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Abstract
In the present paper, we start studying epistemic updates using the standard toolkit of duality theory. We
focus on public announcements, which are the simplest epistemic actions, and hence on Public Announce-
ment Logic (PAL) without the common knowledge operator. As is well known, the epistemic action of
publicly announcing a given proposition is semantically represented as a transformation of the model
encoding the current epistemic setup of the given agents; the given current model being replaced with
its submodel relativized to the announced proposition. We dually characterize the associated submodel-
injection map as a certain pseudo-quotient map between the complex algebras respectively associated
with the given model and with its relativized submodel. As is well known, these complex algebras are
complete atomic BAOs (Boolean algebras with operators). The dual characterization we provide naturally
generalizes to much wider classes of algebras, which include, but are not limited to, arbitrary BAOs and
arbitrary modal expansions of Heyting algebras (HAOs). Thanks to this construction, the benefits and
the wider scope of applications given by a point-free, intuitionistic theory of epistemic updates are made
available. As an application of this dual characterization, we axiomatize the intuitionistic analogue of
PAL, which we refer to as IPAL, prove soundness and completeness of IPAL w.r.t. both algebraic and
relational models, and show that the well known Muddy Children Puzzle can be formalized in IPAL.
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1 Introduction

Dynamic logics (DLs) are perhaps the logical formalisms with the widest span of applications.
They are designed to describe and reason about change brought about by actions of diverse nature:
updates on the memory state of a computer, displacements of a moving robot in a closed environment,
measurements in a model of quantum physics, interactions between cognitive agents performing
given communication protocols, belief-revisions changing the common ground between different
agents, actions which change the contextually available referents in a conversation, knowledge update,
etc (the latter ones are examples of epistemic actions). In each of these areas, DL-formulas express
the properties of the model encoding the given state of affairs, as well as the pre- and post-conditions
of a given action. Actions are semantically represented as transformations of the current model into
another one, which encodes the state of affairs after the given action has taken place. DL-languages
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2 Algebraic Semantics for IPAL

are expansions of classical (propositional or modal) logic (their static underlying logic) with dynamic
operators, parametrized with actions; the semantic interpretation of a dynamic operator is given in
terms of the transformation of models corresponding to its action-parameter.

Similarly to [2], the line of research started with the present paper is motivated by the observations
that ‘dynamic phenomena’ are independent of their underlying static logic being classical, and that
this assumption is unrealistic in many important contexts; for instance, in all those contexts (such as
scientific experiments, acquisition of legal evidence, verification of programs, etc.) where the notion
of truth is procedural. In these contexts, affirming φ means demonstrating that some appropriate
instance of the procedure applies to φ; refuting φ means demonstrating that some appropriate instance
of the procedure applies to ¬φ; however, neither instance might be available in some cases. Hence, the
law of excluded middle fails in these contexts, and so classical logic is not viable as their underlying
reasoning formalism. A more appropriate alternative is e.g. intuitionistic logic.

Desirable and conceptually important as it is, the more general problem of identifying the
right intuitionistic counterparts of (modal-like) expansions of classical logic (such as modal logics
themselves, or hybrid logics, etc.) has proven to be difficult, and for most of these logics, this question
is still open. Indeed, different axiomatizations which—in the presence of classical tautologies—define
the same logic become nonequivalent against an intuitionistic background. Hence, each classical
axiomatization might have infinitely many nonequivalent intuitionistic potential counterparts. The
most widely accepted proposals of intuitionistic counterparts of given (modal-like) expansions of
classical logic have been defined by means of syntactic approaches (cf. for instance, the extensive
discussion in [22], or more recently [8]), which consist in either weakening the proof systems for
the classical versions of these expanded logics so as to make them compatible with the principles of
intuitionistic logic, or by defining translations into intuitionistic first-order, or classical propositional
languages. However, to the knowledge of the authors, these approaches do not take the performances
of the given candidate intuitionistic counterpart as the main desideratum, but are rather aimed at
establishing a priori what the given intuitionistic counterpart should be; the performances of the given
candidate are then tested, to verify its adequacy.

The main contribution of the present paper is the introduction of a uniform methodology for
defining the intuitionistic counterparts of dynamic logics; this methodology is grounded on semantics
rather than on syntax, and takes performances as its main design criterion. As to the first feature,
this methodology is based on the dual characterizations of the transformations of models which
interpret the actions. For the sake of simplicity, we address one concrete case study, and restrict our
attention to the Logic of Public Announcements (PAL), which is one of the simplest yet best known
logical framework within the family of Dynamic Epistemic Logics (DELs). PAL was introduced by
Plaza in [16] and subsequently intensively studied, both specifically and as part of the DEL-family,
viz. [1, 10, 4] and references therein. As epistemic actions, public announcements correspond to
transformations of models which are called relativizations. Namely, publicly announcing the formula
α corresponds to shifting the given model M to its submodel Mα, based on the subset [[α]]M of the
states of M on which α is satisfied.

As mentioned early on, in the present paper, relativization—which is encoded in the injection
map iα : Mα ↪→ M—is characterized on algebras via classical Stone duality. Unsurprisingly, this
injection map is dually characterized as a certain pseudo-quotient between the complex algebras of
the underlying frames of M and of Mα (which, as is well known, are—up to isomorphism—complete
atomic BAOs). The advantage brought about by this pseudo-quotient construction is that its definition
naturally holds in much more general contexts than the one given by the algebras which are dually
equivalent to Kripke frames. These more general contexts include—but are not limited to—arbitrary
BAOs, and arbitrary modal expansions of Heyting algebras (HAOs).

Therefore, each of these wider classes of algebras lends itself to the role of generalized semantic
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environment for some logic of public announcements (cf. Definition 14). For instance, based on
Definition 14, it is easy to see that the class of algebraic models based on arbitrary BAOs (which
properly extends the class of complete and atomic BAOs) provides sound and complete pointfree
semantics for PAL.

Likewise, the set of axioms describing the behaviour of the intuitionistic dynamic connectives
(cf. Subsection 4.1) naturally arises from the class of algebraic models based on Heyting algebras
with operators (HAOs) (which, for the sake of the present paper, are understood as Heyting algebras
expanded with one normal 2 operator and one normal 3 operator). The axiomatization of HAOs
does not imply the existence of any interaction between the static box and diamond operations, and of
course, for the purposes of describing the epistemic setup of each agent, it is desirable to have at least
as strong an axiomatization as one which forces the pairs of box and diamond operators associated
with each agent to be interpreted by the same relation. The intuitionistic basic modal logic IK [11, 22]
is the weakest axiomatization which implies the desired connection between the modal operations;
its canonically associated class of algebras is a subclass of HAO which we refer to as Fischer Servi
algebras, or FS-algebras (cf. Definition 3). The logic IPAL introduced in the present paper arises as
the logic of public announcements associated with the class of algebraic models based on FS-algebras.
In fact, in parallel to the mentioned definition, a second way to define IPAL is proposed, which reflects
the idea that the epistemic set-up of agents might be encoded by equivalence relations. To account for
this possibility, Prior’s MIPC [20] can be taken as the underlying static logic, and monadic Heyting
algebras can be taken in place of the more general FS-algebras; however, the results presented in
what follows proceed modularly w.r.t. these two options. For the sake of the axiomatic definition
of IPAL, the second feature of our methodology becomes relevant: indeed, the crucial performance
aspect of classical PAL is that its set of axioms is designed in such a way (cf. Proposition 1) that the
completeness of PAL w.r.t. relational models follows from the completeness of its static fragment
w.r.t. the same class of models. The axiomatic definition of IPAL takes this performance aspect as its
main desideratum.

The structure of the paper goes as follows: Section 2 collects the needed preliminaries on classical
PAL and intuitionistic modal logic. In Section 3, the dual, algebraic characterization of public
announcements is introduced. In Section 4, the intuitionistic public announcement logic IPAL is
axiomatically defined, as well as its interpretation on models based on Heyting algebras. Moreover, the
relational semantics for intuitionistic modal logic/IPAL is described in detail. Finally, the soundness
of IPAL w.r.t. algebraic (hence relational) models, and the completeness of IPAL w.r.t. relational
(hence algebraic) models are proven. In Section 5, it is shown how IPAL can be used to describe and
reason about the well known epistemic scenario of the Muddy Children. Details of all the proofs in
the previous sections are collected in Section 6, the appendix.

2 Preliminaries

2.1 The logic of public announcements

Let AtProp be a countable set of proposition letters. The formulas of (single-agent) public announce-
ment logic PAL are built by the following inductive rule:

φ ::= p ∈ AtProp | ¬φ | φ ∨ φ | 3φ | 〈φ〉φ.

The standard stipulations hold for the defined connectives >, ⊥, ∧,→ and↔. Models of PAL are
Kripke models M = (W,R,V) such that R is an equivalence relation. The evaluation of the static
fragment of the language is standard. For every Kripke frame F = (W,R) and every a ⊆ W, the
subframe of F relativized to a is the Kripke frame F a = (Wa,Ra) defined as follows: Wa := a and
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Ra := R ∩ (a × a). Given this preliminary definition, formulas of form 〈α〉φ are evaluated as follows:

M,w  〈α〉φ iff M,w  α and Mα,w  φ,

where Mα = (Wα,Rα,Vα) is defined as follows: the underlying frame of Mα is the underlying frame
of M relativized to [[α]]M , i.e. Wα := [[α]]M , and Rα := R ∩ (Wα × Wα); for every p ∈ AtProp,
Vα(p) = V(p) ∩Wα.

I Proposition 1 ([3, Theorem 27]). PAL is axiomatized completely by the axioms and rules for the
modal logic S5 plus the following axioms:
1. 〈α〉p↔ (α ∧ p);
2. 〈α〉¬φ↔ (α ∧ ¬〈α〉φ);
3. 〈α〉(φ ∨ ψ)↔ (〈α〉φ ∨ 〈α〉ψ);
4. 〈α〉3φ↔ (α ∧3(α ∧ 〈α〉φ)).

2.2 The intuitionistic modal logics MIPC and IK

Respectively introduced by Prior with the name MIPQ [20], and by Fischer Servi [11], the two
intuitionistic modal logics the present subsection focuses on are largely considered the intuitionistic
analogues of S5 and of K, respectively. These logics have been studied by many authors, viz. [5, 6, 22]
and the references therein. In the present subsection, the notions and facts needed for the purposes of
the present paper will be briefly reviewed. The reader is referred to [5, 6, 22] for their attributions.
The set of formulas L for both logics are built by the following inductive rule:

φ ::= ⊥ | p ∈ AtProp | φ ∧ ψ | φ ∨ ψ | φ→ ψ | 3φ | 2φ.

Let > be defined as ⊥ → ⊥ and, for all formulas φ and ψ, let ¬φ be defined as φ→ ⊥ and φ↔ ψ be
defined as (φ → ψ) ∧ (ψ → φ). The logic IK is the smallest set of formulas in the language above
which contains all the axioms of intuitionistic propositional logic, the following modal axioms:

2(p→ q)→ (2p→ 2q),
3(p ∨ q)→ (3p ∨3q), ¬3⊥,

FS1. 3(p→ q)→ (2p→ 3q),
FS2. (3p→ 2q)→ 2(p→ q),

and is closed under uniform substitution, modus ponens and necessitation (` ϕ/ ` 2ϕ). The
logic MIPC is the smallest set of formulas in the language above which contains all the axioms of
intuitionistic propositional logic, the following modal axioms:

2p→ p, p→ 3p,
2(p→ q)→ (2p→ 2q), 3(p ∨ q)→ (3p ∨3q),
3p→ 23p, 32p→ 2p,
2(p→ q)→ (3p→ 3q),

and is closed under uniform substitution, modus ponens and necessitation (` ϕ/ ` 2ϕ).
The relational structures for IK (resp. MIPC), called IK-frames (resp. MIPC-frames), are triples

F = (W,≤,R) such that (W,≤) is a nonempty poset and R is a binary (equivalence) relation such that

(R ◦ ≥) ⊆ (≥ ◦ R), (≤ ◦ R) ⊆ (R ◦ ≤), R = (≥ ◦ R) ∩ (R ◦ ≤).

