6], as introduced in Chapter

2 are the two mainstreams. In comparison, greedy algorithms are generally much faster

but require more measurements. Although it is possible to solve the FT-CS model with

certain greedy algorithms that only requires matrix vector product, this process needs

to transform the 2-D FFT and 2-D IFFT operator into matrix forms, which introduces

extra computation complexity and makes the problem more complicated. Here, we adopt

the TwIST algorithm [7] for its significantly faster convergence rate than traditional ℓ1

algorithms. More importantly, the forward and backward operators can be applied

directly without any modification.

One of the key requirements for successful CS reconstruction is the image sparsity or

compressibility. In our case of study, target recognition is the first priority. There are

many sparsity representations for imaging applications like wavelet transform, curvelet

transform, total variation (TV) [8] and discrete cosine transform. Here we choose the

TV in the regularization since it can preserve the sharp edges of an image while imposing

smoothness on the solution. TV refers to the integral of the absolute gradient of the
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signal. The discrete version for a 2-D image G can be defined as

TV(G) =
∑
i,j

√
|Gi+1,j −Gi,j |2 + |Gi,j+1 −Gi,j |2, (4.11)

where i and j denote the discrete indices of G. We denote by ∥g∥TV the vector version

of TV(G). Then the corresponding optimization problem for (4.6) and (4.10) with TV

regularization can be written as

ĝ = argmin
g

1

2
∥AHg − y∥22 + λ∥g∥TV , (4.12)

and

Ĝ = argmin
G

1

2
∥B ◦O[G]−Y∥22 + λTV(G), (4.13)

respectively. It is important to note that other transforms can also be added to the above

equations which can potentially improve the reconstruction performance. An important

step of solving (4.12) and (4.13) is the selection of the regularization parameter λ, which

controls the tradeoff between the sparsity of the solution and the closeness of the solution

to the image. For example, if λ is too small, then the solution is close to the conventional

least squares solution, while if λ is too large then the bias of the estimation will be very

high. According to our simulation results, the optimal value of λ is inconsistent across

different data sets, and may change slightly for the same data set with different sampling

rates. Another key requirement in CS framework is the RIP that measures the quality

of the reconstruction [9]. The ultimate goal in a CS system is to adopt a measurement

matrix and a basis matrix such that the sensing matrix has the RIP of high order.

However, the RIP is often replaced by checking the mutual coherence as computing RIP

is computationally intensive.
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4.4 Numerical Analysis

This section presents the performance analysis and comparison of two CS based methods

using full-wave EM solver simulated data.

4.4.1 Simulation Configuration

The simulated data can be acquired using either simplified signal model in (4.1) (syn-

thetic data) or full-wave electromagnetic (EM) solver that follows rigorous Maxwell’s

equations. In many CS-SAR imaging literature, point scatterers are assumed and syn-

thetic data is used for simplicity. However, in practice, the target area might be very

complicated and thus full-wave simulation should be adopted to better approximate the

real environment. The full-wave simulation setup consists of antennas and complicated

targets, all with appropriate mesh sizes. As the whole volume is electrically large com-

pared to the operating wavelength, the EM simulation can be very time consuming.

Among many EM solvers, we tested ANSYS HFSS, CST MICROWAVE STUDIO and

FEKO while only FEKO can give acceptable simulation time. Considering that a full

switched array for simulation would require too much computing power, we use a single

antenna as a transceiver to translate in the scanning aperture. Consequently, this means

we ignore the mutual coherence among adjacent antennas in our analysis. To further

reduce the simulation time, we use a dipole antenna instead of a directional antenna.

The simulation setup is illustrated in Figure 4.2. An x-polarized dipole antenna

working at 100 GHz is used to scan an area of 60 mm × 60 mm. The target plane is

parallel to the scanning aperture with a height of 30 mm. Two identical targets which

both consist of three metallic rectangular cuboids are placed perpendicularly to each

other. The background medium is free space. During the simulation, the reflection

scattering parameter (S11) of the antenna is acquired at each sampling position and is

calibrated by subtracting the background S11 as described in [10].
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Figure 4.2: Simulation model in FEKO. All dimensions are in mm.

In the following numerical analysis, for the sake of fairness, we ensure that firstly

all methods in comparison use the same sampling pattern; secondly, the regularization

parameter for both CS methods are adjusted appropriately so that the reconstructed

images for all methods are optimized; and thirdly both CS methods share the same

stopping criterion, that is the optimizations cease when the relative change in the objec-

tive function falls below 1 × 10−4 or the number of iterations reached 10000. All the

evaluations were implemented using Matlab 2014b (x64) on a Windows 7 operating sys-

tem, with an Intel i7-4770m processor and 16 GB of memory.

4.4.2 Sparsity Constraint

As mentioned previously, the data in our switched array imaging system is complex-

valued. Figure 4.3 gives an example of the amplitude, phase, real and imaginary parts

of a gun-shaped target recovered by the BP algorithm from experimental data. It is

important to note that many sparsifying transforms for real-valued images become invalid

or less effective for complex-valued data since only the amplitude of the image can be

treated as sparse. Most existing literature has ignored this fact by directly applying the

sparsity constraint to the complex-valued signals or only use sparse point-like targets

for simplicity. Nevertheless, there has been some attempts to solve this problem. In
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(a) (b)

(c) (d)

Figure 4.3: The (a) amplitude, (b) phase, (c) real and (d) imaginary parts of
the reconstructed signal by the BP method.

[11], the TV regularization is applied to the amplitude only, but the phase is ignored,

since in SAR images the phase is usually assumed to be random. On the contrary, the

phase information for MRI and terahertz imaging is considered to be smooth and not

varying rapidly. In [12], a phase smoothness constraint is introduced by controlling the

similarities of the phase intensities among the image pixels. In [13], it was suggested

that sparsity can be enforced separately in the real and imaginary parts. Both methods

have shown to be effective in dealing with complex-valued images. In the proposed

switched array application, the targets are placed in a short range of the array. As can

be seen from Figure 4.3, the phase information of the acquired data is actually between

random and smooth varying. Therefore, it is worth doing a comparison on these sparsity

constraints. Of course, how to find an optimal sparsity constraint shall be an object of

further research.

Figure 4.4 compares different sparsity constraints by calculating their mean squared
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Figure 4.4: MSE of reconstructed images of different sparsity constraints. (a)
FT-CS and (b) D-CS.

errors (MSEs) for the same experiment data as shown in Figure 4.3. The MSEs are

averaged over the results of 20 independent trials for each sampling rate. In each trial,

the samples are chosen in a random way such that they are independent from that of

other trials. The regularizations to the imaginary part only, phase part only and both
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amplitude and phase parts do not always converge thus are not shown here. As can

be seen from Figure 4.4, TV regularization to the amplitude only scheme (pink curves)

actually does not perform well in our case. The separate real and imaginary sparsity

scheme (red curves) always achieves lower MSE than regularization applied directly to

the original data scheme (blue curves) in both the FT-CS and D-CS methods. Therefore,

in the following analysis, we adopt the scheme where sparsity is enforced separately in

the real and imaginary parts.

Finally, the optimization model with TV regularization to both real and imaginary

parts for (4.12) and (4.13) can be written as

ĝ = argmin
g

1

2
∥AHg − y∥22 + λ(∥gRe∥TV + i∥gIm∥TV ), (4.14)

and

Ĝ = argmin
G

1

2
∥B ◦O[G]−Y∥22 + λ(TV(GRe) + iTV(GIm)), (4.15)

respectively, where g = gRe + igIm and G = GRe + iGIm.

It is very important to point out that objective functions in (4.14) and (4.15) become

complex-valued due to the way we formulate the sparsity constraints. It is well-known

that the objective function can be used to decide if the iteration is going in the right

direction by comparing its current value with the previous value. From the perspective

of optimization algorithms, the complex-valued objective function does not make sense

because one cannot compare complex numbers. In the algorithm implementation, the

complex number comparison is defined by comparing the real parts only. According to

our simulation results, this complex-valued sparsity constraint scheme actually outper-

forms other real number schemes, e.g. (TV(GRe) + TV(GIm)). It is also interesting

to note that this scheme achieves better performance than the popular complex-to-real

transformation scheme (real parts and imaginary parts are concatenated together for

processing) when data is under-sampled. However, this complex number approach is not

perfect. In few cases, it can take much longer iteration time than the complex-to-real
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transformation scheme. Interested readers can also try to deal with complex-valued data

using MMV methods as suggested in Section 3.5.3. Of course, how to find an optimal

sparsity constraint shall be an object of further research.

4.4.3 Sampling Pattern And Sampling Interval

One of the main differences between switched array imaging and SAR imaging is that the

sampling trajectory of the SAR imaging has great flexibility thus its sampling pattern

can be completely random. The switched array imaging, on the other hand, can only rely

on the fixed feeding points, which makes it less flexible than the SAR system and results

in a sampling pattern looks like a binary matrix. Moreover, physical considerations

like antenna gain, beamwidth and mutual coupling between antennas make engineering

realization of an array that satisfy the Nyquist sampling interval very difficult in MMW

frequency range. Generally, a tradeoff is to slightly increase the antenna spacing, for

example, 2λ/3 [14] or even higher.

There are two ways to push forward with this increased sampling interval. Firstly, if

we use a linear array to perform 1-D mechanical scanning and 1-D electronic scanning,

then the Nyquist criterion can be satisfied only in the mechanical scanning dimension.

This scheme can be considered when a limited budget is available, as is adopted in [14].

There is also a trade-off between image quality and scan duration on how to choose the

sampling rate in each dimension. Normally, under-sampling in the mechanical scanning

dimension can save more time since skipping one position means abandoning one line of

measurements in the electronic scanning dimension. However, the highly under-sampled

data plus randomness reduced sampling pattern will impair the reconstruction. Secondly,

if we use a rectangular full array to perform 2-D electronic scanning, Nyquist criterion will

be violated in both dimensions. The advantage is the under-sampling can be completely

random in both dimensions. Moreover, the already fast electronically scanning time can

be further reduced by randomly activating only part of the antennas for data acquisition.

For the following discussions, we only consider the second case for simplicity.
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(a)

(b)

(c)

Figure 4.5: Four random under-sampling masks under (a) λ/4 element spac-
ing, (b) λ/2 element spacing and (c) 3λ/4 element spacing. From
left to right, sampling rates of four masks are 80%, 60%, 40% and
20%, respectively.

4.4.3.1 Qualitative Results

Since the transceiver-to-target distance is 30 mm, the Nyquist sampling interval is

approximately 0.35λ according to (4.2). We acquired three sets of data with uniform

under-sampling interval (element spacing) of λ/4, λ/2 and 3λ/4. The last two intervals

are both larger than the Nyquist sampling interval. These uniformly sampled data are

then randomly sub-sampled by 80%, 60%, 40% and 20%, as shown in Figure 4.5, to

mimic the random under-sampling process. It should be noted that random sampling is

realized by first producing a random permutation of the measurements using the rand-

perm function in Matlab and then selecting the first required number of samples. Here,

the white pixels represent selected locations to sample. It can be noticed that since

all cases have the same scanning aperture, small sampling interval case has denser pix-
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els. Based on these sampling masks, conventional BP method and two CS methods are

employed for image reconstruction.

As mentioned previously, the grid size of the target plane has a crucial influence on

the performance of the D-CS reconstruction. Therefore, we also adopt three different

grid spacings of λ/8, λ/4 and λ/3 for comparison. It is important to note that due to

the differences in size of reconstructed image and measurement matrix, two CS methods

have different optimal regularization parameters. For instance, in the following example,

the regularization parameter is around 0.01 for D-CS methods and 0.001 for FT-CS

methods.

Figure 4.6 shows the corresponding reconstructed images based on the three sets of

under-sampled data. As we can see from the first three columns in Figure 4.6(a) and

Figure 4.6(b), different grid sizes lead to different image resolutions in reconstruction.

The number of pixels of the three grid sizes are 161× 161, 81× 81 and 61× 61, from left

to right, respectively. From Figure 4.6(b), It can be noticed that a finer grid size does

not actually give better image reconstruction, especially when the sampling rate is low.

This agrees with our analysis in the previous subsection since the λ/2 element spacing

case is already highly under-sampled compared to the Nyquist rate. Reducing the grid

size will require more measurements as the number of unknown pixels has also increased.

However, this does not mean that a larger grid size is preferable. The grid size should

be carefully chosen because too large grid size will lead to very low resolution and grid

mismatch [15] may also occur at this case. The optimal grid size should consider both

the sampling rate and the array element spacing such that the number of measurements

is well above the minimum requirement posed by the CS theory. In comparison, the

FT-CS and BP methods cannot freely choose the image size during reconstruction. This

is because neither 2-D FT nor 2-D IFT of a matrix changes its size, which makes the

reconstructed image the same resolution as the sampled aperture. It should be noted that

although some conventional smoothing techniques like zero-padding and interpolation

can also be used within the FT-CS method, they do not really increase the spatial
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resolution, thus are not discussed here.

Figure 4.6(c) shows the results based on 3λ/4 element spacing which is about twice

the Nyquist sampling interval. Compared with the first two subfigures, the FT-CS and
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Figure 4.6: Simulation results showing the reconstruction quality of three
methods based on (a) λ/4 element spacing, (b) λ/2 element spac-
ing and (c) 3λ/4 element spacing. In each subfigure, from left to
right, D-CS methods with grid size of λ/8, λ/4 and λ/3, FT-CS
method and BP method.

BP methods have blurrier images. This is because a larger sampling interval results

in less pixels in the reconstruction. Interestingly, all D-CS methods with 3λ/4 element

spacing fail to reconstruct the image correctly as ghost targets can be observed in all

cases. The FT-CS method, on the other hand, can still reconstruct the contour of the

targets under very low sampling rate. This interesting result indicates that the FT-CS

method is more robust to random under-sampling than the D-CS method.

4.4.3.2 Quantitative Results

While Figure 4.6 only considers reconstructions with certain under-sampling masks, Fig-

ure 4.7 quantitatively summarizes the effect of random under-sampling on the MSEs of

reconstructed images of different methods. Since the D-CS method fails to reconstruct

images with 3λ/4 element spacing, Figure 4.7 only shows the result based on element
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Figure 4.7: MSE trend of three methods with element spacing of λ/2 and λ/4.
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Figure 4.8: MSE of the target area for the BP, FT-CS and three D-CS meth-
ods.

spacing of λ/2 and λ/4. For the ease of annotation, we use H81 and I161 in the leg-

end to indicate the switched array has 81 × 81 elements (λ/4 sampling interval) and

the reconstructed image has 161 × 161 pixels (λ/8 grid spacing). The MSE of each

method is calculated with respect to its own full sampling rate result and is averaged

over the results of 40 independent trials for each sampling rate. An MSE curve with slow
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variation against sampling rate means the corresponding method is robust to random

under-sampling. Clearly, FT-CS achieves the best robustness in both element spacing

cases which agrees with our qualitative results. More importantly, each method behaves

distinctly in two element spacing cases. The MSE of the D-CS method starts to vary

intensively when the sampling rate is below 50% in λ/2 element spacing case but a sim-

ilar variation only happens under 20% sampling rate in the λ/4 element spacing case.

On the contrary, the BP and FT-CS methods have relatively small differences in the two

cases. This indicates the D-CS method is very susceptible to the element spacing or uni-

form under-sampling interval. Increasing the number of measurements is recommended

for stable reconstruction.

