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 22 

Abstract: 23 

Eukaryotic nuclei are essential organelles, storing the majority of the cellular DNA, comprising the 24 

site of most DNA and RNA synthesis, controlling gene expression and therefore regulating cellular 25 

function. The majority of mammalian cells retain their nucleus throughout their lifetime, however, in 26 

three mammalian tissues the nucleus is entirely removed and its removal is essential for cell 27 

function. Lens fibre cells, erythroblasts and epidermal keratinocytes all lose their nucleus in the 28 

terminal differentiation pathways of these cell types. However, relatively little is known about the 29 

pathways that lead to complete nuclear removal and about how these pathways are regulated. In 30 

this review, we aim to discuss the current understanding of nuclear removal mechanisms in these 31 

three cell types and expand upon how recent studies into nuclear degradation in keratinocytes, an 32 

easily accessible experimental model, could contribute to a wider understanding of these molecular 33 

mechanisms in both health and pathology. 34 

  35 



 3 

Main text: 36 

Nuclei are the major membrane-bound organelles of eukaryotic cells and are essential for cellular 37 

function, storing the cellular DNA, acting as the main sites of DNA and RNA synthesis, regulating 38 

gene expression and therefore cellular function.1 However, in some mammalian cell types, 39 

programmed removal of the entire nuclear structure is essential for cellular function: lens fibre cells 40 

remove the nucleus and other organelles to produce the transparent lens structure, erythroblasts 41 

extrude the nucleus to form erythrocytes which can fit through capillary trees and in the skin 42 

keratinocytes terminally differentiate into enucleate cells devoid of all intracellular organelles to 43 

form the tough cornified layer, an essential component of the epidermal water barrier.2–5 44 

Yeast cells and some mammalian cells are known to undergo partial removal of nuclear material, by 45 

targeted autophagy of the nucleus or ‘nucleophagy’; micronuclei detach from the nucleus and fuse 46 

with LC3-positive autophagosomes, or autophagosomes can form directly at the nuclear envelope.6,7 47 

Lens fibre cells, erythroblasts and keratinocytes in mammals undergo programmed removal of their 48 

entire nucleus in the eye, bone marrow and epidermis respectively (Figure 1). The mammalian 49 

nucleophagic mechanisms have until recently been relatively unclear and whether these processes 50 

are involved, perhaps with several other mechanisms, for complete nuclear loss remains to be 51 

characterised.8 These three cell types are the only cells in mammalian tissues known to entirely 52 

remove their nucleus under normal physiological conditions, yet, little is known about nuclear 53 

removal in these cell types, the regulation of these pathways and whether they share common 54 

features. In this review, we aim to discuss what is known about nuclear removal in the eye, bone 55 

marrow and skin and consider areas which await definition. 56 

Lens fibre cell nuclear removal 57 

In the eye, lens formation requires the differentiation of lens fibre cells from epithelial cells on the 58 

outside of the lens with a complete complement of intracellular organelles into cells in the middle of 59 

the lens that are transparent, devoid of intracellular organelles and mainly filled with proteins 60 
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known as ‘crystallins’.3 The process seems to vary between different eukaryotes but involves 61 

rounding of the nucleus, formation of a smaller pyknotic nucleus before DNA degradation and 62 

nuclear breakdown, ‘karyolysis’ with release of DNA into the cytoplasm.3,9,10 63 

Together with these architectural changes of the nucleus, indentations in the nuclear shape and 64 

irregularities in DNA staining have also been observed.11 The distribution of sub-nuclear structures 65 

including nucleoli and Cajal bodies alters, the nuclear lamina is degraded and karyolysis can be 66 

observed due to the presence of DNA in the cytoplasm.3,12,13 Costello et al. observed that close to 67 

indentations in nuclear structures in the chick embryo were complex macromolecular aggregates 68 

including membranous structures.11 They termed these structures ‘excisosomes’ which appear to be 69 

important for degradation of the nuclear envelope, and have reported preliminary results that they 70 

are also present in developing primate lenses.11,14 71 

An important stage in the process of nuclear removal is DNA degradation. This step occurs in the 72 

nucleus of developing lens fibre cells, as illustrated by the presence of TUNEL staining, which 73 

recognises free 3’-OH ends of DNA.12,13 Expression of the DNA degrading enzyme, DNaseIIβ is 74 

upregulated in mouse lens fibre cell differentiation and mice deficient for DNaseIIβ develop 75 

cataracts and have DNA present in the mature lens, indicative of incomplete nuclear removal.13,15,16 76 

