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Overfishing and rapid environmental shifts pose severe challenges to the resilience and viability of marine fish populations. To develop and
implement measures that enhance species’ adaptive potential to cope with those pressures while, at the same time, ensuring sustainable
exploitation rates is part of the central goal of fisheries management. Here, we argue that a combination of biophysical modelling and popula-
tion genomic assessments offer ideal management tools to define stocks, their physical connectivity and ultimately, their short-term adaptive
potential. To date, biophysical modelling has often been confined to fisheries ecology whereas evolutionary hypotheses remain rarely consid-
ered. When identified, connectivity patterns are seldom explored to understand the evolution and distribution of adaptive genetic variation,
a proxy for species’ evolutionary potential. Here, we describe a framework that expands on the conventional seascape genetics approach by
using biophysical modelling and population genomics. The goals are to identify connectivity patterns and selective pressures, as well as puta-
tive adaptive variants directly responding to the selective pressures and, ultimately, link both to define testable hypotheses over species
response to shifting ecological conditions and overexploitation.
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Introduction
The status of many oceanic fish populations is in a fragile state,

bringing expected negative impacts on nature and society alike

(Cardinale et al., 2012; Worm and Branch, 2012). Not only eco-

system services provided by fisheries and fisheries-related activ-

ities directly affect the livelihood of �260 million people

worldwide (Teh and Sumaila, 2013) but also the overexploitation

of targeted species disrupts the balance and health of marine eco-

systems at regional scales (Schindler et al., 2010).

Fisheries management relies fundamentally on the definition

of biological “stocks” (Ovenden et al., 2015). These groups of

individuals are considered population and management units

and are expected to respond independently to various pressures.

Thus, the exact definition of stocks’ spatial–temporal boundaries,

as well as the connectivity among stocks, are central to fisheries

science (Ovenden et al., 2015). While these research topics have

been investigated for decades with a wide range of approaches,

physical modelling of ocean environments (Andrello et al., 2013;

Teacher et al., 2013), and genetic tools are becoming particularly

informative (Hemmer-Hansen et al., 2014b).

The concept of seascape genetics, which was introduced by

Galindo et al. (2006), presents a unified framework to couple

physical ocean modelling with genetic tools. Later on, Selkoe

et al. (2008) suggested that seascape genetics could be used to

investigate connectivity scenarios and hypotheses alternative to

those obtained solely with genetic markers. Assuming passive

larval dispersal, oceanographic currents provide more realistic

models of dispersal and connectivity than those theoretically

drawn from population genetics. By analysing genetic variation in

a number of populations and simulating passive dispersal of

VC International Council for the Exploration of the Sea 2018. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

ICES Journal of Marine Science (2018), doi:10.1093/icesjms/fsx244

Downloaded from https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsx244/4791960
by guest
on 06 January 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159078125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mbaltazarsoares@bournemouth.ac.uk


individuals, it has been shown that oceanography can explain

allele frequency shifts detected across fine geographic scales

(Baltazar-Soares et al., 2014; Schiavina et al., 2014). The body of

work that envelops seascape genetics primarily focuses on neutral

evolving genetic markers, which does not allow investigating

directly the adaptive genetic variation, a proxy for species’ adap-

tive potential. Here, we define adaptive potential as a species’/

population’s ability to respond to selection by the means of phe-

notypic or molecular changes (Eizaguirre and Baltazar-Soares,

2014). For fisheries management, evaluating a species’ adaptive

potential is equivalent to estimating the resilience capacity of fish

stocks to new and/or fluctuating selective pressures (Conover

et al., 2006; Marty et al., 2015). The recent advances of genomics

tools thus represent an opportunity to integrate the quantifica-

tion of adaptive genetic variation in marine systems and to

become a central component of the stakeholders’ toolkit. Yet, a

framework that summarizes both the use and the potential of

those genomic advances to fisheries science, as well as a descrip-

tion of direct applications in fisheries management, is still lacking.