However, it is not quite straightforward to compare the image quality among different

methods since different regularization parameters of CS algorithm result in distinct levels

of estimation error and thus render the total MSE ineffective to represent the true quality

of the reconstruction. Therefore, we calculate the MSE of the target area (ignoring the

background) with respect to the ground truth. Figure 4.8 compares the target MSE of

three methods based on λ/2 element spacing. The D-CS method achieves the lowest error

with high sampling rate beyond 45% while the FT-CS method performs better with low

sampling rate. The improvement of the FT-CS method becomes less effective with very

high sampling rate, which indicates the FT-CS method is more like a denosing technique

based on the BP method. For D-CS methods with different grid sizes, a threshold point

can be observed at 60% sampling rate. A smaller grid size achieves lower reconstruction

error with the sampling rate higher than this threshold, but suffers from insufficient

number of measurements compared to a larger grid size setting when the sampling rate

is below this threshold. As the sampling rate goes below 35%, the randomness of D-CS

methods start to dominate and the errors become even larger than the BP method.
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Table 4-A: Complexity Comparison of D-CS Methods

Configuration Computing time (s) Loading time (s) Storage
M = 41, N = 81 15.03 1.67 72 MB
M = 41, N = 121 33.61 3.84 221 MB
M = 81, N = 121 140.67 17.28 1.04 GB
M = 81, N = 161 224.36 27.12 1.37 GB
M = 134, N = 134 1.45× 103 88.65 2.94 GB
M = 134, N = 178 4.58× 103 717.72 8.23 GB

4.4.4 Computational Complexity

In this subsection, we consider the computational complexities of the aforementioned

methods. It should be noted that the code for all three methods are not optimized for

speed. Apparently, the BP method is the fastest as CS based methods need multiple

iterations until they reach the convergence. Additionally, the FT-CS method is more

computationally efficient than the D-CS method due to the adoption of the FFT algo-

rithm. Since both CS methods use the same reconstruction algorithm, we can evaluate

their complexity by simply comparing their models. Suppose the full switched array is of

size M ×M elements, the number of actually sampled points is K, the discretization of

D-CS method is N ×N . The D-CS model in (4.6) consists of two matrix multiplication

thus has time complexity of order O(KM2N2 + KN2). If we keep M fixed, then the

number of grid points N contributes most to the time complexity while the number of

sampled points K has less contribution. For the FT-CS model in (4.10), it includes two

2-D FFT/IFFT operations and two element-wise matrix multiplication. Considering the

O(M logM) complexity of 1-D FFT and O(M2) complexity of element-wise matrix mul-

tiplication, the total time complexity is then about O(2M2+4M2 logM) for the FT-CS

method. Since the grid size of target plane is usually set to be finer than the sampling

interval (N > M), the D-CS method will always has much higher time complexity than

the FT-CS method.

As the time complexity quantifies the amount of time that one algorithm needs to

run, the space complexity is a measure of the amount of working storage an algorithm

needs. The space complexity of the D-CS method mainly comes from the system response
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Figure 4.9: Averaged running time of different methods versus random under-
sampling.

matrix H which contains the distance information from all pixels (voxels for 3-D case)

in the target area to all sampling points in the aperture plane. According to (4.4), an

M×M scanning aperture with N×N grid points will lead to an M2×N2 complex-valued

H. As the BP and FT-CS methods do not need to compute such response matrix, their

space complexities can be neglected. Table 4-A gives the computing time, loading time

and required storage of H based on different scanning apertures and grid sizes. Note the

data processed in Matlab is set as double precision. The constructing time and loading

time of the D-CS method is non-negligible since the target distance might be unknown

and real-time calculation of H is inevitable. While it is quite normal for any practical

security imaging system to deal with sampling aperture as large as 1 m× 1 m, the D-CS

method will be incredibly slow in such cases.

To verify the above analysis, we evaluate the overall algorithm running time of each

method against the sampling rate as shown in Figure 4.9. The test data has 81×81 array

elements with 81×81 and 121×121 grid sizes adopted for the D-CS method. The running

times are averaged over the results of 10 independent trials for each sampling rate. The

dark colored curves show the superiority of FT based methods over D-CS methods. For

example, the D-CS method with N = 121 has a running time nearly 50 times of the
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(a) (b)

(c) (d)

Figure 4.10: Reconstruction results of two point scatterers at (±0.9, 0) by (a)
BP with 100% data, (b) BP with 50% data, (c) FT-CS with 100%
data and (d) FT-CS with 50% data.

FT-CS method when the sampling rate is 50%. Further, the blue dashed curves give

a better illustration of the FT-CS method and the BP method with a smaller scale.

Both methods have little variation in running time as sampling rate increases. However,

for D-CS methods, the variation becomes more obvious when N gets bigger. This is

expected as the number of grid points contributes more to the time complexity.
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Figure 4.11: One-dimensional cut of BP and FT-CS methods for point scat-
terers at (±0.9, 0).

4.4.5 Resolution

One of the most important properties of an imaging system is probably its resolving

power. However, most of the existing literature overlooked the effect of CS methods on

the resolving power of the imaging system. The question arises whether CS methods

can break the resolution limit and what are the factors determine the resolution. In this

subsection, we study the spatial resolution of CS based methods and try to answer these

questions. Therefore, we set up several synthetic point targets for resolution test. As

the target scene is already sparse in the spatial domain, we adopt the ℓ1 norm instead

of the TV norm.

Without loss of generality, the unit of the dimension is set as one wavelength. The

simulation parameters are set as follows: scanning aperture Lx = Ly = 20, transceiver

to target distance z0 = 50 and antenna element spacing is kept at 0.5. We first consider

two point scatterers located at (±0.9, 0). Figs. 4.10(a) gives an example of image recon-

struction by the conventional BP method with full sampled data. Due to the resolution

limitation, the two point scatterers in the reconstruction can not be distinguished from

each other. Sidelobes of the two scatterers are also clearly visible. Then, Figure 4.10(b)
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(a) (b)

Figure 4.12: Reconstruction results of two point scatterers at (±0.9, 0) by (a)
D-CS with 50% data and (b) D-CS with 10% data.

shows the results with only 50% random data. We can notice slightly distortion in the

center area and the background is filled with noise-like speckles. When the BP method

is combined with CS technique, as shown in Figure 4.10(c) and Figure 4.10(d), two

point scatterers can be clearly observed in the center, with perfectly clean background.

However, the under-sampled one shows weakened reflectivity on the right scatterer and

its position is slightly shifted to the left. To better understand this, we plot the one-

dimensional cut of Figure 4.10 at y = 0. From Figure 4.11, we can easily notice that

methods with full data correctly reconstruct the two scatterers while the under-sampled

methods failed to reconstruct the right scatterer at (0.9, 0). If we focus on the two

under-sampled methods, we can find the red dashed curve (FT-CS method) is actually

a shrank version of the blue solid curve (BP method), but with lower dip between the

two peaks. It seems that the FT-CS method inherited the displacement error from the

under-sampled BP method. This is comprehensible considering that each iteration of

the FT-CS method is based on the FT and IFT operations. From the very begining, the

sparsity constraint is actually enforced to the under-sampled BP reconstruction. This

result indicates that the performance of the FT-CS method is highly dependant on the

BP reconstruction, which also means the FT-CS method might not be able correct the

distortion if it comes from the BP reconstruction.
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Recall that the difference between D-CS methods and FT-CS methods lies in the

choice of the forward operator. D-CS methods simply discretize the accurate forward

process into a matrix form and avoids the inaccurate FT operations. In this case, we

expect the D-CS method to achieve better reconstruction than the FT-CS method. Here,

we set the grid spacing of the (region of interest) ROI is as 0.2, which is smaller than

the 0.5 sampling interval. Figure 4.12(a) and Figure 4.12(b) demonstrate the D-CS

reconstruction with 50% data and 10% data, respectively. No visible difference can be

observed from the two figures, which suggests the D-CS method does not suffer from

the same issue like the FT-CS method does. Moerover, as the grid spacing of the D-CS

method is much smaller than the FT-CS method, the reconstructed two scatterers are

more focused in the center, showing definitely better resolving power.

So far, we have learned that both CS methods are capable of increasing the resolving

power of the imaging system. However, when sufficient measurements are guaranteed,

the D-CS method is more reliable than the FT-CS method in faithfully reconstructing

the target scene. To better understand the resolving power of the D-CS method, we

consider if the size of the ROI can affect the resolving power. Therefore we simulate a

half-wavelength spaced array with the aperture size Lx = Ly = 6 and the target plane

at z0 = 50. The resolution is around 2 for traditional methods. Two point scatterers

with 1 spacing are tested for three different sizes of ROI denoted by LROI = 20, 12

and 4, respectively. It is important to note that the optimal regularization parameter

can be affected by random under-sampling, size of the aperture, element spacing, target

sparsity, size of the ROI, grid spacing and so on. Here, we set two examples that focus

on the ROI, with one keeps all ROIs have the same number of pixels in the target scene

while the other keeps all grid spacings the same.

In the first example, the number of pixels for all cases are fixed at 81 × 81. The

corresponding grid spacings are 0.25, 0.15 and 0.05, respectively. The regularization

parameter for each case is optimized to achieve best reconstruction. Figure 4.13 shows

the reconstruction comparison when full sampled data is used. All three schemes can



Chapter 4. Compressive Sensing for Switched Array Imaging 74

(a) (b)

(c)

-10 -5 0 5 10

x/

0

0.2

0.4

0.6

0.8

1
In

te
ns

ity
L

ROI
=20

L
ROI

=12

L
ROI

=4

(d)

Figure 4.13: Reconstruction results of two point scatterers at (±0.5, 0) with
(a) LROI = 20, (b) LROI = 12 and (c) LROI = 4. (d) One-
dimensional reconstruction at y = 0.

resolve the two point scatterers and the 1-D cut comparison shows similar resolving

power. However, according to our test, when the data is randomly undersampled and

the regularization parameters are fixed (same as in the full sampling), the larger the

ROI is, the more likely the reconstruction will fail to resolve the targets. It is interesting

to point out that by increasing the aperture size or the scatterers’ spacing, the need

for frequently calibration of the regularization parameters can be alleviated. This result

indicates that to achieve very fine resolution, the regularization parameters should be

carefully calibrated and smaller ROI require less tuning of the parameters.
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Figure 4.14: Reconstruction results of two point scatterers at (±0.5, 0) with
(a) LROI = 20, (b) LROI = 12 and (c) LROI = 4. (d) One-
dimensional reconstruction at y = 0.

In the second example, the grid spacings are fixed 0.25. The corresponding discretiza-

tions for each case are 81 × 81, 49 × 49 and 17 × 17, respectively. Figure 4.14 shows the

reconstruction comparison when full sampled data is used. Similarly, all three schemes

can resolve the two point scatterers. However, in comparison to the first example, the

curves as shown in Figure 4.14(d) overlapped on each other. This interesting difference

is because in the first example, due to the same number of pixels but different sizes of

ROI, the grid and the targets are not perfectly aligned. Then by using random under-

sampling and keep the regularization parameters fixed, we observe similar phenomenon

like the first example.
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Figure 4.15: System setup: (a) measuring equipments, (b) two identical tar-
gets with metallic stripes, (c) NSI scanner and (d) measuring
equipments with an attenuator.

From the above two examples, we cannot say the size of the ROI will make much

difference to the resolution but we can conclude that it is easier to calibrate the regu-

larization parameters with a smaller ROI. It should also be noted that as the scanning

aperture is a square, the resolution in both x and y dimensions should be identical in

theory. Therefore, the aforementioned conclusions in this subsection also apply to the

case where points scatterers are aligned parallel to the y axis. However, these figures are

not shown here such that this chapter can be more concise.
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4.5 Experimental Results

To make the simulation results more solid, we conducted several experiments in the

antenna lab of Queen Mary University of London (QMUL) which located in the basement

of the Engineering building. In Figure 4.15(a), two corrugated conical horn antennas

with frequency multipliers are connected to a vector network analyzer (VNA) to work

as transmitter and receiver, respectively. The VNA is an Agilent N5244A PNA-X with

a maximum frequency of 43.5 GHz. The original signals are then extended to 100 GHz

by the 75-110 GHz frequency multiplier. Both horn antennas have a flare angle of 15◦.

Our targets are two wooden plates wrapped with metallic stripes as shown in Figure

4.15(b), with a distance of 1.6 m to the transmitter plane. As it is not easy to do raster

scan with the bulky frequency multipliers, the measuring equipments are kept still while

the target is mounted on an NSI xyz scanner as shown in Figure 4.15(c). The scanning

region is confined in an area of 400 mm × 400 mm. According to (4.2), the required

Nyquist sampling interval is approximately 1.9λ. Here, we adopt 2.25λ, 3λ and 3.75λ

sampling interval (element spacing) for comparison. The grid spacing of the target plane

is fixed at λ. Figure 4.16 shows results of the D-CS, FT-CS and BP methods under

different sampling rates. Similar to the simulation results, the D-CS method can achieve

better resolution than the FT-CS method but has serious ghost image problem in the

reconstruction under approximately twice the Nyquist sampling interval. The FT-CS

method is more robust to highly random under-sampling which can be very useful when

fast scanning is needed. Both two CS methods perform better than the BP method with

reasonable sampling intervals.

To investigate the robustness of CS methods over different transmitting power, we

manually reduce the power by connecting an attenuator between the transmitting antenna

and the frequency multiplier, as shown in Figure 4.15(d). The original 5-10 dBm trans-

mitting power is attenuated by 25 dB, 35 dB, 45 dB and 50 dB. Two random under-

sampling masks of 100% sampling rate and 60% sampling rate are tested with data under
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Figure 4.16: Experimental results showing the reconstruction quality of three
methods based on element spacing of (a) 2.25λ, (b) 3λ and (c)
3.75λ.

2λ uniform sampling interval. From Figure 4.17, we can see the number of speckles begin

to increase as the attenuation increases. CS based methods show a good noise reduction

over the BP method. Particularly, the FT-CS method is the most robust to the imag-

ing system with low transmitting power. The comparison between Figure 4.17(a) and

Figure 4.17(b) indicates more measurements can help produce a better image under low
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Figure 4.17: Experimental results showing the effect of transmitting power of
three methods with different sampling rates. (a) 100% sampling
rate (full sampling). (b) 60% sampling rate.

transmitting power.

4.6 Summary

In this chapter, compressive switched array imaging techniques have been thoroughly

studied. The D-CS method was compared with the FT-CS method and the conventional
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BP method. For the optimal reconstruction of CS methods, sparsity constraint and

regularization parameter should be carefully calibrated with respect to different under-

sampling rates and targets. When the data is randomly under-sampled to save scanning

time, CS based methods outperforms the BP method with better image reconstruction

and higher resolving power. Particularly, for practical antenna array imaging systems

where element spacing does not satisfy the Nyquist criterion, D-CS methods achieve

better resolution than other methods at the cost of much higher computational com-

plexity. However, it should be noted that D-CS methods start to show ghost targets in

reconstruction when the element spacing is too large. On the other hand, the FT-CS

method are more stable than D-CS methods in the case of large element spacing, low

number of measurements and low transmit power.

In regards to the objective mentioned in the beginning of this chapter, we can finally

conclude that, for a practical switched array imaging system, the FT-CS and D-CS meth-

ods are complementary techniques that can be used together for optimized efficiency and

image reconstruction. More specifically, the FT-CS method can be used to significantly

reduce number of samples for a fast but coarse view of the scene. The D-CS method can

be later used for higher resolution in the ROI if necessary.
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Chapter 5

Compressive Sensing for Phased

Array Imaging

5.1 Introduction

Signal-to-noise ratio (SNR) is a critical parameter in radar system which essentially

describes the difference between the desired signal and the unwanted noise. If the ampli-

tude of the noise approaches that of the transmitted or received signal, loss of accuracy

will be observed in reconstruction due to distortion of the reflected signal as it does not

reveal the true target information. While it is intuitive to increase the transmitted power

to assure the noise does not become dominant, there are also other ways to alleviate the

noise issue, e.g., use high-gain antennas or low-noise amplifiers. Reflector antenna is one

of the high-gain antennas that has been successfully introduced to security imaging [1–

3]. A common reflector antenna system consists of a feeding antenna or a feeding array

and a reflecting surface, commonly in parabolic shape. The feeding antenna is directed

towards the reflector such that its relatively wide beam can be collimated to generate

a narrow beam in the direction of reflection. Reflector antennas provide a relatively

low-cost and straightforward solution for achieving high antenna gain. Their downside

83
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is that beam-steering can only be achieved by the use of mechanical rotator, which is

usually slow in scanning.

On the other hand, phased array antennas provide electronic flexibility in exciting

the elements, allowing for reconfiguration and scanning of the beam pattern in real time.

