
69

A Functional Taxonomy of Music Generation Systems

DORIEN HERREMANS, Singapore University of Technology and Design
& Queen Mary University of London
CHING-HUA CHUAN, University of North Florida
ELAINE CHEW, Queen Mary University of London

Digital advances have transformed the face of automatic music generation since its beginnings at the
dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different
machines and the degree to which they succeed remain open questions. We present a functional taxonomy
for music generation systems with reference to existing systems. The taxonomy organizes systems accord-
ing to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems.
This design-centered approach contrasts with predominant methods-based surveys, and facilitates the iden-
tification of grand challenges so as to set the stage for new breakthroughs.
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1. INTRODUCTION
The history of automatic music generation is almost as old as that of computers. That
machines can one day generate “elaborate and scientific pieces of music of any degree
of complexity and extent” [Lovelace 1843] was anticipated by visionaries such as Ada
Lovelace since the initial designs for a general purpose computing device were laid
down by Charles Babbage. Indeed, music generation or automated composition was
a task accomplished by one of the first computers built, the ILLIAC I [Hiller Jr and
Isaacson 1957]. Today, computer-based composition systems are aplenty. The recent
announcement of Google Magenta1, “a research project to advance the state of the art
in machine intelligence for music and art generation,” underscores the importance and
popularity of automatic music generation in artificial intelligence.

1http://magenta.tensorflow.org/welcome-to-magenta
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Despite the enthusiasm of researchers, using computers to generate music remains
an ill-defined problem. Although several survey papers on automatic music genera-
tion [Papadopoulos and Wiggins 1999; Nierhaus 2009; Fernández and Vico 2013] exist,
researchers still debate the kinds of musical tasks that can be performed by machines
and the degree to which satisfactory outcomes can be achieved. Outstanding ques-
tions include: what compositional tasks are solved and which remain challenges? How
is each compositional task modeled and how do they connect to each other? What is
the relationship between systems proposed for different compositional tasks? What is
the goal defined for each task and how can the objective be quantified? How are the
systems evaluated? While individual questions or subsets of these questions might be
addressed in specific papers, previous surveys fail to provide a systematic comparison
of the state of the art.

This paper aims to answer these questions by proposing a functional taxonomy of
automatic music generation systems. Focusing on the purpose for which the systems
were developed, we examine the manner in which each music composition task was
modeled and describe the connection between different tasks within and across sys-
tems. We propose a concept map for automatic music generation systems based on
the functions of the systems in Section 1.1. A brief history of early automatic music
generation systems is provided in Section 1.2, followed by a discussion on the general
approach to evaluating computer generated music (Section 1.3). A detailed survey of
systems designed based on each functional aspect is then presented in Section 2.

1.1. Function and design concepts in automatic music generation systems
The complexity and types of music generation systems is almost as varied as music it-
self. It would be a gross simplification to consider and judge all automatic music gener-
ation systems in a homogeneous fashion. The easiest way to understand the complexity
of these systems and their connections one to another is to examine the functions for
which they were designed.

Figure 1 illustrates a concept map showing the functional design aspects that form
the proposed taxonomy of music generation systems. The map is centered around two
basic concepts crucial to music generation systems: the composition (the higher grey
node) and the note (the lower gray node), which possesses properties such as pitch,
duration, onset time, and instrumentation.

Between the note and the composition lie four essential elements of music compo-
sition: melody, harmony, rhythm, and timbre. Systems that focus on any one of the
four aspects generate a sequence of notes that fulfills a specific set of goals, which
can vary widely amongst the systems. For example, for melody generation, a system
could be designed to simply produce a monophonic sequence of notes [Brooks et al.
1957], or be constrained to fit a given accompaniment [Pachet and Roy 2001]. For
an automatic harmonization system, the goal could involve generating three lines of
music for a given melody without breaking music theoretic rules (e.g., harmonizing
chorales [Ebcioğlu 1988], or producing substitute chord progressions in jazz [Chemil-
lier 2001]. For rhythm generation, a system could focus on producing rhythmic pat-
terns that sound like rock n’ roll [Tokui and Iba 2000], or on changing the timing
of onsets to make the rendering of the piece sound more human-like [Tidemann and
Demiris 2008].

Timbre is unique in that it is based only on the acoustic characteristic of music.
Timbre can be generated either by playing notes on a real instrument or by artifi-
cially synthesizing sounds for a note or several notes. In automatic music composition,
timbre generation surfaces as a problem in orchestration, which is often modeled as
a retrieval problem [Psenicka 2003], or a multi-objective search problem [Carpentier
et al. 2010].
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Fig. 1. Concept map for automatic music generation systems.

The objective of a system, such as matching a target timbre, will directly impact
the problem definition and prospective solution techniques, such as multi-objective
search or retrieval. Also notice that a music generation system can tackle more than
one functional aspect—melody, harmony, rhythm, timbre—either by targeting multiple
goals at the same time or focusing on one goal with other musical aspects considered
constant and provided by the user.

Returning to Figure 1, three high-level concepts are shown above composition: nar-
rative, interactive composing, and difficulty. Interactive composing refers to an online
problem solving approach, which can be real-time or not, to music generation that
employs user input. A system can be designed to generate each of the four essential
musical elements, or a combination of them, in an interactive manner. For example,
a system can listen to a person’s playing and learn her or his style in real time, and
improvise with the player in the same style [Pachet 2003; Assayag et al. 2006]. An-
other type of interactive system incorporates a user’s feedback in the music generation
process, using it either as critique for reinforcement learning [Franklin 2001] or as a
source of parameters in music generation [François et al. 2013].

The narrative contributes to the emotion, tension, and/or story line perceived by
the listener when listening to music [Huron 2006]. The concept of difficulty focuses
on physical aspects of playing the instrument. Systems with ergonomic goals must
consider the playability of certain note combinations on a particular instrument.

To achieve these goals, the long-term and/or hierarchical structure of the music plays
an important role. These high-level goals and the long-term structure have been the
focus of recent development in automatic music generation, a trend that will persist
into the near future.

As shown in Figure 1, automatic music generation evokes a number of computa-
tional problems and demonstrates capabilities that span almost the entire spectrum
of artificial intelligence. For example, generating music can be described as a sen-
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sorless problem (generating monophonic melody without accompaniment), a partially
observable problem (with accompaniment but not the underlying chord progression),
or a fully observable problem (accompaniment with labeled chord progression). Dif-
ferent agent types, including model- and knowledge-based [Chuan and Chew 2011],
goal-based [Pachet and Roy 2001], utility-based [McVicar et al. 2014], and statistical
learning [Tokui and Iba 2000], have been used for music generation.

In music generation, states can be defined in terms of discrete (e.g., pitch, interval,
duration, chord) as well as continuous (e.g., melodic contour, acoustic brightness and
roughness) features. In addition, various techniques, such as stochastic approaches,
probabilistic modeling, and combinatorial optimization, have been applied to music
generation. In such a rich problem domain, it is thus especially important to under-
stand the intricacies within each subproblem and the manner in which the subprob-
lems are interconnected one with another.

1.2. Automating composition: early years
The idea of composers relinquishing some degree of creative control and automating
certain aspects of composition has been around for a long time. A popular early exam-
ple is Mozart’s Musikalisches Würfelspiel (Musical Dice Game), whereby small frag-
ments of music are randomly re-ordered by rolling a dice to create a musical piece.
Mozart was not the only one experimenting with this idea. In fact, the first musi-
cal dice game, called Der allezeit fertige Menuetten und Polonaisencomponist (The
Ever-Ready Minuet and Polonaise Composer) can be traced back to Johann Philipp
Kirnberger [Kirnberger 1757]. According to Hedges [1978], at least twenty musical
dice games where published between 1757 and 1812, making it possible for musical
novices to compose polonaises, minuets, marches, walzes, and more.

John Cage, Charles Dodge, Iannis Xenakis and other avant-garde composers have
continued the ideas of chance-inspired composition. John Cage’s Atlas Eclipticalis was
composed by randomly placing translucent paper on a star chart and tracing the stars
as notes [Pritchett 1994]. In the piece called “Analogique A”, Xenakis uses statistical
models (Markov) to determine how musical sections are ordered [Xenakis 1992]. The
composer David Cope began his “Experiments in Musical Intelligence” in 1981 as the
result of a composer’s block; the aim of his resultant software was to model his own
composing style, so that at any given point one could request a next note, next bar, and
so on. In later experiments, Cope also modeled styles of other composers [Cope 1996].
Some of the music composed using this approach proved to be fairly successful. A more
extensive overview of such avant-garde composers is given by Cope [2000].

State-of-the-art music generation systems extend these ideas of mimicking styles
and pieces, be it in the form of statistical properties of styles or explicitly repeated
fragments. Before Section 2 describes in greater depth music generation systems in
terms of their functions, the next section focuses on how the goals of music generation
systems are defined and evaluated, depending on the technique used for generation.

1.3. Measuring success
For automatic music generation systems, unless the end goal is the process rather than
the outcome, evaluation of the resulting composition is usually desired, and for some
systems an essential step in the composition process.

