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Abstract

Pilot studies and other small clinical trials are often conducted but serve a variety of purposes and there is

little consensus on their design. One paradigm that has been suggested for the design of such studies is

Bayesian decision theory. In this article, we review the literature with the aim of summarizing current

methodological developments in this area. We find that decision-theoretic methods have been applied to

the design of small clinical trials in a number of areas. We divide our discussion of published methods into

those for trials conducted in a single stage, those for multi-stage trials in which decisions are made

through the course of the trial at a number of interim analyses, and those that attempt to design a

series of clinical trials or a drug development programme. In all three cases, a number of methods have

been proposed, depending on the decision maker’s perspective being considered and the details of utility

functions that are used to construct the optimal design.
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1 Introduction

There is little consensus on the way in which pilot studies and other small exploratory clinical trials
should be designed, with a relatively wide range of approaches proposed.1–4 In part, this reflects the
range of objectives for such studies. Pilot studies are usually designed to explore and evaluate the
efficacy and safety of a new/experimental treatment or new combination/regime of treatments,
perhaps to provide some evidence of response in order to justify the financial input required for
larger-scale studies, though they may also address specific additional or alternative research
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questions. Generally, the sample size required in pilot studies is quite small, as they commonly
precede a larger definitive clinical trial. The terminology of such small exploratory clinical studies
reflects the range of objectives, with small trials that are conducted prior to a major definitive study
referred to as ‘pilot studies’, ‘feasibility studies’ or – if the following study is a ‘phase III’ trial –
‘phase II clinical trials’. While a phase II clinical trial can be in some cases relatively large, it usually
has key objectives to decide whether or not and how to conduct the following phase III trial(s). The
different terminology depends sometimes on, often fairly subtle, differences in the aim of the study,
but also on the setting in which the study is being conducted, with different names being used for
trials with essentially the same purpose conducted by pharmaceutical companies and in the public
sector, for example.

The variety in design approaches in pilot studies and other small early phase trials is in contrast to
the setting of confirmatory or phase III clinical trials where almost all trials are designed using a
frequentist paradigm so as to control probabilities of a type I error, corresponding in this setting to
claiming an experimental treatment is better than the control treatment when it is not, and of a type
II error, that is failing to claim that the experimental treatment is better when it is by some specified
magnitude. The type I error rate is usually, although only by convention, set at a (two-sided) level of
0.05 and the type II error rate is conventionally set at 0.10 or 0.20, corresponding to a power of 0.9
or 0.8, respectively.5,6

The frequentist approach with conventionally used error rates for a typical effect size may lead to
the relatively large sample sizes associated with confirmatory studies, so may not be appropriate
when the sample size is smaller. This is the case in pilot studies and early phase trials. Small trials
may also be unavoidable, for example, in the setting of trials in small population groups such as
patients suffering from a rare disease, patient groups where patient recruitment is difficult such as
children and other vulnerable populations or in a specifically targeted subpopulation. In these
settings, then, either the frequentist approach can be applied with error rates relaxed, or some
other method must be used to design the trial.7–10

A number of novel approaches have been proposed for pilot studies and other small clinical trials.
As the sample sizes are small, often with recruitment occurring relatively slowly, sometimes in a
single centre, multi-stage designs with decisions made at one or more interim analyses are often an
attractive option, as are multi-arm trials, widening the range of design choices further. Alternatives
to the frequentist paradigm that have been proposed for the design of such small clinical trials
include the Bayesian approach and the decision-theoretic approach in which, as described in the
next section, the consequences of decisions are explicitly modelled. The latter might seem
particularly appropriate in pilot studies and early phase clinical trials as the outcome from such
trials is often a relatively simple decision that is within the control of the clinical team conducting the
trial, such as the decision whether or not to conduct further clinical research in the area, sometimes
called ‘Go/No-Go’ decisions.

