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ABSTRACT
Target tracking in a network of wireless cameras may fail if data

are captured or exchanged asynchronously. Unlike traditional sen-
sor networks, video processing may generate significant delays that
also vary from camera to camera. Moreover, the continuous and
rapid change of the dynamics of the consensus variable (the target
state) makes tracking even more challenging under these conditions.
To address this problem, we propose a consensus approach that en-
ables each camera to predict information of other cameras with re-
spect to its own capturing time-stamp based on the received infor-
mation. This prediction is key to compensate for asynchronous data
exchanges. Simulations show the performance improvement with
the proposed approach compared to the state of the art in the pres-
ence of asynchronous frame captures and random processing delays.

Index Terms— Distributed tracking, camera networks, asyn-
chronous fusion, average consensus

1. INTRODUCTION

Distributed tracking in a wireless camera network (WCN) involves
the estimation of the target state (e.g. location) via data exchange
and fusion among cameras. Unlike other distributed fusion al-
gorithms [1, 2, 3, 4], consensus-based algorithms do not require
full connectivity nor prior knowledge of the routing tables [5]. In
consensus-based fusion each camera node sends its local informa-
tion to its neighbours. Nodes update their local information by
fusing it with the received information, and send the updated in-
formation to their neighbours. Information exchange and update
(consensus update) iterate until the network converges [6]. The final
fusion result is then available at all nodes.

Most distributed tracking algorithms assume that the cameras
in the network capture the frames synchronously [7, 8, 9, 10, 11].
However, local clock frequencies may drift between 1 and 100 parts
per million (ppm) [12, 13]. While time synchronisation protocols
can estimate and compensate for the timing offsets, they signifi-
cantly increase the communication overhead and therefore energy
consumption, thus reducing the network lifetime [14, 1]. Moreover,
local frame-processing delays are not negligible (≈40ms) and may
vary from node to node as a function of the number of observed tar-
gets [15]. Even if delays are comparable among camera nodes, the
local information in a camera corresponds to the instant of captur-
ing and not to the instant of transmission. If the local information
is assumed to be synchronous and to correspond to the transmission
instant, fusion will decrease tracking accuracy.

The asynchronous Consensus-based Distributed Target Track-
ing (aCDTT) is a maximum consensus-based approach that makes
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the network converge to the maximum certain state among the local
states [16]. Because aCDTT does not fuse local information of the
cameras, it does not reduce the uncertainty on the state. Moreover,
the nodes may update their local estimates with the selected estimate
that might correspond to a different time instant. The Information
Consensus Filter (ICF) is an average consensus-based approach that
makes the network converge to the Kullback-Leibler Average (KLA)
of the local estimates [9, 17]. While the nodes fuse local information
and thus can reduce the uncertainty on the state, ICF works only in
synchronous settings. Average consensus methods exist that work
with asynchronous communications [18, 19, 20, 21, 22, 23] and dy-
namic changes in the consensus variable [24]. However, they cannot
be applied to distributed asynchronous tracking as they do not con-
sider the continuously changing dynamics of the consensus variable
(the target state in our case).

In this paper, we propose an Average Consensus-based Asyn-
chronous tracking Filter (ACAF) for WCNs. The nodes perform
time-alignment with respect to their capturing instant by predict-
ing the information of the neighbours. Each node performs itera-
tively two phases, namely estimation and fusion. The estimation
phase computes the measurement (pixel coordinates of the target)
from the captured frame and estimates the target state using the
measurement and the previously estimated probability density func-
tion (pdf) at the node. Then the fusion phase exchanges, aligns and
fuses the local pdfs. The expected pdf of the sending node is es-
timated by a receiving node with a time-reversed prediction. The
nodes discard the pdfs received before the frame capture and ter-
minate their fusion phase before any other node captures the next
frame. The termination criterion is decided based on its local pro-
cessing time. The software of the proposed method is available
at http://www.eecs.qmul.ac.uk/~andrea/software.htm.

2. PRELIMINARIES

Let camera Ci capture frame Iik at time k, perform target detection
and compute the measurement zik. Let f(x̂ik′ |zi1:k′) be the pdf of
Ci corresponding to its previous capturing instant k′. In the estima-
tion phase, Ci runs a local Bayesian filter to compute the current pdf
f(xik|zi1:k) using the previous known pdf f(x̂ik′ |zi1:k′), the state tran-
sition pdf f(xik|xik′) and the likelihood pdf f(zik|xik). If Ci does not
have a measurement due to its limited Field of View (FoV), it pre-
dicts the pdf f(x̃ik|zi1:k′) at k and uses it as the local pdf f(xik|zi1:k).