The gain of a phased array antenna is increased in a way that its main beam is focused

in one particular direction while the sidelobes are suppressed in undesired directions. By

electronically steering the main beam towards desired target region, the imaging system

greatly maximizes its SNR [4] and hence we expect the image reconstruction will be

more robust to background noise.

This chapter presents the CS method for phased array imaging. A general 3-D array

imaging model has been derived in Section 5.2. Section 5.3 presents the compressive

phased array imaging method together with numerical analysis. In Section 5.4, a near-

field focusing technique is integrated into the compressive phased array imaging method

to offer better imaging quality for near-field applications. The conclusions are given in

Section 5.5.

5.2 Phased Array Forward Imaging Model

The 3-D imaging model shown in Figure 5.1 is interpreted in the dimension of range

and cross-range. The range (z) is the direction of wave propagation and the cross-range

(x or y) is the direction parallel to the array aperture. A 2-D planar array is located

in the x-y plane with its center in the origin. All elements are evenly spaced in both

x and y dimensions. The amplitude and phase of the elements across the array are

adjusted so that the main beam of the radiation pattern is directed towards a specified

direction. By continuously illuminating the target region with directional beams of

different elevation angle θ and azimuth angle ϕ, where θ ∈ [0, π/2] and ϕ ∈ [0, 2π), the

reflectivity information of the target region can be reconstructed from the reflected data.



Chapter 5. Compressive Sensing for Phased Array Imaging 85

z

y

x
i

x,y,z

i xi,yi,zi

j xj,yj,zj

i

j

j

Figure 5.1: Three-dimensional imaging using 2-D phased array and wideband
signals. By assigning appropriate weights to each element, the
main beam of the array is focused in the direction of (θ, ϕ) while
the sidelobes are suppressed in the undesired directions.

Assuming an observing point r = (x, y, z) is at the far field of an antenna element,

the electric field radiated from the i-th antenna at ri = (xi, yi, zi) can be written as [5]

Ei(r, k) = Pi(r)
exp(−jk|r− ri|)

|r− ri|
, (5.1)

where Pi(r) is the element pattern, k = 2πf/c is the wavenumber at frequency f and

|r−ri| =
√
(x− xi)2 + (y − yi)2 + (z − zi)2 is the distance between r and ri. In general,

it is assumed that all element patterns are the same. Assuming the mutual coupling

effects among elements can be neglected, the total transmitted electric field can be

calculated by the superposition of all elements

ET(r, k) = P (r)
∑
i

Wi
exp(−jk|r− ri|)

|r− ri|
. (5.2)

The coefficient Wi = |Wi| exp(−jΨi) is the complex weight with amplitude |Wi| and

phase Ψi added to the ith element. In order to steer the antenna beam in a certain
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direction, e.g., (θ, ϕ), the phase term has to be in the form of [5]

Ψi = kr̂0 · ri, (5.3)

where r̂0 = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ is the unit vector in the direction of (θ, ϕ).

By substituting (5.3) into (5.2) and neglecting the amplitude term, we get the total field

when beam is steered towards (θ, ϕ)

ET(r, k, θ, ϕ) = P (r)
∑
i

exp[−jk(r̂0 · ri + |r− ri|)]
|r− ri|

. (5.4)

According to the reciprocity theorem, the transmit and receive properties of an

antenna are identical. Therefore, each element in the phased array shares the same

pattern and phase delay in both transmitting and receiving modes. Assuming there is a

point scatterer at the observing point r = (x, y, z) with frequency independent reflectiv-

ity g(r). The reflected electric field received by the j-th antenna at rj = (xj , yj , zj) can

be denoted as

Ej(r, k, θ, ϕ) = P (r)g(r)ET(r, k, θ, ϕ)
exp[−jk(r̂0 · rj + |r− rj |)]

|r− rj |
. (5.5)

Similarly, by summing the electric field of all receiving elements and combining (5.4),

the total received field of the phased array due to a point scatterer at r can be written

as

ER(r, k, θ, ϕ) = P (r)2g(r)
∑
i

∑
j

exp[−jk(r̂0 · ri + |r− ri|+ r̂0 · rj + |r− rj |)]
|r− ri||r− rj |

. (5.6)

Under the assumption of the BA, i.e., neglecting any mutual interaction between the

targets, the total reflected field from all scatterers can be expressed as

s(k, θ, ϕ) =

∫∫∫
V

ER(r, k, θ, ϕ) dx dy dz, (5.7)



Chapter 5. Compressive Sensing for Phased Array Imaging 87

where V represents the 3-D volume of the target region.

It is worth noting that although we assume using transceiver module based array, the

above forward model is also applicable to other phased array configurations, e.g., digital

beamforming receiver array case can just ignore the transmitter beamforming in (5.2).

Moreover, by assigning random complex weight Wi to each antenna, the forward model

can be used for arrays with arbitrary radiation patterns. Since the far field assumption

in (5.1) is based on a single antenna and the near field region of an array is usually much

farther than it is of a single antenna, the forward model is still effective in the near field

region.

The term P (r) in (5.6), which is also called the element factor, plays an important

role in the beamforming performance. In the case of using isotropic antenna which has

the same intensity of radiation in all directions, the P (r) term can be dropped in the

above equations. By doing so and rewriting the vectors as in the Cartesian coordinates,

(5.6) becomes identical to those in [6] (2-D in range and cross-range) and [7] (2-D in cross-

range). Without loss of generality, we also adopt this isotropic antenna assumption in

the following discussions.

The forward model in (5.7) describes how electromagnetic waves interact with targets.

Our goal is to reconstruct the reflectivity function g(r) from the received data. To avoid

missing vital information, the angles ϕ and θ should be chosen to cover the complete

target region. The sampling intervals in both angle and frequency domains should follow

the Nyquist theorem to avoid aliasing. In conventional FT inversion techniques [6, 7],

the term exp(−jk|r − ri|)/|r − ri| and exp(−jk|r − rj |)/|r − rj | are first decomposed

into integrals over wavenumber domain and then processed with inverse FT algorithms.

As the inverse FT requires uniformly spaced data in (kx, ky, kz) domain, the received

data which is uniformly spaced in (k, θ, ϕ) domain needs to be interpolated according to

dispersion relations. There are drawbacks in this process though. Firstly, by utilizing

the Fourier decomposition, the FT method is actually trying to solve an approximated

model of (5.7). In other words, the FT solution is only an approximation to the true
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reflectivity. Secondly, the accuracy of interpolation from (k, θ, ϕ) domain to (kx, ky, kz)

domain is highly dependent on the choice of interpolation techniques. Owing to the

approximation nature of interpolation, the inaccuracy of this process cannot be avoided.

In the next section, we will show the proposed CS method can overcome both issues.

5.3 Compressive Sensing Implementation to Phased Array

5.3.1 CS Forward Imaging Model

We first rewrite the vectors in (5.7) into coordinates form. Suppose Ntx×Nty is the num-

ber of antennas in the transmitting aperture and Nrx×Nry is the number of antennas in

the receiving aperture. As the array is 2-D, we denote by (a(i), b(j)) the x-y coordinates

of the (i, j)-th element in the transmitting array and (u(i), v(j)) the x-y coordinates of

the (i, j)-th element in the receiving array. Thus, (5.7) can be rewritten as

s(k, θ, ϕ) =

∫∫∫
V

Ntx∑
m1=1

Nty∑
m2=1

Nrx∑
n1=1

Nry∑
n2=1

g(x, y, z)C(a(m1), b(m2), x, y, z, k)

× C(u(n1), v(n2), x, y, z, k) exp[−j(Ψ(a(m1), b(m2), k, θ, ϕ)

+ Ψ(u(m1), v(m2), k, θ, ϕ))] dx dy dz, (5.8)

where

C(x0, y0, x, y, z, k) =
exp(−jk

√
(x− x0)2 + (y − y0)2 + (z − 0)2)√

(x− x0)2 + (y − y0)2 + (z − 0)2
(5.9)

and

Ψ(x0, y0, k, θ, ϕ) = k(x0 sin θ cosϕ+ y0 sin θ sinϕ). (5.10)

In order to apply CS algorithms, the target region needs to be discretized and (5.8)

should be reformulated into the following matrix multiplication form

s = Hg, (5.11)
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where s and g are the vector versions of s(k, θ, ϕ) and g(x, y, z), respectively. H is the

system response matrix and can be treated as the sensing matrix with full sampling

rate from the perspective of CS theory. More specifically, suppose the 3-D target region

V can be discretized into P×Q×R voxels and we denote by I, J and K the number

of frequency points, azimuth angles and elevation angles used during data acquisition.

Then (5.11) can be rewritten as


s(1)

...

s(IJK)

 =


H1,1 . . . H1,PQR

... . . . ...

HIJK,1 · · · HIJK,PQR




g(1)

...

g(PQR)

 , (5.12)

where element Hi,j is determined by the summation in (5.8) with certain k, θ, ϕ and

voxel coordinates. Specifically, the i-th column of H is related to the coordinates of the i-

th voxel in g. Each row of H is related to specific values of k, θ and ϕ. These parameters

are of vital importance in determining the quality of CS reconstruction, which will be

discussed in the next section.

5.3.2 Reconstruction Algorithms

In conventional FT methods, the sampling intervals have to satisfy the Nyquist theorem

to avoid aliasing. With CS theory, we are able to break this restriction by randomly

undersampling in the θ, ϕ and k domains. Mathematically, this is realized by randomly

selecting a set of rows in H. Let y be the undersampled data and A the row selection

matrix, the final CS model can be written as

y = AHg. (5.13)
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As (5.13) is an underdetermined system, it has infinite solutions. CS theory offers an

alternative way to solve this by enforcing a sparsity constraint on the solution:

min
g

∥g∥0 s.t. y = AHg, (5.14)

where ∥g∥0 is the number of nonzeros of vector g. Unfortunately, (5.14) is computation-

ally difficult to solve. A more general approach is to relax the ℓ0 norm to ℓ1 norm:

min
g

∥g∥1 s.t. y = AHg, (5.15)

where ∥g∥1 =
∑

i |gi| is the ℓ1 norm of vector g. This minimization problem is the

known Basis Pursuit (BP) we introduced in Chapter 3. Considering the imaging system

is always accompanied with noise, we use the more realistic Basis Pursuit Denoising

(BPDN) [8] to solve (5.15):

min
g

∥g∥1 s.t. ∥AHg − y∥22 ≤ ϵ, (5.16)

where ϵ is a nonnegative real parameter that defines the noise level. There are many

algorithms available to solve the above ℓ1 minimization. We adopt the same TwIST

algorithm which used in Chapter 4. The final Lagrangian relaxed minimization problem

can be expressed as:

ĝ = argmin
g

1

2
∥AHg − y∥22 + λ∥g∥1, (5.17)

where λ is the regularization parameter which controls the tradeoff between the sparsity

of the solution and its closeness to the least squares solution.

The key requirement to ensure the solution to both (5.14) and (5.15) will coincide is

the sensing matrix Φ = AH has to satisfy the RIP [9]. It has been proven that certain

matrices satisfy the RIP with high probability, e.g., random Gaussian and Bernoulli

matrices. However, in our case, the sensing matrix does not follow a certain statistical

characteristics, which makes it very challenging to prove its RIP conditions. Fortunately,
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the mutual coherence [10] is an alternative measure of the system ability to accurately

reconstruct a signal. This metric was empirically shown to be proportional to MSE

values for reconstructions [11]. Generally, a sensing configuration that has lower mutual

coherence in Φ gives lower MSE in reconstruction. Although simple in formulation, this

mutual coherence metric is sometimes too conservative for imaging applications. This

is due to the fact that there might be some similar columns in Φ, which can unfairly

dominate the mutual coherence. To address this issue, researchers have proposed average

mutual coherence [12], t-average mutual coherence [13] and t%-average mutual coherence

[14]. The t%-average mutual coherence is defined as:

µt%(Φ) =

∑
i ̸=j gijσij∑
i ̸=j σij

, σij =


1, gij ∈ Et%

0, otherwise,
(5.18)

where E% is the set of t% percent of the largest column cross-correlations gij . This metric

mitigates the outlier issue and hence is better suited as an indication of the reconstruction

performance.

As has been shown in Chapter 4, both TV and ℓ1 norms can be adopted depending on

the target type. When the target region is dominated by few point scatterers, e.g., some

SAR imaging applications, the ℓ1 norm as shown in (5.26) is already enough to exploit

the image sparsity. On the other hand, when the target region is much more complicated

or the image scene is no longer sparse in the spatial domain, e.g., security imaging for

concealed weapon detection, sparsity transformations like TV [15] are usually added to

promote the image sparsity.

5.3.3 Numerical Investigations and Analysis

To examine the effectiveness of the proposed method, we first demonstrate image recon-

struction in 3-D space. The imaging capabilities are then thoroughly studied for 2-D

imaging with both qualitative and quantitative results.



Chapter 5. Compressive Sensing for Phased Array Imaging 92

(a) (b)

Figure 5.2: Three-dimensional reconstruction of 6 point scatterers. (a)
Ground truth of the target scene. (b) Reconstruction by the pro-
posed method.

5.3.3.1 Imaging of 3-D Scene

The simulation is carried out in the MMW frequency band centered at 60 GHz. We

assume 20 GHz bandwidth for high range resolution. The length of the array is 6 cm

in both x and y dimensions with element spacing fixed at the half of the wavelength of

the highest frequency, that is, 2.1 mm. It is worth noting that half-wavelength spacing

may violate the Nyquist sampling requirement, but it is chosen so for two reasons.

Firstly, element spacing smaller than half-wavelength can be challenging in engineering

realization. Secondly, mutual coupling of antenna elements becomes a big issue with

closely spaced elements. The resulting array geometry consists of 29 elements in each

dimension and 841 elements in total. Elevation angle and azimuth angle are varied within

the interval of [0◦, 8◦] and [0, 360◦), respectively, to cover the target region. During data

acquisition, 20 frequency points, 15 azimuth angles and 15 elevation angles, all evenly

spaced, are deployed to illuminate the target area.

The 3-D target scene, shown in Figure 5.2(a), is 45 cm away from the aperture with

dimension of 10 cm×10 cm×10 cm. We consider 6 point scatterers in the target region,

each with unit reflectivity. The coordinates of the 6 targets are (±2,−2, 48), (±2, 0, 50)
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and (±2, 2, 52). Equation (5.8) is adopted to calculate the reflected fields in simulation.

In CS implementation, for the ease of computation, we discretize the target scene into

41×41×41 voxels. It should be noted that the selected sampling intervals in frequency

and spatial domain already violate the Nyquist criteria according to [6]. Figure 5.2(b)

gives the reconstruction result of using only 10% random samples of the undersampled

20×15×15 measurements. As clearly shown, all 6 targets have been correctly recon-

structed by the proposed method.

5.3.3.2 Imaging of 2-D Scene

Compared to the 2-D imaging, the 3-D case is computationally more expensive and

requires higher memory usage. The construction of the H matrix can be extremely

time-consuming when fine grid spacing is adopted. For these reasons, we concentrate

our analysis on the 2-D imaging in cross-range (x) and range (z) dimensions, in a similar

fashion to the 2-D SAR imaging. Because the missing y-dimension is the same as the

x-dimension, the results in the 2-D case can be easily scaled to the 3-D case with suitable

computational powers.

In the 2-D case, the azimuth angle ϕ is fixed at 0◦ or 180◦, hence equation (5.10)

can be simplified to Ψ(x0, k, θ, ϕ) = kx0 sin θ cosϕ. We assume a linear array of length

8 cm (40 elements) is centered at the origin along the x axis. One hundred equally

spaced elevation angles are scanned from 0◦ to 24◦. The bandwidth is still 20 GHz

but 40 frequency points are used in this case. The reconstructed area is extended to

30 cm in both range and cross-range dimensions. A finer discretization of 121×121

pixels is adopted. We consider 9×9 equally spaced point scatterers with an interval of

2.5 cm. Figure 5.3(a) and Figure 5.3(b) represent the reconstruction results of the FT

method [6, 16] with 40% data and 100% data, respectively. Both figures are very blurry

and the reconstructed targets are barely identifiable. Moreover, just like the case in

the switched array imaging, Figure 5.3(a) exhibits more noise in the background due

to undersampling. In contrast, as shown in Figure 5.3(c), the CS method accurately
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Figure 5.3: Reconstruction results of point scatterers by (a) FT method with
40% data, (b) FT method with 100% data and (c) CS method with
40% data. (d) Averaged MSE of the CS method as a function of
sampling rate.

reconstructed all targets and is free from background noise.