The aim of this article was to review methods for the design of small trials and pilot studies where
the primary aim is to explore and evaluate treatment efficacy based on the Bayesian decision-
theoretic framework. In order to provide as comprehensive as possible a review of the current
literature in this area, we used systematic reviewing methodology to identify relevant published
work in the area. In addition, human pharmacology studies that aim to assess toxicity, to explore
drug metabolism and drug interactions, or to describe the pharmacokinetics and pharmacodynamics
are usually designed as small studies. These studies are sometimes known as ‘phase I’ trials.
Although the sizes of these studies tend to be small, their objectives are not to explore and
evaluate the efficacy of a new/experimental or new combination/regime of treatments. As such,
these studies are excluded from the review of this paper.
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Pilot or feasibility studies may also be used to test practical aspects intended to be used in a later
study such as drug supply, acceptability of randomization or visit schedules and so on. Such studies,
which may closely resemble a larger study conducted in miniature are, however, outside the scope of
this paper.

Following this introduction, the next section of the article gives a very brief overview of the
decision-theoretic approach as it may be applied to clinical trial design. The third, and most
substantial, section of the article then describes the review method used and gives details of
publications found. Papers are classified into a number of groups according to the specific type of
design being considered, the types of utility function proposed and the perspective of the decision-
maker (commercial, regulatory/societal or patient). The aim is to allow the reader to rapidly identify
key references in each particular area. The paper ends with a brief discussion of the scope of the
review, suitability of the decision-theoretic paradigm for pilot study design and suggestion of areas
where further research work might be most appropriate.

2 The decision-theoretic approach to clinical trial design

Decision theory is a statistical technique by which the problem of decision-making under uncertainty
may be formalized. The method enables an optimal decision to be made between a number of
possible actions on the basis of the consequences of each action under all possible scenarios.11–13

In the setting of a clinical trial, we may wish to decide between a number of possible design
options. Prior to the start of the trial, this might entail a choice of the clinical trial sample size.
During the trial at an interim analysis, a decision might be taken as to whether or not to terminate
the trial or to modify the trial conduct in some way. At the end of the trial, this might correspond to
a decision of whether or not to proceed with further trials, or in a multi-arm study, to choose an
experimental treatment for further evaluation.

Denote by Y the vector of responses from n patients in a clinical trial, with Y assumed to follow a
distribution with density function of known form with some unknown parameter(s), h. Having
observed Y¼ (y1, y2, . . . , yn), a decision, to choose one from a set of possible actions, A ¼ {a1,
a2, . . .} is made. Suppose that the consequences associated with each possible action can be
expressed by some loss or gain. As the consequences may well depend on the true unknown state
of nature, the loss or gain will be a function of parameter h. This function is called a loss, gain or
utility function. Therefore, the utility function for action a may be written as Ua(h).

Uncertainty regarding the parameter h may be expressed in terms of a Bayesian prior
distribution, or, following observation of some data, by the corresponding posterior distribution.
The expected utility from taking action a is then the expected value E(Ua(h)), the expectation being
taken over this prior (or posterior) distribution. Comparing expected utility values for different
actions enables the optimal action to be determined.

The utility functions should express the values of the consequences of possible actions from the
perspective of the decision-maker. These could be monetary loss or reward, which is measurable on an
existing scale, or could also express consequences that have no immediately obvious numerical scale of
measurement, such as treatment success (patient experienced a positive response) or treatment
satisfaction. In the latter cases, it can be very difficult to assign the numerical values required to
specify the utility function to the qualitative values, as considered in the discussion section below.

Similarly, the prior distribution should reflect prior belief regarding the parameters of the
distribution of the responses. The source of information for the prior distribution may be
obtained from data from previous similar trials, elicitation of expert opinion or, as a conjugate
prior, for computational convenience.
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Once utility functions have been specified for all possible actions, the optimal trial design can
often be obtained by working in a reverse time order using a method known as ‘dynamic
programming’ or ‘backward induction’. For example, suppose we wish to obtain the optimal
sample size for a single stage trial with a number of possible actions available at the end of the
trial. First, all possible actions at the end of the trial are considered and, for given possible observed
data Y, their corresponding expected posterior utilities are computed and compared to obtain the
optimal action a given Y. Second, since at the planning stage Y is unknown, the expected utility
(assuming after the trial the optimal action is chosen) is obtained from the distribution of Y given n
and h. Finally, because also h is unknown, the expectation of this expected utility is taken over the
prior distribution for h. Thus, overall the expected utility is computed, taking the expectation over
the prior predictive distribution for Y given n. This gives the prior expected utility from a trial of
sample size n if the optimal action is always taken at the end of the trial. This is a function of n alone,
so maximizing this over n gives the optimal sample size, which is thus obtained by finding

argmax
n

Z
y

max
a

Z
UaðhÞ pðhj y, nÞdh

� �
f ð yjnÞdy

� �
ð1Þ

where f(yWn) is the density function for y before sampling and with only prior knowledge of h, that is
the prior predictive distribution of y.14 Note that for discrete responses, the expectation may be the
summation for all possible values of y. This method can be extended to multi-stage trials with
optimal decisions at the end of a given stage obtained by considering the consequences in terms
of decisions taken later in the trial.