It is obvious that the management of fisheries will also need to

evolve with the technological advances occurring in many fields

of research that constitute the core of such a multidisciplinary

activity (Cooke et al., 2014).

In this opinion piece, we suggest research directions that

extend on the principles of seascape genetics towards the use of

functional genetic variants—proxy for adaptability—while

describing applications of potential findings to fisheries manage-

ment. On the one hand, using biophysical modelling it is possible

to include detailed biological information within hydrodynamic

models (Miller, 2007; Hinrichsen et al., 2011; Peck and Hufnagl,

2012; Hufnagl et al., 2013). On the other hand, high throughput

sequencing increases the power to detect highly differentiated

genomic regions due to selection, with direct applications for

monitoring (Allendorf et al., 2010; Brodersen and Seehausen,

2014). We argue that such an approach will favour the study of

evolutionary hypotheses underlying the distribution of adaptive

genetic variation in marine fish species. This is because both fields

are undergoing significant technological advances. In the one

hand, increasing resolution of biophysical models facilitates the

validation of physical and biological parameters, allowing for a

more accurate hind- and forecasting ability and exploration of

individual-based biological traits (Cury et al., 2008; Metaxas and

Saunders, 2009; Peck and Hufnagl, 2012). On the other hand,

screens of genomes or transcriptomes as well as related analytical

tools, enhance the statistical power to detect signatures of selec-

tion in an ever increasing number of non-model marine organ-

isms (Ekblom and Galindo, 2011; Andrews et al., 2016). The

timing of an integrative framework specifically aimed at improv-

ing management comes from the fast-pace environmental

changes affecting fish stocks, such as ocean warming (Hill et al.,

2016), ocean acidification (Munday et al., 2010) or the expansion

of oxygen minimum zones (Stramma et al., 2008). This is partic-

ularly relevant in the case of exploited species, because fisheries

impose an additional selective pressure that feeds back on adap-

tive traits (Ernande et al., 2004; Kuparinen and Merila, 2007).

The more we know about the evolution of traits and life history

strategies, the more we will understand how fish will respond to

novel and multi-fold environmental pressures.

This review is structured around four main axes: first, we will

illustrate how natural processes govern population dynamics of

marine fishes. Second, we will describe biophysical modelling and

the different components that make it a suitable research tool in

fisheries ecology. We will briefly introduce how well these models

perform in identifying natural pressures acting upon a broad

range of marine species (for detailed and specific reviews see,

Miller, 2007; North et al., 2009; Hinrichsen et al., 2011; Peck and

Hufnagl, 2012). Third, we will outline the recent advances in

genome-wide screening techniques that facilitate the identifica-

tion of candidate loci under selection in apparently genetically

homogenous populations of marine fishes. Lastly, with key exam-

ples, we will illustrate how the outcomes of individual based-

modelling and genomics can be integrated to explore hypothesis-

driven evolutionary scenarios. Particularly, we will describe (i)

how adaptive genetic variation can be inferred within structured

populations after the identification of selective pressures through

biophysical modelling; (ii) possible avenues of research to explore

evolutionary history and adaptive potential of species where alter-

native life strategies were identified and validated through field

observations and biophysical modelling. Lastly, we will elaborate

on possible implications for management. We argue that such an

exercise would provide important contributions to our under-

standing of the evolutionary ecology of marine fishes, and offer

possibilities for fisheries management and conservation to

implement the much warranted evolutionary-based perspective

(Conover and Munch, 2002; Dunlop et al., 2009). Our definition

of “evolutionary-based management” is based on Conover and

Munch (2002) and Dunlop et al. (2009), but follows the same

philosophy as that of “evolutionary enlightened management”

(Ashley et al., 2003) and “evolutionarily informed management”

(Smith et al., 2014).