Given a sensing configuration, the minimum required number of measurements for

accurate reconstruction is determined by the sparsity of the target scene. Generally, the

sparser the target scene is, the fewer measurements are required. Figure 5.3(d) quanti-

tatively summarizes the reconstruction quality of the proposed method as a function of

undersampling rate. Note the MSE is averaged over the results of 50 independent trials

for each sampling rate. It can be observed that the curve gradually becomes flat as the

sampling rate reaches 30%, which indicates the minimum required number of measure-

ments for this case is around 30% of the full measurements. Increasing the number of
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Figure 5.4: Two-dimensional reconstruction of double-point scatterers at
(0, 0, 50 ± 0.175) and (0,±1, 0). (a and c) CS method with 10%
data. (b and d) FT method with 100% data.

measurements after the 30% threshold is a waste of time as no obvious improvement can

be observed. In most practical situations, the target scene can be much more compli-

cated. Therefore, it is of great importance to obtain empirically the minimum required

number of measurements such that the data acquisition time can be maximally reduced.

The resolution of FT methods is determined by the data coverage in the wavenumber

domain [6]. It is of interest to establish whether the CS method has the same limitation.

Therefore, we employ several sets of closely spaced double-point scatterers for test. The

CS reconstruction based on 10% data is compared to full data reconstruction of the FT
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method. Reconstructed reflectivity is normalized to [0, 1] for the ease of comparison. In

the first example, two scatterers with a spacing of 0.35 cm are centered along the range

direction. The two targets can be clearly identified in Figure 5.4(a) while only one single

peak is shown in Figure 5.4(b). In a similar manner, the second example compares the

reconstructions of 2 cm apart point scatterers in the cross-range direction, as shown in

Figure 5.4(c) and Figure 5.4(d). The CS method again makes the two targets discernible.

To better analyze the resolving power of the proposed method, we define the resolution

of an imaging system as the distance between two targets when the intersection of the

two peaks is at the half power level. Figure 5.5(a) and Figure 5.5(b) demonstrate the

one-dimensional reconstruction intensity of two sets of double-point scatterers located at

(0, 0, 50± 0.17) and (0, 0, 50± 0.65), respectively. It can be observed the FT method has

a range resolution of 1.3 cm whereas the CS method has improved the resolution to 0.34

cm. Similarly, Figure 5.5(c) and Figure 5.5(d) show the cross-range direction case where

double-point scatterers are located at (0,±0.4, 0) and (0,±2.3, 0). The CS method again

has improved the resolution from 4.6 cm to 0.8 cm. Therefore, it can be concluded that

the CS method is able to outperform the resolution limit of the FT method in both the

range and cross-range directions.

One of the most important advantages of the phased array is the sharpened main

beam with suppressed sidelobes. The resulting high gain pattern greatly maximizes

the SNR of the imaging systems. To verify this, the imaging results are compared to

the results using the switched array scheme in various noise conditions. To do so, we

manually add independent and identically distributed (i.i.d.) Gaussian noise to each of

the receiving antennas before reconstruction. The noise is with mean zero and variance

σ2
n = σ2

g/(10
SNR/10), (5.19)

where σ2
g = (1/N)

∑N
i=1 |gi|2 is the average signal energy. The two imaging systems share

the same array configuration and target scene, i.e., same number of antennas in the same

aperture. The main difference is the data acquisition process, that is, the phased array



Chapter 5. Compressive Sensing for Phased Array Imaging 97

Range (cm)
45 50 55

In
te

ns
ity

0   

0.25

0.5 

0.75

1   
CS
FT

(a)

Range (cm)
45 50 55

In
te

ns
ity

0   

0.25

0.5 

0.75

1   
CS
FT

(b)

Cross range (cm)
-5 0 5

In
te

ns
ity

0   

0.25

0.5 

0.75

1   
CS
FT

(c)

Cross range (cm)
-5 0 5

In
te

ns
ity

0   

0.25

0.5 

0.75

1   

CS
FT

(d)

Figure 5.5: One-dimensional slice reconstruction of double-point scatterers at
(a) (0, 0, 50 ± 0.17), (b) (0, 0, 50 ± 0.65), (c) (0,±0.4, 0) and (d)
(0,±2.3, 0).

scheme varies the elevation angle while the switched array scheme sequentially switch on

and off the linear array (varies antenna locations). It should be noted that both schemes

have the same power generation, i.e., the transmitted power of each switched antenna

is the same as the total transmitted power of the phased array. The imaging forward

model of the switched array scheme is based on Chapter 4 by adding the attenuation

factor |r− ri|2 as

E(ri, k) =

∫∫∫
V

g(r)
exp(−j2k|r− ri|)

|r− ri|2
dx dy dz, (5.20)

where E(ri, k) stands for the received field at the i-th antenna in the array.
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(a) (b)

(c) (d)

Figure 5.6: CS reconstructions of different array configurations using the same
number of measurements. (a) Switched array and (b) phased array
with 20 dB SNR. (c) Switched array and (d) phased array with
-50 dB SNR.

In the algorithm implementation, we ensure the regularization parameter λ for both

schemes are adjusted appropriately so that the reconstructed results are optimized. For

fair comparison, the phased array scheme adopts the same number of samples as the

switched array scheme, which is 40% random measurements of the fully sampled switched

array scheme. Figure 5.6(a) and Figure 5.6(b) demonstrate the CS reconstruction based

on switched array scheme and phased array scheme, respectively, with 20 dB SNR.

Both schemes show good agreement in reconstruction. However, when the SNR level is

decreased to -50 dB, as shown in Figure 5.6(c) and Figure 5.6(d), the switched array

scheme fails to reconstruct the targets as the background is filled with speckles. In
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Figure 5.7: Averaged MSE comparison of switched array and phased array
schemes as a function of SNR.

contrast, the phased array scheme shows acceptable reconstruction with little background

noise. More specifically, Figure 5.7 depicts the averaged MSE of the two schemes as a

function of SNR from -70 dB to 30 dB. For each SNR value, 10 independent trials

are used to compare with the ground truth. It can be noticed that the phased array

scheme achieves much lower MSE than the switched array scheme in the low SNR cases.

However, this advantage gradually disappears as the SNR increases to 30 dB, which

indicates both schemes, when combined with CS theory, have very similar performance

when noise contribution is low.

5.3.3.3 Input Parameters and Coherence Analysis

As previously explained in section 5.2, mutual coherence of the sensing matrix is pro-

portional to the MSE values of reconstruction. In our phased array system, the sensing

matrix is determined by many factors like array aperture, scanning region, frequency

range and so on. With these parameters, we are more interested in designing a sens-

ing configuration such that high quality reconstruction can be achieved. Therefore, for

each realization of H, we measure its t%-average mutual coherence as a prediction of the

reconstruction quality. The parameter t is set as 0.5, which is shown to better agrees
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Figure 5.8: The t%-average mutual coherence as a function of (a) array dis-
tance, (b) array length (c) number of angles and (d) number of
frequency points.

with the MSE trend [14]. All simulations are based on the 2-D case for simplicity. Only

one parameter is varied at a time and other parameters are kept fixed to avoid interfer-

ence. The reconstruction region is fixed in a 30 cm×30 cm area with a discretization of

101×101 pixels.

We first vary the distance between the array aperture and the reconstruction region.

Forty frequency points and 80 angles are adopted for illumination. The array aperture

is of length 16 cm in cross-range dimension. Figure 5.8(a) shows the µ0.5%(H) increases

as the distance goes farther. This is expected because the distance difference among

adjacent pixels approaches zero as the distance approaches infinite. In other words,

the columns of H becomes less independent as the distance increases. Therefore, the
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compressive phased array technique is better-behaved in the close range of the array

aperture.

The array dimension is another important factor in the phased array system. For an

array of fixed element spacing, a larger array consists of more elements. Increasing the

number of elements further increases the directivity of the array, which results in more

distinct system responses from pixels that are far apart from one another in cross-range

direction. Figure 5.8(b) clearly interprets this relationship when 40 frequency points

and 100 angles are adopted for a reconstruction area from 35 cm to 65 cm. However,

increasing the array size is less effective when the length is greater than 20 cm.

Unlike the array length which is usually fixed in a given system, the range of fre-

quencies and scanning angles are more easily adjustable. Figure 5.8(c) and Figure 5.8(d)

represent the µ0.5%(H) variation as a function of the number of angles and frequency

points, respectively. Both curves show coherence reduction as the number increases. As

previously shown in Section 5.2, the number of rows of H is determined by the total

number of frequency points and angles used. Increasing the number of frequency points

or scanning angles increases the dimension of column vectors in H. With a fixed number

of columns in H, increasing column vector dimension provides more information and

hence make the columns more unique from one another. Then, similar to the array

length case, when the number of scanning angles or frequency points is increased to a

certain level, the µ0.5%(H) does not decrease anymore.

5.4 Compressive Phased Array Imaging with Near-field

Focusing

Many security imaging applications like personnel screening and standoff concealed

weapon detection are required to have short range sensing capabilities in the near-field

region. The corresponding reconstruction algorithm in the near-field differs from its far-
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field counterpart. This is because many assumptions made in the far-field no longer hold

true in the near-field. For monostatic and MIMO arrays, this can be easily overcome by

using Fourier transform based range migration algorithms [17]. However, for the phased

array system, this issue has rarely been mentioned in the literature. To the author’s best

knowledge, the FT based algorithm for near-field phased array has not been proposed

before. Although the CS method proposed in Section 5.2 is capable of both far-field and

near-field imaging, its performance in the near-field region will be impaired since the

beam might be unfocused or not well focused in the near-field region. This is because

the beam focusing of the forward imaging model is based on the assumption of far-field

approximation [5]. The electric power distribution in the near-field region can be much

smaller than that in the far-field region. Therefore, it is desirable to have an imaging

system such that its beams can be freely focused at any direction and any depth in the

near-field region.

Near-field focusing is a well-known technique that has been used in several areas such

as microwave hyperthermia and imaging in biomedical systems [18], as well as radio

frequency identification (RFID) for access control [19] and library book management

[20]. The main idea is to calibrate the phase of the radiating elements in such a way that

all their contributions sum in phase at a focal point in the near-field region. An ID card

can then be more easily identified in the near-field region than in the far-field region.

Considering that the phased array has dynamic control of each element, this near-field

focusing technique can be utilized in a way that the various focus points can cover

the whole ROI. Although this scheme seems feasible, conventional FT reconstruction

algorithms [6, 7] can not be directly applied here as the integral approximations no

longer hold true in the near-field region. Therefore, a new imaging algorithm which can

process the near-field focusing data is desperately needed to realize our goal.
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Figure 5.9: Phased array imaging system. Antenna main beam is steered
toward various directions to probe the target region.

5.4.1 Comparison of Far-field Focusing and Near-field Focusing

Figure 5.9 shows the phased array imaging system using 2-D planar array. The amplitude

and phase of each element are adjusted in the beamforming process. Assuming the

element antenna is isotropic, we rewrite the scattered field in (5.7) as

s(k, θ, ϕ) =

∫∫∫
V

g(x, y, z)
∑
i

∑
j

exp[−jk(Ri +Rj)]

RiRj
exp[−j(Ψi + Ψj)] dx dy dz,

(5.21)

where k is the wavenumber, g(x, y, z) is the reflectivity of the target at an observing

point (x, y, z), Ri is the distance from the i-th transmitting antenna to the observing

point and Rj is the distance from the the observing point to the j-th receiving antenna.

Ψi and Ψj stand for the assigned phases to the i-th and j-th antenna, respectively.

In the conventional phased array focusing mentioned in Section 5.2, the phase term

is given by [5]

Ψi = k(xi sin θ cosϕ+ yi sin θ sinϕ), (5.22)

where (xi, yi, 0) is the coordinate of the i-th element. The assigned phase can steer

the beam peak to the direction (θ, ϕ) is because the resulting two exponential terms in
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(5.21) can roughly cancel each other out in and only in that direction. Nonetheless, this

approximation is only effective in the far-field region, i.e, distance greater than 2L2/λ [5],

where λ is the wavelength. The resulting unfocused or less focused beams can degrade

the imaging performance for near-field applications.

Near-field focusing technique has often been used in antenna design for RFID gate

control [19]. This focusing method compensates the phase difference arising from wave

propagations so that the phases of each element are equal at a desired focusing point.

Consequently, the required phase of the i-th element to focus at a near-field point

(x0, y0, z0) is given by

Ψi = k(
√
x20 + y20 + z20 −

√
(x0 − xi)2 + (y0 − yi)2 + z20)). (5.23)

Figure 5.10 shows the focusing performance in terms of electric field distribution in

a near-field plane of the phased array. These values are normalized to their maximum.

Clearly, the focusing spot of the near-field method is much smaller than that of the

far-field method. More importantly, the maximum field density of the near-field method

is 7 dB greater than that of the far-field method. The sharpened beam and increased

field density is favorable for the proposed near-field imaging system. By adopting this

focusing method, we expect the imaging performance to be improved in the near-field

region.

During data acquisition, interrogating signals are required to illuminate the whole

target area. The traditional far-field focusing technique adopts equally spaced elevation

and azimuth angles in scanning. However, for near-field imaging applications, this will

result in many sampling points steered towards the center of the target plane and leads

to too much redundancy in the acquired data. Alternatively, we adopt the near-field

focusing technique and make sure full sampling points are evenly distributed in the

ROI. In comparison to the far-field focusing method, this scheme can focus at different

depths in the ROI and thus offers much more information in 3-D imaging applications.
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(a)

(b)

Figure 5.10: Simulated electric field distribution in the near-field region at a
distance of 15 cm from a 6 cm × 6 cm aperture in 60 GHz. (a)
Far-field focusing. (b) Near-field focusing.

Figure 5.11 gives an example of the sampling difference in the 2-D cross-range imaging

with the same number of sampling points. The blue dots in Figure 5.11(a) represent

the intersections of steered directions and the target plane, whereas the same blue dots

stand for near-field focusing points in Figure 5.11(b). As mentioned previously, existing

far-field FT imaging algorithms [6] are incapable of processing the data acquired by

the proposed near-field sampling scheme. Instead of deriving a near-field FT method
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Figure 5.11: Comparison of two sampling methods in 2-D cross-range imaging
case. Both methods have the same number of measurements. (a)
Intersection points of the angle steered beams and the target
plane. (b) Sampling points of the proposed near-field method on
the target plane.

algorithm, we integrate the CS theory in our sampling scheme, as will be demonstrated

in the next subsection.
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5.4.2 Compressive Sensing Implementation based on Near-field Focus-

ing Technique

In order to apply CS to the imaging model, the sampled data needs to be discretized

first. Let P , Q, M and N be the number of focused points, frequency points, elements

in the phased array and voxel points in the target region, respectively. The scattered

field that focused at the p-th point with the q-th frequency can be rewritten as

s(p, q) =
M∑
i=1

M∑
j=1

N∑
l=1

g(l)
exp[−j(k(q)(Ri +Rj) + Ψi +Ψj)]

RiRj
, (5.24)

where Ψi and Ψj are given by (5.23), g(l) is the reflectivity of the l-th voxel. Ri (Rj)

represents the distance from the i-th (j-th) antenna to the l-th voxel in the target region.