Another DNA degrading enzyme may also be required for this process as in DNaseIIβ deficient 77 

mouse lenses, fragmentation and clumping of DNA is still observed, suggesting some DNA 78 

reorganisation and degradation may be occurring.15 79 

DNaseIIβ has been localised to lysosomes closely associated with the nucleus and suggested to be 80 

delivered to nuclear material by fusion of lysosomes with the nucleus.13,15 However, it has been 81 

suggested that the autophagy and apoptosis pathways of eukaryotic cells are not co-opted to 82 

perform nuclear removal. Nuclear removal was not affected by knockout of the apoptotic caspase-3, 83 

caspase-6 or caspase-7 enzymes, or a double knockout of caspase-3 and caspase-6.17 No 84 

autophagosomes were observed close to the degrading nucleus in chick lenses and ATG5 has also 85 
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been shown to be dispensable for nuclear removal.11,18 However, ATG5 independent autophagy 86 

pathways have been reported and although lysosomes were also not observed close to the nucleus 87 

in the chick lenses cells, this has been reported in mouse lenses.11,19,20 The ubiquitin proteasome 88 

pathway has also been identified in the nucleus of developing lens cells where it may account for 89 

degradation of the nucleoplasm.21 90 

The variety of proteins identified as important for nuclear removal in the lens may indicate the 91 

variety of pathways required to regulate a process that should only be activated in this specific 92 

differentiation process. Regulation of lens nuclear removal has been shown to require both the 93 

suppression of mTORC1 signalling to induce the expression of autophagy related proteins such as 94 

ULK1 and LC3 and the activation of CDK1; without CDK1 signalling phosphorylation of nuclear lamina 95 

proteins lamin A/C was decreased and nuclear degradation was affected.20,22 Additionally, there are 96 

some clues from defects in transcriptional regulators, such as GATA-3, HSF4 and BRG1, with defects 97 

in these regulators leading to defective lens nuclear removal and defects such as cataracts.23–25 98 

However, other components of this regulatory pathway and how this process is initiated is currently 99 

unclear and may also involve calcium signalling, as the cytoplasmic calcium ion concentration 100 

increases in lens fibre cell differentiation.20,22,26 101 

Erythroblast nuclear removal 102 

In the bone marrow, erythropoiesis involves the differentiation of hematopoietic stem cells through 103 

several erythroid progenitor cells to mature erythrocytes.27 Prior to the formation of mature 104 

erythrocytes, erythroblasts extrude their nuclei through a protrusion of plasma membrane which is 105 

pinched off, forming an enucleate reticulocyte and a ‘pyrenocyte’, containing the condensed nucleus 106 

surrounded by a thin layer of cytoplasm.2 The reticulocyte forms the mature erythrocyte and the 107 

pyrenocyte is engulfed by macrophages of the bone marrow and degraded by fusion with 108 

lysosomes.28,29 109 
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Erythrocyte enucleation occurs throughout mammalian life span at a rate of approximately 2.5 110 

million times per second, however relatively little is known about how this process occurs and is 111 

regulated.30 In the space of ten minutes, chromosomes inside the nucleus condense, with loss of 112 

discernible nucleoli structures and the nucleus decreases in size and becomes rounder.31–33 DNA 113 

condensation through histone deacetylation by HDAC2 has been implicated in enucleation, and 114 

nuclear condensation has been suggested to occur through the leakage of DNA into the cytoplasm, 115 

through caspase-3 dependent nuclear openings, and through E2F-dependent transcriptional 116 

regulation of Citron Rho-interacting 60 kinase.34–37 The condensed nucleus is then expelled from the 117 

erythrocyte, through the activity of an actin rich structure known as the ‘enucleosome’ behind the 118 

nucleus.38  The mechanism for the final abscission of the pyrenocyte involves intracellular vesicle 119 

fusion and potentially formation of a cleavage actomyosin ring.2,39 120 

DNA degradation is also required in erythropoiesis, however, as nuclear breakdown occurs in the 121 

macrophages, after engulfment of the pyrenocyte, DNaseIIα expression is essential in macrophages, 122 

not in the enucleating erythroblasts.28 123 

Deficiency of caspase-3, an apoptotic enzyme, in mice did not lead to erythropoietic effects and pan 124 

caspase inhibitors did not affect enucleation.28 Additionally, the autophagy protein ATG5 was not 125 

required for nuclear removal.18 Suggesting that mechanisms of extrusion and nuclear breakdown are 126 