The output of music generation systems can be evaluated by human listeners, us-
ing music theoretic rules, or using machine-learned models. The choice of evaluation
method is primarily influenced by the goal of the music generation system, such as
similarity to a corpus or a style (as encapsulated by rules or machine-learned models)
versus music that sounds good. All of these goals are interrelated and impact the im-
plementation of the music generation system and the quality of the generated pieces.
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While human feedback may arguably be the most sound approach for evaluating
post-hoc if the generated pieces sound good [Pearce and Wiggins 2001; Agres et al.
2017], requiring people to rate the output at each step of the process can take an ex-
cessive amount of time. This is often referred to as the human fitness bottleneck [Biles
2001]. A second issue with human evaluation is fatigue. Continuous listening and eval-
uating can cause significant psychological strain for the listener [Tokui and Iba 2000].
So while it can be useful, and arguably essential, to let human listeners test the final
outcome of a system, human ratings aren’t practically possible to guide or steer during
the generation process.

If the goal of the automatic composition process is to create music similar to a given
style or body of work by a particular composer, one could look to music theory for well-
known rules such as those for music in the style of a composer, say Palestrina. These
could be incorporated into an expert system or serve as a fitness function, say of a
genetic algorithm. The downside to this approach is that existing rule sets are limited
to a few narrowly-defined styles that have been comprehensively analyzed by music
theorists or systematically outlined by the composer, which constrains its robustness
and wider applicability, or are so generic as to result in music lacking definable char-
acteristics.

The third approach, using machine-learned models, seems to offer a solution to the
aforementioned problems. By learning the style of either a corpus of music or a partic-
ular piece, music can be generated with characteristics following those in the training
pieces. The characteristics may include distributions of absolute or relative pitch sets,
durations, intervals, and contours. A large collection of features is suggested by Towsey
et al. [2001] and Conklin and Witten [1995]. Markov chains form a class of machine-
learned models; they capture the statistical occurrence of features in a particular piece
or corpus. Sampling from Markov models results in pieces with similar statistical dis-
tributions of the desired musical features. Other machine-learning approaches include
neural networks and, more recently, deep-learning methods, which attempt to capture
more complex relationships in a music piece.

A concept that directly relates to the task of evaluating the generated music, re-
gardless of which of the above three methods are used, is similarity. In the first case,
human listeners have formed their frame of reference through previous listening expe-
riences [Peretz et al. 1998; Krumhansl 2001] and will judge generated pieces based on
their similarity to pieces with which they are familiar. Secondly, a piece generated with
music theoretic rules will possess attributes characteristic of those in the target style.
Finally, pieces generated by machine-learned models will have features distributed in
ways similar to the original corpus.

Since similarity is central to metrics of success in music generation systems, an im-
portant challenge then becomes one of finding the right balance between similarity
and novelty or creativity. In the words of Hiller [1989]: “It is interesting to specu-
late how much must be changed to create a new work.” For example, music based on
fragments of an already existing composition, as in the case with high-order Markov
models, run the risk of crossing the fine line between stylistic similarity and plagia-
rism [Papadopoulos et al. 2014]. Evaluating the creativity, which is sometimes equated
to novelty, of the generated music is a complex topic treated in greater length in Agres
et al. [2017].

In order to facilitate the comparison of results from different music generation sys-
tems, the authors have set up an online computer generated music repository2. This
repository allows researchers to upload both audio files and sheet music generated
by their systems. This will facilitate dissemination of results and promote research

2http://dorienherremans.com/cogemur
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transparency so as to better assess the impact of different systems. Access to concrete
examples through the website will allow visitors to better understand the behavior of
the music generation systems that created them.

In the remainder of this paper, we will discuss each of the functional areas on which
music generation systems can focus. Rather than aiming to provide an exhaustive
list of music generation systems, we choose to focus on research that presented novel
ideas which were later adopted and extended by other researchers. This function and
design-based perspective stands in contrast to existing survey papers, which typically
categorize generation systems according to the techniques that they employ, such
as Markov models, genetic algorithms, rule-based systems, and neural networks—
see [Papadopoulos and Wiggins 1999; Nierhaus 2009; Fernández and Vico 2013]. By
offering a new taxonomy inspired by the function and design foci of the systems, we
aim to provide deeper insights into the problems that existing systems tackle and the
current challenges in the field, thereby inspiring future work that pushes the bound-
aries of the state-of-the-art.

2. A FUNCTIONAL INDEX OF MUSIC GENERATION SYSTEMS
This section explores functional aspects addressed in different music generation sys-
tems which form the taxonomy proposed in this paper; example systems are given
for each aspect. The functional aspects discussed, in order of appearance, are melody,
harmony, rhythm, timbre, interaction, narrative, and difficulty. We also touch upon
long-term structure in relation to some of these categories.

It is worth pointing out that the aspects, while separate in their own right, can often
be conflated; for example, rhythm is inherent in most melodies. Therefore, a system
mentioned in the context of one aspect may also touch upon other functional aspects.

In Table I an overview is given of the different techniques used within these func-
tional aspects. Systems are classified by their main technique and listed with their
most prominent aspect. Typically, music generation systems can belong to more than
one category. In this paper (and therefore also in Table I), the most important contri-
bution of the systems is emphasized and only the systems with a clear contribution
are listed. In the next subsections, the individual functional aspects will be discussed
in greater detail.

Table I: Functional overview of selected music generation systems by
their main technique.

Markov models

Melody [Pinkerton 1956; Brooks et al. 1957; Moorer 1972; Conklin and Witten 1995;
Pachet and Roy 2001; Davismoon and Eccles 2010; Pearce et al. 2010; Gillick
et al. 2010; McVicar et al. 2014; Papadopoulos et al. 2014]

Harmony [Hiller Jr and Isaacson 1957; Xenakis 1992; Farbood and Schoner 2001; Allan
and Williams 2005; Lee and Jang 2004; Yi and Goldsmith 2007; Simon et al.
2008; Eigenfeldt and Pasquier 2009; De Prisco et al. 2010; Chuan and Chew
2011; Bigo and Conklin 2015]

Rhythm [Tidemann and Demiris 2008; Marchini and Purwins 2010; Hawryshkewich
et al. 2011]

Interaction [Thom 2000]
Narrative [Prechtl et al. 2014a,b]
Difficulty [McVicar et al. 2014]
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Factor oracles

Interaction [Assayag et al. 2006; Weinberg and Driscoll 2006; François et al. 2007; Assayag
et al. 2010; Dubnov and Assayag 2012; François et al. 2013; Nika et al. 2015]

Rhythm [Weinberg and Driscoll 2006]

Incremental parsing

Interaction [Pachet 2003]

Reinforcement learning

Interaction [Franklin 2001]

Rule/Constraint satisfaction/Grammar-based

Melody [Keller and Morrison 2007; Gillick et al. 2010; Herremans and Sörensen 2012]
Harmony [Hiller Jr and Isaacson 1957; Steedman 1984; Ebcioğlu 1988; Cope 1996; As-

sayag et al. 1999b; Cope 2004; Huang and Chew 2005; Anders 2007; Anders
and Miranda 2009; Aguilera et al. 2010; Herremans and Sörensen 2012, 2013;
Tanaka et al. 2016]

Narrative [Rutherford and Wiggins 2002]
Difficulty [Lin and Liu 2006]
Interaction [Lewis 2000; Chemillier 2001; Morales-Manzanares et al. 2001; Marsden 2004]
Narrative [Casella and Paiva 2001; Farbood et al. 2007; Brown 2012; Nakamura et al.

1994]

Neural networks/Restricted Boltzmann machines/ LSTM

Harmony [Lewis 1991; Hild et al. 1992; Eck and Schmidhuber 2002; Boulanger-
Lewandowski et al. 2012; Herremans and Chuan 2017]

Melody [Todd 1989; Duff 1989; Mozer 1991; Lewis 1991; Toiviainen 1995; Eck and
Schmidhuber 2002; Franklin 2006; Agres et al. 2009; Boulanger-Lewandowski
et al. 2012]

Interaction [Franklin 2001]
Narrative [Browne and Fox 2009]

Evolutionary/Population-based optimization algorithms

Melody [Horner and Goldberg 1991; Towsey et al. 2001; WASCHKA II 2007; Herremans
and Sörensen 2012]

Harmony [McIntyre 1994; Polito et al. 1997; Phon-Amnuaisuk and Wiggins 1999; Geis and
Middendorf 2007; WASCHKA II 2007; Herremans and Sörensen 2012]

Rhythm [Tokui and Iba 2000; Pearce and Wiggins 2001; Ariza 2002]
Interaction [Biles 1998, 2001]
Difficulty [Tuohy and Potter 2005; De Prisco et al. 2012]
Timbre [Carpentier et al. 2010]

Local search-based optimization

Melody [Herremans and Sörensen 2012]
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Harmony [Herremans and Sörensen 2012; Herremans et al. 2015a]
Narrative [Browne and Fox 2009; Herremans and Chew 2016a]
Timbre [Carpentier et al. 2010]

Integer Programming

Melody [Cunha et al. 2016]

Other optimization methods

Melody [Davismoon and Eccles 2010]
Harmony [Tsang and Aitken 1999; Farbood and Schoner 2001; Bemman and Meredith

2016]
Timbre [Hummel 2005; Collins 2012]
Difficulty [Radisavljevic and Driessen 2004]

2.1. Melody
Melody constitutes one of the first aspects of music subject to automatic generation.
This section explores the range of automatic systems for generating melody. The gen-
eration of simple melodies is studied first, followed by the transformation of existing
ones, then the more constrained problem of generating melodies that fit an accompa-
niment or chord sequence.