The matrix multiplication form of (5.24) can then be expressed as

s = Hg, (5.25)

where s is of dimension PQ× 1 and g is of dimension N × 1. H is the system response

matrix whose entries are determined by the exponential term in (5.24). With the CS

theory, the number of sampling points in the spatial domain and the frequency domain

can be greatly reduced while satisfactory reconstruction can still be achieved. Similarly,

we use matrix A as the undersampling operator. Let y be the undersampled data, then

the final CS model can be written as

y = AHg. (5.26)

The final minimization problem that will be solved by the TwIST algorithm is

expressed as:

ĝ = argmin
g

1

2
∥AHg − y∥22 + λ∥g∥TV , (5.27)

where ∥•∥TV is the TV of both the real and imaginary parts of g. Note that TV



Chapter 5. Compressive Sensing for Phased Array Imaging 108

regularization is adopted to promote sparsity when complicated targets are employed.

For point targets, we still use ℓ1 norm for simplicity.

5.4.3 Numerical Results and Analysis

To examine the effectiveness of the proposed method, we compare its image reconstruc-

tion performance to the far-field method in the near-field region. As the 3-D reconstruc-

tion is computationally very expensive and requires high memory usage, the construction

of the H matrix can be extremely time-consuming when a fine grid is adopted. Therefore,

we simplify the imaging analysis by discussing the 2-D cross-range image reconstruction

using single frequency signals. The simulation is carried out in the MMW frequency

range at 60 GHz. The length of the array is 8 cm in both x and y dimensions with an

element spacing fixed at 0.5λ, resulting in 33×33 elements in total. Targets with uniform

reflectivity are placed 15 cm away from the aperture. According to 2L2/λ = 256 cm, the

targets are in the near-field zone. The discretization of the target plane is related to the

quality of reconstruction. In general, the discretization interval should be smaller than

the resolution of the system to avoid grid mismatch. Here we define the ROI as a square

of 10 cm × 10 cm with discretization of 101× 101 pixels.

5.4.3.1 Resolution

It has been shown that the far-field CS method outperforms the traditional Fourier

method in both range and cross-range dimensions. However, the resolution based on

near-field focusing method is still unknown. Theoretically, due to the same aperture

size, the focusing approach should have little impact on the imaging resolution while

using conventional FT algorithms. According to the resolution formula introduced in

(2.9), the cross-range resolution for the 8 cm × 8 cm array configuration is 0.47 cm at

R = 15 cm. To examine whether the resolution of the near-field CS method differs from

its far-field counterpart, the following example is given.
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(a) (b)

Figure 5.12: Image reconstruction of 64 squares by the (a) far-field focusing
and (b) near-field focusing methods. The squares have 0.6 cm
length and 0.3 cm spacing. Ground truth targets are also marked
in green dotted lines for reference.

We employ 64 squares with 0.6 cm length and 0.3 cm spacing in the target scene. The

reconstructed images are shown in Figure 5.12(a) and Figure 5.12(b), respectively. The

contours of the ground truth targets are also marked in green dotted lines as references.

Although not perfect, the square targets can still be resolved in both cases, indicating

they have similar resolving power. It can also be noticed that in the far-field focusing

case, the reconstructed squares farther from the center are relatively less discernible.

This result implies that the uniform angle scanning method can cause information loss

near the boundary of the scanning region. In comparison, the uniform scanning approach

can perfectly solve this issue.

5.4.3.2 Noise Effect

We manually add Independent and Identically Distributed (i.i.d.) Gaussian noise to

each of the receiving antennas just like what we did in Chapter 5. Note that the SNR

calculation is based on the average signal power at the receiving antennas [12].

In the first example, we consider 5 × 5 equally spaced point scatterers in the target

region. The spacing of the scatterers is 1.5 cm. Figure 5.13(a) and Figure 5.13(b)
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(a) (b)

(c) (d)

Figure 5.13: Two-dimensional reconstruction of targets at a distance of 15
cm from the aperture under -50 dB SNR. 5 × 5 point scatterers
reconstruction of (a) far-field method and (b) near-field method.
T-shaped target reconstruction of (c) far-field method and (d)
near-field method.

demonstrate the image reconstruction of two focusing methods with an SNR of -50

dB. Only 20 % random samples are selected from the full 70× 70 samples. The far-field

focusing scheme shows deteriorated reconstruction as the scatterers in the center can not

be clearly identified. In contrast, the near-field approach still gives correct reconstruction

of all point scatterers.

For most imaging systems, the target may not be sparse at all. In such cases, afore-

mentioned point scatterer example is no longer appropriate to represent the imaging

performance. Taking this into consideration, a more complex 2-D T-shaped target, with

a height of 6 cm and width of 6 cm, is adopted in the second example. Since the
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Figure 5.14: Averaged MSE comparison of the far-field and near-field schemes
as a function of SNR.

target is not as sparse as in the first example, it requires more measurements for accept-

able reconstruction. Figure 5.13(c) and Figure 5.13(d) demonstrate the corresponding

reconstructions using 30 % random samples with the same -50 dB SNR. The near-field

approach clearly shows much better reconstruction than the far-field focusing scheme

with only limited background noise. More specifically, Figure 5.14 quantitatively sum-

marizes the averaged MSE of the two methods as a function of SNR from -65 dB to -25

dB. Each SNR value is averaged over 15 independent trials. It can be noticed that the

near-field method outperforms the far-field method. Both examples confirm that the

near-field focusing technique enables robust image reconstruction in the presence of high

background noise. This advantage helps to reduce the imaging system cost, e.g., using

lower transmitting power and low gain antenna element.

5.4.3.3 Background Interference

In security imaging applications like conceal weapon detection in the airport, we are more

interested in imaging within a certain range. Objects outside the ROI might interfere

with the person under scanning. A good imaging system is supposed to be capable of
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distance from the aperture.

minimizing such interference. To understand how the near-field method works in such

situations, we set the radiated power density of a 6 cm × 6 cm array along the range

direction, as shown in Figure 5.15. The near-field method focuses at a near-field point on

the z-axis where z = 15 cm while the far-field method steers its beam along the z-axis.

The power density of the near-field method reaches its peak at around z = 12 cm, which

means the array will receive its strongest reflection from a point scatterer at z = 12 cm.

A point scatterer at z = 20 cm will lead to about 5 dB decrease in the receiving power.

Seeing that the power density of the near-field focusing method apparently decays more

rapidly than that of the corresponding far-field method, we expect it to be more robust

to interference from outside the ROI.

To evaluate the effectiveness of this property, we introduce two rectangular plates as

interfering targets and place them 20 cm away from the T-shaped target. The simulation

is based on 50% random data with 60 dB SNR. Other parameters are kept the same as in

the second example. Figure 5.16(a) and Figure 5.16(b) demonstrate the 2-D cross-range

view and 3-D view of the composite target, respectively. Both plates are of size 0.5 cm ×

1 cm and share the same reflectivity as the T-shaped target. The reconstruction results

are shown in Figure 5.16(c) and Figure 5.16(d). We can clearly see the near-field method
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(a) (b)

(c) (d)

Figure 5.16: Composite target visualization. (a)Cross range view. (b) 3-D
view. Two-dimensional images are reconstructed using 50% data
under 60 dB SNR. (c) Far-field method. (d) Near-field method.

achieves better robustness against the interfering targets.

5.5 Summary

In this chapter, a general 3-D compressive imaging model has been derived for phased

array systems. With the CS theory, far fewer angles and frequency points are required

for image reconstruction, which further accelerate the scanning speed of phased array

imaging systems. The image reconstruction performance of the proposed method are

demonstrated with both qualitative and quantitative results. Particularly, the resolving

power has been significantly enhanced about 74% and 68% in range and cross-range
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dimensions, respectively. The effect of implementation aspects including array distance,

array length, number of angles and number of frequency points have also been presented

as guidelines on how to design sensing configurations for better CS reconstruction.

Furthermore, we presented a compressive near-field phased array imaging method.

The basic idea is to apply near-field focusing technique to strengthen the beamforming

performance in the near-field region. A new scanning method has also been provided

to focus array beams at different spots with various depths so that they can cover the

whole target region. Compared to the far-field imaging approach, the new method has

superior performance in imaging applications where the object is in the near-field zone

of the array aperture. The increased robustness under noisy environment also help to

lower the system requirements on transmitting power and antenna design.
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Chapter 6

Comparative Study of

Compressive Sensing Methods in

Different Array Configurations

6.1 Introduction

The previous two chapters have demonstrated the effectiveness of CS methods in switched

array and phased array configurations. In comparison with conventional FT methods,

CS methods can achieve better image reconstruction with far fewer samples. The CS

implementation in these two approaches is carried out in a similar way. The only differ-

ence is the construction of the system response matrix. To better understand this, we

consider the rows of the response matrix as different signal modes used to interrogate

the target scene. Then each mode in the switched array case is related to the radiation

pattern of an antenna at a particular position using a particular frequency. On the other

hand, in the phased array case, these modes are determined by different frequency points

and beam steering angles. According to the CS theory, a response matrix that strictly

satisfies the RIP or has low mutual coherence leads to high stability in reconstruction.

117
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The discrepancy in constructing the response matrix might lead to different imaging per-

formance. Among the three array configurations introduced in Chapter 2, one would like

to know how they differ from each other under similar system specifications. Therefore,

this chapter aims to investigate the performance of CS methods with different antenna

array schemes.

This chapter is organized as follows. The MIMO array design and its CS implemen-

tation are presented in Section 6.2. Then Section 6.3 gives the numerical analysis of CS

methods using switched array, MIMO array and phased array configurations. Conclu-

sions are drawn in Section 6.4.

6.2 Compressive MIMO Array Imaging

As we have mentioned in Chapter 2, security imaging for personnel screening requires

relatively large area to operate. By satisfying the half a wavelength element spacing

criterion, the switched array approach will end up with an extremely dense array to

achieve a moderate aperture size and resolution. The fabrication of such a dense array is

still prohibitive using existing technologies and can cause several other problems such as

heavy weight, complex electronics, large data flow, severe mutual coupling. The MIMO

array configuration offers an alternative way to solve these issues by using only a small

number of spatially distributed transmit and receive antennas. In this section, we will

explain a typical imaging MIMO array design and present the compressive MIMO array

imaging method.

6.2.1 MIMO Array Design

The ultimate goal of MIMO array design is to obtain an array topology that achieves

the required imaging performance with a minimum number of antenna elements. The

array performance is usually evaluated by the well-known point spread function (PSF).
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The PSF describes the response of an imaging system to a point source or point object.

According to the formulation introduced in [1], the PSF of an UWB MIMO array can

be expressed as

PSFWB =

∫
{rTx}

(4π|r0 − rTx|)−1 · ωTx(rTx) · δ(t− TTx(r, rTx))drTx

∗
∫

{rRx}

(4π|rRx − r0|)−1 · ωRx(rRx) · δ(t− TRx(r, rRx))drRx (6.1)

where ∗ denotes convolution in the time domain, r0 is the position of the target, r denotes

the focusing point, and rTx and rRx represent the location of the transmit and receive

elements, respectively. The aperture function ωTx and ωRx define the distribution of

antenna elements within the transmit and receive apertures, respectively, and

TTx(r, rTx) = (|r0 − rTx| − |r− rTx|)/c

TRx(r, rRx) = (|rRx − r0| − |rRx − r|)/c.
(6.2)

As we can see from (6.1), the PSF of the complete MIMO aperture is determined by

the convolution between the transmit and receive apertures. The convolution of aperture

functions is equivalent to a synthetic aperture function whose elements are the midpoints

of the lines connecting each transmit/receive pair. This synthetic aperture is also known

as virtual aperture and its virtual elements are assumed as co-located transmit/receive

transceivers like the switched array configuration [1, 2]. While such a relation is exact

in the far-field, it is approximate in the near-field which results in a moderate deviation

of beam pattern between the MIMO array and its virtual aperture. Fortunately, this

deviation is still acceptable, allowing the virtual aperture concept to be an effective

MIMO array design tool [3].

The MIMO array design process is as follows. Firstly the number of virtual array

elements NE is determined either by the requirement of the minimum sidelobe level and

system specifications. The ideal sidelobe level defined as ISL = −20log10NE is usually
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used to determine the minimum required number of elements. The exact value of NE

depends on the element spacing and aperture size. Then the minimum required aperture

size L is obtained by the cross-range resolution formula

Lx,y =
λD

2δx,y
, (6.3)

where D is the target range, λ is the wavelength at the center frequency and δx,y is the

required resolution in cross-range dimensions. Next, the numbers of transmit and receive

antennas are chosen by NE = NTx · NRx which makes the total number of antennas as

Ntotal = NTx+NRx. Note that this relation is invalid when array redundancy exists, e.g.,

two or more virtual elements overlap within the virtual aperture. Because of different

choices of sub-arrays, the factorization of NE is not unique and allows for multiple

solutions. The optimal choice should consider some practical issues, such as aperture

size, mutual coupling and overall system cost. This process is to some extent similar

to the conventional array pattern synthesis where numerical methods can be applied

to optimize the MIMO topology iteratively. There also exist some other MIMO array

design approaches but they are out of the scope of this thesis. A detailed discussion of

1-D and 2-D MIMO array design can be found in [4].

It is worth noting that from the imaging point of view, high level grating lobes can

severely impair the imaging performance, and in extreme cases produce overlapping

multiple images of the same target [4]. Generally, for narrow band arrays, the element

spacing is usually chosen to be smaller than half a wavelength to avoid grating lobes.

In the UWB case, the element spacing can be slightly relaxed to a larger distance while

keeping the sidelobe level under control [5]. Here we take the narrow band MIMO array

design as an example. Suppose we want to have an imaging system with 1 cm cross-range

resolution at a distance of 50 cm. The frequency of the system is 30 GHz (wavelength is

1 cm). According to (6.3), the required aperture size of the virtual aperture should be

at least 20 cm in both x and y dimensions. To reduce the computational complexity, we

set the aperture size as 20 cm in both dimensions. 40 × 40 antennas (elements spacing
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Figure 6.1: Cross MIMO array and its equivalent virtual array.

is around half-wavelength) are employed to satisfy the narrowband requirement. To

obtain an equivalent MIMO array, we adopt the cross array topology with orthogonal

transmit array and receive array. The total number of antennas of the MIMO array will

be minimal when NTx = NRx = 40.

Figure 6.1 shows the geometry of the MIMO array and its equivalent virtual aper-

ture. It can be noticed that virtual elements form a perfect uniform square array. In

comparison, the MIMO configuration uses only 80 antennas to achieve a comparable

performance of a 40 × 40 switched array. This huge reduction of antennas makes MIMO

array a promising scheme towards real-time imaging applications. Due to the nature

of sperate transmit and receive arrays, MIMO array typically has larger size than its

equivalent switched array. As shown in the figure, the cross MIMO array aperture is

twice the size of the virtual aperture.
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Figure 6.2: Cross MIMO array imaging system.

6.2.2 CS Implementation

An example MIMO array imaging system with cross configuration is shown in Figure

6.2. Assuming the same BA as we did in both the switched array and phased array

cases, the received field at the corresponding transceiver pair can be expressed as

s(xTx, yTx, xRx, yRx, k) =

∫∫∫
V

g(x, y, z)

RTxRRx
exp(−jkRTx) exp(−jkRRx) dx dy dz, (6.4)

where k is the wavenumber at frequency f , RTx and RRx are the distances from the

transmitter and receiver to the target, respectively, as shown in the following:

RTx =
√
(xTx − x)2 + (yTx − y)2 + (z − 0)2

RRx =
√

(xRx − x)2 + (yRx − y)2 + (z − 0)2.

(6.5)

This signal model takes into consideration the spreading losses due to the free-space

propagation just like the switched array model (5.20) shown in Chapter 5. In comparison,

the electromagnetic wave in the MIMO signal model travels further than the switched
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array case due to separate transmitter and receiver pair. The reflectivity map g(x, y, z)

can be obtained by using 3D-IFT in a similar way like the switched array case. Interested

readers are referred to [6] for a detailed derivation of the FT based MIMO imaging

algorithm.

While the range resolution of the MIMO array is still the same as the switched array

and phased array, the cross-range resolutions are related to the widths of the transmit

and receive arrays:

δx =
λD

LTx_x + LRx_x

δy =
λD

LTx_y + LRx_y
,

(6.6)

where LTx_x and LRx_x are the widths of the transmit and receive apertures along the

horizontal direction, whereas LTx_y and LRx_y are the widths along the vertical direction.