Although relatively easily described as aforesaid, the application of decision theory in a clinical
trial setting can present a number of challenges: in specification of appropriate prior distributions
and, perhaps more especially, in specification of utility functions. When considering decisions made
during or prior to the start of a trial, calculations of how the utility functions should incorporate the
impact of data as yet unobserved should also be taken into consideration. The required computation
can also be challenging, particularly in the case of multi-stage trials.15,16

3 Review of decision-theoretic approaches to pilot studies and small clinical
trials

3.1 Literature review search strategy and results

We undertook a systematic search in the electronic database Scopus for research articles published
up to 10 October 2014 to identify work on decision-theoretic methods for the design of pilot
studies and small clinical trials.17 The exact search terms used and number of hits from each of
these terms are shown in Appendix 1. The searches were not limited by subject area. A total of
8751 articles were identified of which 425 were duplicates, leading to a total of 8326 unique
articles. We also identified a further 10 articles via screening of references in relevant articles.
Figure 1 shows the flow diagram of articles identified, excluded and included in this review.
Articles were screened by title, abstract or whole paper for relevance to this review, leading to
final inclusion of 67 articles which are discussed in detail later.14,18–83 The details of the 67 articles
are given in Table 1.

Twenty-seven articles18–44 specifically described methods in pilot or phase II settings. The
others14,45–83 did not describe methods specific to small clinical trials or pilot studies, but would
nevertheless be appropriate in this setting.
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A study of the articles identified indicated that the design problems considered fell into three
broad categories, with different approaches used for each. The simplest type of design considered
was that for clinical trials conducted in a single stage so that decisions considered are those taken at
the end of the trial and those taken regarding trial design prior to the start of the trial essentially
using the method outlined above. The second type of design considered was that for multi-stage
trials, so that decisions taken through the course of the trial, at a number of interim analyses, are
also considered. The third type of design considered was that concerning multi-arm trials or the
simultaneous optimal design of a series of clinical trials. Within each of these three design types,
there was a variety of approaches corresponding to the viewpoint of the decision-maker and the

Figure 1. Flow diagram of articles identified, excluded and included for review.
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complexity of the utility functions considered, ranging from approaches in which a relatively simple
utility function aims to reflect the number of patients successfully treated, to more complex utility
functions based on a detailed elicitation of the costs and consequences of a range of possible
outcomes from the perspective of a particular decision-maker. Table 1 shows the identified
articles classified by types of design, utility function and perspective of the decision-maker. The
literature in each of the areas identified is described in the following subsections. One paper42 fell
outside of the three categories just described, being concerned with the design of enrichment studies.
This paper is also discussed further.

3.2 Single-stage designs

The simplest type of study design considered is the single-stage design in which no analysis of the
data is conducted until the study is completed. For a trial comparing an experimental treatment with
a control (a two-arm trial) or a historical control (a single-arm trial), the statistical design choices are
relatively limited; the main one being the choice of sample size. Authors whose works considered this
type of design include Brunier and Whitehead,19 Chen and Beckman,20 Chen et al.,21 Claxton and
Posnett,52 Claxton and Thompson,53 Eckermann and Willan,54 Gittins and Pezeshk,55–57 Halpern
et al.,58 Hornberger and Eghtesady,60 Kikuchi and Gittins,63,64 Kikuchi et al.,65 Lindley,14

Maroufy et al.,68 Patel and Ankolekar,71 Pezeshk and Gittins,73 Pezeshk et al.,74,75 Staquet and
Sylvester,38 Sylvester,39 Sylvester and Staquet,40 Willan,79 Willan and Eckermann80,81 and Willan
and Pinto.83