2.1.1. Melodic generation. When considering the problem of generating music, the sim-
plest form of the exercise that comes to mind is the composition of monophonic
melodies without accompaniment.

Problem description. In most melody generation systems, the objective is to compose
melodies with characteristics similar to a chosen style—such as Western tonal music
or free jazz—or corpus—such as music for the Ethiopian lyre the bagana [Herremans
et al. 2015b], a selection of nursery rhymes [Pinkerton 1956], or hymn tunes [Brooks
et al. 1957].

These systems depend on a function to evaluate the fitness of output sequences or
to prune candidates. Such a fitness function, as discussed in Section 1.3 is often based
on similarity to a given corpus, style, or piece. The music is often reduced to extracted
features; these features can then be compared to that of the exemplar piece or corpus, a
model, or existing music theoretic rules. Example features include absolute or relative
pitch [Conklin 2003], intervals [Herremans et al. 2015a], durations [Conklin 2003],
and contours [Alpern 1995]. Not all studies provide details of the extracted features,
which makes it difficult to compare the objectives and results.

Early work. Building on the ideas of the aforementioned avant garde composers,
some early work on melody generation uses stochastic models. These models capture
the statistical occurrence of features in a particular song or corpus to generate music
having selected feature distributions similar to the target song or corpus.

The first attempts at generating melodies with computers date back to 1956, when
Pinkerton built a first order Markov model, the “Banal Tune-Maker”, based on a corpus
of 39 simple nursery rhymes. Using a random walk process, he was able to generate
new melodies that “sound like nursery rhymes”. The following year, Brooks et al. [1957]
built Markov models from order one up to eight based on a dataset of 37 hymns. When
using a random walk process, they noted that melodies generated by higher order
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models tend to be more repetitive and those generated by lower order models had
more randomness.

The trade-off between composing pieces similar to existing work and novel, creative
input is a delicate one. Although Stravinsky is famously quoted as having said, “good
composers borrow and great composers steal” [Raines 2015], machines still lack the
ability to distinguish between artful stealing and outright plagiarism. Concepts of
irony and humor can also be difficult to quantify. In order to avoid plagiarism and
create new and original compositions, an automatic music generation system needs to
find the balance between generating pieces similar to a given style, yet not too similar
to individual pieces.

Papadopoulos et al. [2014] examined problems of plagiarism arising from higher
order Markov chains. Their resulting system learns a high order model, but intro-
duces MaxOrder, the maximum allowable subsequence order in a generated sequence,
to curb excessive repeats of material from the source music piece. The sequences are
generated using finite-domain constraint satisfaction. The idea of adding control con-
straints when generating music using Markov models was further explored by Pa-
chet and Roy [2001]. Examples of applications of such control constraints include re-
quirements that a sequence be globally ascending or follows an arbitrary pitch con-
tour. Although there have been some tests of using control constraints with mono-
phonic melodies, the research of Pachet and Roy [2001] focuses on the even more con-
strained problem of generating jazz solos over accompaniment, a topic that is explored
in greater detail in Section 2.1.3.

Structure and patterns. Composing a monophonic melody may seem like a simple
task compared to the scoring of a full symphony. Nevertheless, melodies are more than
just movements between notes, they normally possess long term structure. This struc-
ture may result from the presence of motives, patterns, and variations of the patterns.
Generating music from a Markov model with a random walk or Gibbs sampling typi-
cally does not enforce patterns that lead to long term structure. In recent years, some
research has shown the effectiveness of using techniques such as optimization and
deep learning to enforce long-term structure.

Davismoon and Eccles [2010] were some of the first researchers to frame music gen-
eration as a combinatorial optimization problem with a Markov model integrated in
its objective function. In order to evaluate the music generated, their system builds
a (second) Markov model based on the generated music so as to enable to system to
minimize a Euclidean distance between the original model and the new model. They
used simulated annealing, a metaheuristic inspired by a metallurgic technique used
to cool a crystalline solid [Kirkpatrick et al. 1983], to solve this distance-minimization
problem. This allowed them to pose some extra constraints to control pitch drift and
solve end-point problems.

Pearce et al. [2010]’s IDyOM system uses a combination of long- and short-term
Markov models. A dataset of modern Western tonal-style music was used to train a
long-term model, combined with a short-term model trained incrementally on the piece
being generated. The short-term model captures the changes in melodic expectation as
it relates to the growing knowledge of the current fragment’s structure. Local repeated
structures are more likely to recur; this model will therefore recognize and stimulate
repeated structures within a piece. The result is an increase in the similarity of the
piece with itself, which can be considered a precursor to form.

A recent study by Roig et al. [2014] generates melodies by concatenating rhyth-
mic and melodic patterns sampled from a database. Selection is done based on rules
combined with a probabilistic method. This approach allows the system to generate
melodies with larger-scale structure such as repeated patterns, which causes the piece
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to have moments of self-similarity. Cunha et al. [2016] adopt a similar approach, using
integer programming with structural constraints to generate guitar solos from short
existing licks. The objective function consists of a combination of rules. Bemman and
Meredith [2016] mathematically formalized a problem posed by composer Milton Bab-
bitt. Babbit is famous for composing twelve-tone serial music and formulated the “all-
partition array”-problem, which consists of finding a rectangular area of pitch class
integers that can be partitioned into regions whereby each region represents a distinct
integer partition of 12. There are only very few solutions to this computationally hard
composition problem with a very structured nature, one of which was found by Tanaka
et al. [2016] through constraint programming.

Herremans et al. [2015b] investigates the integration of Markov models in an op-
timization algorithm, exploring multiple ways in which a Markov model can be used
to construct an objective function that forces the music to have the same statistical
distribution of features as a corpus or piece. This optimization problem is solved using
a variable neighborhood search (VNS). The main advantage of this approach is that it
allows for the inclusion of any type of constraint. In their paper, the generated piece is
constrained to an AABCA structure. The approach was implemented and evaluated by
generating music for the bagana, an Ethiopian lyre. Since this system uses the semi-
otic pattern from a template piece, the newly generated pieces can be considered as
having structure like the template.

The MorpheuS system [Herremans and Chew 2016a] expands on the VNS method,
adding constraints on recurring (transposed) patterns and adherence to a given ten-
sion profile. Repeated patterns are detected using the compression algorithm COSI-
ATEC [Meredith 2013]. COSIATEC finds the locations where melodic fragments are
repeated in a template piece, thus supplying higher-level information about repetitions
and structural organization. Tonal tension is quantified using measures [Herremans
and Chew 2016b] based on the spiral array [Chew 2014].

In recent years, more complex deep learning models such as recursive neural net-
works have gained in popularity. The trend is due in part to the fact that such models
can learn complex relationships between notes given a large-enough corpus. Some of
these models also allow for the generation of music with repeating patterns and no-
tions of structure. The next paragraphs examine research on neural network-based
melody generation.

Deep learning and structure. The first computational model based on artificial neu-
ral networks (ANNs) was created by McCulloch and Pitts [1943]. Starting in the eight-
ies, more sophisticated models have emerged that aim to more accurately capture
complex properties of music. The first neural network for music generation was de-
veloped by Todd [1989], who designed a three-layered recurrent artificial neural net-
work, whose output (one single pitch at a time) forms a melody line. Building on this
approach, Duff [1989] created another ANN using relative pitches instead of absolute
pitches to compose music in J.S. Bach’s style. Recurrent neural networks are a fam-
ily of neural networks built for representing sequences [Rumelhart et al. 1988]. They
have cyclic connections between nodes that create a memory structure.

Mozer [1991] implemented a recurrent connectionist network (called CONCERT),
that was used in an experiment to generate music that sounds like J.S. Bach’s min-
uets and marches. Novel in this approach was the representation of pitches in a
psychologically-grounded multidimensional space. This representation enabled the
system to capture a notion of similarity between pitches. Although CONCERT is able
to learn some structure, such as that of diatonic scales, its output lacks long-term co-
herence such as that produced by repetition and the statement of the theme at the
beginning and its return near the end. While the internal memory of recursive neural
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networks [Rumelhart et al. 1985] can, in principle, deal with the entire sequence his-
tory. It remains a challenge, however, to efficiently train long term dependencies [Ben-
gio et al. 1994]. x In the same year, Lewis [1991] designed another ANN framework
with a slightly different approach. Instead of training the ANN on a corpus, he mapped
a collection of patterns—drawn from music ranging from random to very good—to a
musicality score. To create new pieces, the mapping was inverted and the musical-
ity score of random patterns was maximized with a gradient-descent algorithm to re-
shape the patterns. Due to the high computational cost, the system was only tested
on simple and short compositions. Agres et al. [2009] built a recurrent neural network
that learned the tonal structure of melodies, and examined the impact of the number
of epochs of training on the quality of newly generated melodies. They showed that
better-liked melodies were the result of models that had more sparse internal rep-
resentations. Conceptually, this sort of sparse representation may reflect the way in
which the human cortex encodes musical structure.