Since the width of the receive array along the horizontal direction is almost negligible, the

resolution in the horizontal direction is actually determined by the length of the transmit

array. Recall that the cross-range resolution of a switched array is δx = λD/2Lx, it is

easy to calculate that the cross MIMO array needs twice the size of the switched array

to achieve the same resolution.

The discretization process of the MIMO forward imaging model is the same as previ-

ous chapters. Let M , N , Q and L be the number of transmit antennas, receive antennas,

frequency points and voxel points in the target region, respectively. The scattered field

due to a signal transmitted from the m-th transmit antenna and received by the n-th

receive antenna with the q-th frequency can be rewritten as

s(m,n, q) =

L∑
l=1

g(l)
exp[−jk(q)(RTx(m, l) +RRx(n, l))]

RTx(m, l)RRx(n, l)
, (6.7)

where g(l) is the reflectivity of the l-th voxel and k(q) is the wavenumber of the q-th
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frequency. The CS model of (6.7) is then expressed in a matrix multiplication form as

s = Hg, (6.8)

where s is of dimension MNQ × 1 and g is of dimension L × 1. After adding the

undersampling operator A, the final CS model can be written as

y = AHg. (6.9)

The recovery of the reflectivity map is the same as the compressive switched array

and phased array imaging. Different sparsity transformations can be utilized to promote

sparsity during reconstruction.

6.3 Numerical Analysis

As has been shown in previous chapters, D-CS method offers better resolving abilities

than conventional Fourier methods in switched array and phased array imaging. Its

performance on the three array configurations will be studied in this section. To make

the comparison less computational demanding, single frequency cross-range 2-D imaging

is considered. The array parameters concerning aperture size, element spacing, target

distance and frequency selection follow the example in the above cross MIMO array

design. That is, the switched array and the phased array use the same array geometry;

the MIMO array is designed to have a virtual aperture that is equivalent to the switched

array.

The imaging area is 20 cm × 20 cm which is the same as the switched array aperture

size. This area is discretized into 81 × 81 pixels which makes the grid spacing as 0.25

cm. The target to array aperture distance is set as 50 cm. As 50 cm is still in the

near-field region, the near-field focusing technique is considered for the phased array
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(a) (b) (c)

Figure 6.3: Image reconstruction of two point scatterers with a spacing of 0.8
cm by the (a) switched array, (b) MIMO array and (c) phased
array.
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Figure 6.4: One-dimensional cut of the 2-D reconstruction at y = 0 by the (a)
switched array, (b) MIMO array and (c) phased array.

imaging method. The focusing points are selected to uniformly cover the imaging area.

The number of focusing points is the same as the number of samples the switched array

can offer. The sampling rate here is fixed at 100% to see the full potential of all three

array configurations. The split augmented lagrangian shrinkage algorithm (SALSA) [7]

is adopted as the recovery algorithm.

6.3.1 Resolution

Resolution is one of the most important factors of an imaging system. Theoretically, due

to the same effective aperture, the aforementioned three array configurations should have

approximately the same cross-range resolution while using conventional FT algorithms.
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(a) (b) (c)

Figure 6.5: Three sets of target scenes with different level of sparsity. (a) 4
squares, (b) 16 squares and (c) 36 squares with length of 1 cm and
spacing of 0.6 cm.

According to (2.9) and (6.6), this cross-range resolution is around δx,y = (1× 50)/40 =

1.25 cm. We first set two point scatterers with spacing of 0.8 cm. Figure 6.3 shows the

reconstruction of three methods. All three methods correctly reconstruct the two point

scatterers, showing the ability of super-resolution. Figure 6.4 further shows the 1-D cut

of the 2-D reconstruction at y = 0. Not much difference can be observed as all three

curves show similar dip levels. The similar performance between the switched array and

the MIMO array is expected as the MIMO array can be considered as a special case of

the switched array.

Although the resolution study was presented in previous chapters, the effect of spar-

sity has been overlooked. The sparsity of the unknown signal plays a critical role in the

CS reconstruction. It is well known that a signal with a higher sparsity requires fewer

measurements for reconstruction. One would like to know if the sparsity of the target

scene can affect the resolution of the CS imaging system. Therefore, we set three sets of

target scenes with different level of sparsity, as shown in Figure 6.5. The square targets

in all three figures are the same and have a length of 1 cm. The spacings between the

squares are fixed at 0.6 cm. Here the sparsity level is adjusted by using different number

of squares. Each row of Figure 6.6 presents the image reconstruction of the same target

scene by the three array configurations. There is no big difference among the three meth-

ods for all three target scenes, suggesting their resolving powers are at the same level.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Image reconstruction of 4 squares by (a) switched array (b) MIMO
array and (c) phased array. Image reconstruction of the 16 squares
by (d) switched array (e) MIMO array and (f) phased array. Image
reconstruction of 36 squares by (g) switched array (h) MIMO array
and (i) phased array.

However, it can be noticed from each column that the reconstruction quality varies. The

squares become less distinguishable as the sparsity level decreases. This result indicates

the sparsity level of the target scene does affect the resolution to some extent.

As for comparison, we increase the square spacing of the third target scene to the

theoretical resolution 1.25 cm. With the true locations of the targets marked as red
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(a) (b) (c)

Figure 6.7: Image reconstruction of 36 squares with 1.2 cm spacing by (a)
switched array (b) MIMO array and (c) phased array.

(a) (b)

Figure 6.8: Array topology of the MIMO array with (a) one wavelength spac-
ing in virtual aperture and (b) one and a half wavelength spacing
in virtual aperture.

squares for reference, Figure 6.7 demonstrates that the square targets can still be per-

fectly resolved in all cases, showing the effectiveness of the CS technique.

6.3.2 Impact of Element Spacing

As has been shown in Chapter 4, too large element spacing might fail the CS reconstruc-

tion. It is interesting to see if the three array configurations have similar performance

under sub-Nyquist element spacing. Therefore, we increase the element spacing of the

switched array and phased array in the following examples. Two element spacings are
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Image reconstruction of 36 squares by (a) switched array (b)
MIMO array and (c) phased array with one wavelength element
spacing. Image reconstruction of 36 squares by (d) switched array
(e) MIMO array and (f) phased array with one and a half wave-
length element spacing.

adopted: one wavelength and one and a half wavelength. The MIMO array geometries

are designed accordingly and are shown in Figure 6.8. The virtual array apertures have

20×20 elements and 14×14 elements in the two element spacing configurations, respec-

tively. The MIMO array designs consist of 20 + 20 = 40 elements and 14 + 14 = 28

elements, respectively. The same grid of 36 square targets with spacing of 1.25 cm are

used as the target scene.

In the one-wavelength example, as shown in the first row of Figure 6.9, all three array

configurations correctly reconstruct the target scene as the previous half-wavelength

element spacing example. This indicates that the integration of CS technique successfully

makes all three imaging systems tolerant to sub-Nyquist element spacing. However, in

the one and a half wavelength example, as shown in the second row of Figure 6.9, the

phased array configuration fails to reconstruct the target scene while the other two
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(a) (b) (c)

Figure 6.10: Image reconstruction of 9 point scatterers by (a) switched array
(b) MIMO array and (c) phased array with one and a half wave-
length element spacing.

configurations still give perfect reconstructions. This result suggests that the switched

array and MIMO array are more robust to sub-Nyquist element spacing.

We further test the one and a half wavelength element spacing configuration with a

much sparser target scene which has only nine point scatterers. Figure 6.10 shows the

corresponding reconstruction results. This time, the phased array configuration gives

the correct reconstruction as the switched array and phased array configurations. The

difference indicates the minimum required element spacing of the array imaging system

is related to the target sparsity, that is, the sparser the target scene is, the less dense

the array is required. This property is quite useful as we can design the imaging array

with as few antenna as possible if the sparsity level of the target scene can be empirically

determined.

6.3.3 Robustness against Noise

Apart from system parameters like antenna gain, the SNR of an array imaging system

is also related to the number of interrogating modes it can offer. It is well known that

noise can be substantially eliminated through averaging. From the information point of

view, increasing the number of modes leads to better SNR.

It is easy to understand the number of modes of the switched array scheme is the
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(a) (b)

Figure 6.11: Two sets of target scenes with different level of sparsity. (a) 4
squares and (b) 49 point scatterers.

same as its number of antennas. The MIMO array scheme, as designed to replace the

switched array with fewer antennas, has the same number of modes as the switched array

scheme. Nevertheless, the MIMO array scheme can easily increase the number of modes

by adding a few more transmit and receive antennas. In this regard, the MIMO array

has higher potential than the switched array in dealing with noise environment. The

phased array scheme, on the other hand, can offer infinite modes since its main beam

can be steered towards numerous directions.

We have already shown the phased array is more robust to noise than the switched

array in Chapter 5. Here we take the MIMO array into consideration as well. Indepen-

dent and identically distributed (i.i.d.) Gaussian noise is considered and added to each

of the receiving antennas before reconstruction. To make a fair comparison, the same

effective aperture, same number of samples and same noise are included. Note that this

noise addition is on the condition that all three configurations have the same number of

samples.

As previously illustrated, two sets of target scenes with different sparsity levels are

tested here. The first target scene, as shown in Figure 6.11(a), consists of four squares

with length of 2 cm and spacing of 4 cm. The second target scene, as shown in Figure
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: Image reconstruction of 4 squares by (a) switched array (b)
MIMO array and (c) phased array. Image reconstruction of 49
point scatterers by (d) switched array (e) MIMO array and (f)
phased array.

6.11(b), has 49 point scatterers with spacing of 2 cm. Although the phased array is

capable of imaging at very low SNR level, the SNR is set as 15 dB here for better

comparison. The first row of Figure 6.12 give the reconstruction of the first target scene.

While the phased array faithfully reconstruct the four squares, the switched array and

MIMO array only show some blurry and unevenly distributed patches in the target

area. When compared with the switched array case, there is not much improvement nor

degradation can be observed from the MIMO array reconstruction. The second row of

Figure 6.12 present the reconstruction of the sparse target scene. The phased array shows

a very clean reconstruction as expected. This time, the switched array and MIMO array

manage to reconstruct the true locations of the point scatterers, although not perfectly.

However, there is still not much difference between the switched array and MIMO array

reconstructions.
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From the above examples, we can conclude that in the system the MIMO array has

similar performance like the switched array when the noise level is the same. The phased

array is more robust than other two array configurations in noisy conditions due to its

high gain property. Meanwhile, sparsity level can affect the minimum required SNR level

for reconstruction, generally a sparse target tends to require lower SNR than a complex

target.

6.3.4 Computational Complexity

As has been introduced in Chapter 4, the computational complexity of the imaging

algorithm can be discussed using both time and space complexity. The space complex-

ity is mainly determined by the system response matrix H which has to be stored for

computation. Since the number of measurements and grid points is kept the same in

all three array configurations for fair comparison, the dimension of the H matrix in all

cases remain the same, which is to say there is no difference in space complexity. The

time complexity mainly consists of the image reconstruction and the construction of the

response matrix H. The image reconstruction process relies on the response matrix H

and the CS algorithm used. As the same reconstruction algorithm has been adopted

here, the time complexity difference in this process is expected to be small. Therefore,

we can conclude that the main computational complexity difference comes from the

construction the response matrix H.

Table 4-A has shown the computing time and loading time of the response matrix can

be problematic when its dimension increases. To make the D-CS method more useful in

practical situations, this time complexity has to be reduced as much as possible. Listing

6.1 presents the unoptimized Matlab code of constructing the H of the switched array.

We can see two for-loops are used to compute the entries of H sequentially. However,

the for-loop is extremely inefficient and should be totally avoided when the dimension

of antenna arrays is high. Another point is the default data type in Matlab is double

precision. A complex-valued H with double precision can be very large as the dimension
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increases. Therefore, these two issues should be solved in the optimized code.

Listing 6.1: Unoptimized code for switched array

1 % ========= input parameters ==========

2 % k: wavenumber

3 % z0: target to aperture distance

4 % power : transmit power

5 % Txy_x & Txy_y : x and y coordinates of the transceiver

antennas

6 % gridxy_x & gridxy_y : x and y coordinates of the grid

points

7 % % ----use traditional for loop --- % %

8 H=zeros ( length (Txy_x),length ( gridxy_x ));

9 for i=1: length (Txy_x) % loop antenna

locations

10 for j=1: length ( gridxy_x ) % loop grid

coordinates

11 R=sqrt (( gridxy_x (j)-Txy_x(i))^2+( gridxy_y (j)-Txy_y(i

))^2+(z0 -0) ^2);

12 H(i,j)=Power*exp (-1i*2*k*R)/(R^2);

13 end

14 end

Listing 6.2 gives the optimized code for the H construction. Single precision is forced

in all the calculations. From our simulations, we can hardly find any difference between

single precision based reconstruction and double precision based reconstruction. The

use of for-loop is avoided by using the bsxfun function which supports element-wise

operation. The reason the bsxfun is faster is because the element-wise operation is

actually doing a multithreaded caculation of the H.
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Listing 6.2: Optimized code for switched array

1 % % ----use bsxfun for fast computation --- % %

2 R=sqrt (( bsxfun (@ minus , gridxy_x .',Txy_x)).^2+( bsxfun (@ minus ,

gridxy_y .',Txy_y)).^2+(z0 -0) ^2);

3 H=Power *exp (-1i*2*k*R)./(R.^2);

To verify the effectiveness of the optimized code, we evaluate the two codes with

different array configurations and target discretizations. Suppose the number of samples

is M2 and the number of grid points is N2. Table 6-A shows the complexity comparison

of the unoptimized and optimized codes. It can be noticed the optimized code achieves

better efficiency than the unoptimized one in all three cases. The space required to save

the H matrix is only half of the unoptimized one due to the single precision adopted.

More importantly, the improvement becomes more pronounced as the H gets bigger.

Note that results shown here are a little different from the results in 4-A. This is because

we used a desktop computer with an Intel i7-4770 @3.40 GHz and 16 GB memory. The

Matlab version is R2016a (x64) and was installed on a Windows 7 operating system.

Table 6-A: Complexity Comparison of the Unoptimized Code and the Opti-
mized Code

Configuration Unoptimized Code Optimized Code
Computing (s) Storage Computing (s) Storage

M = 40, N = 81 4.09 148 MB 0.30 70 MB
M = 40, N = 121 9.18 321 MB 0.64 152 MB
M = 80, N = 121 37.06 1.32 GB 2.80 638 MB

In the process of constructing the H matrix, the MIMO array scheme needs to cal-

culate RTx and RRx while they are equivalent in the switched array case. Therefore,

the complexity of the MIMO array method is higher than that of the switched array

method. Listing 6.3 shows the H construction code for the MIMO array. The phased

array, on the other hand, is more complicated than the switched array and MIMO array.

This is because, for each interrogating mode, all antennas are involved in calculating
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the beamforming signal, making the use of for-loop difficult to avoid. Nevertheless, the

Parallel Computing ToolboxTM can be used to speed up the calculation.

Listing 6.3: Optimized code for MIMO array

1 % % ----H reonstruction for MIMO array --- % %

2 R_tx=sqrt (( bsxfun (@ minus , gridxy_x .',Txy_x)).^2+( bsxfun (@

minus , gridxy_y .',Txy_y )).^2+(z0 -0) ^2);

3 R_rx=sqrt (( bsxfun (@ minus , gridxy_x .',Rxy_x)).^2+( bsxfun (@

minus , gridxy_y .',Rxy_y )).^2+(z0 -0) ^2);

4 H=Power *exp (-1i*k*( R_tx+R_rx))./( R_tx .* R_rx);

Table 6-B shows the complexity comparison of the three array configurations. It can

be noticed the switched array scheme is the most efficient one. The MIMO array scheme

is slightly worse than the switched scheme. However, the phased array scheme takes too

much time in calculating the H matrix, making it unsuitable for real-time imaging at

the moment.