not linked to the cellular processes of apoptosis or autophagy. However, caspase-3 is required for 127 

transient nuclear openings that occur prior to nuclear extrusion and ATG5-independent autophagy 128 

pathways have been reported in mammalian cells.19,34 This may indicate the complexity of the 129 

mechanisms controlling this pathway, and several mechanisms have been proposed for the scission 130 

of the pyrenocyte.2,39 Indeed the regulation of these pathways and more precisely the initial 131 

mechanism that triggers nuclear removal remains unclear, although calcium signalling has been 132 

implicated; uptake of extracellular calcium causes a burst of increased intracellular calcium 133 

concentration 10 min prior to enucleation, which is required for efficient enucleation.40 134 
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Epidermal keratinocyte nuclear removal 135 

In the epidermis, keratinocytes terminally differentiate throughout life from proliferating 136 

keratinocytes in the basal layer into spinous, granular and then cornified layer keratinocytes, or 137 

corneocytes, in the uppermost layer.4 In the process of differentiation from granular keratinocytes 138 

into corneocytes, granular cells remove all their organelles, including the nucleus, allowing them to 139 

contain a high proportion of keratin and form a rigid cell layer that is essential for formation of the 140 

epidermal water barrier.4 141 

The nucleus is removed relatively rapidly from the uppermost granular cell layer, taking at most six 142 

hours.4,41 However, although this process occurs throughout the epidermis, throughout an 143 

organism’s lifetime, the mechanism by which granular keratinocytes remove their nucleus is as yet 144 

incompletely understood. 145 

Before removal the nucleus undergoes significant morphological changes: between the basal layer 146 

and the granular layers the keratinocyte nucleus decreases in volume, becomes more elongated, 147 

rotates to become more aligned to the basement membrane and develops indentations in its 148 

structure.42,43 The morphology and organisation of sub-nuclear structures also alters; decreased 149 

numbers of larger nucleoli move closer to the centre of the nucleus and the arrangement of 150 

heterochromatic structures also changes.42 However, architecture modifications beyond the 151 

granular layer have not been characterised in these studies, and indeed, transitional stages of the 152 

nuclear breakdown have yet to be characterised, perhaps due to the rapid nature of the 153 

breakdown.4 154 

Several mechanisms have been shown to be required for keratinocyte nuclear removal, including 155 

expression of DNA-degrading enzymes, targeted degradation of nuclear lamina proteins and 156 

degradation of parts of the nucleus through nucleophagy and, accordingly different regulatory 157 

pathways have been proposed.43–46 158 
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Without the expression of DNA degrading enzymes, principally DNase1L2 and the primarily 159 

lysosomal DNAse, DNase2, nuclei are retained in the cornified layer, a process known as 160 

parakeratosis.44 However, unlike in lens fibre cells, the lack of TUNEL staining suggests free 3’-OH 161 

ends of DNA are not present in this degradation, which may indicate differences in the DNA 162 

degradation mechanisms between keratinocytes and lens fibre cells.12,43 In addition to DNase1L2 and 163 

DNase2 a further DNA degrading enzyme may also be required; retained nuclei of DNase1L2 and 164 

DNase2 double knockout mice were TUNEL-positive, indicating some DNA degradation is 165 

occurring.44,47 This may be mediated by TREX2, an exonuclease upregulated during keratinocyte 166 

terminal differentiation, whose expression has been reported to increase in psoriatic lesion and to 167 

be essential for nuclear degradation in lingual keratinocytes.47,48 In mouse cells it was recently shown 168 

how lack of DNase2 not only would lead to nuclear material intracellular accumulation but also 169 

deregulation of the autophagy degrading machinery. This further confirms that signalling pathways 170 

deriving from the nucleus can either sense DNA damage or DNA re-arrangement and trigger 171 

autophagy.49 172 

How the DNA is accessed by these enzymes is not yet clear. The DNases would require delivery to 173 

the nucleus, and indeed filaggrin fragments have been reported in the nucleus, indicating a 174 

mechanism of protein transport into the nucleus which may not normally occur.46 Additionally, 175 

nuclear lamina degradation has been suggested to occur prior to DNase-dependent degradation; in 176 