Notice that, in the case of MIPC-frames, R being symmetric implies that the second condition is
equivalent to the first one, and the third condition is equivalent to R being the equivalence relation
induced by the preorder (R ◦ ≤). IK-models (resp. MIPC-models) are structures M = (F ,V) such
that F is an IK-frame (resp. an MIPC-frame) and V : AtProp −→ P↓(W) is a function mapping
proposition letters to downward-closed subsets of W.1 For any such model, its associated extension

1 For every poset (W,≤), a subset Y of W is downward-closed if for every x, y ∈ W, if x ≤ y and y ∈ Y then x ∈ Y .
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map [[·]]M : L −→ P↓(W) is defined recursively as follows:

[[p]]M = V(p)
[[⊥]]M = ∅

[[φ ∨ ψ]]M = [[φ]]M ∪ [[ψ]]M

[[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M

[[φ→ ψ]]M = ([[φ]]M ∩ [[ψ]]c
M)↑c

[[3φ]]M = R−1[[[φ]]M]
[[2φ]]M = ((≥ ◦ R)−1[[[φ]]c

M])c

where, for every Y ⊆ W, we let Yc := {x ∈ W | x < Y}, and Y↑ := {x ∈ W | y ≤ x for some y ∈ Y}. For
any model M and any formula φ, we write:

M,w  φ if w ∈ [[φ]]M;
M  φ if [[φ]]M = W;
F  φ if [[φ]]M = W for any model M based on F .

I Proposition 2. IK (resp. MIPC) is sound and complete with respect to the class of IK-frames (resp.
MIPC-frames).

The algebraic semantics for IK (MIPC) is given by Fischer Servi algebras (monadic Heyting
algebras), the definitions of which are reported below:

IDefinition 3. The algebraA = (A,∧,∨,→,⊥,3,2) is a Fischer Servi algebra (FSA) if (A,∧,∨,→
,⊥) is a Heyting algebra and the following inequalities hold:

2(x→ y) ≤ 2x→ 2y,
3(x ∨ y) ≤ (3x ∨3y), 3⊥ ≤ ⊥,
3(x→ y) ≤ 2x→ 3y,
3x→ 2y ≤ 2(x→ y).

The algebra A is a monadic Heyting algebra (MHA) if (A,∧,∨,→,⊥) is a Heyting algebra and the
following inequalities hold:

2x ≤ x, x ≤ 3x;
2(x→ y) ≤ 2x→ 2y, 3(x ∨ y) ≤ (3x ∨3y);
3x ≤ 23x, 32x ≤ 2x;
2(x→ y) ≤ 3x→ 3y.

It is well known and can be readily verified that every monadic Heyting algebra is an FS-algebra. The
inequalities above can be equivalently written as equalities, thanks to the fact that, in any Heyting
algebra, x ≤ y iff x→ y = >. Clearly, any formula in the languageL of IK (MIPC) can be regarded as
a term in the algebraic language of FSAs (MHAs). Therefore, given an algebraA and an interpretation
V : AtProp −→ A, an L-formula φ is true in A under the interpretation V (notation: (A,V) |= φ) if the
unique homomorphic extension of V , denoted by [[·]]V : L −→ A, maps φ to >A. An L-formula is
valid in A (notation: A |= φ), if (A,V) |= φ for every interpretation V .

IK-frames give rise to complex algebras, just as Kripke frames do: for any IK-frame F , the
complex algebra of F is

F + = (P↓(W),∩,∪,⇒,∅, 〈R〉, [≥ ◦ R]),

where for all X,Y ∈ P↓(W),

〈R〉X = R−1[X], [≥ ◦ R]X = ((≥ ◦ R)−1[Xc])c, X ⇒ Y = (X ∩ Yc)↑c.

Clearly, given a model M = (F ,V), the extension map [[·]]M : L −→ F + is the unique homomorphic
extension of V : AtProp −→ F +.

I Proposition 4. For every IK-model (F ,V) and every L-formula φ,
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1. (F ,V)  φ iff (F +,V) |= φ.
2. F + is an FS-algebra.
3. If R is an equivalence relation, then F + is a monadic Heyting algebra.

3 Epistemic updates on algebras

In the present section, the operation of epistemic update via public announcement on Kripke models
is dualized: for every algebra A and every a ∈ A, a quotient-like algebra Aa is defined in such a
way that, whenever A is the algebraic dual of some frame F (and hence a is a subset of the universe
of F ), the algebra Aa is isomorphic to the algebraic dual of the relativized subframe F a. We will
proceed in two stages: first (cf. Subsection 3.2), for every a ∈ A, the equivalence relation will be
introduced which will be used to quotient out the algebra A. This equivalence relation is a congruence
on several classes of algebras which include Boolean and Heyting algebras, but it is not in general
compatible with the modal operators, hence it is not in general a congruence on BAOs or on HAOs.
This is of course unsurprising, since the corresponding operation of epistemic update on relational
models produces submodels which are not in general generated submodels of the original models.
The second stage (cf. Subsection 3.3) focuses on the definition of the modal operators on the algebra
Aa, the proof of their being normal modal operations, and that indeed, whenever A is the algebraic
dual of some frame F , the algebra Aa is (isomorphic to) the algebraic dual of the subframe F a. This
construction and set of facts hold uniformly in the setting of Heyting algebra.

3.1 Dual characterizations, informally

At various points early on, we stated that the contributions of the present paper are grounded on
a dual characterization. Namely, the relativization construction on relational models is dually
characterized as a certain quotient construction on their dual algebras. In the present subsection, we
aim at motivating this dual characterization via an informal discussion, starting by positioning dual
characterizations in the more general context of dualities in logic.

Stone-type dualities serve to establish systematic connections between two different types of
semantics for a given logical system: the state-based, geometric semantics, incarnated by Kripke
models, coalgebras, descriptive general frames and similar structures, and the algebraic semantics.
These two types of semantics work rather differently, the most basic difference being that formulas
are interpreted in algebras as elements, and in state-based models as collections of states. For the
sake of highlighting this difference even more dramatically, let us depart from the standard view on
semantics, and think of the interpretation of a given formula not as a primitive notion, but rather as an
approximation process, the limit of which converges to the standard interpretation of that formula.
Then the difference between the algebraic and the state-based semantics translates into a different
approximation process in each type of semantics. Namely, in state-based models, the approximation
process is cumulative and consists in progressively adding states of the model satisfying the given
formula; in its limit, this process delivers the interpretation of the given formula extensionally. On
the other hand, in algebras, the approximation process consists in specifying which elements of the
algebra are part of the “logical space” of that formula, the logical space being encoded either as the
logical filter or the logical ideal associated with the formula2; in its limit, this process would deliver
the interpretation of the given formula intensionally.

2 Principal ideals and filters are respectively up-directed and down-directed sets; therefore, in each case, their generator
can be thought of as the limit of approximating sequences of elements in the filter (or ideal).
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The discussion so far can be summarized in the following slogan: dualities systematically
connect the extensional and the intensional descriptions of mathematical notions and facts.3 These
considerations generally apply to logical systems, independently of their specific features. Moving
on to the case of PAL, we are interested in capturing the change brought about by the public
announcement of a formula α. In Kripke models, this change is encoded extensionally, and the
encoding consists in the well-known relativization construction, which drops the states of the original
model which do not satisfy α. How would the change be encoded intensionally? Answering this
question requires understanding how the logical space of a given formula, e.g., of a proposition
p, changes as a consequence of the public announcement of α. Concretely, given an algebra and
an interpretation map, let an approximation path of the interpretation of p be any down-directed
sequence of elements in the principal filter associated with p, converging to the interpretation of p. If
p entails α, then no significant change takes place in the logical space of p after the announcement of
α. Indeed, any approximation path will eventually enter and never leave the logical interval between
p and α (that is, the intersection between the principal ideal of α and the principal filter of p), as
represented in the leftmost picture below; this means that every approximation path will eventually
become more accurate than α.

α

p

A

α

¬α

p

A

⊥

A

α
p

p ∧ α

The opposite extreme is the case in which p is inconsistent with α. This inconsistence will be
witnessed at some stage of any approximation path converging to p; indeed, p entails ¬α (since ¬α is
by definition the weakest formula which is inconsistent with α), and so, as in the previous case, any
approximation path converging to p will eventually enter and never leave the interval between p and
¬α, as represented in the center picture above. So, after the announcement of α, the logical space of
p is identified with the logical space of ⊥. When α is neither implied by p nor inconsistent with p,
any approximation path converging to p can be pointwise transformed into some approximation path
converging to p ∧ α, as represented in the rightmost picture. In this case, after the announcement of
α, the logical space of p will coincide with the logical space of p ∧ α (which, as discussed in the first
case, is not changed by the announcement). A moment of reflection will convince the reader that the
latter case in fact incorporates the previous two. As a consequence of this fact, for all propositions p
and q, if p ∧ α and q ∧ α have the same interpretation in the algebra, then p and q will have the same
logical space (i.e., the same intensional description) after the announcement of α.

Summing up: the change brought about by the public announcement of α is encoded extensionally
by dropping the states (of given models) which do not satisfy α, and intensionally by identifying
formulas (elements of the algebra) which are logically equivalent (i.e., coincide in the algebra) when
in conjunction with α.

So far in our discussion, the intensional and the extensional description of epistemic updates
have been accounted for in isolation. However, and most importantly, they are related: to see this,

3 For a differently motivated, but conceptually related perspective on this, the reader is referred to Vaughn Pratt’s line
of research on concurrency via Stone duality, e.g. [17], and on Chu spaces [18, 19].
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notice that the natural map recording the change from the original model to the updated model is the
submodel injection, mapping every point in the new model to its original copy in the old model, and
hence pointing in the direction opposite to the “arrow of time” along which the change takes place.
Since in the new model there are less states, there are less potential witnesses for telling formulas
apart. So, in the change from the old to the new state of affairs, formulas might be identified; hence
the natural map recording the change on the intensional side must be a quotient, pointing in the same
direction as the arrow of time.

Using the insight of the informal discussion above, we can move on to the formal construction.
As mentioned in Subsection 2.1, for any model M = (W,R,V) and any PAL-formula α, the updated
model Mα is based on the subset a = [[α]]V ⊆ W. The natural map encoding this transformation is the
inclusion i : Mα ↪→ M pointing in the direction opposite to the arrow of time. The (Boolean) algebras
dually associated with M and Mα are P(W) and P(a), respectively. The map dually representing the
injection i : Mα ↪→ M is the surjection π : P(W)� P(a), defined by mapping every subset X ⊆ W to
its inverse image i−1[X] = X ∩ a. By the isomorphism theorem (in Boolean algebras), the algebra
P(a) is (BA-)isomorphic to—hence can be identified with—the quotient algebra P(W)/Ker(π), with
Ker(π) being the BA-congruence of P(W) defined by the stipulation

(X,Y) ∈ Ker(π) iff X ∩ a = π(X) = π(Y) = Y ∩ a,

and the isomorphisms µ : P(W)/Ker(π) −→ P(a) and ν : P(a) −→ P(W)/Ker(π) being defined by the
assignments [X] 7→ X ∩ a = π(X) and Y 7→ [i[Y]], for any X ⊆ W and Y ⊆ a, respectively.

Since the map i : Mα ↪→ M is not in general a p-morphism (cf. next subsection for more details
on this), the map π : P(W) � P(a) is not in general a BAO-homomorphism; in other words, the
quotient algebra P(W)/Ker(π) does not canonically inherit the modal operations from P(W). This is
of course unsurprising: indeed, P(W)/Ker(π) has been identified with P(a) up to BA-isomorphism,
and P(a) is endowed with a natural structure of BAO by its being the complex algebra of Mα. Hence,
it is the modal operators of P(a)—not of P(W)—which need to be translated into P(W)/Ker(π), and
this should be done along the isomorphisms µ and ν.

In other words, we aim at defining a modal operator 3α on P(W)/Ker(π) in such a way that
the BA-isomorphisms µ and ν become BAO-isomorphisms. There is exactly one way to achieve
this, which is to define 3α on P(W)/Ker(π) as the composition ν ◦3P(a) ◦ µ, as represented in the
following diagram:

P(a)
3P(a)

−−−−−−→ P(a)

µ

x yν
P(W)/Ker(π)

3α

−−−−−−→ P(W)/Ker(π).

Since 3P(a) is a normal modal operator and µ and ν are BA-isomorphisms, 3α is normal, which
implies that (P(W)/Ker(π),3α) is a BAO. However, the definition above has been given in terms of
the complex algebra of Mα, whereas we need that 3α be defined purely in terms of the resources of
the quotient P(W)/Ker(π). To provide such a definition, let us recall that the accessibility relation on
Mα is Rα ⊆ a × a, defined as follows:

wRαv iff w ∈ a and v ∈ a and wRv.

The operation 3P(a) is defined as usual by taking Rα-inverse images; that is, 3P(a)Y = Rα−1[Y] =

R−1[Y] ∩ a for any Y ⊆ a. Hence, for every X ⊆ W,

3α[X] = ν3P(a)µ[X] = ν3P(a)(X ∩ a) = νRα−1[X ∩ a]
= ν(R−1[X ∩ a] ∩ a) = [R−1[X ∩ a] ∩ a]Ker(π) = [R−1[X ∩ a]]Ker(π)

= [3P(W)(X ∩ a)]Ker(π).
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Thus, we have proved the following:

I Proposition 5. For M, α, a and Mα as above, let A be the complex algebra of M. The complex
algebra Aα of Mα can be identified up to BAO-isomorphism with (A/Ker(π),3α), where π : A
−→ Aα is defined by the assignment b 7→ b ∧ a, and 3α is defined by the assignment [b]Ker(π) 7→

[3A(b ∧ a)]Ker(π).