Table 6-B: Computing Time of the H matrix

Configuration Switched array MIMO array Phased array
M = 20, N = 41 0.03 s 0.06 s 181 s
M = 30, N = 61 0.12 s 0.29 s 160 m
M = 40, N = 81 0.30 s 0.85 s 1559 m

6.4 Summary

This chapter first introduces the theory of MIMO array design and then gives the for-

mulation of compressive MIMO array imaging. The performance of the three array

configurations are studied in detail in the rest of this chapter, considering parameters

such as resolution, effects of element spacing, robustness against noise and computa-

tional complexity. Generally, the MIMO array achieves comparable performance as the
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switched array with far fewer antennas. The phased array has much better robustness

against noise environment than other two array configurations but suffer from higher

computational complexity. The switched array and MIMO array are more stable than

the phased array when the arrays have sub-Nyquist element spacing. The resolving pow-

ers of all three array configurations are basically the same and the sparsity level of the

target scene can slightly affect the resolving power of the system. Finally, we discussed

the computational complexity and made some efforts in improving the efficiency of the

code.
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Chapter 7

Compressive Luneburg Lens

Imaging

7.1 Introduction

Phased array technology is a common way to generate high gain and steerable beams.

The capability of dynamic control of the radiation pattern makes the phased array crucial

in communication systems and military radars. The disadvantage of phased arrays,

however, is their large hardware footprint, as each array element needs to be connected

to a dedicated transceiver module leading to very high implementation cost. Reflector

antennas are popular alternatives for high-directivity and beam steering purposes. This

type of antenna has been successfully introduced to many security imaging systems [1–

3]. Although reflector antenna systems are more cost effective than the phased array

systems, they usually require a bulky mechanical scanning system which suffers from

scanning speed.

Lens antennas are similar to reflector antennas in transforming spherical wave-fronts

emitted from a feed at their focus into plane wave-fronts. A variety of lens antenna

applications can be found in literature [4–6], ranging from wireless communication to

138
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(a) (b)

Figure 7.1: Ray tracing for (a) original and (b) transformed Luneburg lens
[12].

radar imaging. Among many existing lenses, the main two categories are homogeneous

dielectric lenses [7] and gradient-index lenses [8–10]. Luneburg lens belongs to the latter

one and is famous for its intrinsic broadband response and ability to form multiple beams

[10]. Its spherical symmetric property makes it suitable for electronic beam scanning by

placing sources at different locations and frequency points. In this chapter, we introduce

a beam steering imaging system using a compact 3-D flat Luneburg lens antenna. Image

reconstruction is realized by using CS techniques [11]. The adoption of Luneburg lens

avoids the use of phased array components and thus provides a relatively low-cost and

straightforward imaging solution.

7.2 Luneburg Lens Design

An ideal Luneburg lens is a dielectric sphere whose index of refraction varies with the

radius of the sphere [10]:

n(r) =
√

2− r2, (7.1)
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Figure 7.2: Cross-section of the discretized flat Luneburg lens and spherical
Luneburg lens after considering 6 shells of dielectric material with
the optimised dimensions as in Table I.

where r is the normalized radial position. With such a permittivity distribution, the

Luneberg lens is able to focus an incoming wave into a focal point on the boundary of

the sphere which is opposite of the entry point. In the same way, the spherical wave of a

radiator at the focal point can be transformed into plane waves, as illustrated in Figure

7.1(a) [12].

In practice, it is extremely difficult to manufacture such a lens with continuous per-

mittivity variation. The most common way is to approximate the gradient index law

by using a finite number of concentric homogeneous dielectric shells [13], which is then

to choose the thickness and permittivity of each shell such that the lens can achieve

the maximum directivity. A lot of algorithms are available for such optimization prob-

lems [9, 14]. One drawback of the spherical Luneburg lens is that its spherical surface

is incompatible with planar feeds or detector arrays. In recent years, the development

of transformation optics (TO) theory [15] provides a means to modify the traditional

Luneburg lens by flattening the spherical surface while maintaining similar properties to

the original spherical lens [12, 16–18].

In the TO design of flat Luneburg lens, the first step is the coordinates transformation
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which tries to ‘squeeze’ the original sphere into a flat cylinder. Suppose the refactive

index of the original Luneburg lens is a function of the spatial coordinates y and z.

The coordinates of the transformed flat Luneburg lens as shown in Figure 7.1(b) can be

expressed as

z′ =
δ√

R2 − y2
z, y′ = y, (7.2)

where δ represents the compression of the original Luneburg lens and R is the radius.

After the geometry of the flat lens has been determined, its refractive index can then be

calculated accordingly. The new values of the permittivity and permeability tensors are

given by

=
ε
′
=

(
2− (R2 − y′2)z′2 + (δy′)2

(δR)2

)
· |
√
R2 − y′2| ·

(
A B

B 1
δ

)
=
µ
′
= |
√
R2 − y′2| ·

(
A B

B 1
δ

) (7.3)

where the coefficients A and B are expressed as

A =
δ(R2 − y′2) + δz′2y′2

(R2 − y′2)3
, B =

z′y′

|
√
R2 − y′2|(R2 − y′2)

. (7.4)

More details of the selection of δ can be found in [12].

Figure 7.2 gives an example of flat Luneburg lens design using TO [12]. The original

spherical Luneburg lens consists of 6 shells with the optimized dimensions and permit-

tivities shown in right column of Table 7-A. The parameters of the transformed flat

Luneburg lens are shown in the left column of Table 7-A. With the reduced size and a

flat surface, the new lens is easier for practical feeding implementation. For example,

planar mechanic scanning can be adopted for single feeding system while completely

electronic scanning can be achieved using a feeding array. According to [12], when fed

by an X-band pyramid horn antenna, the flat Luneburg lens is able to preserve similar

directivity performance to the original spherical Luneburg lens. The maximum scanning

angle of this flat Luneburg lens is around 30◦ when the horn is placed 30 mm away from
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Table 7-A: Flat Luneburg Lens Transformed from a Spherical Lunebrug Lens

Cylinder Hz (mm) Hy (mm) εr
1 3.32 31.2 12
2 6.62 53.2 10
3 8.8 69.7 8
4 11 76.5 6
5 12.4 89.1 4
6 13.8 95.4 2

Sphere Hy (mm) εr
1 31.4 2
2 53.5 1.8
3 69.8 1.6
4 76.9 1.4
5 89.3 1.2
6 95.9 1.08

Figure 7.3: Compressive sensing based Luneburg lens imaging system.

the center of the lens. This steering angle is mainly limited by the physical size of the

flat Luneburg lens. Higher steering angles can be obtained by increasing the longitudinal

size of the lens (x- and y-dimension) and the appropriate discretization.

7.3 Compressive Luneburg Lens Imaging Formulation

The proposed Luneburg lens imaging system is shown in Figure 7.3. An array of feed-

ing elements is placed at the focal plane of the flat Luneburg lens for illumination. By

sequentially exciting each element, the Luneburg lens produces beams pointing at differ-
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ent directions. The imaging process is similar to a phased array imaging system. Antenna

beams are first steered to scan the region of interest for data acquisition. The stored data

is then used for image reconstruction. In this way, we realize a beam steering imaging

system without using expensive phased array components. Another advantage of the

Luneburg imaging system is its multi-beam capability enables fast electronic scanning

for real-time imaging applications.

In order to reconstruct the target scene from the measurements, the forward imaging

model should be derived first. Under the BA, the scattered electric field at the antenna

can be expressed as

Es(r, k) = k2
∫
V
G(r, r′, k)Einc(r

′, k)χ(r′) dr′, (7.5)

where r is the source position, k is the wavenumber in free space and χ(r′) is the well

known contrast function. G(r, r′, k) is the Green’s function and Einc(r
′, k) is the incident

field at the target position r′. From the reciprocity principle, the Green’s function here

is the same as the incident field. Therefore, (7.5) can be simplified into [19]

Es(r, k) =

∫
V
E2

inc(r
′, k)

[
k2s(r

′)− k2b
]
dr′, (7.6)

where ks and kb are the wavenumbers of the target and the background medium, respec-

tively. In radar imaging, the contrast function is usually replaced with a more straightfor-

ward reflectivity function for simplicity. To recover the target scene from the scattered

field data, traditional methods try to reformulate the integral of equation (7.6) into

FT form such that the inverse FT can be applied for image reconstruction. However,

this integral reformulation usually requires approximations and thus the solution is not

accurate.

CS is a powerful signal processing technique from the information theory society

[11]. CS theory enables signal reconstruction from highly under-sampled data provided

the signal is sparse and proper sensing matrix is adopted. This technique has been
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successfully applied in previous chapters and was shown to give better imaging results

than traditional methods. In a similar way, equation (7.6) can be accurately solved by

rewriting it in the CS framework as

s = Hg + n, (7.7)

where s is a vector of the scatter field data received at different source locations, g is

a vector of reflectivity coefficients of the target scene, H is the system response matrix,

and n is the noise vector. Frequency and spatial under-sampling can be applied by

multiplying an under-sampling operator A as

y = AHg + n′, (7.8)

where y is the under-sampled data and n′ has the same dimension as y. This underde-

termined system is usually solved by rewriting it as the well known BPDN [20]

min
g

∥g∥1 s.t. ∥AHg − y∥22 ≤ ϵ, (7.9)

where ϵ is a nonnegative real parameter that defines the noise level. The ℓ1 norm is

suitable for most sparse target scenes. Other sparsifying transformations like TV can

also be used depending on the types of the target scene.

The critical step of this compressive imaging approach is to calculate the response

matrix H from equation (7.6). While it is easy to calculate the electric field from for-

mulas in traditional array imaging, the Luneburg lens imaging system does not have a

straightforward solution. One possible way is to use geometrical optics (GO) or physical

optics (PO) principals, which are commonly used in lens antenna optimizations and syn-

thesis [14]. However, these methods are approximated in nature and made a compromise

between calculation time and accuracy. Another way is to use simulated or measured

radiation patterns for electric field calculation. This way gives better accuracy at the

cost of time consuming full-wave simulation or real pattern measurements. Once the
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radiation pattern of the lens antenna is known, the incident field in equation (7.6) can

be calculated according to [19]

E2
inc(r

′, k) ≈ 2ηP (ϕ, θ, k) exp(−j2kr) (7.10)

where (r, θ, ϕ) is the spherical coordinates of the target position r′ and P (ϕ, θ, k) is the

phaseless radiation pattern of the antenna at given angles.

There are many commercial available EM solvers can be used for the radiation pat-

tern simulation, e.g., FEKO, ANSYS HFSS, CST Microwave Studio, etc. Among these

solvers, CST offers higher degree of freedom in dealing with the field data. For example,

the simulated far-fields in CST can be saved as directivity, gain, realized gain, E-field,

E-pattern and so on. To obtain several hundred radiation patterns one by one is a very

time-consuming task. One would like to set-up the simulation such that the horn antenna

can automatically scan all positions and also save the corresponding radiation patterns.

Parameter Sweep is such a built-in function in CST which can be used for controlling

the translation of the horn antenna in the focal plane. However, according to our tests,

this method suffers from two major issues. Firstly, it is inconvenient to keep track of the

progress of the simulation. Once the simulation is interrupted, it is cumbersome to start

from where it left off. This inconvenience makes the direct parameter sweep approach

quite vulnerable to unexpected situations like software crash and power failure. Sec-

ondly, the CST software becomes very slow as the parameter sweep approaches the end.

The normally 10 minutes per parameter simulation can take up to hours to finish. When

this happens, the PC also becomes extremely slow and sometimes nonresponsive. While

the software crash issue is quite often uncontrollable, we decided not to use this direct

parameter sweep approach.

Another way is to use the more advanced Macro Programming function in CST.

CST already offered many built-in Project Templates that are written in the VBA pro-

gramming language. One can modify these existing examples to extend the program’s
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capabilities. Although it is possible to only use VBA programming to solve the aforemen-

tioned simulation issues, the VBA language is not a good candidate for data processing.

Fortunately, the Component Object Model (COM) support makes it possible to control

CST using many other applications. For instance, Matlab can be used for more efficient

data processing in our case. We present the code used for radiation pattern generation

in the Appendix B. The main work of the parameter sweep is done in the Matlab code

shown in Appendix B.1. At each step, Matlab invokes the CST application and updates

the parameters for the translation of the horn antenna. The CST solver is then called by

using system commands to execute a simple VBA code as shown in Appendix B.2. After

the simulation, radiation pattern data is extracted, saved and moved to a specified loca-

tion. The progress of the parameter sweep is well monitored using the for-loop. When

software crash happens, we can easily start again by just changing the start number of

the for-loop. After all radiation patterns have been obtained, a final Matlab code shown

in Appendix B.3 is used to read the radiation pattern files and save them into one single

Matlab data file for further use.

7.4 Numerical Analysis

This section presents some numerical examples to verify the proposed imaging system.

The flat Luneburg lens shown in Section 7.2 is adopted for simulation. We choose the

radiation pattern approach for response matrix construction. A sketch of the imaging

system is shown in Figure 7.4. The Luneburg lens with a moving horn antenna at

the focal plane are simulated in CST Microwave Studio to get the radiation patterns.

Then the system response matrix and synthetic data are calculated using these radiation

patterns in Matlab. The dimensions of the pyramid horn antenna are shown in Figure

7.5(a) together with its radiation pattern in Figure 7.5(b). The S-parameter of this

pyramid horn antenna is shown in Figure 7.6. Although not optimized, the S-parameter

of the horn antenna is still well under -15 dB from 7 GHz to 13 GHz. To give a glimpse of
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Figure 7.4: Luneburg lens imaging system using a mechanically scanned horn
antenna.

(a) (b)

Figure 7.5: (a) Dimensions of the pyramid horn antenna and (b) its radiation
pattern.

the beam steering performance of the Luneburg lens antenna, a set of radiation patterns

are given in Figure 7.7 when the lens is fed at different locations in the focal plane. The

maximum has been achieved when the horn is placed at the center of the focal plane,
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Figure 7.6: S-parameter of the pyramid horn antenna.

which is about 5 dB higher than the original horn antenna, showing the effectiveness of

the Luneburg lens in gain enhancement. When the feeding location is moving along the

x axis, the main beam of the lens antenna gradually moves towards the reverse direction,

just in the same way as the spherical lens.

We first assume a total of 30 × 30 source locations are used for data acquisition. The

900 feeding locations are uniformly distributed in a 30 mm × 30 mm area in the focal

plane. The 20 cm × 20 cm ROI which is 30 cm away from the lens is discretized into 81 ×

81 pixels. Single frequency signal at 10 GHz is considered for cross-range imaging only.

In the algorithm implementation, we adopt the split augmented lagrangian shrinkage

algorithm (SALSA) [21] for image reconstruction. Four rectangular stripes as shown

in Figure 7.8(a) are considered as targets for test. A total of 450 random samples

from the 900 samples (50% sampling rate) are used for image reconstruction. Figure

7.8(b) presents the imaging result of the proposed imaging system using CS algorithm.

Although the reconstruction is not perfect, the four stripe targets can still be easily

distinguished. This example shows the feasibility of the imaging system using 30 × 30

mechanically scanned positions. However, mechanic scanning of 900 points is going to

take too much time and thus is not desirable for real-time applications. The ultimate

goal is to have a completely electronic scanning system that can finish data acquisition
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(a) (b)

(c) (d)

Figure 7.7: Three-dimensional far-field directivity patterns at 10 GHz for dif-
ferent positions of the horn, (a) at 0, (b) 10, (c) 20 and (d) 30 mm
along the x axis.

in a very short time. In our example, a feeding array of 30 × 30 elements is required to

achieve 900 samples. In reality, it is almost impossible to fabricate such an array within

a 9.5 cm × 9.5 cm aperture while the wavelength is 3 cm, let alone the actual feeding

region is smaller than the lens aperture. Therefore, a larger lens is needed to fit in a

feeding array that has normal element spacing.

While simulating an electric large lens with hundreds of radiation patterns will cost

too much time, another way to alleviate the limited space issue is to increase the element
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(a) (b)

Figure 7.8: Image reconstruction of four stripe targets using 50% random sam-
ples. (a) The ground truth and (b) reconstruction by the proposed
imaging method.