At the end of such a trial, a decision is made from a possible set of actions which typically consists
of whether or not to accept the experimental treatment for further study. The utility function may be
written simply as a function of the cost of sampling, which is independent of h, the benefit of treating
patients with the experimental treatment and the cost of making an incorrect decision.14,20,38–40 The
cost of sampling may reflect the costs, interpreted broadly, of recruiting, monitoring or treating
patients in the trial, and can be expressed as a cost per patient, in some cases expressed in monetary
units. If the experimental treatment is accepted for further study and it is indeed effective, then some
expected number of future patients will benefit from it. In considering the cost of making an
incorrect decision (i.e. accepting an ineffective experimental treatment or rejecting an effective
experimental treatment), one may assign an absolute value to each of these consequences, but
this is not as easy as assigning monetary rewards or loss. As the utility function expresses the
consequences of actions in relation to each other, one approach is to order the actions in terms
of seriousness and to assign the less serious consequence some arbitrary utility value, say 1, with the
other more serious consequence assigned some multiple of this. Finally, both the benefit of health
outcome of future patients and the cost of incorrect decisions are rescaled to monetary terms so that
these can be combined in the same utility function. Alternatively, the cost of sampling may be
rescaled to a health outcome. For example, in the health economic ‘Value of Information’
approach, costs and benefits in terms of quality of life are often expressed in Quality-adjusted
Life Years. As the benefit and cost are in relation to each other, some authors have proposed a
model that is a function of the benefit–cost ratio.20 Alternatively, the utility function may encompass
a more realistic setting with health outcome and economic criteria such as the profit from treating
future patients, market share, the costs incurred from conducting the trial and the costs of sampling
explicitly included.19,21,52–58,60,63–65,68,71,73–75,79–81,83

Designs that considered simple utility functions did not generally specify the perspective of the
decision-maker,14,38–40 whereas more realistic utility functions are often explicitly based on a
commercial,21,55–58,65,68,71,73,75,79–81 regulatory54,56,57,73,74,81 or societal perspective.52,53,55,60,63,64,83
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Exceptions are the work of Chen and Beckman20 where the utility function is a simple function
based on a commercial perspective that controls for type I and II error rates under the constraint of
limited sample size, and Brunier and Whitehead19 where the utility function is a more realistic one
that incorporates costs that may be incurred during the trial but there was no specification of the
perspective of the decision-maker.

Possible actions for designs based on a societal perspective include whether to delay the decision-
making and start a new trial, to adopt the experimental treatment (granting licence or
reimbursement of costs of the treatment in general clinical use) and start a new trial to gather
more information or to adopt the experimental treatment without starting a new trial (i.e.
requiring no further information).54,74,81

3.3 Multi-stage designs

A more complex decision-making process arises in trials that are conducted in a number of stages
with interim analyses conducted at the end of each. The majority of clinical trials’ design methods
based on decision theory have considered this setting, usually with the possible actions at the end of
each stage taken to be those corresponding to stopping the trial for futility, stopping with a positive
result or continuing to further stage(s). Specific articles include Banerjee and Tsiatis,18 Berry and
Ho,45 Chen and Willan,46 Chen and Smith,22 Cheng and Berry,47 Cheng and Shen,48,49 Cheng
et al.,50 Chernoff and Petkau,51 Ding et al.,23 Heitjan et al.,59 Jennison and Turnbull,61 Jiang
et al.,62 Jung et al.,25 Lewis and Berry,66 Lewis et al.,67 Mehta and Patel,69 Nixon et al.,27

Orawo and Christen,70 Palmer,29 Rossell et al.,30 Stallard,31,32 Stallard et al.,37 Wang,76 Wathen
and Christen,77 Wathen and Thall,78 Willan and Kowgier,82 Zhao et al.43 and Zhao and
Woodworth.44

A multi-stage trial may be designed based on consideration of a fixed and known maximum
number of patients that can be included in the trial. In rare diseases settings, one may be able to
estimate the number of cases eligible for clinical trials relatively easily, or it can be tied to budget
allocation. In such scenarios, at the final stage when all patients have been recruited, there are two
terminal actions to choose; stop and accept the treatment for further study or stop and reject the
treatment from further study.