DNase1L2 and DNase2 knockout mice lamin A/C degradation occurs without complete nuclear 177 

removal.44 178 

Lamins are intermediate filaments, organised into the nuclear lamina beneath the nuclear envelope, 179 

important for nuclear structure and organisation of nucleus. Although loss of lamins B1 and B2, does 180 

not affect skin development, degradation of lamin A/C is required for nuclear removal.45,50 AKT1 181 

dependent phosphorylation of lamin A/C was reduced in terminally differentiating AKT1 deficient 182 
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keratinocytes, with decreased lamin degradation and retention of nuclear material in the cornified 183 

layers, indicating targeted breakdown of the nuclear lamina is required for nuclear removal.45 184 

The rest of the nucleoplasm and the nuclear envelope also requires degradation and removal of 185 

these structures and parts of DNA has been hypothesized to be, at least in part, via nuclear targeted 186 

autophagy.43 However, whether canonical autophagy is important for keratinocyte nuclear removal 187 

is unclear; ATG5 and ATG7 are dispensable for epidermal nuclear removal.51,52 However, ATG5/ATG7 188 

independent autophagy pathways have been reported in mammalian cells and may be important in 189 

keratinocyte nucleophagy.19 Additionally, expression of some autophagy proteins is upregulated in 190 

keratinocyte differentiation and loss of autophagy proteins WIPI1 or ULK1 prevents nuclear 191 

removal.43 Few autophagy markers have been shown to have a nuclear localization. An elegant study 192 

has reported how nuclear LC3, which is mainly in the LC3-II form during starvation, is relocated into 193 

the cytoplasm,53 and more recently nuclear LC3-II and phosphorylated Ulk1 were shown to interact 194 

with γ-H2AX, Rad51 or PARP-1, involved in maintenance of genomic stability.54 Likewise p62 has 195 

been shown to regulate chromatin ubiquitination during DNA damage response.55 In differentiating 196 

keratinocytes, LC3 co-localises close to the nucleus with a histone binding protein, HP1α, suggesting 197 

autophagosomal breakdown of nuclear contents.43 Interestingly, in differentiating keratinocytes LC3 198 

can also interact with lamin B1, which accumulates in proximity of the perinuclear region where 199 

LC3/p62 double-positive aggregates where identified, suggesting nuclear targeted autophagy may 200 

also be important for nuclear lamina breakdown.43  201 

However, this process has only been documenting early stages of nuclear removal and there may be 202 

other mechanisms essential for complete degradation of the nucleus.8 203 

In nuclear envelopathies, diseases with defects in lamin genes, and mice with mutations in the gene 204 

encoding lamin A/C partial degradation of the nucleus occurs.56 Vesicular structures were observed 205 

perinuclearly, and in mice with a lamin A/C mutation these structures were identified as perinuclear 206 
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autophagosomes and lysosomes and contained nuclear material, indicating alterations to the 207 

structure of the nuclear lamina is required for nuclear degradation.56 208 

Similarly, to erythroblast and lens fibre cell nuclear removal, the apoptotic machinery is not 209 

implicated in keratinocyte nuclear removal.17,28 Caspase-3 is not activated upon differentiation and 210 

the protein iASPP prevents activation of apoptotic pathways in differentiating keratinocytes.43,57 211 

Again, how this programmed removal of the nucleus is activated and regulated is incomplete. AKT1 212 

and mTORC1 are required for regulation of nuclear removal and are both involved in growth, 213 

survival and differentiation signalling pathways, however, not much is known about how these 214 

proteins are activated and controlled in the specific case of nuclear removal.43,45,58 Calcium has again 215 

been postulated as a possible regulating factor, although its role in nuclear removal has not been 216 

studied.4 217 

Mammalian nuclear removal – Commonalities and differences 218 

Erythroblasts, lens fibre cells and keratinocytes all undergo rapid nuclear removal as part of their 219 

highly regulated terminal differentiation programs. All three processes involve condensation of 220 

nuclear DNA, reductions in nuclear volume, changes to nuclear morphology and requirement of DNA 221 

degrading enzymes (Table 1). However, current knowledge suggests they have evolved distinct 222 

processes for complete removal of the nucleus, the key processes understood to be important in the 223 

nuclear removal of these three tissues are summarised in Table 1. Erythroblasts expel a condensed 224 

nucleus from the cell, whereas, in lens fibre cells and keratinocytes the nucleus is broken down 225 

whilst still contained within the differentiating cell.2–4 226 

In both lens fibre cells and keratinocytes, the appearance of nuclear indentations increases with 227 

differentiation and macromolecular and membrane bound aggregates closely associated with the 228 

nuclear membrane are reported in these indentations.11,14,20,43 Although autophagy is not activated 229 