Two remarks are in order about the proposition above. Firstly, the (pseudo-)quotient algebra
(A/Ker(π),3α) has been defined in purely algebraic terms: indeed, the interpretation a ∈ A of
α and the operations ∧ and 3 of A are the only ingredients of this definition, which, in particular,
makes no reference to M and Mα. Secondly, the proposition states that (A/Ker(π),3α) is BAO-
isomorphic to the complex algebra of Mα, which is defined in set-theoretic terms. Hence, Proposition
5 yields an equivalent encoding of public announcement-type epistemic updates, formulated independ-
ently of the way in which these epistemic updates are represented on Kripke models; this encoding is
the dual characterization of these epistemic updates on algebras. The advantage brought about by the
dual characterization is that the quotient construction applies to a much more general setting than
complex algebras: namely, it can be performed on any meet-semilattice A expanded with a unary
operation 3A. In the following subsection, we will take this vastly generalized setting as our starting
point.

3.2 Updates as pseudo-quotients

Throughout the present subsection, and unless specified otherwise, let A be a ∧-semilattice and let
a ∈ A. Define the following equivalence relation ≡a on A: for every b, c ∈ A,

b ≡a c iff b ∧ a = c ∧ a.

Let [b]a be the equivalence class of b ∈ A. Usually, the subscript will be dropped when there is
no risk of confusion. Let the quotient set A/≡a be denoted by Aa. Clearly, Aa is an ordered set by
putting [b] ≤ [c] iff b′ ≤A c′ for some b′ ∈ [b] and some c′ ∈ [c]. Let πa : A −→ Aa be the canonical
projection, given by b 7→ [b].

The relation ≡a and its properties are well known4. Firstly, ≡a is a congruence5 if A is a Boolean
algebra, a Heyting algebra, a bounded distributive lattice or a frame (as shown in Fact 8 below).
Hence, Aa inherits the same algebraic structure of A in each of these cases. The following properties
of ≡a are as crucial to our purposes as they are straightforward:

I Fact 6. Let A be a ∧-semilattice and let a ∈ A.
1. [b ∧ a] = [b] for every b ∈ A. Hence, for every b ∈ A, there exists a unique c ∈ A such that

c ∈ [b]a and c ≤ a.
2. For all b, c ∈ A, we have that [b] ≤ [c] iff b ∧ a ≤ c ∧ a.
3. If A is a Heyting algebra, then [a→ b] = [b] for every b ∈ A.

Proof. 1. Since ∧ is idempotent, (b ∧ a) ∧ a = b ∧ a; this proves the first part of the statement and
the existence claim of the second part. As to uniqueness, if c ∈ [b]a and c ≤ a, then c = c∧ a = b∧ a.
2. The right-to-left direction follows immediately from the definitions involved. Conversely, if b′ ≤ c′

4 Cf. e.g. [14, Chapter 2], [15, Chapter 3, Section 4, pp 22-23], where it is used to define the local operators on locales
which will be used to define the open sublocales (ibid. Chapter 5, Section 2). On Boolean algebras, cf. [21, Ch. II,
sec. 6], and in modal logic, similar constructions are used in [23], and more recently in [7].

5 Recall that a congruence on a a given algebra A is an equivalence relation � on the domain of A such that for any
n ∈ N and any n-ary operation f of A, if ai � bi for 1 ≤ i ≤ n, then f (a1, . . . , an) � f (b1, . . . , bn). Therefore, the
notion of congruence depends on each specific algebraic signature, and hence on the given algebraic setting.
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for some b′ ∈ [b] and some c′ ∈ [c], then b ∧ a = b′ ∧ a ≤ c′ ∧ a = c ∧ a.
3. From b ≤ a→ b we get [b] ≤ [a→ b]. From a ∧ (a→ b) ≤ b we get [a→ b] ≤ [b]. J

Item 1 of the fact above implies that each ≡a-equivalence class has a canonical representant, namely
the only element in the given class which is less than or equal to a. Hence, the (injective) map
i′ = i′a : Aa −→ A given by [b] 7→ b∧ a is well defined, and π ◦ i′ is the identity map6 on Aa. The map
i′ will be a critical ingredient for the definition of the interpretation of IPAL-formulas on algebraic
models (cf. Definition 14), motivated by the fact, shown in the following Proposition 7, that whenever
A = F + for some (classical) Kripke frame F , the map i′ can be identified with the direct-image map
associated with the map i : F a ↪→ F modulo the BAO-isomorphism Aa � F a+ (cf. Proposition 5).

I Proposition 7. If A = F + and a ∈ A, then i′(c) = i[µ(c)] for every c ∈ Aa, where µ : Aa −→ F a+

is the BAO-isomorphism identifying the two algebras. Diagrammatically:

F +a
F a+-µ

F +

i′
@
@
@
@R

i[·]
�

�
�
�	

It immediately follows that i[c] = i′(ν(c)) for every c ∈ F a+, where ν : F a+
−→ Aa is the inverse of µ.

Proof. The map µ identifies Aa and F a+ by sending any element c ∈ Aa to its canonical representant
µ(c) ∈ F a+. Hence, c = [µ(c)] and µ(c) ⊆ a, and so i′(c) = i′([µ(c)]) = µ(c) ∩ a = µ(c) = i[µ(c)]. J

In the remainder of this subsection, the mentioned compatibility properties of ≡a are established, and
it is shown that ≡a is not in general compatible with the modal operators.

I Fact 8. For every ∧-semilattice A and every a ∈ A,
1. the relation ≡a is a congruence of A.
2. If A is a distributive lattice, then ≡a is a congruence of A.
3. If A is a frame, then ≡a is a congruence of A.
4. If A is a Boolean algebra, then ≡a is a congruence of A.
5. If A is a Heyting algebra, then ≡a is a congruence of A.

Proof. 1. Let bi ≡a ci, i = 1, 2. Now we have (b1 ∧ b2) ∧ a = b1 ∧ (b2 ∧ a) = b1 ∧ (c2 ∧ a) =

(b1 ∧ a) ∧ c2 = (c1 ∧ a) ∧ c2 = (c1 ∧ c2) ∧ a.
2. This item is a special case of 3.
3. Let us show that for every S ⊆ A,

∨
{[s] | s ∈ S } = [

∨
S ]: clearly s ≤

∨
S for every s ∈ S

implies the ‘≤’ direction; as to the ‘≥’, it is enough to show that if [c] is such that [s] ≤ [c] for every
s ∈ S then [

∨
S ] ≤ [c], i.e.

∨
S ≤ c′ for some c′ such that c′ ∧ a = c ∧ a. By assumption, for every

s ∈ S there exist some s′ and some cs such that c ∧ a = cs ∧ a, s′ ∧ a = s ∧ a and s′ ≤ cs. Hence, for
every s ∈ S there exists some cs ∈ [c] such that

s ∧ a = s′ ∧ a ≤ cs ∧ a.

Let c′ :=
∨
{cs | s ∈ S }; then by frame distributivity c′ ∧ a =

∨
{cs ∧ a | s ∈ S } =

∨
{c ∧ a | s ∈ S } =∨

{c | s ∈ S } ∧ a = c ∧ a; moreover∨
S ∧ a =

∨
{s ∧ a | s ∈ S } ≤

∨
{cs ∧ a | s ∈ S } ≤ c′.

6 The fact that i′ and π form a section/retraction pair of maps is the reason why the construction which is here accounted
for as a pseudo-quotient can be alternatively accounted for—as is done elsewhere in the literature (cf. [21, 7])—as a
pseudo-subalgebra construction, dual to a pseudo-quotient (e.g. filtrations on Kripke models).
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w v
{v}{w}

Figure 1 Frame and complex algebra of Example 9.

4. Assume that b ≡a c; then b ∧ a = c ∧ a hence, by distributivity and de Morgan law,

¬b ∧ a = (¬b ∨ ¬a) ∧ a = (¬c ∨ ¬a) ∧ a = ¬c ∧ a.

5. Recall that for every b, c ∈ A, b→ c =
∨
{x | b∧ x ≤ c}. Define [b]→ [c] =

∨
{[x] | b∧ x ≤ c}.

By item 3, [b]→ [c] = [b→ c]. Let us verify that for every b, c, x ∈ A,

[b] ∧ [x] ≤ [c] iff [x] ≤ [b]→ [c] :

[b] ∧ [x] ≤ [c] iff (b ∧ a) ∧ (x ∧ a) ≤ c ∧ a iff b ∧ a ≤ (x ∧ a) → (c ∧ a) = a → (x → c) iff
[b] ≤ [a → (x → c)] = [x → c] = [x] → [c]. As to the last ‘iff’, from left to right it is clear; from
right to left, [b] ≤ [a→ (x→ c)] implies that the canonical representant of [b], which is b ∧ a, is less
than or equal to the canonical representant of [a→ (x→ c)], which is the minimum of [a→ (x→ c)]
and so in particular is less than or equal to a→ (x→ c). J

I Example 9. Let us consider the model M = ({w, v}, {(w, v)},V(p) = {w}). The submodel Ma =

Mp = ({w},∅,V p), represented in Figure 1 on the left by a dashed circle, is not a generated submodel
of M. If F is the underlying Kripke frame of M, the complex algebra F + is depicted in above
figure, on the right side, the arrows of which represent the modal operator 2. The dashed ellipses
represent the equivalence classes of the relation ≡a, for a = {w} ∈ F +. Then clearly, a ≡a >, but
2a = {v} .a > = 2>.

3.3 Modal operations on the pseudo-quotient algebra

Since ≡a is not in general compatible with the modal operators, Aa does not canonically inherit the
structure of modal expansion from A. In the present subsection, the modalities will be defined on
the algebra Aa in such a way that, when A = F + for some Kripke frame F , we get Aa �BAO F

a+.

Throughout the present subsection,Awill be a Heyting algebra. In order to enable a separate treatment
for each modal operator, just in the present subsection we will consider Heyting algebras expanded
with possibly one normal modal operator at a time. In these situations, we will use symbols such as
(A,3) and (A,2).

3.3.1 The diamond operation

Let (A,3) be a HAO. Define for every b ∈ A,

3a[b] := [3(b ∧ a) ∧ a] = [3(b ∧ a)].
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The stipulation above is of course justified by the discussion in Subsection 3.1, and by Proposition 5
in particular. Facts 10.3 and 11.3 have exactly the same content of Proposition 5; however, while in
that subsection the definition of the quotient algebra has been obtained from the desideratum that the
statement of the Proposition 5 be true, in the present subsection the definition of the quotient algebra,
given in its full generality, is taken as the starting point, so the proofs below reflect this change in
perspective.

I Fact 10. For every HAO (A,3) and every a ∈ A,
1. 3a is a normal modal operator. Hence (Aa,3a) is a HAO.
2. For every Kripke frame F = (W,R) and all X, a ⊆ W, Ra−1[X ∩ a] = R−1[X ∩ a] ∩ a.
3. If A = F + for some Kripke frame F , then Aa �BAO F

a+.

Proof. 1. 3a[⊥] := [3(⊥∧ a)∧ a] = [3(⊥)∧ a] = [⊥∧ a] = [⊥]. By distributivity, and the fact that
π commutes with ∨,

3a[b ∨ c] := [3((b ∨ c) ∧ a) ∧ a]
= [3((b ∧ a) ∨ (c ∧ a)) ∧ a]
= [(3(b ∧ a) ∨3(c ∧ a)) ∧ a]
= [(3(b ∧ a) ∧ a) ∨ (3(c ∧ a) ∧ a)]
= [3(b ∧ a) ∧ a] ∨ [3(c ∧ a) ∧ a]
= 3a[b] ∨3a[c].

2. Immediate.
3. By definition, F a+ = (P(Wa), 〈Ra〉) and F +a = F +/≡a. By Fact 6, for every [X] ∈ F +a there

exists a unique subset Y = X ∩ a of W that is a member of [X] and is also a subset of a. So the
assignment [X] 7→ X ∩ a defines a map µ : F +a

−→ F a+. If [X] , [X′] then X ∩ a , X′ ∩ a, which
proves that µ is injective. If X ∈ F a+, then X ⊆ a ⊆ W, hence X ∈ F +; so [X] ∈ F +a and moreover
µ([X]) = X, which shows that µ is surjective. Let us show that µ is a BAO homomorphism:

µ(¬F
+a

[X]) = ¬F
a+

(µ([X]))

Since ≡a is compatible with Boolean negation, ¬F
+a

[X] = [¬F
+

X] = [W \ X]; hence µ(¬F
+a

[X]) =

(W \ X) ∩ a = a \ X. On the other hand, ¬F
a+

(µ([X])) = a \ µ([X]) = a \ (X ∩ a) = a \ X. Let us show
that

µ(3a[X]) = 〈Ra〉µ([X]).

