
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

VerifyThis 2015
A Program Verification Competition

Marieke Huisman1, Vladimir Klebanov2, Rosemary Monahan3, Michael Tautschnig4

1 University of Twente, The Netherlands, e-mail: m.huisman@utwente.nl
2 Karlsruhe Institute of Technology, Germany, e-mail: klebanov@kit.edu
3 Maynooth University, Ireland, e-mail: Rosemary.Monahan@nuim.ie
4 Queen Mary University of London, e-mail: michael.tautschnig@qmul.ac.uk

Received: date / Revised version: date

Abstract. VerifyThis 2015 was a one-day program ver-
ification competition which took place on April 12th,
2015 in London, UK as part of the European Joint Con-
ferences on Theory and Practice of Software (ETAPS
2015). It was the fourth instalment in the VerifyThis
competition series. This article provides an overview
of the VerifyThis 2015 event, the challenges that were
posed during the competition, and a high-level overview
of the solutions to these challenges. It concludes with the
results of the competition, and some ideas and thoughts
for future instalments of VerifyThis.

1 Introduction

VerifyThis 2015 took place on April 12th, 2015 in Lon-
don, UK, as a one-day verification competition in the
European Joint Conferences on Theory and Practice
of Software (ETAPS 2015). It was the fourth edition
in the VerifyThis series after the competitions held at
FoVeOOS 2011, FM2012 and Dagstuhl (Seminar 14171,
April 2014).

The aims of the competition were:

– to bring together those interested in formal verifica-
tion, and to provide an engaging, hands-on, and fun
opportunity for discussion

– to evaluate the usability of logic-based program veri-
fication tools in a restricted setting that can be easily
repeated by others.

This article provides an overview of the VerifyThis
2015 event, the challenges that were posed during the
competition, and a high-level overview of the solutions
to these challenges. While we do not provide guidance
on how to perform an in-depth evaluation of the partic-
ipating tools, we highlight the main tool features that

were used in solutions. We conclude with the results of
the competition, and some ideas and thoughts for future
instalments of VerifyThis.

Before the VerifyThis competitions (and the related
online VS-Comp competitions) were launched, verifica-
tion systems were only evaluated according to the size
of the completed project. However, due to the size and
complexity of the verification efforts, such experiments
could not be reproduced. Furthermore, the efficiency of
the verification could not be measured, as they were car-
ried out over prolonged periods of time, by multiple peo-
ple, with different background, and without proper time
accounting.

VerifyThis, in contrast, shifts the measurement to ef-
ficiency. Typical challenges in the VerifyThis competi-
tions are small but intricate algorithms given in pseudo-
code with an informal specification in natural language.
Participants have to formalise the requirements, imple-
ment a solution, and formally verify the implementa-
tion for adherence to the specification. There are no re-
strictions on the programming language and verification
technology used. The time frame to solve each challenge
is quite short (between 45 to 90 minutes) so that anyone
can easily repeat the experiment. Thus, the competition
setup can be easily reproduced by anyone, the challenges
are self-contained, time is controlled, and establishing
the relation between specification and implementation
is straightforward.

The correctness properties which the challenges
present are typically expressive and focus on the input-
output behaviour of programs. To tackle them to the
full extent, some human guidance within a verification
tool is usually required. At the same time, considering
partial properties or simplified problems, if this suits the
pragmatics of the tool, is encouraged. The competition
welcomes participation of automatic tools as combining
complementary strengths of different kinds of tools is a
development that VerifyThis would like to advance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159078210?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Marieke Huisman et al.: VerifyThis 2015

Submissions are judged for correctness, complete-
ness, and elegance. The focus includes the usability of
the tools, their facilities for formalising the properties
and providing helpful output. As each solution depends
on different tools and different participants, creativity is
an important factor in the competition. However, cor-
rectness and completeness are relatively objective crite-
ria, and one can estimate approximately how close the
team is to a completely verified solution of the challenge.

Experiences with earlier editions of VerifyThis have
shown that participation leads to insight in: (i) miss-
ing tool features, (ii) useful features, which helped other
teams to develop their solutions, and (iii) tool features
which are awkward to use and need further improve-
ment and testing. It is difficult to quantify the concrete
effects on tool development, but when judging, we see
that insights obtained during earlier competitions actu-
ally lead to new tool developments. Moreover, the Ver-
ifyThis challenges are also used as verification bench-
marks outside of the competition.

1.1 VerifyThis 2015

VerifyThis 2015 consisted of three verification chal-
lenges. Before the competition, an open call for challenge
submissions was made. As a result, six challenges were
submitted, of which one was selected for the competition
(see also Section 5.5 for more details about this call and
the selection criteria). The challenges (presented later)
provided reference implementations at different levels of
abstraction. For the first time, one of the challenges cen-
tered around concurrency.