Some designs are aimed to optimize the patient allocation for a fixed and known number of future
patients, known as the ‘patient horizon’, N, which may be estimated via the incidence rate for the
disease of concern and an assumption regarding the life of any potential new treatment. The aim is
to choose n, the number of patients that are allocated to the pilot or phase II trial assuming the
remaining N – n are either included in the larger phase III trial or subsequently receive the
recommended treatment.47,50,51,76,82 The expected utility for each terminal action (stop and accept
treatment or stop and reject treatment) is given directly by the utility function specified, whereas the
expected utility from continuing to the next stage depends on the observations and decisions made at
a future stage. Thus, to estimate the expected utility function for each action at each stage, we begin
by considering the terminal actions at the ultimate stage supposing that responses from all N
patients have been observed. Having estimated the maximized utility function, we can go one
step back and estimate the expected utility function for all possible actions prior to the
penultimate stage. Following this manner of iteration, the expected utility function for each
action at the first stage is computed, extending the method outlined above to a full backward
induction approach.

The backward induction computation becomes very intensive as the number of stages increases.
Orawo and Christen,70 and Wathen and Christen77 have considered using an approximation method
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rather than computing the exact value. For designs that do not assume a fixed known patient
horizon, the optimal sequential design can sometimes be computed by forward simulation and
constrained backward induction.23,30,43,78 Heitjan et al. consider a two-stage design,59 reducing
the computational burden considerably, and use direct numerical optimization rather than the
backward induction approach to obtain optimal designs in this case, while Jung et al.25 adopt a
similar approach for two-stage single-arm cancer trials, comparing their approach with the
commonly used design due to Simon.84

Just as we had a range of single stage designs considered above, authors have taken a number of
approaches to the design of multi-stage trials. Some authors have considered simple utility functions
(costs of making incorrect decisions and cost of sampling) in their designs.18,25,29,43,44,47–51,59,61,62,66,67,76–78

Cheng and Shen49 related the utility function parameters to frequentist error rates, while Nixon et al.27

related it to the expected prior probability of success which is sometimes known as assurance, a term
introduced by O’Hagan and Stevens.85 Frequentist error rates are also considered by Jennison and
Turnbull61 who use backward induction to obtain group sequential designs that are optimal in that
the expected sample size is minimized subject to the error rate requirements. Others have considered
more realistic utility functions.22,23,30–32,37,43,45,46,69,70,82 In this latter case, the utility function is usually
constructed from a commercial perspective.

3.4 Enrichment designs

Trippa et al. proposed a decision-theoretic approach to an enrichment design.42 In this two-stage
design, all patients enrolled to stage 1 receive the same experimental treatment. The data from these
patients are then used to optimally identify the population of patients to be used in the main, second,
stage of the trial, in which patients are randomized to receive either the experimental or the control
treatment. In the design proposed by Trippa et al., the utility function encompasses the benefit that
will be received by future patients if the experimental treatment is recommended for further study in
a phase III setting in the population identified, the costs incurred for conducting the phase II and III
trials, and the duration of treatment in stage 1 which influences the population of patients for whom
treatment is successful that will be used in the second stage.

Although represented by a single paper in our review, the area of enrichment designs is one of
considerable recent statistical interest (see, for example, Graf et al.,86 Simon and Simon87 and Wang
et al.88), suggesting that this is an area in which new work on decision-theoretic approaches might
be anticipated.

3.5 Designs for multi-arm trials, programmes of studies or a series of trials

Some articles extend the multi-stage designs for single-arm trials or two-arm comparative trials to
seek optimal multi-arm designs. Such a problem is considered by Chen and Beckman,20 Lai et al.,26

Palmer,29 Patel and Ankolekar,71 Patel et al.,72 Stallard et al.35 and Thall et al.41 This introduces,
in addition to possible actions corresponding to stopping or continuing the trial, the option of
dropping one or more treatment arms at an interim analysis, so that the decision process can
become increasingly complex.

In multi-arm trials, J doses of the experimental treatment or J different experimental treatments
may be tested against the standard treatment or placebo. At each interim analysis, a decision is made
to drop an inferior dose(s) or treatment(s), and to continue recruitment to the remaining dose(s) or
treatment(s). At the final stage, a decision is made to either recommend the superior dose or
experimental treatment for further study in a phase III trial setting, or to reject it from further
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study. Note that this type of study is different from dose-finding trials. The J doses are assumed to
have been recommended from dose-finding trials.