By definition, 3a[X] = [3F
+

(X∩a)] = [〈R〉(X∩a)] = [R−1[X∩a]], hence µ(3a[X]) = R−1[X∩a]∩a.
On the other hand, 〈Ra〉µ([X]) = Ra−1[µ([X])] = Ra−1[X ∩ a]. Then the claim immediately follows
from the item 2 above. The remaining cases are left to the reader. J

3.3.2 The box operation

Let (A,2) be a HAO. Define for every b ∈ A,

2a[b] := [a→ 2(a→ b)] = [2(a→ b)].

The second equality holds since, by Fact 25.1, a ∧ (a→ 2(a→ b)) ≤ 2(a→ b), and by Fact 25.3,
a ∧2(a→ b) ≤ a→ 2(a→ b).

I Fact 11. For every HAO (A,2) and every a ∈ A,
1. 2a is a normal modal operator.
2. If (A,2) is a BAO and 2 = ¬3¬, then 2a = ¬3a¬.
3. If A = F + for some Kripke frame F , then 2a = [Ra], hence Aa �BAO F

a+.
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Proof. 1. Since > ≤ a→ >, 2a[>] := [a→ 2(a→ >)] = [a→ 2(>)] = [a→ >] = [>].

2a[b ∧ c] := [a→ 2(a→ (b ∧ c))]
= [a→ (2((a→ b) ∧ (a→ c)))] (Fact 25.6)
= [a→ (2(a→ b) ∧2(a→ c))]
= [(a→ 2(a→ b)) ∧ (a→ 2(a→ c))] (Fact 25.6)
= [(a→ 2(a→ b))] ∧ [(a→ 2(a→ c))]
= 2a[b] ∧2a[c].

2.

2a[b] = [a→ 2(a→ b)] = [¬a ∨2(¬a ∨ b)]
= [¬¬(¬a ∨2(¬a ∨ b))] = ¬[¬(¬a ∨2(¬a ∨ b))]
= ¬[a ∧ ¬2(¬a ∨ b))] = ¬[a ∧ ¬2(¬¬(¬a ∨ b)))]
= ¬[a ∧ ¬2¬(¬(¬a ∨ b))] = ¬[a ∧3(a ∧ ¬b)]
= ¬3a[¬b] = ¬3a¬[b].

3. By Fact 10.4, (Aa,3a) � (P(Wa), 〈Ra〉). So the statement immediately follows from this and
item 2 above. J

3.3.3 Pseudo-quotients of FSAs and of MHAs

The following fact shows that the pseudo-quotient construction preserves the axioms defining the
algebras (MHAs and FSAs) that are immediately relevant to the present paper; in the item 3 of the
fact below, we observe that the adjunction relations 3 a � and _ a 2, well known from tense modal
logic, are also preserved. A tense HAO is a Heyting algebra expansion (A,3,2,_,�) such that the
adjunction relations above hold (more details can be found in the proof of the item 3).

I Fact 12. 1. For every MHA (A,3,2) and every a ∈ A, the algebra (Aa,3a,2a) is a MHA.
2. For every FSA (A,3,2) and every a ∈ A, the algebra (Aa,3a,2a) is a FSA.
3. For every tense HAO (A,3,2,_,�) and every a ∈ A, the algebra (Aa,3a,2a,_a,�a) is a tense

HAO.

Proof. 1. By Fact 8.5, Aa is a HA, so we only need to show the validity of the modal axioms. Since
A is a MHA, in particular, for every b ∈ A, the following inequalities hold: b ∧ a ≤ 3(b ∧ a) and
2(a → b) ≤ a → b, which imply that [b] ≤ 3a[b] and 2a[b] ≤ [b]. Likewise, for all b, c ∈ A,
the following Heyting inequality holds: (a → (b → c)) ≤ (a → b) → (a → c), which yields, by
monotonicity, 2(a→ (b→ c)) ≤ 2((a→ b)→ (a→ c)) ≤ 2(a→ b)→ 2(a→ c); this implies that
2a([b]→ [c]) ≤ 2a[b]→ 2a[c]. For all b, c ∈ A, we have:

(a ∧ b)→ (a ∧ c) = ((a ∧ b)→ a) ∧ ((a ∧ b)→ c) = > ∧ (a→ (b→ c)) = (a→ (b→ c));

hence, 2(a → (b → c)) = 2((a ∧ b) → (a ∧ c)) ≤ 3(a ∧ b) → 3(a ∧ c), which yields 2a([b] →
[c]) ≤ 3a[b]→ 3a[c]. By monotonicity, from a ∧2(a→ b) ≤ 2(a→ b) we get:

3(a ∧2(a→ b)) ≤ 32(a→ b) ≤ 2(a→ b),

which yields 3a2a[b] ≤ 2a[b]. Likewise, by monotonicity, from 3(a ∧ b) ≤ a→ 3(a ∧ b) we get:

3(a ∧ b) ≤ 23(a ∧ b) ≤ 2(a→ 3(a ∧ b)),

which yields 3a[b] ≤ 2a3a[b].
2. Since a ∧ (b→ c) ≤ (a→ b)→ (a ∧ c), by monotonicity we have:

3(a ∧ (b→ c)) ≤ 3((a→ b)→ (a ∧ c)) ≤ 2(a→ b)→ 3(a ∧ c),
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which yields 3a([b] → [c]) ≤ 2a[b] → 3a[c]. Since (a ∧ b) → (a → c) ≤ (a → (b → c)), by
monotonicity we have:

3(a ∧ b)→ 2(a→ c) ≤ 2((a ∧ b)→ (a→ c)) ≤ 2(a→ (b→ c)),

which yields 3a[b]→ 2a[c] ≤ 2a([b]→ [c]).
3. By assumption we have that for all x, y ∈ A,

3x ≤ y iff x ≤ �y and _x ≤ y iff x ≤ 2y.

3a[x] ≤ [y] iff a ∧ 3(a ∧ x) ≤ y, iff 3(a ∧ x) ≤ a → y, iff a ∧ x ≤ �(a → y), iff [x] ≤ �a[y]. The
second equivalence is proved analogously. J

4 Intuitionistic PAL

4.1 Axiomatization

Let AtProp be a countable set of proposition letters. The formulas of the (single-agent) intuitionistic
public announcement logic IPAL are built up by the following inductive rule:

φ ::= p ∈ AtProp | ⊥ | φ ∨ φ | φ ∧ φ | φ→ φ | 3φ | 2φ | 〈φ〉φ | [φ]φ.

The same stipulations hold for the defined connectives >, ¬ and↔ as introduced early on. IPAL is
axiomatically defined by the axioms and rules of IK (MIPC) plus the following axioms:

Interaction with logical constants Preservation of facts
〈α〉⊥ ↔ ⊥, 〈α〉> ↔ α 〈α〉p↔ α ∧ p
[α]> ↔ >, [α]⊥ ↔ ¬α [α]p↔ α→ p
Interaction with disjunction Interaction with conjunction
〈α〉(φ ∨ ψ)↔ 〈α〉φ ∨ 〈α〉ψ 〈α〉(φ ∧ ψ)↔ 〈α〉φ ∧ 〈α〉ψ
[α](φ ∨ ψ)↔ α→ (〈α〉φ ∨ 〈α〉ψ) [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ
Interaction with implication
〈α〉(φ→ ψ)↔ α ∧ (〈α〉φ→ 〈α〉ψ)
[α](φ→ ψ)↔ 〈α〉φ→ 〈α〉ψ
Interaction with diamond Interaction with box
〈α〉3φ↔ α ∧3〈α〉φ 〈α〉2φ↔ α ∧2[α]φ
[α]3φ↔ α→ 3〈α〉φ [α]2φ↔ α→ 2[α]φ

4.2 Models

I Definition 13. An algebraic model is a tuple M = (A,V) such that A is an FSA (resp. an MHA)
(cf. Definition 3) and V : AtProp→ A.

Given such a model, we want to define its associated extension map [[·]]M : Fm→ A so that, when
A = F + for some Kripke frame F , we recover the familiar extension map associated with the model
M = (F ,V). Notice that the satisfaction condition for 〈α〉-formulas

M,w  〈α〉φ iff M,w  α and Mα,w  φ

can be equivalently written as follows:

w ∈ [[〈α〉φ]]M iff ∃w′ ∈ Wα such that i(w′) = w ∈ [[α]]M and w′ ∈ [[φ]]Mα .
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Because the map i : Mα ↪→ M is injective, we get that w′ ∈ [[φ]]Mα iff w = i(w′) ∈ i[[[φ]]Mα ]. Hence,

w ∈ [[〈α〉φ]]M iff w ∈ [[α]]M ∩ i[[[φ]]Mα ],

from which we get that

[[〈α〉φ]]M = [[α]]M ∩ i[[[φ]]Mα ]. (1)

Likewise, equivalently rewriting the following satisfaction condition for [α]-formulas

M,w  [α]φ iff M,w  α implies Mα,w  φ

yields:

[[[α]φ]]M = [[α]]M ⇒ i[[[φ]]Mα ], (2)

where X ⇒ Y = (W \ X) ∪ Y for every X,Y ⊆ W.
Finally, by Proposition 7, the direct image map i[·] : F α+

→ F + can be identified with the map
i′ : F +α → F + under the identification F α+ � F +α.

So we can adopt equations (1) and (2), modified by replacing i[·] with i′, as the definitions of the
extensions of 〈α〉φ and [α]φ respectively in any algebraic model (A,V):

I Definition 14. For every algebraic model M = (A,V), the extension map [[·]]M : L → A is defined
recursively as follows:

[[p]]M = V(p)
[[⊥]]M = ⊥A

[[φ ∨ ψ]]M = [[φ]]M ∨
A [[ψ]]M

[[φ ∧ ψ]]M = [[φ]]M ∧
A [[ψ]]M

[[φ→ ψ]]M = [[φ]]M →
A [[ψ]]M

[[3φ]]M = 3A[[φ]]M

[[2φ]]M = 2A[[φ]]M

[[〈α〉φ]]M = [[α]]M ∧
A i′([[φ]]Mα )

[[[α]φ]]M = [[α]]M →
A i′([[φ]]Mα )

Here, Mα = (Aα,Vα) such that Aα = A[[α]]M and Vα : AtProp→ Aα is π◦V , i.e. for every p ∈ AtProp,

[[p]]Mα = Vα(p) = π(V(p)) = π([[p]]M).

Notice that, by Proposition 4, the above definition specializes to those algebraic models (A,V)
such that A = F + is the complex algebra of some IK-frame (MIPC-frame) F , and from those, to their
relational counterparts (F ,V). Hence, as a special case of the definition above we get an interpretation
of IPAL on relational IK-models (MIPC-models). In the next subsection, we are going to expand on
this.

4.3 Relational semantics for IPAL

In order to be able to see what the semantics of Definition 14 amounts to over IK-frames (MIPC-
frames), we need to dualize back the FSAs (MHAs) and the pseudo quotient map A → Aa. As is
well known (cf. [6]), dualizing the FSAs (MHAs) is possible in full generality, and the resulting
construction involves the intuitionistic counterparts of descriptive general frames in classical modal
logic, i.e. relational structures endowed with topologies. However, obtaining the purely relational
IK-frames (MIPC-frames) is possible for certain special FSAs (MHAs), which we call perfect FSAs
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(MHAs), in order to define which, we need some preliminary definitions: A poset P is a complete
lattice if the joins and meets of arbitrary subsets of P exist, in which case, P is completely distributive
if arbitrary meets distribute over arbitrary joins. For every complete lattice P = (X,≤), a non-bottom
element x ∈ X is completely join-prime if, for every S ⊆ X such that x ≤

∨
S , there exists some

s ∈ S such that x ≤ s; a non-top element y ∈ X is completely meet-prime if, for every S ⊆ X such that∧
S ≤ y, there exists some s ∈ S such that s ≤ y. Let J∞(P) and M∞(P) respectively denote the set

of the completely join-prime elements and the set of the completely meet-prime elements in P. A
poset P is completely join-generated (resp. completely meet-generated) by a given S ⊆ P if for every
x ∈ P, x =

∨
S ′ (resp. x =

∧
S ′) for some S ′ ⊆ S .

I Definition 15. An HA A is perfect if it is a complete and completely distributive lattice w.r.t.
its natural ordering, and is also completely join-generated by J∞(A) (or equivalently, completely
meet-generated by M∞(A)). An HAO (A,3,2) is perfect if A is a perfect HA, and moreover, 3
distributes over arbitrary joins and 2 distributes over arbitrary meets. A perfect FSA (MHA) is an
FSA (MHA) which is also a perfect HAO.