Fourteen teams participated (Table 1). Teams of up
to two people were allowed and physical presence on site
was required. We particularly encouraged participation
of:

– student teams (this includes PhD students)
– non-developer teams using a tool someone else devel-

oped
– several teams using the same tool

Teams using different tools for different challenges (or
even for the same challenge) were welcome.

As in the VerifyThis 2012 competition, after the com-
petition a post-mortem session was held, where partici-
pants explained their solutions and answered the judges
questions. In parallel, the participants used this half-day
session to discuss details of the problems and solutions
among each other.

The website of the 2015 instalment of VerifyThis
can be found at http://etaps2015.verifythis.org/.
More background information on the competition format
and the rationale behind it can be found in [HKM12]. Re-
ports from previous competitions of similar nature can
be found in [KMS+11,BBD+11,FPS12], and in the spe-
cial issue of the International Journal on Software Tools

for Technology Transfer (STTT) on the VerifyThis com-
petition 2012 (see [HKM15] for the introduction).

1.2 Rules

In order to ensure that the competition proceeded
smoothly, the following rules were established:

1. The main rule of the competition is: no cheating is
allowed. The judges may penalise or disqualify en-
trants in case of unfair competition behaviour and
may adjust the competition rules to prevent future
abuse.

2. Solutions are to be submitted by email.
3. Submissions must state the version of the verifica-

tion system used (for development versions, internal
revision, time-stamp, or similar unique id).

4. It is permitted to modify the verification system dur-
ing the competition. This is to be noted in the solu-
tion(s).

5. All techniques used must be general-purpose, and are
expected to extend usefully to new unseen problems.

6. Internet access is allowed, but browsing for problem
solutions is not.

7. Involvement of other people beyond those on the
team is not allowed.

8. While care is taken to ensure correctness of the refer-
ence implementations supplied with problem descrip-
tions, the organisers do not guarantee that they are
indeed correct.

2 Challenge 1: Relaxed Prefix (60 minutes)

This problem was submitted by Thomas Genet, Univer-
sité de Rennes 1, in response to the open call for chal-
lenges.

2.1 Verification Task

Verify a function isRelaxedPrefix determining if a list pat
(for pattern) is a relaxed prefix of another list a. The
relaxed prefix property holds iff pat is a prefix of a after
removing at most one element from pat.

Examples:

– pat = {1,3} is a relaxed prefix of a = {1,3,2,3} (stan-
dard prefix)

– pat = {1,2,3} is a relaxed prefix of a = {1,3,2,3} (re-
move 2 from pat)

– pat = {1,2,4} is not a relaxed prefix of a = {1,3,2,3}

Implementation notes: One may implement lists as
arrays, e.g., of integers. A reference implementation is
given below. It may or may not contain errors.

http://etaps2015.verifythis.org/

Marieke Huisman et al.: VerifyThis 2015 3

Table 1. Teams participating in VerifyThis 2015 (alphabetically by tool)

Team members Tool Team attributes

1 Nadia Polikarpova, Carlo Furia AutoProof [TFNP15]
2 Michael Tautschnig CBMC [KT14]
3 Rustan Leino Dafny [Lei10]
4 Tim Wood Dafny — ” — student, non-developer
5 Robert Kelly, Marie Farrell Dafny — ” — student, non-developer
6 Aleksey Schubert Frama-C [KKP+15] non-developer
7 Simon Forest, Jean Karim Zinzindohoué F* [SCF+13] student
8 Daniel Bruns, Michael Kirsten KeY [ABB+14] student
9 Gidon Ernst, Jörg Pfähler KIV [EPS+15] student

10 Jan Friso Groote mCRL2 [CGK+13]
11 Jonathan Hoyland MoCHi [KSU11] non-developer
12 Stefan Blom, Saeed Darabi VerCors [BH14]
13 Bart Jacobs VeriFast [PJP15]
14 Jean-Christophe Filliâtre, Guillaume Melquiond Why3 [FP13]

publicpublicpublic classclassclass Relaxed {

publicpublicpublic staticstaticstatic booleanbooleanboolean isRelaxedPrefix(intintint[] pat,intintint[] a){

intintint shift = 0;
forforfor(intintint i=0; i<pat.length; i++) {

ififif (pat[i]!=a[i-shift])
ififif (shift==0) shift=1;

elseelseelse returnreturnreturn falsefalsefalse;
}
returnreturnreturn truetruetrue;

}
publicpublicpublic staticstaticstatic voidvoidvoid main(String[] argv) {

intintint[] pat = {1,2,3};
intintint[] a1 = {1,3,2,3};
System.out.println(isRelaxedPrefix(pat, a1));

}
}

2.2 Comments on Solutions

Eleven teams (Verifast, Why3, AutoProof, KeY, Dafny
(3 teams), mCRL2, F*, KIV, and VerCors) submitted a
solution to this challenge. Difficulties that had been en-
countered by the participants were mainly at the spec-
ification level: getting the prefix definition correct, and
making sure that all cases were covered in the postcondi-
tions. In particular, several teams forgot the case where
the length of the array was less than the length of the
prefix, or where the method returned false. In the overall
evaluation, the solution provided by the Why3 team was
the only one to obtain full marks from the judges.