Since these initial studies, deep learning networks have increased in popularity.
Franklin [2006] developed a Long Short-Term Recurrent Neural Network (LSTM)
that generates solos over a reharmonization of chords. She suggests that hierarchi-
cal LSTM networks might be able to learn sub-phrase structures in future work.
LSTM was developed in 1997 by [Hochreiter and Schmidhuber 1997]. It is a recur-
rent neural network architecture that introduces a memory structure in its nodes.
More recently, Boulanger-Lewandowski et al. [2012] used a piano roll representation
to create Recurrent Temporal Restrictive Boltzmann Machine (RT-RBM)-based mod-
els for polyphonic pieces. An RBM, originally called Harmonium by the original de-
veloper [Smolensky 1986], is a type of neural network that can learn a probability
distribution over its inputs. While the model of Boulanger-Lewandowski et al. [2012]
is intended mainly to improve the accuracy of transcription, it can equally be used for
generating music. The RBM-based model learns basic harmony and melody, and local
temporal coherence. Long-term structure and musical meter are not captured by this
model.

The capability for RBM’s to recognize long-term structures such as motives and
phrases is acknowledged in a recent paper by Lattner et al. [2015], in which an RBM
is used to segment musical pieces. The model reaches an accuracy rate that competes
with current state-of-the-art segmentation models. Recent work by Herremans and
Chuan [2017] takes a different approach inspired by linguistics. They use neural net-
works to evaluate the ability of semantic vector space models (word2vec) to capture
musical context and semantic similarity. The results are promising and show that mu-
sical knowledge such as tonality can be modeled by solely looking at the context of a
musical segment.

2.1.2. Transformation. Horner and Goldberg [1991], pioneers in applying genetic algo-
rithms (GAs) to music composition, tackle the problem of thematic bridging, the trans-
formation of an initial musical pattern to a final one over a specified duration. A ge-
netic algorithms is a type of metaheuristic that became popular in the 70s through the
work of [Holland 1992]. It typically maintain a set (called population) of solutions and
combine solutions from this set to form new ones. In the work of Horner and Gold-
berg [1991], based on a set of operators, an initial melodic pattern is transformed to
resemble the final pattern using a GA. The final result consists of a concatenation of
all patterns encountered during this process.

Ralley [1995] uses the same technique (GA) for melodic development, a process in
which key characteristics of a given melody are transformed to generate new material.
The results are mixed as no interesting transformed output were found. According
to Ralley [1995], the problem lies in the high subjectivity of the desired outcome.
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GenDash, a compositional tool developed by composer Rodney Waschka II
[WASCHKA II 2007], is not a fully automated composition system but works in tan-
dem with a human composer. The genetic algorithm does not have any type of fitness
function (human or other); it simply evolves measures of music at random. In this pro-
cess, each measure is treated as a different population for evolution. Using GenDash,
Waschka composed the opera Sappho’s Breath by using a population that consists of
twenty-six measures from typical Greek and Medieval songs [Dostál 2013].

Recently, Sony Computer Science Labs’ Flow Composer has been used to reorches-
trate Ode to Joy, the European Anthem, in seven different styles, including Bach
chorales and Penny Lane by The Beatles [Pachet 2016]. The reorchestrations are based
on max-entropy models, which are often used in fields such as physics and biology
to model probability distributions with observed pairwise correlations [Lezon et al.
2006].

2.1.3. Chord constraints. A melody is most often paired either with counterpoint or with
chords that harmonize the melody. While there exists much work on generating chords
given a melody (see Section 2.2.3), some studies focus on generating a melody that fit
a chord sequence.

Moorer [1972], for instance, first generates a chord sequence, then a melodic line
against the sequence. The melody notes are restricted to only those in the correspond-
ing chord at any given point in time. At each point, a decision is made, based on a
second-order Markov model, to invert melodic fragments based on the chord, or to copy
the previous one. The resulting short melodies have a strangely alien sound, which the
author attributes to the fact that the “plan” or approach is not one that humans use,
and the system does not discriminate against unfamiliar sequences.

The generation of jazz solos over an accompaniment is a popular problem [Pachet
and Roy 2001; Toiviainen 1995; Keller and Morrison 2007]. The improvisation system
(Impro-Visor) designed by Keller and Morrison [2007] uses probabilistic grammars to
generate jazz solos. The model successfully learns the style of a composer, as reflected
in an experiment described by Gillick et al. [2010], where human listeners correctly
matched 95% of solos composed by Impro-Visor in the style of the famous performer
Clifford Brown to the original solo. The accuracy was 90% for Miles Davis, and slightly
less, 85% for Freddie Hubbard. They state that “The combination of contours and note
categories seems to balance similarity and novelty sufficiently well to be characterized
as jazz”. The system does not capture long-term structure, which the authors suggest
might be solved by using the structure of an existing solo as a template.

Eck and Schmidhuber [2002] tackle a similar problem, the generation of a blues
melody following the generation of a chord sequence. They use a Long Short Term
Memory RNN, which the authors claim handles long-term structure well. However,
the paper does not provide examples of output for the evaluation of the long-term
structure.

In the next section, we review music generation systems that focus on harmony.

2.2. Harmony
Besides melody, harmony is another popular aspect for automatic music generation.
This section describes automatic systems for harmony generation, focusing on the
manner in which harmonic elements such as chords and cadences are computation-
ally modeled and produced in accordance to a specific style.

In the generation of harmonic sequences, the quality of the output depends primarily
on similarity to a target style. For example, in chorale harmonization, this similarity
is defined explicitly by adherence to voice-leading rules. In popular music, where chord
progressions function primarily as accompaniment to a melody, the desired harmonic
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progression is achieved mostly by producing patterns similar to existing examples hav-
ing the same context. The context is defined by the vertical relation between melody
and harmony (i.e., notes sounding at the same time) as well as horizontal patterns of
chord transitions (i.e., the relationship of notes over time).

In addition to direct comparisons of harmonic similarity, the output of a chord gen-
eration system can also be evaluated under other criteria such as similarity to a genre
or to the music of a particular artist.

The system must generate sequences recognizably in the target genre or belonging
to a particular corpus, yet not “substantially similar” to it [Liebesman 2007] so as to
avoid accusations of plagiarism. It is only a short step from similarity and plagiarism
to copyright infringement. On copyright protection of ubiquitous patterns such as har-
monic sequences, Gherman [2008] argues that: “When determining whether two mu-
sical works are substantially similar . . . the simple, basic harmony or variation should
not be protectable as it is functional . . .. The harmony that goes beyond the triviality
of primary tonal level and blocked chords is and should be protectable under copyright
law.”

The next sections discuss the task of counterpoint generation, followed by harmo-
nization of chorales, general harmonization, and the generating of chord sequences.

2.2.1. Counterpoint. Counterpoint is a specific type of polyphony. It is defined by a strict
set of rules that handle the intricacies that occur when writing music that has multiple
independent (yet harmonizing) voices [Siddharthan 1999].

In Gradus Ad Parnassum, a pedagogical volume written in 1725, Johann Fux docu-
mented a comprehensive set of rules for composing counterpoint music [Fux and Mann
1971], which forms the basis of counterpoint texts up to the present day. Counterpoint,
as defined by Fux, consists of different “species”, or levels of increasing complexity,
which include more rhythmic possibilities [Norden 1969].

Problem description. The process of generating counterpoint typically begins with
a given melody called the cantus firmus (“fixed song”). The task is then to compose
one or more melody lines against it. As the rules of counterpoint are strictly defined,
it is relatively easy to use rules to generate or evaluate if the generated sequence
sounds similar to the style of the original counterpoint music. The Palestrina-Pal sys-
tem developed by Huang and Chew [2005] offers an interactive interface to visualize
violations of these harmonic, rhythmic and melodic rules.

Automatic counterpoint composition systems typically handle two to four voices.
The systems for generating four-part counterpoint are grouped together with four-
part chorale harmonization in the next section because they follow similar rules. The
systems and approaches described below handle fewer than four voices.

Approaches. Three main approaches exist for emulating counterpoint style: the first
uses known rules to generate counterpoint; the second uses the rules in an evaluation
function of an optimization algorithm; and, the last uses machine learning to capture
the style.

In the first category, Hiller Jr and Isaacson [1957] uses rules for counterpoint to
generate the first and second movements of the Illiac Suite. David Cope composes first
species counterpoint given a cantus firmus in his system “Gradus.” Gradus analyses
a set of first species counterpoint examples and learns the best settings for 6 general
counterpoint goals or rules. These goals are used to sequentially generate the piece,
using a rule-based approach [Cope 2004].

Another system, developed by Aguilera et al. [2010] uses logic based on probabil-
ity rules to generate counterpoint parts in C major, over a fixed cantus firmus. In the
generation process, the system evaluates only the harmony characteristics of the coun-
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terpoint, but not the melodic aspects. The original theory of Johann Fux contains rules
that focus both melodic and harmonic interaction [Fux and Mann 1971].

The second approach, using counterpoint rules as tools for evaluation, is employed
in the system called GPmuse, a GA developed by Polito et al. [1997]. GPmuse composes
fifth species (mixed rhythm) counterpoint starting from a given cantus firmus. It ex-
tracts rules based on the homework problems formulated by Fux and uses the rules to
define the fitness functions for the GA. The music generated by GPmuse sounds simi-
lar to the original style of counterpoint music. A problem with the system is that some
“obvious” rules were not defined by Fux, such as the need for the performer (singer) to
breathe. Since these rules were not explicitly programmed in GPmusic, one example
output contained very long phrases which solely contained eight notes without any
rests.