Clearly, any finite HA(O) is perfect. It is well known that a Heyting algebra A is perfect iff it is
isomorphic to P↓(P), where P = (J∞(A),≤) and ≤ is the restriction of the natural ordering of A to
J∞(A). The Boolean self-duality u 7→ ¬u generalizes, in the HA setting, to the maps κ : A → A,
given by x 7→

∨
{x′ | x′ � x}, and λ : A→ A, given by y 7→

∧
{y′ | y � y′}. These maps induce order

isomorphisms κ : J∞(A) → M∞(A) and λ : M∞(A) → J∞(A) (seen as subposets of A). Clearly,
x � κ(x) (resp. λ(y) � y) for every x ∈ J∞(A) (resp. y ∈ M∞(A)); moreover, for every u ∈ A and
every x ∈ J∞(A),

j ≤ u iff u � κ( j).

By the theory of adjunction on posets, it is well known that, in a perfect HAO A, the properties of
complete distributivity enjoyed by the modal operations imply that they are parts of adjoint pairs:
unary operations _ and � are defined on A so that for all x, y ∈ A,

3x ≤ y iff x ≤ �y and _x ≤ y iff x ≤ 2y.

As is done in Subsection ??, these adjunction relations are denoted by writing 3 a � and _ a 2.
One member of the adjunction relation completely determines the other. The choice of notation is
a reminder of the fact that, by the general theory, _ distributes over arbitrary joins (i.e., it enjoys
exactly the characterizing property of a ‘diamond’ operator on perfect algebras), and � distributes
over arbitrary meets (i.e., it enjoys the characterizing property of a ‘box’ operator on perfect algebras).
In particular, they are both order-preserving. Well known pairs of adjoint modal operators occur in
temporal logic: its axiomatization essentially states that, when interpreted on algebras, the forward-
looking diamond is left adjoint to the backward-looking box, and the backward-looking diamond
is left adjoint to the forward-looking box. This is actually an essential feature: indeed R is the
accessibility relation for one operation iff R−1 is the accessibility relation for the other.

Let us now introduce the intuitionistic counterpart of the atom structures for complete atomic
BAOs:

I Definition 16. For every perfect FSA (MHA) A, let us define R ⊆ J∞(A) × J∞(A) by setting

xRy iff x ≤ 3y and y ≤ _x.

The prime structure associated with A is the relational structure A+ := (J∞(A),≤,R).

Notice that y ≤ _x iff _x � κ(y) iff x � 2κ(y).

I Fact 17. For every perfect HAO A,
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1. if A is an FSA, then A+ is an IK-frame;
2. if A is an MHA, then A+ is an MIPC-frame.

Proof. 1. In order to show that (R ◦ ≥) ⊆ (≥ ◦ R), let x, y′, y ∈ J∞(A) such that xRy′ and y′ ≥ y,
i.e., x ≤ 3y′, and x � 2κ(y′), and y′ ≥ y. We need to show that x′ ≤ x and x′ ≤ 3y and x′ � 2κ(y)
for some x′ ∈ J∞(A). Because A is completely join-generated by J∞(A), it is enough to show that
x∧3y � 2κ(y). Suppose for contradiction that x∧3y ≤ 2κ(y). Then, by residuation and axiom FS2,
we get x ≤ 3y → 2κ(y) ≤ 2(y → κ(y)); since _ a 2, we get that _x ≤ y → κ(y), which, again by
residuation, is equivalent to

_x ∧ y ≤ κ(y).

Notice that the assumptions y ≤ y′ and x � 2κ(y′) (the latter one can be equivalently rewritten as
y′ ≤ _x) imply that y ≤ _x. Hence, the centered inequality implies that y ≤ κ(y), contradiction.

In order to show that (≤ ◦ R) ⊆ (R ◦ ≤), let x, x′, y ∈ J∞(A) such that x ≤ x′ and x′Ry, i.e., x ≤ x′,
and x′ ≤ 3y, and x′ � 2κ(y). We need to show that some y′ ∈ J∞(A) exists such that x ≤ 3y′ and
x � 2κ(y′) and y′ ≤ y, i.e., such that y′ � �κ(x), and y′ ≤ _x, and y′ ≤ y. Because A is completely
join-generated by J∞(A), it is enough to show that y ∧ _x � �κ(x). Suppose for contradiction that
y ∧ _x ≤ �κ(x). Then, by residuation, FS1, and Lemma 27, we get y ≤ _x→ �κ(x) ≤ �(x→ κ(x));
since 3 a �, we get that 3y ≤ x→ κ(x), which, again by residuation, is equivalent to

3y ∧ x ≤ κ(x).

The assumptions x ≤ x′ and x′ ≤ 3y imply that x ≤ 3y. Hence, the centered inequality implies that
x ≤ κ(x), contradiction.
Finally, the identity R = (≥ ◦ R) ∩ (R ◦ ≤) easily follows from the definition and the monotonicity of
3 and _.
2. Because every MHA is a FSA, it only remains to be shown that the accessibility relation R in A+ is
an equivalence relation. This can be readily seen by correspondence theory (cf. [9]); for instance, the
axioms p→ 3p and 2p→ p respectively correspond to x ≤ 3x and x ≤ _x for every state x of A+,
which together express the reflexivity of R; in the presence of reflexivity, the correspondents of the
axioms 32p→ 2p and of 3p→ 23p express a condition implying that R is the total relation on
J∞(A). J

I Proposition 18. For every perfect FSA A, and every IK-frame F ,

A �HAO (A+)+ and F � (F +)+.

Proof. It is well known that the canonical map η : A → (A+)+, given by the assignment u 7→ {x |
x ∈ J∞(A) and x ≤ u}, is a HA isomorphism. So we need to show that (a) η(3u) = 〈R〉η(u) and (b)
η(2u) = [≥ ◦ R]η(u).
(a): for the left-to-right inclusion, let x ∈ J∞(A) such that x ≤ 3u =

∨
{3y′ | y′ ∈ J∞(A) and y′ ≤ u};

hence, x ≤ 3x′ for some x′ ∈ J∞(A) such that x′ ≤ u. We need to show that some y′ ∈ J∞(A) exists
such that y′ ≤ u, and x ≤ 3y′, and y′ ≤ _x, i.e., such that y′ ≤ u, and y′ � �κ(x), and y′ ≤ _x.
Because A is completely join-generated by J∞(A), it is enough to show that x′ ∧ _x � �κ(x).
Suppose for contradiction that x′ ∧ _x ≤ �κ(x). Then, by residuation, FS1, and Lemma 27, we
get x′ ≤ _x → �κ(x) ≤ �(x → κ(x)); since 3 a �, we get that 3x′ ≤ x → κ(x), which, again by
residuation, is equivalent to

3x′ ∧ x ≤ κ(x).

But since x ≤ 3x′, the centered inequality implies that x ≤ κ(x), contradiction. The converse inclusion
is immediate.
(b): for the left-to-right inclusion, let x ∈ J∞(A) such that x ≤ 2u =

∨
{y′ | y′ ∈ J∞(A) and y′ ≤ 2u};
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hence, x ≤ x′ for some x′ ∈ J∞(A) such that x′ ≤ 2u, i.e., _x′ ≤ u. We need to show that, for
all y′, z ∈ J∞(A), if x ≥ z and zRy′, then y′ ≤ u. Indeed, the assumptions, and the monotonicity of
_, imply that the following chain of inequalities holds: y′ ≤ _z ≤ _(x ∧ 3y′) ≤ _x ≤ _x′ ≤ u.
Conversely, let x ∈ J∞(A) such that, for all y′, z ∈ J∞(A), if x ≥ z and z ≤ 3y′, and y′ ≤ _z, then
y′ ≤ u; we need to show that x ≤ 2u, i.e., that _x ≤ u. Because A is completely join-generated by
J∞(A), it is enough to show that, if y′ ∈ J∞(A) and y′ ≤ _x, then y′ ≤ u. By the assumptions on x
(for z = x), it is enough to show that x ≤ 3y′, i.e., that y′ � �κ(x). Suppose for contradiction that
y′ � �κ(x). Then, by Proposition 28 and Fact 26, 0 , y′ ≤ �κ(x) ∧ _x ≤ _(κ(x) ∧ x) = _0 = 0,
contradiction.

Let (F +)+ = (J∞(P↓(W)),⊆,R∗). Clearly, the canonical map ε : F → (F +)+, given by the
assignment x 7→ x↓, is an order-isomorphism between (W,≤) and (J∞(P↓(W)),⊆). For every x, y ∈ W,

x↓R∗y↓ iff x↓ ⊆ 〈R〉y↓ and y↓ ⊆ 〈(≥ ◦ R)−1〉x↓
iff x↓ ⊆ R−1[y↓] and y↓ ⊆ (≥ ◦ R)[x↓]
iff x↓ ⊆ (R ◦ ≤)−1[y] and y↓ ⊆ (≥ ◦ R)[x]

(∗∗) iff x ∈ (R ◦ ≤)−1[y] and y ∈ (≥ ◦ R)[x]
(∗) iff xRy.

The condition (R ◦ ≤) ⊆ (≤ ◦ R) implies that x↓ ⊆ (R ◦ ≤)−1[y] iff x ∈ (R ◦ ≤)−1[y]; the condition
(≥ ◦ R) ⊆ (R ◦ ≥) implies that y↓ ⊆ (≥ ◦ R)[x] iff y ∈ (≥ ◦ R)[x]; the equivalence marked with (∗)
holds because R = (R ◦ ≤) ∩ (≥ ◦ R). J

The bijective correspondence above, between perfect FSAs and IK-frames, specializes to MHAs
and MIPC-frames, and also extends to homomorphisms and p-morphisms; in short, it is a duality, but
treating it in detail is out of the aims of the present paper.

I Definition 19. For every IK-frame F = (W,≤,R) and every down-set a ⊆ W, let F a = (Wa,≤a,Ra)
be defined in the usual way, i.e., Wa := a, and ≤a:= ≤ ∩ (Wa ×Wa) and Ra := R ∩ (Wa ×Wa).

Because a is a down-set, it is easy to see that F being an IK-frame implies that F a is an IK-frame.
The remainder of the present subsection focuses on showing that, for every perfect FSA A and every
a ∈ A,

(Aa)+ � (A+)a.

I Fact 20. For every HA A and every a ∈ A \ {⊥}, we have [b] ∈ J∞(Aa) iff (b ∧ a) ∈ J∞(A).

Proof. Clearly, [b] , ⊥A
a

iff (b ∧ a) , ⊥A
a
. From left to right, let b ∧ a ≤

∨
S for some

S ⊆ A. Then [b] ≤ [
∨

S ] =
∨
{[x] | x ∈ S }. By assumption, [b] ≤ [s] for some s ∈ S ,

i.e. by Fact 6.2, b ∧ a ≤ s ∧ a ≤ s. Conversely, let [b] ≤
∨
{[x] | x ∈ S } = [

∨
S ]. Then

b ∧ a ≤
∨

S ∧ a =
∨
{x ∧ a | x ∈ S }. By assumption, b ∧ a ≤ s ∧ a for some s ∈ S , hence [b] ≤ [s],

which proves the statement. J

The fact above implies that the assignment [b] 7→ b∧a defines a bijective correspondence between
the states in (Aa)+ and the states in (A+)a. If [x], [y] ∈ J∞(Aa), then [x] ≤ [y] iff x ∧ a ≤ y ∧ a;
moreover [x]R[y] iff [x] ≤ 3a[y] and [y] ≤ _a[x], iff x ∧ a ≤ 3(y ∧ a) and y ∧ a ≤ 3(x ∧ a). This
finishes the proof that (Aa)+ � (A+)a.

The identification between these two relational structures implies that the mechanism of epistemic
update for public announcements remains largely unchanged when generalizing from the Boolean to
the intuitionistic setting.
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4.4 Soundness and completeness for IPAL

I Proposition 21. IPAL is sound with respect to algebraic IK-models (MIPC-models), hence with
respect to relational IK- models (MIPC-models).

Proof. The soundness of the preservation of facts and logical constants follows from Lemma 30.
The soundness of the remaining axioms is proved in Lemmas 31, 32, 33, 34, 35 of the appendix. J

I Theorem 22. IPAL is complete with respect to relational IK-models (MIPC-models).