During the verification, the main challenge was to
find an appropriate instantiation for the existential
quantifier. Different solutions for this were used: the
Why3 team brought the specification into a particular
syntactical shape that enabled the SMT solver to guess
the instantiation (in a post-competition solution, this

trick was replaced with an explicit assertion); the KeY
team and the AutoProof team used an explicit return
value, which avoided the need for existential quantifi-
cation (witness computed by the program); Tim Wood,
using Dafny, used an explicit hint in the form of a trigger
annotation; the KIV team tried to address this by man-
ual instantiation; while Robert Kelly and Marie Farrell,
using Dafny, provided a recursive definition of a relaxed
prefix.

2.3 Future Verification Tasks

For those who had completed the challenge quickly, the
description included a further challenge, outlined below.
No submissions attempting to solve the advanced chal-
lenge were received during the competition.

Verification task: Implement and verify a function
relaxedContains(pat, a) returning whether a contains pat
in the above relaxed sense, i.e., whether pat is a relaxed
prefix of any suffix of a.

3 Challenge 2: Parallel GCD (60 minutes)

Various parallel algorithms for computing the greatest
common divisor GCD(a,b) exist (cf. [Sed08]). In this chal-
lenge, we consider a simple Euclid-like algorithm with
two parallel threads. One thread performs subtractions
of the form a:=a-b, while the other thread performs sub-
tractions of the form b:=b-a. Eventually, this procedure
converges on the GCD.

In pseudo-code, the algorithm is described as follows:
(
WHILEWHILEWHILE a != b DODODO

4 Marieke Huisman et al.: VerifyThis 2015

IFIFIF a>b THENTHENTHEN a:=a-b ELSEELSEELSE SKIPSKIPSKIP FIFIFI
ODODOD
||
WHILEWHILEWHILE a != b DODODO

IFIFIF b>a THENTHENTHEN b:=b-a ELSEELSEELSE SKIPSKIPSKIP FIFIFI
ODODOD
);
OUTPUTOUTPUTOUTPUT a

3.1 Verification Task

Specify and verify the following behaviour of this parallel
GCD algorithm:

Input: two positive integers a and b
Output: a positive integer that is the greatest common

divisor of a and b

Synchronisation can be added where appropriate, but
try to avoid blocking of the parallel threads.
Sequentialisation: If a tool does not support reason-
ing about parallel threads, one may verify the following
pseudo-code algorithm:

WHILEWHILEWHILE a != b DODODO
CHOOSECHOOSECHOOSE(

IFIFIF a > b THENTHENTHEN a := a - b ELSEELSEELSE SKIPSKIPSKIP FIFIFI,
IFIFIF b > a THENTHENTHEN b := b - a ELSEELSEELSE SKIPSKIPSKIP FIFIFI

)
ODODOD;
OUTPUTOUTPUTOUTPUT a

3.2 Comments on Solutions

Five teams (Verifast, mCRL2, KIV, CBMC and Ver-
Cors) submitted a solution to the concurrent version of
this challenge; six teams (Why3, AutoProof, KeY, Dafny
(2 teams) and F*) submitted a solution to the sequen-
tialised variant of the challenge.

The solutions to the concurrent version of the chal-
lenge were all very different in spirit. The submissions
assumed varying degrees of atomicity. In some formal-
isations, atomic operations were the individual loads
and stores, in others—the loop body, yet in others—
the evaluation of the loop condition followed by the loop
body. All formalisations assumed sequential consistency
though. All were also in some aspect partial.

Bart Jacobs (VeriFast) developed a fine-grained con-
current solution, showing the specified postcondition but
assuming the necessary properties of the mathematical
GCD predicate. The solution uses “shared boxes”, which
integrate rely-guarantee reasoning into the separation
logic of VeriFast. Despite its significant complexity, the
solution was judged as the best among the submitted
ones.

Closely following was a solution by Jan Friso Groote
with mCRL2. mCRL2 and CBMC are both bounded ver-
ification tools and thus only checked correctness within
limits on the range of input parameters resp. the loop

unwinding depth. The mCRL2 solution elegantly used
quantifiers to specify the GCD postcondition.