in a ‘classical’ manner in these cells, targeted autophagy of the nucleus, ‘nucleophagy’, may occur.43 230 
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In keratinocytes lysosomal and autophagosomal proteins localised close to the nuclear membrane, 231 

co-staining with DNA binding proteins and vesicles of lysosomal appearance were visualised close to 232 

the nucleus in murine lens fibre cells. However, macromolecular aggregates termed the excisosome 233 

have also been observed at this location without vesicles of lysosomal appearance in chick and 234 

preliminary experiments in primate lenses.11,14,20,43 Whether the excisosome and the autophagic 235 

bodies seen in proximity to the nucleus in terminally differentiating keratinocytes are analogous or 236 

even identical structures is open to debate, however the removal of portions of nuclear materials 237 

concomitant with lamin degradation appear to be common between these two tissues. 238 

The DNA degrading enzymes required for DNA breakdown do also differ. DNaseIIβ is necessary for 239 

lens fibre cell nuclear degradation, DNase1L2 and DNase2 are required for keratinocyte nuclear 240 

breakdown and DNaseIIα is required for pyrenocyte degradation by macrophages.13,15,44 How DNases 241 

access the nucleus from lysosomes in lens fibre cells and keratinocytes is not yet clear, nucleus-242 

lysosome fusion has been suggested, although this process has not be observed and DNA staining is 243 

not clearly visible in the lysosomal structures.13,16,43 244 

Implications and outlook – Piecing together the nuclear degradation process  245 

How entire nuclei are removed from mammalian cells has been a long-standing question, and we are 246 

beginning to characterise the processes that regulate controlled nuclear removal. There appear to 247 

be several varied mechanisms that regulate these events, intracellularly in lens fibre cells and 248 

keratinocytes and by extrusion in erythroblasts (Table 1).2–4 There may also be additional 249 

mechanisms for the removal of other cellular organelles in the differentiation of these cell types. In 250 

keratinocytes, increased numbers of lysosomes concomitant with the removal of organelles such as 251 

mitochondria and the Golgi and the requirement for autophagy in keratinocyte differentiation 252 

suggests autophagy-dependent removal.41,59,4,43 Nucleophagy in keratinocytes could be linked to this 253 

‘macro-autophagy’ of other organelles, but this remains to be established.43 However, in lens fibre 254 

cells degradation of the nucleus can be inhibited without affecting other organelles and in 255 
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erythrocytes autophagic pathways have been shown to clear mitochondria in a separate pathway to 256 

the expulsion of the nucleus suggesting that nuclear removal is likely to be a distinct pathway to 257 

organelle degradation.60,61,15 258 

Whether the initial pathways of nuclear remodelling, and subsequent breakdown of the nuclear 259 

envelope and degradation of nuclear DNA in lens fibre cells and keratinocytes, are common to these 260 

cell types has yet to be determined, however based on our experimental findings and the work of 261 

other groups we could propose the following order of known processes of nuclear degradation in 262 

keratinocytes. Firstly, AKT1 dependent phosphorylation of LMNA occurs (Figure 2, Step 1). We 263 

hypothesise that this marks a region that is targeted for nucleophagy. Also, DNase2 may act during 264 

this part of the process if it is present in the autophagolysosome (Figure 2, Steps 2 and 3). This 265 

process is iterative, but a point is reached where integrity of the nuclear lamina cannot be 266 

maintained (Figure 2, Step 4). At this point various DNases can enter the damaged nucleus to 267 

degrade the DNA. What is not clear is whether the remainder of the nuclear lamina is degraded 268 

prior, during or after this process.  269 

The later stages of nuclear removal in lens fibre cells and keratinocytes, beyond remodelling of 270 

nuclear structure and initial association with lysosomes or other macromolecular aggregates, remain 271 

to be characterised in both cell types. Erythroblast nuclear removal has been characterised with a 272 

variety of methods including microarray analysis of gene expression, flow cytometry analysis of 273 

morphology with pharmacological treatments and fluorescently labelled nuclear components.39,62–64 274 

Lens fibre cell differentiation in vitro is complex and does not fully recapitulate the formation of a 275 

lens, however, well established assays have been determined for keratinocyte differentiation in 276 

culture, and nuclear removal could perhaps be followed in these cells using the aforementioned 277 

tools.20 278 

Future directions 279 
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Nuclear removal, particularly in lens fibre cell and keratinocyte differentiation, is a complex process 280 

which is as yet incompletely understood. However, some key questions that arise from studies of 281 

nuclear removal in these cell types and erythroblasts include: 282 

x Do lens fibre cells and keratinocytes undergo cycles of nuclear opening, is this controlled by 283 