(a) (b)

Figure 7.9: Ground truth of the (a) rectangular stripe target and (b) T-shaped
target.

spacing of the feeding array. Recall that the previous chapter has shown the compressive

array imaging is capable of dealing with sub-Nyquist element spacing, we expect to

see the same feature in compressive Luneburg lens imaging. Therefore, another two

configurations with 20 × 20 and 12 × 12 feeding locations are considered, together with

400 and 144 newly generated radiation patterns, respectively. These two configurations

are then compared with the original one in the following two scenarios.
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(a) (b) (c)

(d) (e) (f)

Figure 7.10: Stripe target reconstruction with (a) 30 × 30, (b) 20 × 20 and (c)
12 × 12 feeding locations. T-shaped target reconstruction with
(a) 30 × 30, (b) 20 × 20 and (c) 12 × 12 feeding locations.

In the first scenario, two complex target scenes are used, with one scene as rectangular

stripes and the other as a T-shaped target. The ground truths of the two target scenes

are shown in Figure 7.9(a) and Figure 7.9(b), respectively. The first, second and third

columns of Figure 7.10 represent the reconstructions of the 30 × 30, 20 × 20 and 12 × 12

feeding configurations, respectively. We can notice that the 30 × 30 configuration gives

the most faithfully reconstruction of the target scenes. As the element spacing increases,

the image quality decreases. Specifically, the contours of the reconstructed targets are no

longer smooth and thus makes the overall image blurry. Moreover, speckles also start to

show up in the background. Nevertheless, the 12 × 12 configuration is still able to offer a

discernible reconstruction of the targets scenes. The reconstruction comparison suggests

that increasing the element spacing is a possible way to alleviate the array fabrication

issue at the cost of deteriorating some image quality.

To better understand this compromised approach, resolution test is considered in our
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(a) (b)

Figure 7.11: Ground truth of the 9 square target with (a) 2 cm spacing and
(b) 1 cm spacing.

(a) (b) (c)

(d) (e) (f)

Figure 7.12: Reconstruction of 2 cm spaced square targets using (a) 30 × 30,
(b) 20 × 20 and (c) 12 × 12 feeding locations. Reconstruction of
1 cm spaced square targets using (a) 30 × 30, (b) 20 × 20 and
(c) 12 × 12 feeding locations.

second scenario. As has been shown in Chapter 6, the resolution of compressive imaging

is related to the target sparsity. The resolution of two point scatterers is not accurate
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enough to represent the resolution of the system. Therefore, solid square targets with

varying spacings are employed in this case. Two sets of 9 solid squares with one 1 cm

spaced and the other 2 cm spaced, as shown in Figure 7.11, are simulated. According to

the general resolution calculating formula, the 9.5 cm × 9.5 cm aperture gives a resolution

of 4.7 cm at 30 cm distance using 10 GHz signals. One can imagine, with traditional FT

algorithms, the 9 squares in both target scenes can hardly be distinguished. However,

we expect to see better results with our CS methods. The reconstruction results of

the three configurations are shown in different columns in Figure 7.12. Image quality

deterioration can also be observed in the reconstructed squares just as the previous

example. Additionally, when the spacing of the squares is 2 cm, the gaps between the

squares are all clear to see in all three figures. When the spacing reduces to 1 cm, the

gaps all become blurry and the 9 squares are barely discernible. This two cases suggest

that all three configurations have similar resolving abilities, which means increasing the

element spacing does not affect the resolution too much. Moreover, reconstruction of

both two target scenes suggests the compressive Luneburg lens imaging method is also

able to break the resolution limit of traditional FT methods.

7.5 Summary

In this chapter, we present a beam steering imaging system with a Luneburg lens antenna

where CS technique is adopted for image reconstruction. The response matrix of the

imaging system is calculated using full-wave EM simulated data. A fully automated

parameter sweep method using CST is also demonstrated with Matlab and VBA codes.

The mechanic scanning scheme is validated using 900 samples at 10 GHz. Image recon-

struction using CS techniques offers higher resolution than conventional methods. By

reducing the element spacing and increasing the lens aperture, it is possible to use a

feeding array for fast electronic beam steering which helps reduces the data acquisition

time.
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Chapter 8

Conclusions and Future Work

8.1 Summary

In this thesis, we mainly investigated the CS implementation to array based imaging

systems. The research work can be divided into four major parts as follows.

Two distinct CS approaches were first studied for the 2-D short-range switched array

MMW imaging. Both numerical and experimental data are used for the comparative

study. With highly under-sampled data, both CS approaches still outperform the con-

ventional FT method in many scenarios. When compared with each other, the D-CS

approach that directly utilizes the classic CS formulation demonstrates better imaging

performance than the FT-CS approach that relies on conventional FT method. More

specifically, when sufficient samples and moderate SNR are satisfied, the D-CS approach

can achieve higher resolution with a sparser array. This big advantage helps to reduce

the number of minimum required elements of a traditional imaging array.

Without considering the high computational complexity, the D-CS approach is then

applied to the phased array imaging system. A 3-D forward imaging model is derived and

verified with numerical results. The proposed method is able to provide high resolution

157
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reconstruction with under-sampled data in both frequency and angular domains. This

work is further extended for near-field applications by integrating a near-field focusing

technique into the CS framework. A new point scanning method has also been provided

for better coverage. When compared with its far-field counterpart, the near-field method

shows better robustness against noise and interfering targets from the background.

The D-CS approach is finally applied to the MIMO array configuration. The CS

forward imaging model is derived and tested with a cross-shaped MIMO array. A com-

parative study on the performance of D-CS methods with aforementioned three array

configurations is carried out with numerical simulations. All three methods have the

same level of resolution due to the same effective aperture size. The MIMO array is

able to achieve comparable performance as the switched array with far fewer antenna

elements. While all three array configurations are capable of imaging with sub-Nyquist

element spacing, the phased array is more sensitive to this element spacing factor. This

can be explained by fact that too few elements will fail the beamforming process. As for

the robustness against noise, the phased array outperforms the other two arrays. Finally,

the computational complexity of the three methods is analyzed. The MIMO array has

approximately doubled time in computing the response matrix than the switched array

due to the separate Tx/Rx pairs. The phased array, on the other hand, cost too much

time here due to the beamforming process.

As an alternative to the expensive phased array imaging, a novel low-cost beam-

steering imaging system using Luneburg lens is presented as the last part of the thesis.

The proposed system consists of a flat Luneburg lens fed by an antenna array. By

exciting the feeding elements at different locations, the lens forms directive beams to

scan the region of interest. CS techniques are adopted in the image reconstruction and

thus enables high resolution images and also under-sampling during data acquisition.

Mechanically scanned data using full-wave simulated radiation patterns are first used to

verify the idea of Luneburg lens imaging. Considering that the actual feeding area might

be relatively small to fit in a normally spaced array, we tested the sub-Nyquist element
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spacing which turns out to be an effective way to alleviate the limited space issue.

8.2 Key Contributions

The key contributions presented in the four major parts are listed as follows:

1. Compressive switched array imaging. The performance of the FT-CS and D-CS

methods are studied in detail in terms of element spacing, resolution, computa-

tional complexity, robustness to noise and under-sampling rate. Both qualitative

and quantitative results are used in the comparative study. The superior resolving

power of the D-CS method makes it desirable for high resolution imaging applica-

tions. More importantly, element spacing can be slightly larger than the Nyquist

criterion required, which means high resolution imaging can be achieved with fewer

antenna elements than conventional methods.

2. Compressive phased array imaging. A general imaging forward model is derived for

array based imaging systems by taking into consideration the antenna factors. This

model can be easily applied to other array configurations with slight modifications.

Based on this forward model, a 3-D compressive imaging method based on con-

ventional phased array configuration is proposed. As mutual coherence is related

to the CS reconstruction performance, coherence analysis of different sensing con-

figurations is also provided as a guidance for system design for better imaging

performance. Considering some imaging applications like personnel surveillance

imaging are usually in the short range, a near-field focusing technique is integrated

into the CS framework for the purpose of near-field imaging.

3. Comparative study of compressive sensing methods in different array configurations.

Compressive MIMO array imaging is first derived in this chapter. A comparative

study on the performance of CS methods with the three array configurations is

then presented. Resolution, effects of element spacing, robustness against noise,
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and computational complexity are discussed with several numerical examples.

4. Compressive Luneburg lens imaging. This chapter demonstrates a novel low-cost

beam-steering imaging system using a flat Luneburg lens. CS technique is inte-

grated into the imaging reconstruction algorithm. To calculate the system response

matrix, a radiation pattern based approach using full-wave EM solver is presented.

A fully automated simulation method for the generation of radiation patterns is

provided with Matlab and VBA codes.

8.3 Future work

Based on the present results, further work can be carried out in the following areas:

• According to our results in Chapter 4, the FT-CS method is very sensitive to

the regularization parameter when compared to the D-CS method. It should be

carefully calibrated with respect to different under-sampling pattern and different

targets. This essential calibration process has greatly limited the application of the

FT-CS method as the target scene is usually unknown in practice. An adaptive

scheme that can adaptively change the regularization parameter in reconstruction

according to the target scene is desperately needed for the D-CS method.

• As mentioned previously, the sparsity basis for the complex-valued data in MMW

array imaging is more complicated than the real-valued case. Different from ter-

ahertz imaging and SAR imaging, the phase information of the acquired data in

our case can be seen as between random and smooth varying. It is possible that

these differences are caused by the target-to-antenna distance. An optimal sparsity

constraint for such case would be of great interest.

• Chapter 6 provides an alternative way of data acquisition by focusing the array

beams at different spots with various depths. Simulation results prove the effective-

ness of this method and provide a new insight into phased array pattern control for
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imaging applications. For one particular application, there exist numerous pattern

combinations that can successfully give a reconstruction. From the perspective

of CS theory, the series of patterns have to be relatively independent so that the

corresponding system response matrix has low mutual coherence. However, this

might lead to a series of random low-gain patterns, which are not preferred for

noisy environment as they have lower SNR compared to conventional high gain

pencil beam patterns. It is of great importance if we can find a way to design

optimized pattern combinations according to the imaging applications. This is

an interesting optimization problem and could be a new hot topic for not only

the phased array imaging system, but also other reconfigurable antenna imaging

systems like meta-surface antenna and reflect-array antenna.

• CS imaging methods not only offers much better reconstruction results than con-

ventional Fourier methods but also greatly reduce the data acquisition time. Nev-

ertheless, CS methods suffer from high computational complexity in reconstruction

and data storage. This could limit their applications to imaging systems that have

low or limited computing power. This issue becomes extremely serious when it

comes to 3-D imaging and real-time imaging. New recovery algorithms should be

developed such that both the ability to reduce data acquisition time and fast image

reconstruction can be achieved.

• Traditional MIMO array design focuses on the position arrangement of the transmit

and receive elements. The goal is to achieve sharp beam with low side lobes,

which is usually verified by showing the PSF or the reconstruction of a point-like

target. In compressive MIMO array imaging, the imaging performance is related

to the probability of successful CS reconstruction, which is determined by the well-

condition of the system response matrix. Therefore, for optimized performance in

compressive MIMO array imaging, the goal of array design becomes to arrange the

geometry of the transmit and receive arrays such that the response matrix is well-

conditioned for CS reconstructions. The evaluation metric of how the response
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matrix is well-conditioned can be the well-known RIP, mutual coherence or any

other potential methods. This well-condition evaluation process can be surely

integrated into an optimization problem and the array design problem can then

be solved by a lot of optimization techniques. Although the compressive MIMO

array design is completely different from the traditional MIMO array design, we

believe there must be some connections between them and further research should

be done.

• Chapter 7 has demonstrated a Luneburgn lens imaging system using a mechanically

scanned horn fed. As a continuation of this work, one would like to design an array

to feed the Luneburg lens for electronic beam steering. For optimal imaging perfor-

mance, the array should maintain high gain, low mutual coupling, good matching

with the lens, and should also be compact in size. Considering the complexity in

calibrating the imaging system, it is desirable to design the feeding array and the

lens as a whole system like an Integrated Lens Antenna (ILA). The main drawback

of the compressive Luneburg lens imaging is the time-consuming calculation of the

response matrix. Moreover, full-wave EM solvers and real experiments sometimes

are not available for the generation of the radiation patterns. Therefore, approxi-

mated methods like PO and GO techniques that give fast calculation should be an

object or further research.
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Appendix B

Code for Antenna Radiation

Pattern Generation in CST

B.1 Matlab Code to Control CST

Listing B.1: Some class definition

1 clear ;clc;

2 newdir ='C:\ CST\ datasave \';

3 cst_prj_name = 'C:\ CST\ Luneburg Lens Imaging .cst ';

4 patternfile ='C:\ CST\ Luneburg Lens Imaging \ Export \ Farfield \

farfield (f=10) [2]. txt ';

5 N_x =30; N_y =30;

6 N=N_x*N_y; % Number of sampling points

7 xmax =30; ymax =30;

8 x= linspace (-xmax ,xmax ,N_x);

9 y= linspace (-ymax ,ymax ,N_y);

10 temp= repmat (x,N_y ,1);

11 xy (: ,1)=temp (:);
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12 temp= repmat (y',N_x ,1);

13 xy (: ,2)=temp; % Coordinates matrix

14

15 for i=1:N

16 tic

17 %% CST start

18 cst = actxserver ('CSTStudio . application ');

19

20 %% Open the project file and update parameters

21 mws= invoke (cst , 'OpenFile ', cst_prj_name );

22 invoke (mws ,'StoreParameter ','G_fx ',xy(i ,1));

23 invoke (mws ,'StoreParameter ','G_fy ',xy(i ,2));

24 invoke (mws ,'Rebuild ');

25 invoke (mws ,'Save ');

26

27 %% Finish CST session

28 invoke (mws , 'Quit ');

29 release (mws);

30 invoke (cst , 'Quit ');

31 release (cst);

32

33 %% Call VBA code to run CST solver

34 ! "C:\ Program Files (x86)\CST STUDIO SUITE 2016\ CST

DESIGN ENVIRONMENT .exe" -m C:\ CST\ runsolver .bas

35

36 %% Move radiation pattern file to new folder and rename

37 movefile ( patternfile ,char( strcat (newdir , num2str (i,'%04d'

),'.txt ')));

38
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39 %% Time estimation

40 time=toc;

41 disp ([ '############ Loop ',num2str (i), ' of ',num2str (N

),'... ']);

42 disp ([ 'Remaing time = ',num2str ((N-i)*time /60) , '

minutes / ',num2str ((N-i)*time /60/60) ,' hours ']);

43 datestr (now)

44 fprintf ('\n\n')

45

46 end

B.2 VBA Code to Configure CST

Listing B.2: Some class definition

Option Explicit

Sub Main

OpenFile("C:\CST\Luneburg Lens Imaging.cst")

Solver.Start

Save

End Sub

B.3 Matlab Code to Extract Data

Listing B.3: Some class definition

1 clear ;clc;

2 cd 'C:\ CST\ datasave \' % Change Matlab working folders
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3 newdir ='C:\ CST\ datasave \';

4 newdir2 ='C:\ MATLAB \ Luneburg \';

5

6 %% Calculate the total number of txt files

7 txtname =dir('*. txt ');

8 N= length ( txtname );

9

10 %% Read radiation pattern data and save to one single file

11 pattern_matrix = single (zeros (65160 ,N)); % single precision

12 angle_matrix =zeros (65160 ,2);

13 for i= 1:N

14 filename =char( strcat (newdir , num2str (i,'%04d'),'.txt '));

15 [theta , Phi , Efield ]= textread (filename ,' %f %f %f %*s %*s

%*s %*s %*s','headerlines ' ,2);

16 angle_matrix (: ,1)=theta;

17 angle_matrix (: ,2)=Phi;

18 pattern_matrix (:,i)= Efield ;

19 end

20 save(char( strcat (newdir2 ,'CST_VBA_Radiation_Pattern_10G_ ',

num2str (N,'%04d'),'.mat ')),'angle_matrix ','pattern_matrix

');
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