The KIV team used a global invariant proof approach
but got stuck on the necessary GCD properties (while
later realising that they actually could have used GCD
lemmas from the KIV libraries). Finally, the VerCors
team submitted a solution, making use of the recently
added support for parallel blocks, but proving absence
of data races only. Post-competition they extended this
to a full solution.

The judges were also impressed by the attempt of
the AutoProof team. In addition to proving correctness
of the sequentialised algorithm, they almost succeeded in
proving termination of the sequential version, assuming
an appropriate fairness condition.

The KIV team was not the only team that experi-
enced that well-developed libraries can help while solving
a challenge. The Why3 team solved the sequentialised
version of this problem within 15 minutes, because their
tool has a powerful library with the necessary GCD lem-
mas, while Rustan Leino (Dafny) struggled with this (se-
quentialised) challenge because of the lack of appropriate
Dafny libraries.

After the competition, Rustan Leino developed a
Dafny solution for the concurrent program, by writing
a program that explicitly encoded all the possible inter-
leavings between the different threads, while using ex-
plicit program counters for each thread.

4 Challenge 3: Dancing Links (90 minutes)

Dancing links is a search technique introduced in 1979 by
Hitotumatu and Noshita [HN79] and later popularised
by Knuth [Knu00]. The technique can be used to effi-
ciently implement a search for all solutions of the exact
cover problem, which in its turn can be used to solve
Tiling, Sudoku, N-Queens, and other related problems.

Suppose x points to a node of a doubly linked list; let
L[x] and R[x] point to the predecessor and successor of
that node. Then the operations

L[R[x]] := L[x];
R[L[x]] := R[x];

remove x from the list. The subsequent operations

L[R[x]] := x;
R[L[x]] := x;

will put x back into the list again. Figure 1 provides a
graphical illustration of this process.

4.1 Verification Task

Implement the data structure with these operations, and
specify and verify that they behave in the way described
above.

Marieke Huisman et al.: VerifyThis 2015 5

Doubly linked list
x

Remove x
L[R[x]] := L[x];
R[L[x]] := R[x];

x

Put x back
L[R[x]] := x;
R[L[x]] := x;

x

Fig. 1. Graphic illustration of dancing links operations (inspired
by Wim Bohm)

4.2 Comments on Solutions

Several participants reported that this had been a diffi-
cult challenge, and in particular it had taken them time
to understand the full details of the intended behaviour.
Ten solutions (Verifast, Why3, AutoProof, KeY, Dafny
(2 teams), mCRL2, F*, KIV and CBMC) to the chal-
lenge were submitted. During the competition the or-
ganisers clarified that the main challenge was in manag-
ing the remove and unremove – several elements can be
removed and unremoved but they must be unremoved
in reverse order (otherwise the references are not main-
tained). Furthermore, the list should either be consid-
ered circular or removal of the first and last element not
allowed.

Rustan Leino (using Dafny) was the only one to ad-
dress this challenge completely within the allocated time.
He reported that he found it much easier to reason about
the list using integers and quantifiers rather than using
recursively defined predicate(s). This observation was
confirmed by the Why3 team after completing a post-
competition solution.

The AutoProof team welcomed the Dancing Links
challenge, as it was ideally suited for demonstrating their
recently developed technique called semantic collabora-
tion [PTFM14]. Semantic collaboration is intended to
improve reasoning about objects collaborating as equals
to maintain global consistency (rather than doing so in
a strictly hierarchical manner).

5 Results, Statistics, and Overall Remarks

We conclude this report with various data points and
summaries of results.

5.1 Awarded Prizes and Statistics

The judges unanimously decided to award prizes as fol-
lows:

– Best team: team Why3 – Jean-Christophe Filliâtre
and Guillaume Melquiond

– Best student team: team KIV – Gidon Ernst and Jörg
Pfähler

– Distinguished user-assistance tool feature – awarded
to two teams:
– Why3 for the lemma library (as demonstrated by

its use in the competition)
– mCRL2 for a rich specification language in an

automated verification tool
– Best challenge submission: Thomas Genet for the

Relaxed Prefix problem, which was used as Chal-
lenge 1 in the competition

– Tool used by most teams: Dafny

The best student team received a 500 Euro cash prize
donated by our sponsors while the best overall team re-
ceived 150 Euros. Smaller prizes were also awarded for
the best problem submission and the distinguished user-
assistance tool feature.

5.2 Statistics per Challenge

– Relaxed Prefix: 11 submissions were received, of
which only the submission by Jean-Christophe Fil-
liâtre and Guillaume Melquiond (Why3) was judged
as correct and complete.

– Parallel GCD: 11 submissions were received, of
which the submission by Bart Jacobs (Verifast) was
judged as correct and most complete. Six of the sub-
mitted solutions were restricted to the sequential ver-
sion of the challenge.

– Dancing Links: 10 submissions were received, of
which only the submission by Rustan Leino (Dafny)
was judged as correct and complete.