In the designs considered earlier, patients are generally considered in groups, with decisions made
at interim analyses once the data from each group of patients has been observed. If patients are
considered one at a time, the problem becomes one of optimally allocating treatments to each
patient. Such an approach is considered in a two-arm study by, for example, Jiang et al.62 This
problem is closely related to the multi-arm bandit problem. In some settings, the different treatments
being compared in a multi-arm design may be different doses of the same drug. In this case, a
parametric dose–response model may be assumed. These two settings are considered briefly in the
Discussion section.

The objective of the designs considered by Patel and Ankolekar71 and Patel et al.72 is to maximize
the expected profit from a portfolio of treatments while incurring the costs of running the trials
within the given budget. An optimal size is obtained for each treatment (each trial) and the trials
may run concurrently.

Some articles use decision theory methods to design not a single study but a series of studies,
which may themselves employ single stage or multi-stage designs. The problem of decision-making
at the end of one trial in a series of potential trials is rather like that at an interim analysis in a multi-
stage trial, so that the methods often build on those described above. In this setting, actions
corresponding to moving on from one trial to another need to be considered. Articles considering
designs for this setting include Chen and Beckman,20 Hee and Stallard,24 Pallay,28 Stallard33,34 and
Stallard and Thall.36 The trials, usually with one experimental treatment per trial (either a single-arm
design or two-arm comparison with a control), run sequentially, so that a decision made in one trial
can affect possible future trials. In a series of single stage trials, suppose n is the sample size of a trial
and upon observing all the responses a decision is made either to accept the experimental treatment
for further study or to reject it from further study and start a new trial with a different treatment. In
a series of multi-stage trials, at each interim stage, a decision is made whether to continue
recruitment to the current trial or to terminate the trial and recommend the experimental
treatment for further study or to initiate a new trial with a different experimental treatment.
Some designs may also have a possibility of terminating the current trial and abandoning the
whole development plan.24

The full backward induction approach can be very challenging in this case, so authors have
generally either considered small sample sizes,36 or sought simpler algorithms or asymptotic
results to give approximately optimal designs.47,50

The expected utility for a series of sequential trials may also be computed via a backward
induction algorithm similar to that described above. For a series of multi-stage trials, the
backward induction is used within each trial as well as for the series of sequential trials. Almost
all assumed a commercial perspective with realistic utility functions.24,28,33,36 Both Chen and
Beckman20 and Stallard,34 on the other hand, assumed a commercial perspective with simple
utility functions.

4 Discussion

The aim of this article was to review the literature on methods for pilot studies and small clinical
trials that are based on the use of Bayesian decision theory. Methods have been published for single-
stage and multi-stage clinical trials as well as for multi-arm trials or series of trials, with utility
functions based on a number of different decision-makers’ perspectives. Most methods have
focussed on a decision regarding the sample size of the trial, though in general other features of
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the design could be chosen in a similar way. Specific examples that have been considered include
dropping of arms in a multi-arm trial and selection of the population in the enrichment design.

It is inevitable that when writing an article such as this, decisions must be made regarding the
scope of the review. Within the limit of Bayesian decision-theoretic methods, our intention has
been to keep the scope fairly wide, including discussion of methods for any clinical trial design
that might be appropriate for a small trial or pilot study with an efficacy endpoint. One
exclusion has been methods for phase I or dose-finding studies, where the main concern is
usually a safety or toxicity endpoint. Although Bayesian and decision-theoretic methods are
relatively common in this setting, the different endpoint, use of sequential designs with very
small groups, often making decisions after each subject, and incorporation of dose–response
information (so that data from one arm can lead to inference regarding other arms) mean
that the methods proposed are rather different to those we have considered, and are less
suited to other small trials. Readers interested in this area are directed to the work by
Cheung89 and Simes.90 One of the few published applications of the decision-theoretic
methodology is in the phase I oncology setting.91 Our choice of search terms also excluded
literature on the multi-arm bandit problem, identifying one paper76 applying this methodology
specifically to clinical trial design with the intention of optimally allocating patients one at a time
to treatments in a multi-arm study. There is a relatively large body of literature on this problem
in applied probability journals which, although considered from a more generally viewpoint,
might be relevant to clinical trials of this type.92–94