Let C =
{
C1, C2, ..., CN

}
be a WCN with N cameras and

N i be the set of cameras in the communication range of Ci. Let us
assume that the communication is ideal (no communication delays).
The WCN tracks a target moving on a ground plane. Each camera
Ci will estimate the target state µ̂ik corresponding to its capturing
instant k by fusing the local pdfs (i.e. f(xik|zi1:k), ∀i) in a distributed
way under bounded random estimation delays.



Fig. 1: Local and global clocks in partial asynchronism. The vertical
grey stripes associate the local time instants. Key – T : inter-frame
capturing period, α: amount of asynchronism.

The target state at time k is xk = [xk yk ẋk ẏk] where [xk yk]
and [ẋk ẏk] are the position and velocity of the target at k on the
ground plane, respectively. Let the target dynamics for a temporal
interval ∆k be

xk+∆k = F(k, k + ∆k)xk + w(k, k + ∆k), (1)

where xk+∆k is the target state at k + ∆k, F(k, k + ∆k) is the
state transition function from k to k + ∆k and w(k, k + ∆k) is the
cumulative effect of the process noise from k to k + ∆k. The pro-
cess noise is assumed to be Gaussian with zero mean and covariance
matrix Q(k, k + ∆k).

Let tik be the global-clock time when the local-clock time of Ci

is k and T be the desired inter-frame capturing period for all cam-
eras. In the synchronous case, tik = k, ∀i and the cameras capture
frames at {0, T, 2T, ...}. In the asynchronous case, the cameras cap-
ture frames at different instants. We assume the asynchronism to
be partial (as in [16]), where α is the upper bound of the relative
capturing offset (see Fig. 1). Each camera knows T and α.

3. PREDICTION AND FUSION

At the beginning of the fusion phase, each node Ci performs three
predictions. The first predicts the target pdf for k − α based on the
computed local pdf f(xik|zi1:k) (backward prediction) as

f(x̃ik−α|zi1:k) =

∫
f(x̃ik−α|xik)f(xik|zi1:k)dxik. (2)

We use k − α because other cameras in the network must have cap-
tured at most α time steps earlier or at most α time steps later (par-
tial asynchronism assumption). The second prediction is based on
the previous known pdf f(x̂ik′ |zi1:k′) (forward prediction) as

f(x̃ik−α|zi1:k′) =

∫
f(x̃ik−α|x̂ik′)f(x̂ik′ |zi1:k′)dx̂ik′ . (3)

The predicted pdfs f(x̃ik−α|zi1:k) and f(x̃ik−α|zi1:k′) are then com-
pared and the one with the lowest uncertainty is considered. This
step helps to avoid over-prediction when a camera does not have
measurements due to an occlusion or the limited (directional) FoV.
Let f(x̃i,∗k−α|z

i
1:k) be the pdf with lower uncertainty. The third pre-

dicts the pdf for the capturing instant k based on the certain predicted
pdf corresponding to k − α (forward prediction) as

f(x̃ik(τi
k

)|z
i
1:k) =

∫
f(x̃ik(τi

k
)|x̃

i,∗
k−α)f(x̃i,∗k−α|z

i
1:k)dx̃i,∗k−α. (4)

In other words, we predict the target pdf for the same capturing in-
stant k via backward and forward predictions. The subscript k(l) is
used to indicate that the information corresponds to k before starting
the consensus iteration at k + l (l ≥ τ ik). τ ik is the estimation delay
of Ci at k.

Camera nodes fuse these predicted pdfs f(x̃i
k(τi

k
)
|zi1:k), ∀Ci via

distributed average consensus. Let γ be the periodicity of the con-
sensus iterations. Each node can compute the elapsed time after an
estimation phase and after each consensus iteration.

Each consensus iteration involves two predictions, one before
the transmission and one after the reception. Before transmission,
each nodeCi predicts the pdf for the transmission instant k+l based
on the predicted pdf f(x̃ik(l)|zi1:k) corresponding to the capturing in-
stant k (forward prediction) as

f(x̃ik+l|zi1:k) =

∫
f(x̃ik+l|x̃ik(l))f(x̃ik(l)|zi1:k)dx̃ik(l). (5)

The predicted pdf f(x̃ik+l|zi1:k) represents the opinion of the sender
Ci at the transmission instant. The node Ci sends the predicted pdf
f(x̃ik+l|zi1:k) to its neighboursN i.