Strasheela is a generic constraint programming system for composing music. Anders
[2007] uses the Strasheela system to compose first species counterpoint based on six
rules from music theory. Other constraint programming languages, such as PWCon-
straints developed at IRCAM can be used to generate counterpoint, provided the user
inputs the correct rules [Assayag et al. 1999b].

Herremans and Sörensen [2012] uses a more extensive set of eighteen melodic and
fifteen harmonic rules based on Johann Fux’s theory to generate a cantus firmus and
first species counterpoint. The authors implement the rules in an objective function
and optimize (increase) the adherence to these rules using a variable neighborhood
search algorithm (VNS). VNS is a combinatorial optimization algorithm based on local
search proposed by Mladenović and Hansen [1997]. Herremans and Sörensen [2012]’s
system was also implemented as a mobile app [Herremans and Sorensen 2013], and
later extended by adding additional rules based on Fux to generate fifth species coun-
terpoint [Herremans et al. 2015a].

A final approach to the counterpoint generation problem can be seen in the appli-
cation of a machine-learning method to Palestrina-style counterpoint. Farbood and
Schoner [2001] implemented a Hidden Markov Model to capture the different rules of
such counterpoint; they found the resulting music to be “musical and comparable to
those created by a knowledgeable musician.” Hidden Markov Models, first described
by Baum and Petrie [1966], are used to model systems that are Markov processes with
unobserved (hidden) states, and have since become known for their application in tem-
poral pattern recognition [Yamato et al. 1992].

2.2.2. Harmonizing chorales. The harmonizing of chorales is one of the most popular
music generation tasks pertaining to harmony. Chorale harmonization produces highly
structured music that has been widely studied in music theory, and a rich body of
theoretical knowledge offers clear directions and guidelines for composing in this style.

Problem definition. The problem of chorale harmonization has been formulated com-
putationally in a variety of different ways. The most common form is to generate three
voices designed to harmonize a given melody, usually the soprano voice [Allan and
Williams 2005; Ebcioğlu 1988; Geis and Middendorf 2007; Hild et al. 1992; Phon-
Amnuaisuk and Wiggins 1999; Tsang and Aitken 1999; Yi and Goldsmith 2007].

In contrast, the Bach-in-a-Box system proposed by McIntyre [1994] aims to harmo-
nize a user-created melody, which can form one of any four possible voices. Given a
monophonic sequence, the system must generate, using GA, three other notes to form
a chord with each melody note while ensuring that the given melodic notes are not mu-
tated in the process. The quality of a generated four-part sequence is then measured
via fitness functions related to the construction of the chord, the pitch range and mo-
tion, the beginnings and endings of chords, smoothness of the chord progressions and
chord resolution.
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Some systems simplify the process by assuming that all melody notes are chord tones
and chords exist at every melody note, i.e. that the polyphony is homophonic [Phon-
Amnuaisuk and Wiggins 1999; McIntyre 1994; Yi and Goldsmith 2007]. In many sys-
tems, non-chord tones such as passing notes are added as an after-thought following
the establishing of the chord progression; others incorporate explicit considerations of
non-chord tones in the generation process [Allan and Williams 2005; Hild et al. 1992].

Solution approach. As described in [Hild et al. 1992], the results of chorale har-
monization can be expressed in multiple ways, including: as a harmonic skeleton, a
chord skeleton, or as four full parts complete with passing tones. A harmonic skeleton
describes the chord progression as a sequence of symbols—such as roman numerals—
that represent the functional role of each chord in the progression; the rhythm is im-
plied or considered as given. A chord skeleton shows the constituent notes of each
chord without passing tones. Most chorale harmonization systems aim to generate
chord skeletons; few cover all three kinds of abstractions.

Some systems generate only a harmonic skeleton. For example, De Prisco et al.
[2010]’s system produces functional harmonizations represented as roman numerals
with indications of whether the chord is in the root position or some inversion. The sys-
tem proposed by Anders and Miranda [2009] generates the harmonic backbone without
requiring melodic input.

It is worth noting that the terminology for the abstractions are not used consistently
in the literature. For example, Ebcioğlu [1988] describes chord skeletons as sequences
of rhythmless chords with fermatas, like the harmonic skeleton in Hild et al. [1992].
The actual notes including passing tones and suspensions are generated by a fill-in
view object that takes the chord skeleton as input in [Ebcioğlu 1988].

Search space and context. The complexity of the harmonization problem is defined
by the size of the search space for viable chords. This size is in turn determined by
the problem description, which includes the number of chord types and of chords to be
generated. The size of the search space is relevant to the number of states in a hid-
den Markov models [Allan and Williams 2005], the number of nodes in a neural net-
work [Hild et al. 1992], and the length of the chromosome in a genetic algorithm [McIn-
tyre 1994].

In chorale harmonization, for a given key, the basic set of chords consists of: I, ii, iii,
IV, V, V7, vi, and viio and their positions (root or inversions). The size of the basic set
is significantly increased if details such as secondary dominant, pivot chords, and key
modulations are considered. The size of the search space can also be determined by
examining composed examples.

Generating chorale harmonization can be approached as an iterative process. Given
a melody, the system first generates possible configurations for the chord progression,
then modifies the patterns based on certain criteria. For example, the expert system
in [Ebcioğlu 1988] takes the generate-and-test approach using three types of rules
implemented as first-order logic: production rules, constraints, and heuristics. Sys-
tems that use genetic algorithms also follow this iterative nature: the “chromosomes”
or “population” are modified iteratively to improve the quality based on fitness func-
tions [McIntyre 1994]. However, this iterative nature becomes computationally expen-
sive when the chorales become longer.

To overcome this problem of search space explosion, many researchers focus on local
patterns instead of the entire compositions. This is not only a practical solution for
computational reasons, but also a reasonable approach because many of the voice-
leading rules in chorales are concerned only with local movements in and between
individual voices.
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The modeling of local or short-term patterns is even more prominent in approaches
that use neural networks and Markov models. In general, to determine a chord at
the current time point, such systems define the local context by considering the re-
cent chord sequences, and the melody note in the previous, current, and immediate
future time points [Allan and Williams 2005]. For example, De Prisco et al. [2010]
discuss three models—one considering only the current chord, one incorporating the
current and the immediately preceding chord, and one considering the current and the
two closest preceding chords—and their combinations to determine the current chord.
Eigenfeldt and Pasquier [2009] also proposed a third-order Markov model for chord
generation.

Cadences. While the cadence is a key harmonic feature used in the delineation of
phrase boundaries, the modeling of cadences is not always explicitly addressed in
chorale harmonization systems. Even for systems that account for phrase structure,
cadences are handled to varying degrees of detail.

The generation of cadences is typically achieved through constraints. For example,
ending each phrase with a cadence can be set as a hard constraint for any chord pro-
gression [Anders and Miranda 2009]. Cadences can also be induced through heuris-
tics [Ebcioğlu 1988] or preferences, say, in cost functions [Phon-Amnuaisuk and Wig-
gins 1999; McIntyre 1994] that bias the system towards producing more desirable
cadential patterns. For example, in [Phon-Amnuaisuk and Wiggins 1999], wrong ca-
dences are penalized up to 100 points, 10 times more than any other rules governing
voice leading, while McIntyre [1994] awarded points for proper tritone resolution, in-
cluding transitions from V7 and viio to I or vi.

In the work of Tsang and Aitken [1999], cadence formation is realized through four
rules (out of a total of nine). Also using a rule-based approach, Geis and Middendorf
[2007] included a resolution rule as a part of the harmonic score calculation. The gen-
erated cadence is then constrained through the rules to be similar to the chosen style.
The modeling of cadences as constraints or preference rules can be readily incorpo-
rated in systems that use combinatorial approaches such as genetic algorithms and
constraint programming.

In contrast, cadential closure is discussed almost as a by-product in systems us-
ing statistical approaches such as neural networks and Markov models. For example,
in [Hild et al. 1992], harmonic closure relies on explicit coding of the beginnings and
endings of phrases. Allan and Williams [2005] report that their HMM with the Viterbi
algorithm generates plausible cadences similar to those in the chosen corpus; little in-
formation is provided regarding how the system ensures correct cadences, especially
the ones midstream, when seeking the most likely chord progression.

Recently, Yi and Goldsmith [2007] proposed an interesting Markov model-based ap-
proach: instead of generating the most probable sequence, the authors modeled the
harmonization problem as a Markov decision process so that sequences with the high-
est rewards, including those considering cadences, are selected. The reward is pro-
duced by a utility function, which can be either formulated based on music theory or
learned from a dataset. In [Yi and Goldsmith 2007], only two rules are encoded in
the utility function: chords for which melodic notes are chord tones are preferred, and
authentic cadences are preferred while plagal cadences are acceptable.

2.2.3. General harmonization. The general harmonization problem can be considered as
one of determining multiple synchronized-note events to fit certain user-defined cri-
teria. Compared to chorale harmonization, the problem of generating harmonic se-
quences in other genres is less well defined. Unlike chorales in which fitness functions
can be established based on well-studied music theoretic rules, the style, cadences, har-
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monic quality, and even chord labels can often be unclear in the general harmonization
problem.