5.3 Travel Grants

The competition had funds for a limited number of travel
grants for student participants. A grant covered the in-
curred travel and accommodation costs up to EUR 250
for those coming from Europe and EUR 500 for those
coming from outside Europe. Evaluation criteria were
qualifications (for the applicant’s career level), need (ex-
plained briefly in the application), and diversity (techni-
cal, geographical, etc.). Six travel grants were awarded.

5.4 Post-mortem Sessions

Two concurrent post-mortem sessions were held on the
afternoon of the competition (stretching to the day af-
ter the competition, given the large number of partici-
pants). These sessions were much appreciated, both by
the judges and by the participants. It was very help-
ful for the judges to be able to ask the teams questions
in order to better understand and appraise their sub-
missions. Concurrently, all other participants presented
their solutions to each other. We would recommend such

6 Marieke Huisman et al.: VerifyThis 2015

a post-mortem session for any on-site competition. In
future editions of the competition we intend to extend
this aspect of the event as participants reported the time
used as invaluable, providing lively discussions about the
challenges, gaining knowledge about tools through pre-
senting challenge solutions to each other and exchang-
ing ideas about future tool developments and solution
strategies.

5.5 Soliciting Challenges

After much discussion at the previous competition, on
how to extend the problem pool and tend better to the
needs of the participants, we issued a call for challenges
to extend the problem pool. The call stipulated that

– a problem should contain an informal statement of
the algorithm to be implemented (optionally with
complete or partial pseudo-code) and the require-
ment(s) to be verified

– a problem should be suitable for a 60–90 minute time
slot

– submission of reference solutions is strongly encour-
aged

– problems with an inherent language- or tool-specific
bias should be clearly identified as such

– problems that contain several subproblems or other
means of scaling difficulty are especially welcome

– the organisers reserve the right (but no obligation) to
use the problems in the competition, either as sub-
mitted or with modifications

– submissions from (potential) competition partici-
pants are allowed

We received six suggestions for challenges, and decided
that one was suited for use during the competition. This
challenge was practical, easy to describe to participants,
suitable in duration for the competition and could be
easily adapted to suit different environments. However,
even though we decided not to use all of the submitted
challenges directly1, the call for submissions provided in-
spiration for further challenges as well as insight in what
people in the community consider interesting, challeng-
ing and relevant problems for state-of-the-art verification
tools.

5.6 Session Recording

This year, for the first time, the organisers encouraged
the participants to record their desktop during the com-
petition (on a voluntary basis). The recording would give
insight into the pragmatics of different verification sys-
tems and allow the participants to learn more from the
experience of others deriving a solution. The organis-
ers provided a list with recording software suggestions,

1 primarily due to challenges being too complex for the available
time slots

though so far only a solution for Linux (Freeseer) could
be successfully tested. The main criteria are free avail-
ability, ease of installation, and low CPU load.

In general, participants agreed that recording could
provide useful information, but, as far as we know, only
the KIV team actually made a recording.

5.7 Related Events

VerifyThis 2015 is the 4th event in the VerifyThis com-
petition series. Related events are the Verified Soft-
ware Competition (VSComp, http://vscomp.org) held
online, the Competition on Software Verification (SV-
COMP [Bey15], http://sv-comp.sosy-lab.org) fo-
cusing on evaluating systems in a way that does not
require user interaction2, and the RERS Challenge
([HIM+14], http://www.rers-challenge.org), which
is dedicated to rigorous examination of reactive systems,
using different technologies such as theorem proving,
model checking, program analysis, symbolic execution,
and testing.

VerifyThis is also a collection of verification problems
(and solutions). Its counterpart is VerifyThus (http:
//verifythus.cost-ic0701.org/) – a distribution of
deductive verification tools for Java-like languages, bun-
dled and ready to run in a VM. Both were created with
support from COST Action IC0701.

A workshop on comparative empirical evaluation of
reasoning systems (COMPARE2012 [KBBS12]) was held
at IJCAR 2012 in Manchester. Competitions were one
of the main topics of the workshop.

5.8 Judging Criteria

Limiting the duration of each challenge assists the judg-
ing and comparison of each solution. However, this task
is still quite subjective and hence, difficult. Discussion of
the solution with the judges typically results in a rank-
ing of solutions for each challenge. In future editions of
the competition we envisage that each team would com-
plete a questionnaire for each challenge on submission.
This would assist the judging and would also encourage
teams to reflect on their solutions.

Based on earlier experiences, the criteria that were
used for judging were:

– Correctness: is the formalisation of the properties ad-
equate and fully supported by proofs? In essence, this
is a two-valued criterion, and a correct formalisation
is a must to consider the solution.