If Ci receives a similar predicted pdf f(x̃jk′′ |z
j
1:k′′) from Cj at

any local time k′′ after its capturing instant (i.e. k′′ ∈ [k, k + l]), it
stores the received pdf in a buffer. During the consensus update at
k + l, Ci predicts the pdf of Cj for Ci’s capturing instant k based
on the received pdf (reverse prediction) as

f(x̃jk(l)|z
j
1:k′′) =

∫
f(x̃jk|x̃

j
k′′)f(x̃jk′′ |z

j
1:k′′)dx̃jk′′ . (6)

This predicted pdf represents the opinion of the sender Cj for the
capturing instant k of the receiver Ci. Now, Ci fuses the time-
aligned pdfs f(x̃ik(l)|zi1:k) and f(x̃jk(l)|z

j
1:k′′), ∀C

j ∈ N i as

f(x̃ik(l+γ)|zi1:k) =
f(x̃ik(l)|zi1:k)εf(x̃jk(l)|z

j
1:k′′)

1−ε∫
f(x̃ik(l)|zi1:k)εf(x̃jk(l)|z

j
1:k′′)

1−εdx̃ik(l)

, (7)

where ε is the weight given to the instantaneous pdf of the node.
The fusion happens for all the received neighbours’ pdfs. The fusion
result is used in the next consensus iteration that repeats (5), (6) and
(7) at k + l + γ.

Asymptotically, the fusion result converges to the KLA of the
predicted local pdfs of all the cameras, i.e.

f(x̃+
k(∞)|z

+
1:k) =

N∏
j=1

f(x̃j
k(τ

j
k

)
|zj1:k)

1
N

∫ N∏
j=1

f(x̃j
k(τ

j
k

)
|zj1:k)

1
N dx̃j

k(τ
j
k

)

. (8)

We use the superscript + instead of a camera index to represent that
the result is available at all cameras. As each node Ci is aware of
its own capturing instant, it replaces its contribution in the KLA,
i.e. the predicted local pdf f(x̃i

k(τi
k

)
|zi1:k), with the actual local pdf

f(xik|zi1:k). We refer to this step as the correction step and compute
it as follows:

f(x̂ik|zi1:k) =
f(x̃ik(∞)|zi1:k)f(x̃i

k(τi
k

)
|zi1:k)−

1
N f(xik|zi1:k)

1
N∫

f(x̃ik(∞)|zi1:k)f(x̃i
k(τi

k
)
|zi1:k)−

1
N f(xik|zi1:k)

1
N dx̃ik(∞)

.

(9)
To avoid the fusion of information corresponding to subsequent

frame captures, a node terminates its consensus phase if the time
elapsed since the frame capture is T − α.

In the next section we derive an approximation of the above
Bayesian fusion method under Gaussian assumptions.



4. ASYNCHRONOUS TRACKER

In the estimation phase, each node Ci computes the local pdf
f(xik|zi1:k) represented by (µik,Σ

i
k) using the Information Fil-

ter [25]. Here, µik and Σi
k represent the minimum mean square

error estimate and the corresponding error covariance of the esti-
mated target pdf f(xik|zi1:k), and are defined as

µik =

∫
xikf(xik|zi1:k)dxik,

Σi
k =

∫
(xik − µik)(xik − µik)T f(xik|zi1:k)dxik.

(10)

The information pair corresponding to the estimate (µik,Σ
i
k) is

(yik,Y
i
k) = (Σi

k
−1

µik,Σ
i
k
−1

).
In the fusion phase, each Ci performs backward prediction of

the pair from k to k − α as

Ỹik−α|k =
(

F(k, k − α)Yik
−1F(k, k − α)T + Q(k, k − α)

)−1

,

ỹik−α|k = Ỹik−α|kF(k, k − α)
(

Yik
−1yik

)
;

(11)
and forward prediction of the pair from k′ to k − α as

Ỹik−α|k′ =

(
F(k′, k − α)Ŷ

i

k′
−1

F(k′, k − α)T + Q(k′, k − α)

)−1

,

ỹik−α|k′ = Ỹik−α|k′F(k′, k − α)

(
Ŷ
i

k′
−1

ŷik′
)
.

(12)
Here, (ŷik′ , Ŷ

i

k′) is the information pair of the known pdf corre-
sponding to k′ < k. As the certainty of a distribution is proportional
to the trace of its information matrix, the information pair between
(ỹik−α|k, Ỹ

i
k−α|k) and (ỹik−α|k′ , Ỹ

i
k−α|k′) with the higher trace is

considered. We represent the winning pair as (ỹi,∗k−α, Ỹ
i,∗
k−α).