A challenge, in any Bayesian methodology, is the specification of a prior distribution. Most of the
papers identified in the review used conjugate prior distributions to facilitate mathematical
derivation.14,22–24,26–28,30–37,41–51,54–58,60,62–70,73–83 In most cases, this involved using a beta prior
distribution for a Bernoulli distribution, or in some cases taking a two-point prior corresponding
to an experimental treatment that is either effective or ineffective.18,20,21,25,29,38–40,52,53,59,61,72 In some
cases, the prior distribution may be for a vector of unknown parameters. Some examples are normal
distribution with both unknown mean and variance57,63,65 or a time-to-event endpoint where the
hazard function is modelled with a three-parameter generalized gamma and the unknown priors
follow a gamma and inverse gamma distributions.78 Authors whose works consider more than one
endpoint, for example, Bernoulli efficacy and Bernoulli toxicity, assume a Dirichlet
distribution,22,37,75 or for time-to-event and Bernoulli toxicity endpoints where the unknown
parameters follow a bivariate gamma (regression) distribution41 or gamma and beta
distributions.26 Some papers used MCMC methods,43,68 and one paper was based on a non-
parametric approach.43 When priors were specified, they were usually informative, sometimes
with a number of alternative priors used and results compared. Although there is a considerable
literature on elicitation of Bayesian prior distributions (see, for example, Chaloner et al.,95 Kadane
and Wolfson,96 O’Hagan,97 and case studies by Blanck et al.,98 and Kinnersley and Day99), only
two articles identified in our review described the use of formal methods for prior elicitation
methods.42,52

As described above, one major challenge in the development and application of decision-theoretic
methods in clinical trials is that of constructing utility functions that accurately reflect the
consequences of possible actions. It is clear from the articles discussed above that approaches to
this challenge have varied. Some researchers have focussed on monetary costs and rewards, whilst
others have compared these with improvement or deterioration in health states using approaches
from health economics. The utilities should reflect the preferences of consequences from the point of
view of the decision-maker. This can be particularly challenging when more than one individual or
group will make a decision based on the results of a clinical trial, or be otherwise affected by the
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results, or if the decision-maker and the trialist have different viewpoints. For example, decision-
making by a societal decision-maker such as National Institute for Health and Care Excellence
(NICE) in the UK may primarily be based on cost-effectiveness, whereas decision-making by a
pharmaceutical company may be based more on whether or not the current information is
sufficient to apply for licensing for the experimental treatment. In an attempt to reconcile this
challenge, Willan and Eckermann81 proposed a design that combined both public health service
and commercial perspectives where the utility function is made up of two thresholds, namely, a
maximum price of the experimental treatment acceptable to the public health service for
reimbursement and a minimum price to the pharmaceutical company that does not result in a
loss of investment.

More general methods for construction of utility values based on direct consideration of
consequences have been based on prioritizing preference, for example, using methods first
proposed by Ramsey100 or methods discussed by Lindley101 or Emrich and Sedransk.102

Although a variety of approaches have been taken, most researchers proposing single-stage
designs have based utility functions on a patient or societal perspective, whereas commercial
perspectives have been more common in development of multi-stage designs. In the description
of the method aforesaid, we have taken the utility function to depend on the unknown parameters
alone, as proposed by Lindley14 and Raiffa and Schlaifer.12 Most authors proposing simple utility
functions have followed this approach. Some authors have proposed more complex utility
functions in which the utility depends also on the observed trial data, for example, with a gain
if a trial indicates a significant treatment effect. In spite of the numerous approaches proposed, it
seems likely that it is this difficulty with specification of an appropriate utility function, together
with a lack of familiarity, both with Bayesian methods in general and with decision-theoretic
methods in particular, that is responsible for the very limited use of decision-theoretic methods
in practice.