– Completeness: are all tasks solved, and are all re-
quired aspects covered? The judges used a rough es-
timate how much of the proof was finished to come
to a complete solution. For example, if a team can
show a full solution developed the next day, this is

2 SV-COMP is associated with TACAS.

http://vscomp.org
http://sv-comp.sosy-lab.org
http://www.rers-challenge.org
http://verifythus.cost-ic0701.org/
http://verifythus.cost-ic0701.org/

Marieke Huisman et al.: VerifyThis 2015 7

used an indication of being relatively close to the full
solution within the time frame of the competition.

– Readability: can the submission be understood easily,
possibly even without a demo? Clearly, this is a more
subjective criteria, but as all the judges participated
in the post-mortem session, and have ample experi-
ence with formal specification, therefore the number
of questions about the formalisation is a good indi-
cation for this.

– Effort and time distribution: what is the relation
between time expended on implementing the pro-
gram vs. specifying properties vs. proving? The post-
mortem session was used to obtain information about
this.

– Automation: how much manual interaction is re-
quired, and for what aspects? Again, the post-
mortem session was used to obtain information about
this.

– Novelty: does a submission apply novel techniques?3

Teams that used novel features are usually eager to
provide this information during the post-mortem ses-
sion.

A novelty for VerifyThis this year was the inclusion of
a judge with a background in software model checking
(the fourth author of this paper). He observed that the
participants could have been more critical, reflecting on
their solutions. To use the tools, often expert knowledge
is necessary, and the tools are not very good at providing
feedback when a proof attempt fails. For future compe-
titions, he felt that the most interesting aspect would
be new insights, leading to further improvements to the
tool. This aspect was also mentioned by some of the com-
petition participants. It will be worthwhile investigating
what novelties have resulted from earlier competitions.

5.9 Post-Competition Discussion

Directly after the competition, before starting the post-
mortem session, a plenary discussion was held to gather
the opinion of the participants about the organisation of
future competitions. The following topics were discussed:

Challenges: The participants agreed that it was interest-
ing and timely to have a concurrency-related chal-
lenge. In general the feeling was that it is good to
have modular challenges, which can be broken down
into smaller subproblems. There was also a sugges-
tion to have challenges in the form: given a verified
program, extend it to...

Tool vs. user: An interesting aspect remains regarding
what we are actually measuring: the tool or the user.
To focus more on measuring the tool, the challenge
descriptions could include an informal description of

3 Here, the judges would primarily like to cite the semantic col-
laboration technique demonstrated by the AutoProof team.

the necessary invariants. However, it was also re-
marked that this might restrict the variety of tools
participating in the competition.
Another possibility, to help focus the competition on
the tools, would be to create mixed teams, where you
use a tool that you do not know in advance (possi-
bly with a tutor). As a result of this discussion, in
the next edition of this competition, we plan to start
the day with a Dafny tutorial, followed by an out-of-
competition challenge, open to anybody interested in
participating.

Timing: The program as it is now, is very dense. A
slightly larger break between the challenges would
be welcome.
Since participants often continue working on their
solutions after the competition, a post-competition
deadline to submit solutions would also be welcomed.
The possibility of providing all challenges to the com-
petitors at the same time was discussed, such that
participants can organise their own time to work on
a challenge. In that case, to avoid two person teams
having an advantage over single person teams, be-
cause they can distribute the work, all teams would
be allowed the use of only one computer.

Reporting: There was much discussion about the possi-
bility of publishing details from these competitions.
There have been several competition report papers,
and there has been a special issue of STTT on the
VerifyThis competition in 2012. New publications
need to provide new insights. One possibility is to
encourage several participants to write a joint pa-
per about one particular challenge, where they com-
pare their different solutions. Another possibility is
to reach an agreement with an editor to publish a
series of competition reports, summarising the main
facts of the competition.
In general, the participants agreed that it is
important to make the (polished) solutions pub-
licly available for others to inspect and com-
pare. The solutions of the best student team
prize winners, the KIV team, are available at
https://swt.informatik.uni-augsburg.de/
swt/projects/verifythis-competition-2015/,
while solutions of the best overall team prize
winners, the Why3 team, are available at
http://toccata.lri.fr/gallery/why3.en.html.
For further solutions to competition challenges we
refer to http://etaps2015.verifythis.org/.

5.10 Final Remarks

The VerifyThis 2015 challenges have offered a substan-
tial degree of complexity and difficulty. A new develop-
ment compared to earlier editions of the competition was
the introduction of a concurrency-related challenge. Fur-
thermore, we are happy to note that this year two teams
participated using bounded verification tools (CBMC

https://swt.informatik.uni-augsburg.de/swt/projects/verifythis-competition-2015/
https://swt.informatik.uni-augsburg.de/swt/projects/verifythis-competition-2015/
http://toccata.lri.fr/gallery/why3.en.html
http://etaps2015.verifythis.org/

8 Marieke Huisman et al.: VerifyThis 2015

and mCRL2) to check functional properties. We hope
such participation contributes to better understanding
of the strengths of different kinds of tools and opens
new avenues for combining them.