A number of studies focus on generating harmonizations to user-created melodies
in a popular style. Most studies adopt data-driven approaches to determine possible
chords for a given melodic segment and to ensure chord-to-chord transitions are com-
monly observed in the examples. The systems typically produce a harmonic skeleton
and use predefined patterns for creating rhythmic textures and instrumental arrange-
ments.

Lee and Jang [2004] used the first-order Markov model with dynamic programming
to determine the harmonic skeleton for a user-hummed tune; the state transition prob-
abilities are learned from 150 songs. Simon et al. [2008] took a similar approach;
training their system on 298 songs from various genres such as jazz, rock, pop, blues,
and others. Both systems are evaluated via subjective feedback from listening experi-
ments. A drawback of this approach is that the chord sequences generated tend to be
generic and indistinct in style.

To preserve a recognizable style, rather than training on multi-style datasets, Chuan
and Chew [2011] focused on music composed by only one artist/band, or even a single
piece in the extreme case; the problem of data sparsity is overcome through a chord
tone determination module that generates a set of possible chords, and the use of neo-
Riemannian operations to fill in missing transitions between chords. The generated
chord sequence was evaluated subjectively, and quantitatively using cross entropy.

A system for reharmonizing uplifting trance music based on a newly generated chord
sequence was developed by [Bigo and Conklin 2015]. The system was extensively
tested in an empirical study, in which Agres et al. [2016] found that repetitiveness
in harmonic structure and tension, not solely rhythmic structure, is a contributor to
listener enjoyment in this form of electronic dance music.

2.2.4. Jazz Chord Sequences. The problem of generating chord sequences uncon-
strained by melodic considerations is more frequently seen in jazz. Research on the
generation of jazz chord progressions has focused on chord substitution and variation.

Steedman [1984] studied 12-bar blues and defined a small set of rules using a gener-
ative grammar that produces recognizable 12-bar blues chord progressions. As noted
in the article, there was no explicit attempt to generate good chord progressions or
to avoid bad ones. Instead, Steedman examined the harmonically meaningful chord
progressions and substitutions in order to generate sequences to accompany melodies.

Chemillier [2001] provides a scenario in which a chord sequence of n bars is repeated
as a loop with variations as a foundational jazz accompaniment to explain why identi-
fying substitutions to the original sequence is crucial in jazz improvisation. Although
the substitution module in Chemellier’s system randomly applies Steedman’s rules
to the chord sequence to generate variations, the author suggests ways that the user
could interact with the system to steer the selection.

In the next section, we discuss systems for rhythm generation, without regard for
pitch.

2.3. Rhythm
This section discusses systems that automatically generate rhythm. While some of the
above mentioned systems already include aspects of rhythm, such as duration, the
focus of this section lies on research that focuses on music generation for percussion
instruments.

In music generation systems, rhythm is often considered as given or embedded as
an attribute of note events. Overall, there exists far fewer systems that solely gen-
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erate rhythm than systems focusing on melody and harmony, but similar modeling
approaches have been applied to rhythm generation.

Tokui and Iba [2000] proposed the CONGA system which combines genetic algo-
rithms and genetic programming to produce rhythmic patterns that evolve, with user
feedback as fitness function. Short fragments of rhythmic patterns form the chromo-
some elements in the genetic algorithm; the manner in which these patterns are con-
catenated into a sequence is determined by genetic programming. For evaluation, par-
ticipants use the system to produce rhythmic progressions that sound like rock n’ roll.

A genetic algorithm was also implemented by Ariza [2002] to generate rhythms that
consists of a sequence of genetic variations. His fitness function consists of calculating
the distance between a rhythm and a user-provided “fit-rhythm” through five distance
measures. The results were not evaluated in the paper.

Tidemann and Demiris [2008] used hidden Markov models to learn and generate
core patterns and variations similar to examples played by different drummers. Core
patterns and variations are defined by the supermaximal repeats (i.e., a repeated
pattern that is not part of another pattern) in the melody that correspond to struc-
tural parts such as the verse, chorus, and bridge. To produce more “human-like” drum
patterns, note onset times and velocities are modeled as Gaussian distributions with
noise. The generated patterns were evaluated via a classification task to determine if
the generated patterns belong to the same class as the training corpus.

Hawryshkewich et al. [2011] also applied statistical approaches to generate rhyth-
mic patterns. The Beatback system uses variable-length Markov models to store users’
input via a MIDI drum interface and to generate rhythmic patterns consistent with
the users’ styles and pattern complexity. Each drum event is described by its dura-
tion, velocity, and instrument such as hi-hat or snare; drum patterns are generated by
reproducing highly-likely sequences as observed in the user’s playing.

Marchini and Purwins [2010] used variable-length Markov models to generate per-
cussion sequences, while their system learned and reproduced sequences from audio
examples. Percussion sounds are first segmented into note events using onset detec-
tion; each event is then mapped to symbolic sequences via hierarchical clustering
based on acoustic similarity. Preference is given to symbolic labels that maximize tem-
poral regularity. To generate future events that respect the metrical structure, a tem-
poral grid is created via beat and tempo detection.

Similarity in a social context is explored by Weinberg and Driscoll [2006], who cre-
ated Haile, an interactive robot that plays the drums. Haile analyses, in real time,
perceptual aspects of human players, and decides on one of six interaction modes in
which to generate rhythms to play with the human player based on this analysis. The
six interaction modes are: imitation, stochastic transformation, perceptual transfor-
mation, beat detection, simple accompaniment, and perceptual accompaniment.

The next section moves away from typical music generation systems and deals with
the more complex tasks of orchestrating music and of accounting for timbre in music
generation.

2.4. Timbre
This section considers the aspect of timbre in music generation. The timbre, also re-
ferred to as tone color of sound, is the property that distinguishes different voices and
musical instruments. In the context of music generation it forms an important aspect
to consider when, for instance, composing music for an orchestra because the timbre
of each individual voice has an effect on the perception of the composite sound.

The problem of orchestration with a target timbre is often modeled as a combina-
torial problem in which the system aims to search a database of instrument sound
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samples to retrieve some combination of a subset of the sounds that produce a similar
perceived timbre.

In early systems, timbral closeness was only measured using similarity in the fre-
quency spectrum. For example, Psenicka [2003] proposed the SPORCH system, which
provides orchestration for any acoustic instrument ensemble to match as best possible
any arbitrary sound file. The database consists of descriptive instrument features such
as pitch range, the loudest/softest dynamic levels, and notation information (e.g. clef,
transposition, etc.) about sound samples. Orchestration is then determined through it-
erative search for the best instrument sample mix with frequency spectral peaks most
similar to those of the target file.

Similarly, in Hummel [2005], the system searches iteratively for virtual music in-
struments that when synthesized together create speech-like timbres. The algorithm
minimizes the difference in spectral envelope between the current sound and the tar-
get timbre by iteratively adding sounds that minimize the residual error.

McCormack [1996] developed an L-grammar that generates polyphonic music. Their
model learns features based on pitch, duration and timbre. The details of the timbral
characteristics were not disclosed in the paper.

Carpentier et al. [2010] points out that acoustic instrument orchestration is signifi-
cantly different from, and more complex than, sound synthesis. They model orchestra-
tion as a constrained multi-objective search problem wherein the system aims to find
combinations of sounds similar to a target timbre. Sound samples stored in a database
are represented by their sound attributes and features. Sound attributes are symbolic
labels related to discrete variables in compositions, including pitch, dynamics, and
playing style; sound features represent psychoacoustic characteristics such as bright-
ness and roughness that can be used to quantify perceptual dissimilarity. To minimize
the perceived dissimilarity, the authors used randomly weighted Chebychev aggrega-
tion functions to model dissimilarity as a set of mono-objective problems. Finally, a
genetic algorithm is employed to find the optimal combination given constraints on
sound attributes as well as perceptual dissimilarity.

More recently, Collins [2012] applied machine learning to automatic composition of
electroacoustic music, taking into account the quality of the final mix. A piece is com-
posed by combining and modifying existing audio segments. The system first analyses
the features of the audio segments, such as percussive onset patterns and absolute
peak amplitude, to produce suitable intermediate material for mixing. The segments
are then modified by applying effects including delays, filters, and time stretching.
The composition is iteratively refined using a density envelope on structural parame-
ters such as perceived loudness, sensory dissonance, and increased tension to control
the level of activities. The best mix is selected as the one most similar to an exemplar
piece using dynamic time warping. A similar approach is employed by Sturm [2006],
who uses adaptive concatenative sound synthesis to generate and transform digital
sound. Short segments are used to synthesize variations of sound much like a collage,
based on a measure of similarity, the L1-norm of the difference, of audio features.

In the next three sections, aspects newly associated with music generation are dis-
cussed, such as interaction, narrative and difficulty. The section to follow most imme-
diately will explore interactive improvisation systems which are capable of performing
together with a human player. Style replication in real-time jazz and other improvisa-
tion systems is also addressed in the upcoming section.

2.5. Interaction
This section considers systems in which two-way communication between the com-
puter and human player(s) exist; both the player and the system listen to what is
being played, anticipate, and improvise new music in real time. Previous examples
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addressed music generation in the absence of live interaction with a player, based on
the generated music’s similarity to either a target style or piece. Here, we focus on
similarity in a social context and turn to interactive systems, in which the generation
algorithm “improvises” in real-time with a player. In this scenario, similarity to the
style of the player and self-similarity to what is previously played within the piece
become an important goal, thus shifting the focus to the requirements of interaction.