In spite of the challenges, we consider the Bayesian decision-theoretic approach to be appropriate
for the design of pilot studies and early phase trials given the clear role of these trials is to
inform decisions regarding further future clinical research. However such trials are designed,
these decisions will be made and the decision-theoretic approach formalizes this by considering
the decisions and their consequences explicitly. Even when trials are designed based on other
approaches, we believe that the decision-theoretic methodology is a useful tool for trialists and
statisticians designing trials, enabling the properties of trial designs obtained under one paradigm
to be evaluated based on another. This is, perhaps, particularly important in small trials when
compromise is inevitable, as it leads to a careful consideration of the purpose of the trial and its
required properties, thus ensuring that it is fit for purpose. One thing that we believe could increase
the use of decision-theoretic designs is a greater familiarity and improved understanding through
retrospective evaluation of such approaches.

This review has identified many decision-theoretic approaches. In any real application, it is
important to consider the purpose of the trial and ensure that this is reflected in the formulation
of the decision problem and utility function so that the trial design proposed is appropriate to match
this purpose.
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Appendix 1. Terms used in Scopus search with number of hits.a

Search terms Number of hits

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘decision theor*’’) ) AND

DOCTYPE(ar OR cp)

262

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(sequential) ) AND

DOCTYPE(ar) AND (PUBYEAR> 2004)

1189

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(sequential) ) AND

DOCTYPE(ar) AND (PUBYEAR< 2005)

1010

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(sequential) ) AND

DOCTYPE(cp)

336

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘decision mak*’’) ) AND

DOCTYPE(ar) AND (PUBYEAR> 2008)

1705

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘decision mak*’’) ) AND

DOCTYPE(ar) AND ( LIMIT-TO(PUBYEAR,2008) OR LIMIT-TO(PUBYEAR,2007) OR

LIMIT-TO(PUBYEAR,2006) OR LIMIT-TO(PUBYEAR,2005) )

901

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘decision mak*’’) ) AND

DOCTYPE(ar) AND (PUBYEAR< 2005)

1446

1130
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Appendix 1. Continued

Search terms Number of hits

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘decision mak*’’) ) AND

DOCTYPE(cp)

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(bayes* PRE/5 decision))

AND DOCTYPE(ar OR cp)

70

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘optimal* design’’) ) AND

DOCTYPE(ar OR cp)

222

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘optimal* decision’’) )

AND DOCTYPE(ar OR cp)

16

(TITLE-ABS-KEY(‘‘small trial’’) OR TITLE-ABS-KEY(‘‘phase II’’) OR TITLE-ABS-KEY(pilot)

OR TITLE-ABS-KEY(‘‘serie* of trial’’) AND TITLE-ABS-KEY(‘‘optimal* sample siz*’’) )

AND DOCTYPE(ar OR cp)

10

TITLE-ABS-KEY(‘‘trial design’’) AND TITLE-ABS-KEY(‘‘decision theor*’’) AND

DOCTYPE(ar OR cp)

25

TITLE-ABS-KEY(‘‘trial design’’) AND TITLE-ABS-KEY(bayes* PRE/5 decision) AND

DOCTYPE(ar OR cp)

32

TITLE-ABS-KEY(‘‘trial design’’) AND TITLE-ABS-KEY(‘‘optimal* design’’) AND

DOCTYPE(ar or cp)

38

TITLE-ABS-KEY(‘‘trial design’’) AND TITLE-ABS-KEY(‘‘optimal* decision’’) AND

DOCTYPE(ar or cp)

4

TITLE-ABS-KEY(‘‘trial design’’) AND TITLE-ABS-KEY(‘‘optimal* sample size’’) AND

DOCTYPE(ar or cp)

9

TITLE-ABS-KEY(‘‘trial design’’) AND TITLE-ABS-KEY(sequential* PRE/5 decision*) AND

DOCTYPE(ar or cp)

3

(TITLE-ABS-KEY(‘‘clinical trial*’’) AND TITLE-ABS-KEY(‘‘decision theor*’’)) AND

DOCTYPE(ar or cp)

278

(TITLE-ABS-KEY(‘‘clinical trial*’’) AND TITLE-ABS-KEY(‘‘optim* sample size*’’)) AND

DOCTYPE(ar or cp)

65

aSome search terms led to more than 2000 hits and to circumvent Scopus citation export restriction, these terms were split by

publication year.

1038 Statistical Methods in Medical Research 25(3)