Ci performs forward prediction of the pair from k − α to k as

Ỹik(τi
k

) =
(

F(k − α, k)Ỹi,∗k−α
−1

F(k − α, k)T + Q(k − α, k)
)−1

,

ỹik(τi
k

) = Ỹik(τi
k

)F(k − α, k)
(

Ỹi,∗k−α
−1

ỹi,∗k−α
)
.

(13)
Each consensus iteration at k+ l (l ≥ τ ik) consists of four steps,

namely forward prediction, time alignment, fusion and correction.
The forward prediction of the pair from k to k + l is performed as

Ỹik+l =
(

F(k, k + l)Ỹik(l)

−1
F(k, k + l)T + Q(k, k + l)

)−1

,

ỹik+l = Ỹik+lF(k, k + l)
(

Ỹik(l)

−1
ỹik(l)

)
.

(14)
Ci transmits the pair (ỹik+l, Ỹ

i
k+l) to its neighboursN i.

The second step is time alignment. Let k′′ ∈ [k, k + l] be the
local time instant whenCi receives the pair (ỹjk′′ ,Ỹ

j
k′′) fromCj . Ci

predicts the information pair of Cj for k via reverse prediction as

Ỹjk(l) = F(k, k′′)
T
(

Ỹjk′′
−1
−Q(k, k′′)

)−1

F(k, k′′),

ỹjk(l) = Ỹjk(l)F(k′′, k)
(

Ỹjk′′
−1

ỹjk′′
)
.

(15)

In the information fusion step the predicted pair
(

ỹik(l), Ỹ
i
k(l)

)
and the predicted pairs

(
ỹjk(l), Ỹ

j
k(l)

)
, ∀Cj ∈ N i are fused via the

average consensus update as

Ỹik(l+γ) = Ỹik(l) + ε
∑

∀Cj∈N i

(
Ỹjk(l) − Ỹik(l)

)
,

ỹik(l+γ) = ỹik(l) + ε
∑

∀Cj∈N i

(
ỹjk(l) − ỹik(l)

)
.

(16)

Here, ε ∈
(

0,
1

∆max

)
, where ∆max = max

∀Ci∈C

{
|N i|

}
.

The correction step replaces the initial predicted local infor-
mation pair

(
ỹi
k(τi

k
)
, Ỹik(τi

k
)

)
with the actual local information pair(

yik,Y
i
k

)
as

Ŷ
i

k = Ỹik(l+γ) −
Ỹik(τi

k
)

N
+

Yik
N
,

ŷik = ỹik(l+γ) −
ỹi
k(τi

k
)

N
+

yik
N
.

(17)

The state estimate µ̂ik and the corresponding error covariance Σ̂
i

k

are
µ̂ik = Ŷ

i

k

−1
ŷik, and Σ̂

i

k = Ŷ
i

k

−1
. (18)

If the time elapsed since the capturing instant k is larger than
T − α, then Ci terminates its fusion phase. Otherwise, the same
process, (14)-(17), is repeated using

(
ỹik(l+γ), Ỹ

i
k(l+γ)

)
as input,

i.e. l ← l + γ.
Note that when α = 0 (synchronous case), ICF and ACAF yield

the same result but differs in the type of information exchanged:
ACAF exchanges predicted information corresponding to k + l,
whereas ICF exchanges the actual information corresponding to k.

5. RESULTS

We compare the performance of ACAF, the proposed filter, with
(i) ICF [17], which uses average consensus assuming synchronous
setting; (ii) aCDTT [16], which uses maximum consensus in asyn-
chronous settings; (iii) the distributed filter that computes the local
state estimates but never performs fusion (No fusion); and (iv) a cen-
tralised filter (CEN) that assumes the fusion centre is aware of the
capturing instants, i.e. the delays are known.

ACAF requires fewer scalar transmissions than ICF and aCDTT.
In particular, ACAF has fewer transmissions than ICF because of the
early termination of the consensus phase. In aCDTT, each consensus
iteration exchanges the instantaneous local estimate, the index of the
camera that generated the estimate and the label to distinguish in-
formation from subsequent estimation phases. In contrast, only the
local estimates are exchanged in ACAF and ICF.