While there are computer-assisted composition systems that allow the
user/composer to interact with the system and iteratively improve generated so-
lutions in a non-performance setting (e.g. [Farbood et al. 2007], most of these systems
have been discussed in their respective sections above. In this section the focus lies on
real-time performance systems.

Early Work. One of the earliest automatic improvisation systems was created by
George Lewis in the 1980s. One of his compositions, called Voyager, is composed in
automatic response to a musician playing, as well as to the program’s “own internal
processes”. In this early work, the performer is not able to control the system during
performance [Lewis 2000].

Structured improvisation. One of the first interactive jazz solo generators, GenJam
[Biles 1998], generates melody lines over a given chord progression. It listens to a
human player’s last four bars, maps it to a chromosome representation and evolves
what it “hears” with a GA into what it will play in real time. Fitness evaluation is
performed by a human listener who continually gives feedback, rating the output as
“good” or “bad”.

Thom [2000] created Band-out-of-the-Box (BoB), an agent built for interactive
jazz/blues improvisation of four-bar solos, with the goal of developing a system that
is realistic and fun to play with. A probabilistic approach is used, based on variable
tree encoding with multiple features—pitch class, interval, and melodic direction. The
model is trained on warm-up sequences prior to the performance; the features ex-
tracted in the warm-up are first clustered based on histograms; the resulting statistics
are then used during real-time generation to determine the current musical environ-
ment.

Interactive jazz generation is explored further in research by Franklin [2001], who
uses a set of rudimentary rules for jazz and a neural network in combination with
reinforcement learning to trade fours between a musician and the system. The system,
called CHIME, has a stochastic element that allows for out-of-chord changes, which the
author suggests can be done more pointedly and purposefully in future research. The
author also points out that the hard coded rules do not encompass the developing of a
statement or the creation of a shape.

Free improvisation. A second type of improvisation system generates music more
freely with a performer, in real-time, without a fixed, predefined structure. Pachet
[2003]’s Continuator uses a Lempel-Ziv parsing algorithm [Assayag et al. 1999a]—
adapted to properly handle rhythm, beat, harmony and imprecision—to learn the char-
acteristics of any style. It is able to concurrently learn and generate a stream of music
that is similar to a style such as jazz or a player’s own style; it can generate music,
either as a standalone system, as continuations of a performer’s input, or as an inter-
active improvisation backup. By aggregating clusters of notes and treating them as
units, the Continuator is able to handle polyphonic music.

Using a different data structure, the factor oracle, improvisation systems belonging
to the OMax family Assayag et al. [2006] can also concurrently encode and generate
music in a player’s style, and handle polyphonic music. The factor oracle is a finite
state automaton, originally designed to efficiently search for substrings (factors) in a

ACM Computing Surveys, Vol. 50, No. 5, Article 69, Publication date: September 2017.



A Functional Taxonomy of Music Generation Systems 69:21

text [Allauzen et al. 1999]. More recent extensions further allow the OMax system to
handle audio signals instead of symbolic MIDI; the resulting audio-based system is
called Ofon. OMax’s approach has also been applied to speech to simulate rap, and to
video frames [Bloch et al. 2008].

Assayag et al. [2010] and Dubnov and Assayag [2012] further experimented with
audio-based factor oracles to improvise music resulting in systems such as the OMax-
Ofon system developed by Assayag et al. [2010]. The system developed by Dubnov and
Assayag [2012] produces variations from an audio recording using a graph of repeated
factors found in the recording; the system’s main challenge consisting of the marking
and allocating of regions in the original audio that are deemed most promising for the
oracle to focus on in order to achieve the desired result. To do this, Dubnov and As-
sayag introduce an analysis method based on Information Rate (a concept previously
linked to musical anticipation [Dubnov 2006]); in contrast to the previous factor ora-
cle systems, the audio analysis is done in advance, and a performance is in a sense
pre-planned.

The earlier OMax systems are agnostic to rhythmic and longer-range structures.
Nika et al. [2015]’s system ImproteK, also based on the factor oracle, generates both
rhythms and harmonies. It was recently built into an architecture that aims at com-
bining reactivity and anticipation in the music generation processes steered by a “sce-
nario”, which can be a four-bar jazz chord sequence. The system composes off-line given
a scenario; during the performance, this can be re-written to fit the performance.

Performer feedback. Mimi [François et al. 2007], like the OMax family of interactive
improvisation systems, is based on the factor oracle. A novelty of this system is that
it allows the user to visually see the recent past and future generated music, so as
to be aware of the musical context and to plan a response. The performer is also the
operator of Mimi, controlling her learning rate, switching on and off the learning, and
clearing her memory [Schankler et al. 2014]. A variation on Mimi, Mimi4x [François
et al. 2013], allows the user to control four interacting Mimi instances and to structure
an improvisation by deciding when and which of the four Mimi-generated streams
start and stop, their re-combination rates, and the playback dynamic levels.

Other interactions. Besides the above-mentioned systems, in which music is gener-
ated in partnership with a human musician, some systems use other types of inter-
actions. A system created by Marsden [2004] generates melodies based on the move-
ments of a dancer, combined with elaborations based on Schenkerian analysis. The
system is given a “background”, which consists of one note per bar, key and meter
information. Depending on the speed of the dancer’s movements, more target notes
are generated. Gait is another determining influence, for example, a crouching gait is
associated with high regularity. The output of the system follows harmonic and inter-
vallic patterns found in real music, yet lacks subdivision into meaningful phrases. The
association, reflecting similarity, between the movements of a dancer and changes in
melody is credible, although it does not convey the feeling that the dancer is controlling
the music, mostly because of a slight lag in the system. The interactive music impro-
visation system (SICIB) developed by Morales-Manzanares et al. [2001] has a similar
setup, as it detect motion from sensors attached to dancers, and uses a rule-based ap-
proach to translate this to music. Motion characteristics such as curvature and torsion
of movements, and velocity and acceleration are taken into account. The generation
is performed by the Escamol system which uses grammar-rules [Morales-Manzanares
1992] and real-time synthesis by Aura [Dannenberg and Brandt 1996]

Another interactive system, the robot drummer called Haile, developed by Weinberg
and Driscoll [2006] is discussed in more detail in Section 2.3, which calls out the rhyth-
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mic aspects of music generation systems. The next section will explore music with a
narrative, which includes game music and video background music.

emotion

2.6. Narrative
Narrative music is music that tells a story. The narration consists of a set of repre-
sentational, organizational, and discursive cues that deliver story information to the
audience. In this section we focus on different types of narratives, such as tension
profiles, the blending of fragments for game music, leitmotifs, and film music.

Narrative cues create structure within music, including variation in emotions
evoked throughout a piece (synchronized with video or game play), tension profiles,
leitmotifs, repeated patterns and others. The enforcing of narrative structure can lead
to similarity within a piece (e.g. repeated patterns and motifs) or, on a higher-level, be-
tween emotions evoked by the music and simultaneous media such as video or games.

In recent years, there has been increased interest in creating background music for
games and video. The goal in these types of composition problems is that the music
should match the content or emotional content of a scene/narrative. The idea of pro-
gram music, music having an extra-musical narrative or purpose, is an old one. For
example, “the adventures of Don Quixote” composed by Richard Strauss and Hector
Berlioz’s “Symphonie fantastique” both derive inspiration from extra-musical sources.
Inherent in music with a narrative is the existence of long term structure, which was
already touched upon in Section 2.1; the discussion continues in the following para-
graphs.

Tension. An important tool for evoking emotion is the use of musical tension. Au-
dio features, such as roughness, have been shown to correlate with perceived ten-
sion/relaxation patterns in music [Vassilakis 2005]. Farbood [2012] conducted an ex-
tensive experiment to build a perceptual tension model that takes into account the
dynamic, temporal aspects of listening. Farbood models tension in terms of multiple
musical parameters, inclusive of both audio and score-based features. Farbood et al.
[2007] also created Hyperscore, a graphical, computer-assisted composition system in
which users can intuitively edit and visualize musical structures. Both low-level and
high-level musical features (such as tone color, melodic shape, dynamics, harmonic ten-
sion) are mapped to graphical elements that users can control and which allows them
to create compositions. This allows users to, for instance, draw a tension line for the
new composition.

Browne and Fox [2009] used simulated annealing to arrange pre-written motifs ac-
cording to a pre-specified musical tension profiles. The tension profiles were computed
using an ANN model, and Kullback–Leibler divergence was employed to measure the
distance between the desired and the observed tension profiles.

More recently, Herremans and Chew [2016a] used a tonal tension model based on the
spiral array [Herremans and Chew 2016b] to calculate tension of a polyphonic piece.
The algorithm, called MorpheuS, constrains the detected patterns and generates music
that fits as best possible a given tension profile. This tension profile can be provided by
the user or calculated based on a template piece. The generation process is guided by
a variable neighborhood search algorithm.

The breaking of rules that govern Western tonal music elicits tension. In Rutherford
and Wiggins [2002]’s scary music study, more scary music is generated by breaking the
Western tonal music rules. The results were verified by human listeners who noted the
scariness dimensions of the generated music.