Impacts of ecological factors on the recruitment
dynamics of marine fishes
Studies on how ecological factors impact the population dynam-

ics of marine fishes date back to the beginning of the 20th cen-

tury, e.g. (Hjort, 1914). These studies are primarily aimed at

understanding how mortality of early life stages dictates recruit-

ment and correlates with the abundance of adult fish (Houde,

2008). The high mortality experienced by early life stages prob-

ably relates to the evolution of broadcast spawning strategy—a

common trait in marine fishes (Cowen et al., 2000; Bode and

Marshall, 2007). This r-strategy defines the release of an extremely

high amount of gametes into the water column prior to fertiliza-

tion (Adams, 1980). It is thought to have evolved as a bet-

hedging adaptive response to variable environmental conditions

(Bailey et al., 2008). Some examples are those that link shifts in

the abundance of fish or plankton to large scale hydro-climatic

variations (Beaugrand, 2004). Horse-mackerel (Trachurus trachu-

rus) in the North Sea (Reid et al., 2001) or anchovies (Engraulis

ringens) and sardines (Sardina plichardus) in the North East

Pacific (Chavez et al., 2003) see their abundances fluctuate along-

side the North Atlantic Oscillation (NAO) and El Ni~no-Southern

Oscillation (ENSO) respectively. However, their recruitment is

probably regulated by fine scale mechanisms associated with var-

iations of abiotic and biotic factors such as sea surface tempera-

tures, hydrodynamic features, prey availability, and predation

success (Cushing, 1974; Iles and Sinclair, 1982; Houde, 2008). As

broadcast spawning fishes have evolved spawning time and loca-

tion to target optimal environmental conditions (Colin, 1992;
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Thorrold et al., 2001; Bellier et al., 2007), one cannot rule out the

evolution of correlated traits in response to ecological pressures

in the oceanic environment.

Biophysical modelling: concepts and applications in
marine ecology
Biophysical modelling is currently used as an exploratory and

complementary tool to traditional fisheries monitoring (North

et al., 2009). Conceptually, those models incorporate three ele-

ments: a hydrodynamic model that realistically simulates

the physical oceanic environment, a particle tracking model that

simulates the movement of virtual particles representing,

for example, fish larvae, and a coupled model that mimics biolog-

ical processes and/or behavioural activity (Peck and

Hufnagl, 2012). These tools predict recruitment success and can

be used to investigate connectivity (both among populations and

among critical areas exploited by the same population), providing

a better understanding of the factors mediating early life stage

mortality (Peck and Hufnagl, 2012, Box 1 provides specific

examples).

The hydrodynamic component forms the basis of biophysical

models as it simulates the physical environment where interac-

tions with biological processes occur (Hinrichsen, 2009). As

hydrodynamic models per se are discrete equations that resolve

velocities, turbulence, salinity, and temperature of a certain spa-

tial–temporal scale, the incorporation of particle-tracking tools

provides the empirical outcomes—in terms of movement—of

those mathematical functions. This means that hydrodynamic

models must be carefully validated before the implementation of

particle-tracking tools (North et al., 2009). Whereas general vali-

dations include correlations with known observational features,

e.g. sea surface temperatures or salinity, more technical parame-

terization includes specified forcing, boundary conditions, initial

conditions, and resolution of fine scale hydrodynamics (Fossette

et al., 2012). These validations are often associated with error

quantification and sensitivity analyses and contribute to the reso-

lution of hydrodynamic models (Gallego et al., 2007; North et al.,

2009). Hydrodynamic models exist at many spatial and temporal

resolutions and various extents. Examples of hydrodynamic mod-

els and how to choose them have been discussed elsewhere

(Gibson et al., 2003; Fossette et al., 2012). Noteworthily, a recent

study by Hufnagl et al. (2017) argues that model sensitivity, in

terms of advection and connectivity estimated with Lagrangian

particles, should be assessed prior to validate simulation out-

comes. This can be done by using different hydrodynamic models

from the same region to perform dispersal and connectivity

simulations, instead of accounting only for the absolute values of

a single model (Hufnagl et al., 2017). However, cross-model vali-

dation is only possible when more than one model exist for the

area of interest. When this is not the case, one could alternatively

replicate simulations with a single model in order to obtain confi-

dence intervals for the absolute values.