Two further insights demonstrated by the solutions
this year were the importance of a good lemma library,
and of a good specification language. The similarity be-
tween the specification language of mCRL2 and of “auto-
active” verification systems was nothing but remarkable.

A new edition of the VerifyThis competition will be
held as part of ETAPS 2016.

Acknowledgements

The organisers would like to thank Wojciech Mostowski
and Radu Grigore for their feedback and support prior to
the competition. The organisers also thank the compe-
tition’s sponsors: Formal Methods Europe, Galois, Inc.,
and Microsoft Research. Their contributions helped us
to support participants with travel grants, and to finance
the various prizes.

References

ABB+14. Wolfgang Ahrendt, Bernhard Beckert, Daniel
Bruns, Richard Bubel, Christoph Gladisch, Sarah
Grebing, Reiner Hähnle, Martin Hentschel, Mihai
Herda, Vladimir Klebanov, Wojciech Mostowski,
Christoph Scheben, Peter H. Schmitt, and Mat-
tias Ulbrich. The KeY platform for verification
and analysis of Java programs. In Dimitra Gian-
nakopoulou and Daniel Kroening, editors, 6th In-
ternational Conference on Verified Software: The-
ories, Tools and Experiments (VSTTE 2014), vol-
ume 8471 of LNCS, pages 55–71. Springer, 2014.

BBD+11. Thorsten Bormer, Marc Brockschmidt, Dino Dis-
tefano, Gidon Ernst, Jean-Christophe Filliâtre,
Radu Grigore, Marieke Huisman, Vladimir Kle-
banov, Claude Marché, Rosemary Monahan, Wo-
jciech Mostowski, Nadia Polikarpova, Christoph
Scheben, Gerhard Schellhorn, Bogdan Tofan, Ju-
lian Tschannen, and Mattias Ulbrich. The
COST IC0701 verification competition 2011. In
Bernhard Beckert, Ferruccio Damiani, and Dil-
ian Gurov, editors, International Conference on
Formal Verification of Object-Oriented Systems
(FoVeOOS 2011), volume 7421 of LNCS, pages
3–21. Springer, 2011.

Bey15. Dirk Beyer. Software verification and verifiable
witnesses - (report on SV-COMP 2015). In Chris-
tel Baier and Cesare Tinelli, editors, 21st Interna-
tional Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS
2015), volume 9035 of LNCS, pages 401–416.
Springer, 2015.

BH14. Stefan Blom and Marieke Huisman. The VerCors
tool for verification of concurrent programs. In
Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun,

editors, 19th International Symposium on Formal
Methods (FM 2014), volume 8442 of LNCS, pages
127–131. Springer, 2014.

CGK+13. Sjoerd Cranen, Jan Friso Groote, Jeroen J. A.
Keiren, Frank P. M. Stappers, Erik P. de Vink,
Wieger Wesselink, and Tim A. C. Willemse. An
overview of the mCRL2 toolset and its recent ad-
vances. In Nir Piterman and Scott A. Smolka, ed-
itors, 19th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS 2013), volume 7795 of LNCS,
pages 199–213. Springer, 2013.

EPS+15. Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn,
Dominik Haneberg, and Wolfgang Reif. KIV:
Overview and VerifyThis competition. Int.
J. Softw. Tools Technol. Transf., 17(6):677–694,
November 2015.

FP13. Jean-Christophe Filliâtre and Andrei Paskevich.
Why3 - where programs meet provers. In Matthias
Felleisen and Philippa Gardner, editors, 22nd
European Symposium on Programming (ESOP
2013), volume 7792 of LNCS, pages 125–128.
Springer, 2013.

FPS12. Jean-Christophe Filliâtre, Andrei Paskevich, and
Aaron Stump. The 2nd Verified Software Com-
petition: Experience report. In Vladimir Kle-
banov, Armin Biere, Bernhard Beckert, and Geoff
Sutcliffe, editors, 1st International Workshop on
Comparative Empirical Evaluation of Reasoning
Systems (COMPARE 2012), volume 873 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

HIM+14. Falk Howar, Malte Isberner, Maik Merten, Bern-
hard Steffen, Dirk Beyer, and Corina S. Păsăre-
anu. Rigorous examination of reactive systems.
Int. J. Softw. Tools Technol. Transf., 16(5):457–
464, October 2014.