Blending. Game music is most frequently generated by cross-fading between audio
files each time the player shifts from one game state to another [Collins 2008]. An
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exception is the music for Depression Quest3 which generates music dynamically as
one moves through the different scenarios in the game. Brian Eno, a composer known
for creating generative systems for ambient music, collaborated with Maxis/EA games
to create a soundtrack generation system for the game “Spore”, in which the music
changes based on a gamer’s style of play [Johnson 2006]. Details of how these systems
work are not publicly available. In traditional games that use cross-fading, however,
it is not uncommon for the two fragments to clash rhythmically or harmonically. The
clash can be ameliorated by techniques such as crossfading quickly, which can be dis-
tracting or jarring.

Müller and Driedger [2012] devised an automatic DJ system for crossfading that
ensures smooth blending, yet still requires the audio fragments to be harmonically
and rhythmically similar. Smooth blending can be improved by restricting the range of
allowed rhythms and harmonies; however, this would also restrict the musical varia-
tions and expressive capacity of the music. In order to solve this problem, Prechtl et al.
[2014a] created a real-time system that generates the music from scratch instead of
using existing fragments. The music generation process uses a stochastic model and
takes into account emotion parameters such as alarm or danger.

Leitmotifs. The system developed by Brown [2012] focuses on “Leitmotifs”, short and
distinctive musical fragments associated with game characters and elements, a strat-
egy commonly employed in Western opera. Each of these motifs are embedded in differ-
ent musical forms; each musical form is associated with different degrees of harmonic
tension and formal regularity, thus conveying different amounts of “markedness”. In
combination, the leitmotifs and forms correspond to different states of the story of a
game. See Collins [2009] for a more complete overview of procedural music in games.

Film music. Music with a narrative is frequently used as background music to films.
The effect that music has on perceived emotion in film has been studied by Parke
et al. [2007]. When mapping perceived emotion to a three-dimensional space of stress,
activity, and dominance, the geometrical center of mass of the three perceived emotions
(in this space) when experiencing film and music combined is found to be in between
that of the participants who listened to music alone and watched film alone. In the
study, the film clips were selected for their ambiguous meanings. Prechtl et al. [2014b]
argue for the need for thorough empirical evaluation when generating music purported
to communicate particular emotions.

Nakamura et al. [1994] created a prototype system that automatically generates
sound effects and background music for short video animations. Music—harmony,
melody and rhythm—is generated for each scene, taking into consideration the mood,
the intensity of the mood, and the musical key used in the preceding scene. The char-
acteristics and intensity of the movements on screen determine the sound effects. An-
other example application for video background music is MAgentA, created by Casella
and Paiva [2001], the goal for which is to generate “film-like” music using the mood of
the environment within which it is embedded.

The final functional aspect in music generation systems, that of the instrument play-
ing difficulty, is discussed in the next section.

2.7. Difficulty
The difficulty of a piece of music refers to the level of skill required for a musician
to play the piece. When automatically composing musical pieces, the manipulation
of features such as melody, harmony, rhythm, and timbre often rise to the fore, and

3https://isaacschankler.bandcamp.com/album/depression-quest-ost
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ergonomic goals such as ease of playing are often ignored. One could argue that if
a model is trained on existing pieces using the appropriate feature set, a new piece
that is sampled from this model should be equally playable. It would be interesting to
explicitly measure difficulty to verify this causality. Thus, generating a piece of similar
playability to pieces in a corpus, or of a predefined difficulty level for an instrument
could be the main goal of a music generation system.

Music generation according to difficulty level. Tuohy and Potter [2005] developed a
genetic algorithm that generates playable guitar music by minimizing hand and finger
movements. More recently, McVicar et al. [2014] automatically generated lead and
rhythm guitar music in tablature notation, based on a given chord and key sequence.

Sébastien et al. [2012] implemented a system that measures the difficulty of a piano
piece based on seven different characteristics including harmony, fingering, polyphony,
and irregularity of rhythm. Such a system could easily be improved with systems for
automatically computing piano fingerings [Lin and Liu 2006; De Prisco et al. 2012;
Balliauw et al. 2017] and string instrument fingerings [Sayegh 1989; Radisavljevic
and Driessen 2004; Radicioni et al. 2004]. The combination of fingering and difficulty
evaluation systems with music generation systems provides an opportunity to evaluate
pieces in a non-traditional, yet essential way.

3. FUTURE CHALLENGES
Over the last few decades, research in music generation has achieved tremendous
progress in generating well-defined aspects of music such as melody, harmony, rhythm,
and timbre. State-of-the-art statistical models, advanced optimization techniques,
larger digital databases on which to train models, and increase in computing power
have all led to the field producing better systems. Why then are we not using music
generation systems in our day to day lives? The above survey shows that an important
overarching challenge remains: that of creating music with long-term structure.

Long-term structure, which often takes the form of recurring themes, motivs, and
patterns, is an essential part of any music listening experience [Lerdahl and Jackend-
off 1983]. Recent music generation systems have tackled this challenge by constrain-
ing certain types of long-term structure, such as recurrent patterns [Herremans and
Chew 2016a], form [Tanaka et al. 2016; Herremans et al. 2015b], cadence [Cunha et al.
2016], and pitch contour [Pachet and Roy 2001]. Secondly, developments in the field of
deep learning [Eck and Schmidhuber 2002; Boulanger-Lewandowski et al. 2012] show
that neural networks can incorporate memory structures when learning sequential
data. The ability of techniques such as RNN and LSTM to capture long-term structure
should be further investigated.

In order to make computer generated music systems part of our daily lives, there is
a crucial need for more “intelligent” systems in which newly composed music matches
higher-level concepts. This intelligence can be expressed in the functional domain of
the “narrative”. While there are recent attempts at generating music with tension [Far-
bood et al. 2007; Herremans and Chew 2016a], that matches a computer game [Prechtl
et al. 2014a], that embody leitmotivs [Brown 2012] or that accompany film [Nakamura
et al. 1994], and others, there is still ample room for better understanding the connec-
tion between music and emotion, so as to integrate this crucial relationship in music
generation systems. This could lead to real-life practical applications such as real-time
music generation for games, and background music for film and video.

While machine learning techniques can be extremely useful in tasks such as the
above-mentioned modeling of emotion in music, they usually require large amounts
of data. Therefore, the field has seen an ongoing need for more data. There lies a
real potential for future work to move towards intelligent systems that do not require
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copious amounts of data, that are capable of innate reasoning, and thus better mirror
the workings of the human mind. This would also solve the continuous challenge of
finding a balance between regenerating existing music and novel fragments without
plagiarizing, as touched upon in Section 1.3.

One of the characteristics of computer generated music that is often neglected is
playing difficulty. While one application would be to tailor novel music to a certain
level of musician skill, there is also potential for using detected/calculated playing
difficulty as an evaluation measure for generated music.

A challenge related to making music generation systems usable by the general public
is, not only the quality of the generated musical content, but also the quality of the
rendering. While this is not an aspect that we explicitly surveyed in this paper, it
nevertheless is important in creating a real-life applications. In recent years, the field
of automatic music production has gained increasing traction. Research topics in this
field include human-like rendering of midi files with expressive timing [Bresin and
Friberg 2000; Grachten et al. 2014] and automatic mixing [Deruty 2016]. Furthering
the development of systems for realistic rendering of generated music, which is often
in MIDI, will stimulate the attractiveness and usability of music that is generated
automatically.

The success of music generation systems is not only measured through the prac-
tical adoption of the systems. Over the course of the years, researchers have adopted
multiple methods for evaluating the output of systems, as outlined in Section 1.3. It re-
mains difficult, however, to objectively compare different systems as they usually take
different input parameters, generate different aspects of music, are trained on differ-
ent styles, or do not have audio examples available for the reader. Furthermore, in
listening experiments, the Mere-exposure effect [Zajonc 1968] will make listeners pre-
fer existing pieces over new ones, as familiarity causes a higher enjoyment. To address
this need for the proper comparison of systems to assess the state-of-the art, the au-
thors of this paper have set up a publicly accessible repository of computer generated
music systems4. Apart from the goal of stimulating the visibility of music generation
systems and their outputs, this online repository will facilitate the comparison of sys-
tems by collecting detailed information such as the nature of the system’s input/output,
and potential manual corrections performed.

4. CONCLUSIONS
This article has presented a taxonomy for the key concepts that form the functional
goals of music generation systems. We then provided a survey of the state-of-the-art
in music generation systems with respect to this functional taxonomy. By focusing on
what current systems can and cannot do, rather than the algorithmic techniques, we
obtain a clearer view of the frontiers of automatic music generation, thus setting the
stage for new breakthroughs. This approach has allowed us to identify uncharted areas
and challenges for the field of automatic music composition.

In line with the current trend of companies such as Google (through the Magenta
project) and Jukedeck, music generation systems will become ever more prominent
in our day to day lives. The functional overview of systems described in this paper
shows the areas with opportunities for further advancement to make automatic music
generation a viable tool for applications ranging from artistic innovation to the cre-
ation of adaptive, copyright-free music for games and videos. Current challenges of the
field include generating music with long-term structure; capturing higher-level con-
tent such as emotion and tension; creating models that possesses innate reasoning so
as to reduce the amount of training data needed; and the promotion of transparent and

4http://dorienherremans.com/cogemur
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objective evaluation methods. In order to facilitate the latter and stimulate visibility
and evaluation of current music generation systems, the authors have set up an online
repository for computer generated music results4.
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