To explore how ocean dynamics influence the biology of

marine fishes, physical models need to be coupled with biologi-

cal information. This is, for instance, pelagic larval duration

(Hinckley et al., 1996) or growth rates, but also the occurrence

of predators (Grimm and Railsback, 2013). Individual based

modelling considers processes such as spatial–temporal varia-

tion of spawning activity, egg production and buoyancy, larval

dispersal, pelagic larval duration, growth, mortality, and behav-

iours such as settlement or diel vertical migration (North et al.,

2009). An illustration of the realistic approach taken by recent

models can be seen in Figure 1 (Peck and Hufnagl, 2012).

Information on these parameters can be obtained through field

observations, as was done to verify dispersal pathways and

recruitment areas of capelin (Mallotus villosus) or through

experimental approaches to infer, for instance, buoyancy and

pelagic larval duration of Atlantic cod’s (Gadus morhua) early

life stages (Wiedmann et al., 2012; Petereit et al., 2014). Metaxas

and Saunders (2009) and North et al. (2009) detail how such

parameters can be obtained, validated and incorporated into

ocean models.

Box 1. Eco-evolutionary pressures revealed by biophysi-

cal modelling.

Biophysical modelling approaches suggest that the pop-

ulation dynamics—often quantified in terms of recruit-

ment—of broadcast spawners is linked to ecological

factors, where currents play a preponderant role. The

seminal work of Werner et al. (1993) reported a con-

nection between larval dwelling depth and increased

retention of Atlantic cod and haddock (Melanogrammus

aeglefinus) larvae at nursery grounds in George’s Bank.

This emerges as a result of preferential spawning loca-

tions to maximize offspring survival (Werner et al.,

1993). After this work, several other studies reported

similar patterns: the spawning area of anchovies in the

Gulf of Lion correlates with increased larval retention,

preventing mortality due to advection (Sabates et al.,

2007); Mediterranean bluefin tuna (Thunnus thynnus)

spawn alongside frontal coastal areas that promote dis-

persal and retention of drifting larvae in upwelling

zones, providing oxygenated and nutrient rich waters

(Mariani et al., 2010; Cardinale et al., 2012, Figure 2a–

c); Eastern Baltic sprats (Sprattus sprattus) benefit from

dispersal through wind-forced currents towards nursery

grounds that fluctuate in a decadal temporal scale

(Scheffer et al., 2005; Hinrichsen et al., 2010; Cardinale

et al., 2012); Current-mediated dispersal in winter-

spawning flatfishes (order Pleuronectiformes) allows

larvae to reach suitable nursery grounds in the Bering

Sea (Wilderbuer et al., 2002).

Predator–prey interactions are also relevant for early

life stage survival. Another example derived from model-

ling diel vertical migrations in sprat demonstrates that

these behaviours can increase the rate of prey encounter

(i.e. Hinrichsen et al., 2010, Figure 2d, e). Reciprocally,

predator avoidance strategies are important as shown by

the Barents Sea capelin where the locations of the sub-

arctic spawning areas, in coastal waters of Norway and

Russia, minimize advection of early life stages to preda-

tor-rich areas (Wiedmann et al., 2012).
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Evolutionary genomics in fisheries research
The last decade’s boom in sequencing technologies has provided

an unprecedented amount of genomic resources (Glenn, 2011).