HKM12. Marieke Huisman, Vladimir Klebanov, and Rose-
mary Monahan. On the organisation of pro-
gram verification competitions. In Vladimir Kle-
banov, Bernhard Beckert, Armin Biere, and Geoff
Sutcliffe, editors, 1st International Workshop on
Comparative Empirical Evaluation of Reasoning
Systems (COMPARE 2012), volume 873 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

HKM15. Marieke Huisman, Vladimir Klebanov, and Rose-
mary Monahan. Verifythis 2012. Int. J. Softw.
Tools Technol. Transf., 17(6):647–657, November
2015.

HN79. Hirosi Hitotumatu and Kohei Noshita. A tech-
nique for implementing backtrack algorithms and
its application. Inf. Process. Lett., 8(4):174–175,
1979.

KBBS12. Vladimir Klebanov, Bernhard Beckert, Armin
Biere, and Geoff Sutcliffe, editors. Proceedings
of the 1st International Workshop on Compara-
tive Empirical Evaluation of Reasoning Systems
(COMPARE 2012), volume 873 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2012.

KKP+15. Florent Kirchner, Nikolai Kosmatov, Virgile Pre-
vosto, Julien Signoles, and Boris Yakobowski.
Frama-C: A software analysis perspective. For-
mal Asp. Comput., 27(3):573–609, 2015.

Marieke Huisman et al.: VerifyThis 2015 9

KMS+11. Vladimir Klebanov, Peter Müller, Natarajan
Shankar, Gary T. Leavens, Valentin Wüstholz,
Eyad Alkassar, Rob Arthan, Derek Bronish, Rod
Chapman, Ernie Cohen, Mark Hillebrand, Bart
Jacobs, K. Rustan M. Leino, Rosemary Monahan,
Frank Piessens, Nadia Polikarpova, Tom Ridge,
Jan Smans, Stephan Tobies, Thomas Tuerk, Mat-
tias Ulbrich, and Benjamin Weiß. The 1st Ver-
ified Software Competition: Experience report.
In Michael Butler and Wolfram Schulte, editors,
17th International Symposium on Formal Methods
(FM 2011), volume 6664 of LNCS, pages 154–168.
Springer, 2011.

Knu00. Donald E. Knuth. Dancing links. arXiv preprint
cs/0011047, 2000.

KSU11. Naoki Kobayashi, Ryosuke Sato, and Hiroshi
Unno. Predicate abstraction and CEGAR for
higher-order model checking. In Mary W. Hall
and David A. Padua, editors, 32nd ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI 2011), pages
222–233. ACM, 2011.

KT14. Daniel Kroening and Michael Tautschnig. CBMC
- C bounded model checker - (competition contri-
bution). In Erika Ábrahám and Klaus Havelund,
editors, 20th International Conference on Tools
and Algorithms for the Construction and Analysis
of Systems (TACAS 2014), volume 8413 of LNCS,
pages 389–391. Springer, 2014.

Lei10. K. Rustan M. Leino. Dafny: An automatic pro-
gram verifier for functional correctness. In Ed-
mund M. Clarke and Andrei Voronkov, editors,
16th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning
(LPAR 2010), volume 6355 of LNCS, pages 348–
370. Springer, 2010.

PJP15. Willem Penninckx, Bart Jacobs, and Frank
Piessens. Sound, modular and compositional veri-
fication of the input/output behavior of programs.
In Jan Vitek, editor, 24th European Symposium
on Programming (ESOP 2015), volume 9032 of
LNCS, pages 158–182. Springer, 2015.

PTFM14. Nadia Polikarpova, Julian Tschannen, Carlo A.
Furia, and Bertrand Meyer. Flexible invariants
through semantic collaboration. In Cliff B. Jones,
Pekka Pihlajasaari, and Jun Sun, editors, 19th In-
ternational Symposium on Formal Methods (FM
2014), volume 8442 of LNCS, pages 514–530.
Springer, 2014.

SCF+13. Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-
Yves Strub, Karthikeyan Bhargavan, and Jean
Yang. Secure distributed programming with
value-dependent types. J. Funct. Program.,
23(4):402–451, 2013.

Sed08. Sidi Mohamed Sedjelmaci. A parallel extended
GCD algorithm. J. Discrete Algorithms, 6(3):526–
538, 2008.

TFNP15. Julian Tschannen, Carlo A. Furia, Martin Nor-
dio, and Nadia Polikarpova. AutoProof: Auto-
active functional verification of object-oriented
programs. In Christel Baier and Cesare Tinelli,
editors, 21st International Conference on Tools

and Algorithms for the Construction and Analysis
of Systems (TACAS 2015), volume 9035 of LNCS,
pages 566–580. Springer, 2015.

	Introduction
	Challenge 1: Relaxed Prefix (60 minutes)
	Challenge 2: Parallel GCD (60 minutes)
	Challenge 3: Dancing Links (90 minutes)
	Results, Statistics, and Overall Remarks