Proof. The proof is analogous to the proof of completeness of classical PAL [3, Theorem 27], and
follows from the reducibility of IPAL to IK (MIPC) via the reduction axioms. Let φ be a valid
IPAL formula. Let us consider some innermost occurrence of a dynamic modality in φ. Hence, the
subformula ψ having that occurrence labelling the root of its generation tree is either of the form
[α]ψ′ or of the form 〈α〉ψ′, for some formula ψ′ in the static language. The distribution axioms make
it possible to equivalently transform ψ by pushing the dynamic modality down the generation tree,
through the static connectives, until it attaches to a proposition letter or to a constant symbol. Here,
the dynamic modality disappears, thanks to an application of the appropriate ‘preservation of facts’ or
‘interaction with logical constant’ axiom. This process is repeated for all the dynamic modalities of φ,
so as to obtain a formula φ′ which is provably equivalent to φ. Since φ is valid by assumption, and
since the process preserves provable equivalence, by soundness we can conclude that φ′ is valid. By
Proposition 2, we can conclude that φ′ is provable in IK (MIPC), hence in IPAL. This, together with
the provable equivalence of φ and φ′, concludes the proof. J

5 The Muddy Children Puzzle, intuitionistically

After having played outside, k ≥ 1 of n children have got mud on their foreheads. They can
only see the others, so they do not know their own status. Now their Father comes along and
says: “At least one of you is dirty”. He then asks: “Do you know whether your own forehead
is dirty?” Children answer truthfully, and this is repeated round by round. As questions and
answers repeat, what will happen?
There is a straightforward proof by induction that the first k − 1 times he asks the question,
they will all answer “No,” but then, at the kth time, the children with muddy foreheads will all
answer “Yes.”

If k = 1, then the only dirty child knows that all the other children are clean, so his/her uncertainty
is about whether the total number of dirty children is 0 or 1 (in the latter case, he/she will be dirty).
Learning from Father that there is at least one dirty child among them takes away the uncertainty, and
enables the conclusion that he/she is dirty7. As to the inductive step, suppose the statement is true for
k dirty children, and let us show it for k + 1 dirty children. In this case, each dirty child sees k dirty
children, so his/her uncertainty is about whether the total number of dirty children is k or k + 1 (in the
latter case, he/she will be dirty). If there were only k dirty children, then, by induction hypothesis,
each of them would know at round k − 1. However, at round k − 1, each dirty child learns that none
of the others knows. Again, this takes away the uncertainty, and enables the conclusion that he/she is
dirty8.

7 Notice that the difference with the clean children is that each clean child sees one dirty child, so each clean child’s
uncertainty is about whether the total number of dirty children is 1 or 2 (in the latter case, he/she will be dirty).
Father’s public announcement is uninformative for the clean children; the only point at which they learn what they
need to conclude something about their own status is when the dirty child announces that he /she knows.

8 Again, the same holds for clean children, but because they see more dirty children than each dirty child, the clean
children are one step behind.
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The epistemic scenario of the Muddy Children Puzzle described above has become perhaps the
main test case in the literature on dynamic epistemic logic, starting with [12, 13], which formalized
the argument above in the object language and entailment of classical PAL with common knowledge.
Since [12, 13], various generalizations, refinements and extensions of this original scenario have been
treated in the literature. The present section is aimed at showing that the argument above can be
formalized in the object language and by the entailment of IPAL. While it is well known that, this
being a finite scenario, the common knowledge operator can be readily replaced by a suitable finitary
approximation of it (see more on this below), the present analysis highlights the non-obvious fact that
the crucial step of this reasoning (“If there were only k dirty children, then each of them would know
at round k − 1”) is not an argument by contradiction, and hence, its nature is not inherently classical.
This grounds our conviction that the phenomenon of dynamic updates can and is worth being studied
in nonclassical contexts.

In what follows, we will need the n-agent version of IPAL, which we denote IPALn, whose
language, if the set of agents is taken to be {1, . . . , n}, is defined as one expects by considering indexed
epistemic modalities 2i and 3i for 1 ≤ i ≤ n, and whose axiomatization is given by correspondingly
indexed copies of the IPAL axioms9. Derived modalities can be defined in the language of IPALn,
which will act as finitary approximations of common knowledge: for every IPALn-formula φ, let
Eφ :=

∧n
i=1 2iφ. The intended meaning of the defined connective E is ‘Everybody knows’.10 It is

easy to see that E> a`IKn > and E(φ ∧ ψ) a`IKn Eφ ∧ Eψ. So E is a box-type normal modality. The
following fact will be important:

I Fact 23. If L is an extension of IPALn with the axiom scheme 21 p→ p, then `L Ep→ p.

Proof. By induction on n. The base case is trivially true. Assume that the statement is true for
n − 1 agents, i.e., that `L (

∧n−1
i=1 2i p) → p; since y → (x → y) and [(x ∧ y) → z] ↔ [x → (y → z)]

are intuitionistic axiom schemes, the assumption implies that `L 2n p → [(
∧n−1

i=1 2i p) → p] a`L
[(
∧n

i=1 2i p)→ p]. J

For the sake of this example, the set of atomic propositions can be restricted to At = {Di,Ci | 1 ≤ i ≤
n}, where Di is the proposition saying ‘child i is dirty’, and Ci is the proposition saying ‘child i is
clean’. Let us introduce the following abbreviations:

father :=
∨n

i=1 Di expresses the proposition publicly announced by Father;
vision :=

∧
{(Di → 2 jDi) ∧ (Ci → 2 jCi) | 1 ≤ i, j ≤ n and i , j} expresses the fact that every

child knows whether each other child is clean or dirty;
aut :=

∧n
i=1[(Ci → ⊥) ↔ Di] expresses the fact that being clean or dirty are not only mutually

incompatible conditions, but they are also exhaustive;
no :=

∧n
i=1(3iDi ∧3iCi) expresses the ignorance of the children about their own status;

dirty(J) := (
∧

j∈J D j)∧ (
∧

h<J Ch), for each J ⊆ {1, . . . , n}, expresses that all and only the children
in J have dirty foreheads.

The aim of this section is proving the following

I Proposition 24. Let L be an extension of IPALn with aut and the axiom scheme 21 p → p. For
every ∅ , J ⊆ {1, . . . , n} such that |J| = k,

dirty(J), Ek(vision) `L [father][no]k−12 jD j

for each j ∈ J.

9 For the remainder of this section, if L is one of the logics introduced so far, Ln will denote its n-agent version. For
any logic L, the relation of provable equivalence relative to L will be denoted by a`L.

10 The connective E appears in the literature also under the name distributed knowledge.
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Proof. By induction on k. If J = {1}, the statement becomes

dirty({1}), E(vision) `L [father]21D1.

By the reduction axioms, we equivalently need to show that

dirty({1}), E(vision) `L father→ 21(father→ D1).

By the Deduction Detachment Theorem (DDT), this is equivalent to showing that

dirty({1}), E(vision), father `L 21(father→ D1).

Since father → D1 = (
∨n

i=1 Di) → D1 a`L
∧n

i=1(Di → D1) a`L
∧

h,1(Dh → D1), we also have that
21(father→ D1) a`L

∧
h,1 21(Dh → D1). Hence, it is enough to show that, for every h , 1,

dirty({1}), E(vision), father `L 21(Dh → D1).

Fix 1 < h ≤ n. By FS2, it is enough to show that

dirty({1}), E(vision), father `L 31Dh → 21D1,

and by DDT, this is equivalent to showing that

dirty({1}), E(vision), father,31Dh `L 21D1.

Observe that, because of the direction Dh → (Ch → ⊥) of aut, we have Ch ∧ Dh `L ⊥. Hence, by the
monotonicity of 31, we get

31(Ch ∧ Dh) `L 31⊥ `L ⊥ `L 21D1.

Hence, to finish the proof of the base case, it is enough to show that

dirty({1}), E(vision), father,31Dh `L 31(Ch ∧ Dh).

By Fact 23, E(vision) `L vision; moreover,

dirty({1}), vision `L
∧
h,1

21Ch `L 21Ch.

Hence,

dirty({1}), E(vision),31Dh `L dirty({1}), vision,31Dh

`L 21Ch ∧31Dh

(FS1, Fact 26) `L 31(Ch ∧ Dh),

which finishes the proof of the base case. As to the induction step, the statement for J = {1, . . . , k + 1}
becomes:

dirty(J), Ek+1vision `L [father][no]k21D1.

It is enough to show that the following chain of entailments holds in IPAL11:

dirty(J), Ek+1vision
(Claim 1) `L 21((C1 ∧ father)→ [father][no]k−122D2)
(Claim 2) `L 21(father→ [father][no]kD1)
(Claim 3) `L [father]21[no]kD1

(Claim 4) `L [father][no]k21D1.

11 Modulo small differences in notation, this is the same chain of entailments in the proof of [12, Proposition 7.2]
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As to Claim 1, let J′ = {2, . . . , k + 1}; by the induction hypothesis,

dirty(J′), Ekvision `L [father][no]k−122D2.

By Fact 23 we also have that

Ek+1vision `L vision ∧21Ekvision;

moreover, observe that
dirty(J), vision `L 21(C1 → dirty(J′)) :

indeed, dirty(J′) `L dirty(J′) implies that∧
h<J

Ch ∧
∧
j∈J′

D j `L C1 → dirty(J′),

hence, by the monotonicity of 21 we get

dirty(J), vision `L 21(
∧
h<J

Ch ∧
∧
j∈J′

D j) `L 21(C1 → dirty(J′)).

Therefore:

dirty(J), Ek+1vision
`L dirty(J), vision ∧21Ekvision
`L 21(C1 → dirty(J′)) ∧21Ekvision
`L 21[(C1 → dirty(J′)) ∧ Ekvision].

By the monotonicity of 21, the following chain of entailments is then enough to finish the proof of
Claim 1:

(C1 → dirty(J′)) ∧ Ekvision
`L (C1 → dirty(J′)) ∧ (C1 → Ekvision)
`L C1 → (dirty(J′) ∧ Ekvision)

(IH) `L C1 → [father][no]k−122D2

`L (C1 ∧ father)→ [father][no]k−122D2.

As to Claim 2, by the monotonicity of 21, it is enough to show that

(C1 ∧ father)→ [father][no]k−122D2 `L father→ [father][no]kD1,

and since the premise of the entailment above is intuitionistically equivalent to father → (C1 →

[father][no]k−122D2), by the monotonicity of→ in its second argument, it is enough to show that

C1 → [father][no]k−122D2 `L [father][no]kD1.

By the reduction axioms we have:

[father][no]kD1 a`L [father][no]k−1(no→ D1)
a`L 〈father〉〈no〉k−1no→ 〈father〉〈no〉k−1D1;

hence, by DDT, proving the entailment above is equivalent to proving that

C1 → [father][no]k−122D2, 〈father〉〈no〉k−1no `L 〈father〉〈no〉k−1D1.

Indeed,
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C1 → [father][no]k−122D2, 〈father〉〈no〉k−1no
`L C1 → [father][no]k−122D2,C1 → 〈father〉〈no〉k−1no
`L C1 → ([father][no]k−122D2 ∧ 〈father〉〈no〉k−1no)
`L C1 → ([father][no]k−122D2 ∧ 〈father〉〈no〉k−132C2)

(Lemma 36.3) `L C1 → ⊥.

By the direction (C1 → ⊥) → D1 of aut, we have C1 → ⊥ `L D1. Hence, the following chain of
entailments holds:

C1 → [father][no]k−122D2, 〈father〉〈no〉k−1no
`L 〈father〉〈no〉k−1no,C1 → ⊥

`L 〈father〉〈no〉k−1no,D1

(Lemma 36.6) `L 〈father〉〈no〉k−1D1.

Claim 3 immediately follows from the fact that, by the reduction axioms,

[father]21[no]kD1 a`L father→ 21(father→ [father][no]kD1),

and the fact that p ` q→ p in intuitionistic logic.
Finally, Claim 4 follows immediately by Lemma 36.5 and the monotonicity of [father]. J
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6 Appendix

6.1 Identities and inequalities valid on Heyting algebras

In a Heyting algebra ∧ and→ are residuated, namely, for all x, y, z ∈ A,

x ∧ y ≤ z iff x ≤ y→ z. (3)

Hence, by the general theory of residuation,

y→ z =
∨
{x | x ∧ y ≤ z}. (4)

Using (3) and (4) above, it is not difficult to prove the following

I Fact 25. For every Heyting algebra A and all x, y, z ∈ A,
1. x ∧ (x→ y) ≤ y.
2. x→ (y ∧ z) = (x→ y) ∧ (x→ z).
3. x ∧ y ≤ x→ y.
4. x→ y = x→ (x ∧ y).
5. (x ∧ y)→ z = x→ (y→ z).
6. x ∧ (y→ z) = x ∧ ((x ∧ y)→ z).