We use simulated and real trajectories for a WCN that monitors
a 30m × 20m area using N = 7 static cameras whose positions
and FoVs are taken from the APIDIS dataset1. The validation is
conducted for full (Fig. 2a) and sparse connectivity (Fig. 2d), for
full observability of the cameras (Fig. 2b) and limited observabil-
ity (Fig. 2e), without estimation delays (τ ik = 0, ∀Ci ∈ C) and
with random estimation delays (τ ik ∈ {0, 1, 2, 3} , ∀Ci ∈ C), and
with known and unknown motion models. Here, γ = 1 time step,
T = 25 time steps and one time step ≈40ms. To consider trajec-
tories with known motion model, we generate Np = 20 simulated
trajectories with a known motion model (Fig. 2c) each 300 time-step
long. The considered motion model is the nearly constant velocity

1http://sites.uclouvain.be/ispgroup/index.php/Softwares/APIDIS
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Fig. 2: Experimental setup. (a) full connectivity, (b) full observabil-
ity, (c) simulated tracks, (d) sparse connectivity, (e) limited observ-
ability (APIDIS), (f) real tracks (APIDIS)

model defined by the state transition function F(k, k + ∆k) and the
process noise covariance matrix Q(k, k+∆k) as in [1, 2, 4]. To con-
sider trajectories with unknown motion model, we use trajectories of
Np = 10 players given in the APIDIS dataset each 1500 time-step
long (Fig. 2f). The measurement model of each camera Ci is

zik = [I2 02]xti
k

+ vik, (19)

where I2 and 02 are the 2 × 2 unit and zero matrices respectively.
vik is the measurement noise vector of Ci at k, which is assumed
to be Gaussian with mean 02 and covariance matrix Ri = 60I2.
We analyse the mean tracking error with increasing asynchronism
α. To let each camera complete its estimation phase, α should be
≤ T − τmax, with τmax = max

∀Ci∈C,∀k

{
τ ik
}

= 3. If D is the net-

work diameter, aCDTT requires at least D consensus iterations so α
should be ≤ T − τmax −D. For the sparse connectivity (Fig. 2d),
D = 4 so we choose α ∈ [0, 18]. We track each player p ∈ [1, Np]
separately using M = 10 Monte-Carlo simulations. Each simula-
tion uses a different set of estimation delays and measurements. The
mean tracking error, defined as the mean of theNp root mean square
errors, is considered as the performance measure.

The tracking error increases as the asynchronism increases ir-
respective of the delays, observability and connectivity (Fig. 3). In
the synchronous case (α = 0), the accuracy of ACAF is equiva-
lent to ICF irrespective of the delays, observability and connectivity.
In the asynchronous case (α > 0), ACAF achieves better tracking
accuracy than aCDTT and ICF irrespective of the delays, observabil-
ity and connectivity. The tracking error of ACAF is upper bounded
by the tracking error of the distributed filtering that does not per-
form fusion. This is because ICF fuses the information without time
alignment. Moreover, there is a risk of fusing the information cor-
responding to subsequent frames. aCDTT does not perform fusion
at all. In addition, aCDTT assigns a local estimate corresponding
to a time instant to different other time instants. In the case of full
observability, it is better to avoid fusion instead of using ICF and
aCDTT irrespective of the delays and connectivity (Fig. 3a- 3d, 3i-
3l). This is because ICF fuses asynchronous information without
time alignment and aCDTT assigns highly certain information all the
times. Both worsen the accuracy. In the case of limited observabil-
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Fig. 3: Mean tracking error (MTE) with increasing asynchronism α.
(a)-(h) Results with simulated tracks. (i)-(p) Results with APIDIS
tracks. (a)-(d) and (i)-(l) Results with full observability. (e)-(h)
and (m)-(p) Results with limited observability. KEY – D: delay,
ND: no delay, FC: full connectivity, SC: sparse connectivity. The
compared algorithms are the distributed filter that does not fuse
(No fusion), the centralised filter (CEN), the Information Consen-
sus Filter (ICF) [17], the asynchronous Consensus-based Distributed
Target Tracking method (aCDTT) [16] and the proposed Average
Consensus-based Asynchronous Filter (ACAF).

ity, nodes that cannot view the target predict the target information.
If there is no fusion, the nodes cannot correct their predicted esti-
mates and result in maximum tracking error irrespective of delays
and connectivity (Fig. 3e- 3h, 3m- 3p). When asynchronism is high,
the tracking error of ACAF increases significantly. This is because
the higher the asynchronism, the lower the duration of the fusion
phase, thus leading to an insufficient number of consensus iterations
for convergence.

6. CONCLUSION

We proposed an Average Consensus-based Asynchronous tracking
Filter which can deal with asynchronous capture and delayed pro-
cessing that are typical in wireless camera networks. We time-align
the data via predictions before fusion using the known states corre-
sponding to the reception instants. Each camera predicts the target
information of other cameras at its capturing instant. The proposed
method achieves better tracking accuracy and uses less communi-
cation bandwidth than state-of-the-art methods in the asynchronous
case.

In our future work we will first model false positive measure-
ments and packet losses, and then multiple simultaneous targets.
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