Lamin degradation? 284 

x How do lysosomal DNases get delivered to the nucleus? And how do filaggrin fragments 285 

access keratinocyte nuclei? 286 

x The organisation of the nuclear lamina can affect heterochromatin organisation – does 287 

nuclear remodelling alter DNA structure in a targeted way to alter gene expression and how 288 

long during the process can transcription occur? 289 
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Figure legends: 460 

Figure 1: Nuclear degradation occurs during normal homeostasis. Degradation of the nucleus is a 461 

part of normal cellular homeostasis in three tissues. Grey nuclei and ND denotes where nuclear 462 

degradation occurs in each tissue. A) During the development of the lens, the lens epithelial cells 463 

migrate along the lens periphery before flattening out and synthesising crystallins. The middle 464 

portion, or nucleus of the lens is devoid of both organelles and the nucleus. B) Keratinocytes 465 

proliferate in the basal layer of the epidermis prior to terminal differentiation, where cells come off 466 

of the basal lamina and express different structural keratins forming the spinous layer. The nucleus is 467 

degraded in the upper layers of the epidermis called the granular layer, prior to the synthesis of the 468 

enucleate cornified layer which confers the majority of epidermal barrier function. C) Erythroblasts 469 

(red blood cell precursors) are formed by a process of nuclear condensation and extrusion, forming a 470 

body called a pyrenocyte, which is engulfed and degraded by adjacent macrophages. 471 

 472 

Figure 2: A possible order of events in nuclear degradation in keratinocytes. Possible stages of 473 

nuclear degradation based on our and other’s data. To begin, the nucleus is intact but is marked by 474 

phosphorylation of Lamin A/C (1). This targets an autophagolysosome (LC3-positive/LAMP2-positive 475 

body, orange) to that region of the nuclear lamina (2). The autophagolysosome removes some of the 476 

nuclear content, reducing nuclear size (3). Steps 1-3 are repeated iteratively until the nuclear lamina 477 

is sufficiently damaged to allow ingress of DNases. Then large scale degradation of the nuclear 478 

material occurs, potentially concomitant with further degradation of the nuclear lamina (5). Red 479 

colour denotes nuclear material, while green denotes the nuclear lamina. 480 

  481 
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Tables: 482 

 483 

Table 1: Commonalities and differences in the key processes of mammalian nuclear removal; 484 

Comparison of known nuclear degradation processes and signalling pathways activated in 485 

keratinocytes, lens fibre cells and erythroblasts. A tick denotes that process or phenomenon is active 486 

in that cell type, a cross denotes that it is not, and - not determined in that cell type 487 

  Keratinocytes Lens fibre cells Erythroblasts 

Morphological 
changes 

Rounding 8 42,43 9 9,10 9 31,32 
Decrease in size 9 42 9 9,10 9 31,32 
Indentations 9 42,43 9 11 - 
Karyolysis - 9 9,10 9 34,35 

Through openings 
Nuclear extrusion 8 42,43 8 9,10 9 30,31 

Changes in 
nuclear 
organisation  

DNA condensation - 9 12 9 36 
HDAC required - - 9 36 
Sub-nuclear compartments 9 42 9 12 9 33 

Breakdown of the 
nuclear envelope  

Lamina degradation 9 45 9 12 - 
Phosph. of Lamin A/C 9 45 9 20 - 
Nuclear openings - - 9 34 

DNA degradation 

Enzymatic DNA degradation 9 44,47 9 16 9 28 
In macrophages 

TUNEL staining 8 43 9 12,13 - 
DNase expression ↑ 9 47 9 13 - 
DNase(s) required 9 44,47 9 15,16 9 28 

Proteolysis Ubiquitin proteasome 
pathway required 

- 9 21 9 64,65 

Apoptosis Apoptotic caspases required 8 43,57 8 17 9 34 
Only for openings 

Autophagy 

ATG5 required 8 51,52 8 11,18 8 18 
Perinuclear autophagosomes  9 43,56 8 11,18 - 
Perinuclear lysosomes - 9 19,20 - 
Nucleophagy 9 43 - - 

Signalling 

mTORC1 signalling ↓ 9 43,45,58 9 22 - 
CDK1 signalling ↑ - 9 20 - 
AKT1 phosph. of Lamin A/C 9 45 - - 
Intracellular calcium ↑ 9 4 9 26 9 40 
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