I Fact 26. The following are provably equivalent in IK:
1. 3(p→ q) ≤ 2p→ 3q;
2. 2p ∧3q ≤ 3(p ∧ q);
3. 2(p→ q) ≤ 3p→ 3q.
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Proof. 1 implies 2: by residuation, it is enough to show that 3q ≤ 2p→ 3(p ∧ q). Indeed,

3q ≤ 3(p→ q) = 3(p→ (p ∧ q)) ≤ 2p→ 3(p ∧ q).

2 implies 1: by residuation, it is enough to show that 2p ∧3(p→ q) ≤ 3q. Indeed,

2p ∧3(p→ q) ≤ 3(p ∧ (p→ q)) ≤ 3q.

2 implies 3: by residuation, it is enough to show that 3p ∧2(p→ q) ≤ 3q. Indeed, by 2,

3p ∧2(p→ q) ≤ 3(p ∧ (p→ q)) ≤ 3q.

3 implies 2: by residuation, it is enough to show that 2p ≤ 3p→ 3(p ∧ q). Indeed,

2q ≤ 2(p→ q) ≤ 2(p→ (p ∧ q)) ≤ 3p→ 3(p ∧ q).

J

I Lemma 27. For every perfect HAO A,
1. the following are equivalent:

a. A |= 3(p→ q) ≤ 2p→ 3q;
b. A |= _ j→ �n ≤ �( j→ n), where j ranges over J∞(A) and n ranges over M∞(A).

2. The following are equivalent:
a. A |= 3p→ 2q ≤ 2(p→ q);
b. A |= 3 j→ 2n ≤ 2( j→ n), where j ranges over J∞(A) and n ranges over M∞(A).

Proof. The following proof is an instance of the algorithmic correspondence for DML developed in
[9]. The reader is referred to that paper for the detailed justification of the following chain of logical
equivalences. As to notation, the variables i, j range over J∞(A), and the variables m, n range over
M∞(A).

∀p∀q[3(p→ q) ≤ 2p→ 3q]
iff ∀p∀q∀i∀m[(i ≤ 3(p→ q) & 2p→ 3q ≤ m)⇒ i ≤ m]
iff ∀p∀q∀i∀m∀ j[(i ≤ 3(p→ q) & j→ 3q ≤ m & j ≤ 2p)⇒ i ≤ m]
iff ∀p∀q∀i∀m∀ j[(i ≤ 3(p→ q) & j→ 3q ≤ m & _ j ≤ p)⇒ i ≤ m]
iff ∀q∀i∀m∀ j[(i ≤ 3(_ j→ q) & j→ 3q ≤ m)⇒ i ≤ m]
iff ∀q∀i∀m∀ j∀n[(i ≤ 3(_ j→ q) & j→ n ≤ m & 3q ≤ n)⇒ i ≤ m]
iff ∀q∀i∀m∀ j∀n[(i ≤ 3(_ j→ q) & j→ n ≤ m & q ≤ �n)⇒ i ≤ m]
iff ∀i∀m∀ j∀n[(i ≤ 3(_ j→ �n) & j→ n ≤ m)⇒ i ≤ m]
iff ∀i∀ j∀n[i ≤ 3(_ j→ �n)⇒ ∀m[ j→ n ≤ m⇒ i ≤ m]]
iff ∀i∀ j∀n[i ≤ 3(_ j→ �n)⇒ i ≤ j→ n]
iff ∀ j∀n[3(_ j→ �n) ≤ j→ n]
iff ∀ j∀n[_ j→ �n ≤ �( j→ n)].

∀p∀q[3p→ 2q ≤ 2(p→ q)]
iff ∀p∀q∀i∀m[(i ≤ 3p→ 2q & 2(p→ q) ≤ m)⇒ i ≤ m]
iff ∀p∀q∀i∀m∀n[(i ≤ 3p→ 2q & 2(p→ n) ≤ m & q ≤ n)⇒ i ≤ m]
iff ∀p∀i∀m∀n[(i ≤ 3p→ 2n & 2(p→ n) ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m∀n∀ j[(i ≤ 3p→ 2n & 2( j→ n) ≤ m & j ≤ p)⇒ i ≤ m]
iff ∀i∀m∀n∀ j[(i ≤ 3 j→ 2n & 2( j→ n) ≤ m)⇒ i ≤ m]
iff ∀i∀n∀ j[i ≤ 3 j→ 2n⇒ ∀m[2( j→ n) ≤ m⇒ i ≤ m]]
iff ∀i∀n∀ j[i ≤ 3 j→ 2n⇒ i ≤ 2( j→ n)]
iff ∀n∀ j[3 j→ 2n ≤ 2( j→ n)].
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J

I Proposition 28. For every perfect HA A, its modal expansion (A,3,2) is a perfect FSA iff
(A,_,�) is.

Proof. By Lemma 27.1, FS1 is valid on (A,3,2) iff the restricted version of FS2 is valid on
(A,_,�); by Lemma 27.2 applied to (A,_,�), this is equivalent to FS2 being valid on (A,_,�).
By Lemma 27.2, FS2 is valid on (A,3,2) iff its restricted version is valid on (A,3,2); by Lemma
27.1 applied to (A,_,�), this is equivalent to FS1 being valid on (A,_,�). J

6.2 Properties of the map i′

I Fact 29. Let A be an MIPC-algebra, a ∈ A, and let i′ : Aa → A given by [b] 7→ b ∧ a. Then, for
every b, c ∈ Aa,
1. i′(b ∨ c) = i′(b) ∨ i′(c);
2. i′(b ∧ c) = i′(b) ∧ i′(c);
3. i′(b→ c) = a ∧ (i′(b)→ i′(c));
4. i′(3ab) = 3(i′(b) ∧ a) ∧ a;
5. i′(2ab) = a ∧2(a→ i′(b)).

Proof. 1. Let b′, c′ ∈ A such that b = [b′] and c = [c′]. Then i′(b) = b′ ∧ a and i′(c) = c′ ∧ a,
and because π commutes with ∨, we have b ∨ c = [b′] ∨ [c′] = [b′ ∨ c′]. By distributivity,
i′(b ∨ c) = i′([b′ ∨ c′]) = (b′ ∨ c′) ∧ a = (b′ ∧ a) ∨ (c′ ∧ a) = i′(b) ∨ i′(c).

2. Let b′, c′ ∈ A such that b = [b′] and c = [c′]. Then i′(b) = b′∧a and i′(c) = c′∧a, and because
π commutes with ∧, we have b ∧ c = [b′] ∧ [c′] = [b′ ∧ c′]. By idempotence and commutativity of ∧,
i′(b ∧ c) = i′([b′ ∧ c′]) = (b′ ∧ c′) ∧ a = (b′ ∧ a) ∧ (c′ ∧ a) = i′(b) ∧ i′(c).

3. Let b′, c′ ∈ A such that b = [b′] and c = [c′]. Then i′(b) = b′∧a and i′(c) = c′∧a, and because
π commutes with→, we have

i′(b→ c) = i′([b′]→ [c′]) = i′([b′ ∧ a]→ [c′ ∧ a])
= i′([(b′ ∧ a)→ (c′ ∧ a)]) = a ∧ ((b′ ∧ a)→ (c′ ∧ a))
= a ∧ (i′(b)→ i′(c)).

4. Let b′ ∈ A such that b = [b′]. Then i′(b) = b′ ∧ a, hence

b′ ∧ a = (b′ ∧ a) ∧ a = i′(b) ∧ a. (5)

Moreover, 3ab = [3(b′ ∧ a)], hence i′(3ab) = 3(b′ ∧ a) ∧ a = 3(i′(b) ∧ a) ∧ a.

5. Let b′ ∈ A with b = [b′]. Then i′(b) = a ∧ b′ and 2ab = [2(a→ b′)]. By Fact 25.4,

i′(2ab) = i′([2(a→ b′)]) = i′([2(a→ (a ∧ b′))])
= i′([2(a→ i′(b))]) = a ∧2(a→ i′(b)).

J

6.3 Soundness Lemmas

In this subsection, the lemmas are collected which serve to prove Proposition 21.

I Lemma 30. Let M = (A,V) be an algebraic model. Let φ be a formula such that [[φ]]Mα = π([[φ]]M)
for every formula α and model M. Then for every formula α,
1. [[〈α〉φ]]M = [[α]]M ∧ [[φ]]M .

2. [[[α]φ]]M = [[α]]M → [[φ]]M .
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Proof. 1.

[[〈α〉φ]]M = [[α]]M ∧ i′([[φ]]Mα )
= [[α]]M ∧ i′(π([[φ]]M))
= [[α]]M ∧ ([[φ]]M ∧ [[α]]M)
= [[α]]M ∧ [[φ]]M .

2.

[[[α]φ]]M = [[α]]M → i′([[φ]]Mα )
= [[α]]M → i′(π([[φ]]M))
= [[α]]M → ([[φ]]M ∧ [[α]]M)
= [[α]]M → [[φ]]M . (Fact 25.4)

J

I Lemma 31. Let M = (A,V) be an algebraic model. For every formula α, φ and ψ,
1. [[〈α〉(φ ∨ ψ)]]M = [[〈α〉φ]]M ∨ [[〈α〉ψ]]M .
2. [[[α](φ ∨ ψ)]]M = [[α]]M → ([[〈α〉φ]]M ∨ [[〈α〉ψ]]M).

Proof. 1.

[[〈α〉(φ ∨ ψ)]]M = [[α]]M ∧ i′([[φ ∨ ψ]]Mα )
= [[α]]M ∧ i′([[φ]]Mα ∨ [[ψ]]Mα )
= [[α]]M ∧ (i′([[φ]]Mα ) ∨ i′([[ψ]]Mα )) (Fact 29.1)
= ([[α]]M ∧ i′([[φ]]Mα )) ∨ ([[α]]M ∧ i′([[ψ]]Mα )))
= [[〈α〉φ]]M ∨ [[〈α〉ψ]]M .

2.

[[[α](φ ∨ ψ)]]M = [[α]]→ i′([[φ ∨ ψ]]Mα )
= [[α]]M → (i′([[φ]]Mα ) ∨ i′([[ψ]]Mα )) (Fact 29.1)
= [[α]]M → ([[α]]M ∧ (i′([[φ]]Mα ) ∨ i′([[ψ]]Mα ))) (Fact 25.4)
= [[α]]M → (([[α]]M ∧ i′([[φ]]Mα )) ∨ ([[α]]M ∧ i′([[ψ]]Mα )))
= [[α]]M → ([[〈α〉φ]]M ∨ [[〈α〉ψ]]M).

J

I Lemma 32. Let M = (A,V) be an algebraic model. For every formula α, φ and ψ,
1. [[〈α〉(φ ∧ ψ)]]M = [[〈α〉φ]]M ∧ [[〈α〉ψ]]M .
2. [[[α](φ ∧ ψ)]]M = [[[α]φ]]M ∧ [[[α]ψ]]M .

Proof. 1.

[[〈α〉(φ ∧ ψ)]]M = [[α]]M ∧ i′([[φ ∧ ψ]]Mα )
= [[α]]M ∧ (i′([[φ]]Mα ) ∧ i′([[ψ]]Mα )) (Fact 29.2)
= ([[α]]Mα ∧ i′([[φ]]Mα )) ∧ ([[α]]M ∧ i′([[ψ]]Mα ))
= [[〈α〉φ]]M ∧ [[〈α〉ψ]]M .

2.

[[[α](φ ∧ ψ)]]M = [[α]]M → i′([[φ ∧ ψ]]Mα )
= [[α]]M → i′([[φ]]Mα ∧ [[ψ]]Mα )
= [[α]]M → (i′([[φ]]Mα ) ∧ i′([[ψ]]Mα )) (Fact 29.2)
= ([[α]]M → i′([[φ]]Mα )) ∧ ([[α]]M → i′([[ψ]]Mα )) (Fact 25.2)
= [[[α]φ]]M ∧ [[[α]ψ]]M .

J
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I Lemma 33. Let M = (A,V) be an algebraic model. For every formula α, φ and ψ,
1. [[[α](φ→ ψ)]]M = [[〈α〉φ]]M → [[〈α〉ψ]]M .
2. [[〈α〉(φ→ ψ)]]M = [[α]]M ∧ ([[〈α〉φ]]M → [[〈α〉ψ]]M).

Proof. We preliminarily observe that

([[α]]M ∧ i′([[φ]]Mα ))→ i′([[ψ]]Mα )
= ([[α]]M ∧ i′([[φ]]Mα ))→ (([[α]]M ∧ i′([[φ]]Mα )) ∧ i′([[ψ]]Mα )) (Fact 25.4)
= [[〈α〉φ]]M → ([[〈α〉φ]]M ∧ [[〈α〉ψ]]M)
= [[〈α〉φ]]M → [[〈α〉ψ]]M . (Fact 25.4)

Hence: 1.

[[[α](φ→ ψ)]]M = [[α]]M → i′([[φ→ ψ]]Mα )
= [[α]]M → ([[α]]M ∧ (i′([[φ]]Mα )→ i′([[ψ]]Mα ))) (Fact 29.3)
= [[α]]M → (i′([[φ]]Mα )→ i′([[ψ]]Mα )) (Fact 25.4)
= ([[α]]M ∧ i′([[φ]]Mα ))→ i′([[ψ]]Mα ) (Fact 25.5)
= [[〈α〉φ]]M → [[〈α〉ψ]]M .

2.

[[〈α〉(φ→ ψ)]]M = [[α]]M ∧ i′([[φ→ ψ]]Mα )
= [[α]]M ∧ ([[α]]M ∧ (i′([[φ]]Mα )→ i′([[ψ]]Mα ))) (Fact 29.3)
= [[α]]M ∧ (i′([[φ]]Mα )→ i′([[ψ]]Mα )) (Fact 25.4)
= [[α]]M ∧ (([[α]]M ∧ i′([[φ]]Mα ))→ i′([[ψ]]Mα )) (Fact 25.6)
= [[α]]M ∧ ([[〈α〉φ]]M → [[〈α〉ψ]]M).

J

I Lemma 34. Let M = (A,V) be an algebraic model. For every formula α and φ,
1. [[〈α〉3φ]]M = [[α]]M ∧3A[[〈α〉φ]]M .

2. [[[α]3φ]]M = [[α]]M → 3A[[〈α〉φ]]M .

Proof. We preliminarily observe that

i′([[3φ]]Mα ) = [[α]]M ∧3A([[α]]M ∧ i′([[φ]]Mα )) (Fact 29.4)
= [[α]]M ∧3A[[〈α〉φ]]M .

Hence: 1.

[[〈α〉3φ]]M = [[α]]M ∧ i′([[3φ]]Mα )
= [[α]]M ∧ ([[α]]M ∧3A[[〈α〉φ]]M)
= [[α]]M ∧3A[[〈α〉φ]]M .

2.

[[[α]3φ]]M = [[α]]M → i′([[3φ]]Mα )
= [[α]]M → ([[α]]M ∧3A[[〈α〉φ]]M)
= [[α]]M → 3A[[〈α〉φ]]M . (Fact 25.4)

J

I Lemma 35. Let M = (A,V) be an algebraic model. For every formula α and φ,
1. [[〈α〉2φ]]M = [[α]]M ∧2A[[[α]φ]]M .

2. [[[α]2φ]]M = [[α]]M → 2A[[[α]φ]]M .

Proof. We preliminarily observe that

i′([[2φ]]Mα ) = [[α]]M ∧2A([[α]]M → i′([[φ]]Mα )) (Fact 29.5)
= [[α]]M ∧2A[[[α]φ]]M .
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Hence: 1.

[[〈α〉2φ]]M = [[α]]M ∧ i′([[2φ]]Mα )
= [[α]]M ∧ ([[α]]M ∧2A[[[α]φ]]M)
= [[α]]M ∧2A[[[α]φ]]M .

2.

[[[α]2φ]]M = [[α]]M → i′([[2φ]]Mα )
= [[α]]M → ([[α]]M ∧2A([[[α]φ]]M))
= [[α]]M → 2A[[[α]φ]]M . (Fact 25.4)

J

6.4 Muddy children reduction lemma

I Lemma 36. For all formulas α, β, φ and ψ, for all proposition letters p and q, and for every k ∈ N,
1. `IPAL [α][β]k2p↔ (〈α〉〈β〉k−1β→ 〈α〉〈β〉k2p).
2. `IPAL 〈α〉〈β〉

k2p↔ (〈α〉〈β〉k−1β ∧2(〈α〉〈β〉k−1β→ 〈α〉〈β〉k−1 p)).
3. If p ∧ q ` ⊥, then [α][β]k2p ∧ 〈α〉〈β〉k3q ` ⊥.
4. `IPAL [α]k(φ→ ψ)↔ (〈α〉kφ→ 〈α〉kψ).
5. 2[α]k p `IPAL [α]k2p.
6. 〈α〉〈β〉kβ, p `IPAL 〈α〉〈β〉

k p.

Proof. 1. By completeness, it is enough to show that

[[[α][β]k2p]]M = [[〈α〉〈β〉k−1β]]M → [[〈α〉〈β〉k2p]]M

for any algebraic model M = (A,V). By induction on k: for k = 1, let i′ = i′α : Aα → A,
i′′ = i′αβ : Aαβ → Aα.

[[[α][β]2p]]M = [[α]]M → i′([[[β]2p]]Mα )
= [[α]]M → i′([[β]]Mα → i′′([[2p]]Mαβ ))
= [[α]]M → ([[α]]M ∧ (i′([[β]]Mα )→ i′(i′′([[2p]]Mαβ )))) (Fact 29.3)
= [[α]]M → (i′([[β]]Mα )→ i′(i′′([[2p]]Mαβ ))) (Fact 25.4)
= [[α]]M → (i′([[β]]Mα )→ i′(i′′(2Aαβ [[p]]Mαβ ))
= [[α]]M → (i′([[β]]Mα )→ i′([[β]]Mα ∧2Aα ([[β]]Mα → i′′([[p]]Mαβ )))) (Fact 29.5)
= [[α]]M → (i′([[β]]Mα )→ i′([[β]]Mα ∧2Aα ([[β]]Mα → ([[β]]Mα ∧ [[p]]Mα )))) (∗)
= [[α]]M → (i′([[β]]Mα )→ i′([[β]]Mα ∧2Aα ([[β]]Mα → [[p]]Mα ))) (Fact 25.4)
= [[α]]M → (i′([[β]]Mα )→ i′([[β]]Mα ∧2Aα [[[β]p]]Mα ))
= [[α]]M → (i′([[β]]Mα )→ i′([[〈β〉2p]]Mα ))
= [[〈α〉β]]M → [[〈α〉〈β〉2p]]M . (∗∗)

The equality marked (∗) holds because [[p]]Mαβ = [[[p]]Mα ]β and by the way i′′ is defined; the equality
marked (∗∗) holds by the preliminary observation in the proof of Lemma 33. For the induction step,

[[[α][β]k+12p]]M = [[α]]M → i′([[[β][β]k2p]]Mα )
= [[α]]M → i′([[〈β〉〈β〉k−1β]]Mα → [[〈β〉〈β〉k2p]]Mα ) (IH)
= [[〈α〉〈β〉kβ]]M → [[〈α〉〈β〉k+12p]]M .

2. By completeness, it is enough to show that

[[〈α〉〈β〉k2p]]M = [[〈α〉〈β〉k−1β]]M ∧2A([[〈α〉〈β〉k−1β]]M → [[〈α〉〈β〉k−1 p]]M)

for any algebraic model M = (A,V). By induction on k: for k = 1,
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[[〈α〉〈β〉2p]]M = [[α]]M ∧ i′([[〈β〉2p]]Mα )
= [[α]]M ∧ i′([[β]]Mα ∧ i′′([[2p]]Mαβ ))
= [[α]]M ∧ i′([[β]]Mα ∧ i′′(2Aαβ [[p]]Mαβ ))
= [[α]]M ∧ i′([[β]]Mα ∧ ([[β]]Mα ∧2Aα ([[β]]Mα → i′′([[p]]Mαβ )))) (Fact 29.5)
= [[α]]M ∧ i′([[β]]Mα ∧2Aα ([[β]]Mα → ([[β]]Mα ∧ [[p]]Mα ))) (∗)
= [[α]]M ∧ i′([[β]]Mα ∧2Aα ([[β]]Mα → [[p]]Mα )) (Fact 25.4)
= ([[α]]M ∧ i′([[β]]Mα )) ∧ i′(2Aα ([[β]]Mα → [[p]]Mα )) (Fact 29.2)
= [[〈α〉β]]M ∧ ([[α]]M ∧2A([[α]]M → (i′([[β]]Mα )→ i′([[p]]Mα ))) (Fact 29.5, 25.4)
= [[〈α〉β]]M ∧ ([[α]]M ∧2A([[〈α〉β]]M → [[〈α〉p]]M)) (∗∗)
= [[〈α〉β]]M ∧2A([[〈α〉β]]M → [[〈α〉p]]M).

For the induction step,

[[〈α〉〈β〉k+12p]]M = [[α]]M ∧ i′([[〈β〉〈β〉k2p]]Mα )
= [[α]]M ∧ i′([[〈β〉〈β〉k−1β]]Mα ∧2Aα ([[〈β〉〈β〉k−1β]]Mα → [[〈β〉〈β〉k−1 p]]Mα )) (IH)
= [[〈α〉〈β〉kβ]]M ∧ i′(2Aα ([[〈β〉kβ]]Mα → [[〈β〉k p]]Mα )) (Fact 29.2)
= [[〈α〉〈β〉kβ]]M ∧2A([[〈α〉〈β〉kβ]]Mα → [[〈α〉〈β〉k p]]Mα ). (Fact 29.5, ∗∗)

3. By completeness, it is enough to show that, if [[p ∧ q]]M = [[⊥]]M , then

[[[α][β]k2p]]M ∧ [[〈α〉〈β〉k3q]]M = [[⊥]]M

for any algebraic model M = (A,V). By induction on k: for k = 0,

[[[α]2p]]M ∧ [[〈α〉3q]]M = ([[α]]M → 2([[α]]M → [[p]]M)) ∧ ([[α]]M ∧3([[α]]M ∧ [[q]]M))
≤ 2([[α]]M → [[p]]M)) ∧3([[α]]M ∧ [[q]])

(FS1, Fact 26) ≤ 3(([[α]]M → [[p]]M) ∧ ([[α]]M ∧ [[q]]M))
≤ 3([[p ∧ q]]M)
= 3⊥

= ⊥.

For the induction step,

[[[α][β]k+12p]]M ∧ [[〈α〉〈β〉k+13q]]M = ([[α]]M → i′([[[β]k+12p]]Mα )) ∧ ([[α]]M ∧ i′([[〈β〉k+13q]]Mα ))
≤ i′([[[β]k+12p]]Mα ) ∧ i′([[〈β〉k+13q]]Mα )
= i′([[[β]k+12p ∧ 〈β〉k+13q]]Mα )
= i′([[[β][β]k2p ∧ 〈β〉〈β〉k3q]]Mα )
= i′([[⊥]]Mα ) (IH)
= [[α]]M ∧ [[⊥]]M

= [[⊥]]M .

4. By induction on k. If k = 1 the statement is one of the interaction axioms. Let k ≥ 1 and assume
that the statement is true for k. Then,

[α]k+1(φ→ ψ) ↔ [α][α]k(φ→ ψ)
(IH) ↔ [α](〈α〉kφ→ 〈α〉kψ)

(Int. axiom) ↔ 〈α〉〈α〉kφ→ 〈α〉〈α〉kψ

↔ 〈α〉k+1φ→ 〈α〉k+1ψ.

5. If k = 0, then the statement reduces to 2[α]p `L [α]2p, which can be equivalently rewritten as

2(α→ p) `L α→ 2(α→ p),
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which is true, since q→ (r → q) is an intuitionistic axiom scheme. If k ≥ 1, let us show that

2[α][α]k p `L [α][α]k2p.

By items 1 and 2 of the present lemma,

[α][α]k2p↔ (〈α〉〈α〉k−1α→ 2(〈α〉〈α〉k−1α→ 〈α〉〈α〉k−1 p));

hence, again because q→ (r → q) is an intuitionistic axiom scheme, it is enough to show that

2[α][α]k p `L 2(〈α〉kα→ 〈α〉k p).

By item 4 of the present lemma, this is equivalent to showing that

2[α][α]k p `L 2[α]k(α→ p),

which is true, since by the reduction axioms, (α→ p)↔ [α]p.
6. Notice preliminarily that, from the defining clause of the interpretation of 〈β〉β in any algebraic
model and by completeness, it immediately follows that 〈β〉β `L β. Hence, by repeated applications
of monotonicity of dynamic diamonds,

〈α〉〈β〉kβ `L 〈α〉〈β〉
k−1β.

Let us prove the statement by induction on k: for k = 0, the statement reduces to

〈α〉β, p `L 〈α〉p,

which is true, since 〈α〉p is equivalent to α ∧ p, and 〈α〉β `L α. For the induction step, assume that

〈α〉〈β〉k−1β, p `IPAL 〈α〉〈β〉
k−1 p

and let us show that
〈α〉〈β〉kβ, p `IPAL 〈α〉〈β〉

k p.

Indeed, by the reduction axioms,

〈α〉〈β〉k p a`L 〈α〉〈β〉k−1(β ∧ p) a`L 〈α〉〈β〉k−1β ∧ 〈α〉〈β〉k−1 p.

The statement then immediately follows from this, the preliminary remark, and the induction hypo-
thesis. J
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