The expression “next-generation sequencing,” hereafter NGS,

relates to the development of several sequencing techniques that

have increased the resolution of genome scans from few dozens

to hundreds of thousands of markers (Mardis, 2008) as well as

the identification of specific genomic architecture relevant for

species’ evolution (Star et al., 2011; Smith et al., 2013; Chain

et al., 2014). Marker discovery at a genome-wide scale is per-

formed both by whole genome sequencing and a vast variety of

genotyping-by-sequencing methods (Wang et al., 2009; Teer and

Mullikin, 2010; Davey et al., 2011; Seehausen et al., 2014). The

fact that many populations of marine fishes span large geographic

areas, thereby experiencing diverse ecological conditions, make

them ideal candidates to study genome-wide impacts of variable

Figure 1. Schematic representation of a standard individual-based biophysical model. Individual-based model (minor polygon) integrated
within a 3-D hydrodynamic model (larger polygon), allowing the simulation of ecological interactions within a physical environment. Within
the circular-shaped figures, three different sources of early life stages mortality are represented: (i) advective mortality linked to
hydrodynamic forcing that results in particles forced to drift towards unsuitable areas; (ii) starvation mortality that relates, amongst others,
to the presence/absence of prey at the first feeding stage of fish larvae; (iii) predation mortality, where the target fish species is the target of
varying levels of predation that can be modelled (Peck and Hufnagl, 2012). Biological activity is modelled within the IBM and defined by a
series of equations that describes, in a first stage, the balance between energy gain through exogenous feeding and energy loss through several
instances of metabolic activities. In a second phase, the net result of this balance is transformed into the variables of growth and starvation
threshold. Note that biological activity is simulated to occur during daytime. This figure was reproduced and edited with permission of the
publisher. Specific variables and equations that describe them can be found in the original figure and respective caption in Peck and Hufnagl
(2012).
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Figure 2. Examples of ecological factors shaping the spawning strategy of Mediterranean bluefin tuna and survival of Baltic Sea sprat’s early life
stages. Biophysical modelling revealed Mediterranean bluefin tuna’s spawning strategy, which relies on the use of frontal areas within the Balearic
current to transport and aggregate eggs and larvae in upwelling areas (Mariani et al. 2010). (a) Observed distribution of bluefin larvae. (b)
Theoretical display of the major oceanic processes likely mediating bluefin tuna’s early stages of the life cycle around the Balearic Islands. Dots
denote observations from the original study. (c) Model representation of back-tracking of particles released in the aggregation site that matched
with the observed spawning area. Ocean models investigating the impact of vertical migration of the Baltic Sea sprat larvae and the abundance
of their prey items (Pseudocalanus acuspus, Acartia spp.) across >10 years on the survival of early life stages of the sprat (Hinrichsen et al., 2010).
(d) Representation of the outcome of six simulated scenarios with various combinations of vertical migration of sprat larvae and abundance of
prey species (Hinrichsen et al., 2010). Colours represent survival probability of sprat for each of the considered years. (e) Correlation between
mean annual larvae survival obtained from Figure 2d-Panel F, which includes spatial variation in addition to migration and abundance. This
represents the most realistic scenario and matches well the observed recruitment of Baltic Sea sprat (r¼ 0.39, p< 0.05).
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ecological conditions (Nielsen et al., 2009). The application of

genomics to marine fish species has revealed extensive patterns of

molecular diversity. For example, partial genomic representations

have brought evidence for genomic signature of local adaptation

in herring (Clupea harengus) through RNA- and exome sequenc-

ing (Lamichhaney et al., 2012), have revealed cryptic structure

within populations of sea mullet (Mugil cephalus; Krück et al.,

2013) and hake (Merluccius merluccius; Milano et al., 2014);

helped to identify growth and maturation-related loci in the com-

mon sole (Solea solea) through candidate gene approach (Diopere

et al., 2013); showed a loss of function of vision-related genes in

the half-smooth tongue sole (Cynoglossus semilaevis; Chen et al.,

2014) or unveiled the genetic basis of temperature adaptation in

barramundi (Lates calcarifer) by identifying differential expres-

sion in genes regulating peptidase activity (Newton et al., 2013).

Some of the identified candidate loci are located in genomic

regions that exhibit high levels of differentiation when compared

across populations along environmental gradients or a geographic

range (Sodeland et al., 2016). Genomic islands of divergence are

thought to be maintained both by low recombination rates and

spatially varying selection (Noor et al., 2001). The identification

of those genomic patterns is greatly facilitated by the fact that

marine populations tend to exhibit extremely low levels of

genome-wide differentiation (Hauser and Carvalho, 2008;

Corander et al., 2013). Still, outputs of genome scans must be

interpreted carefully. In addition to the classic sampling issues

(Lotterhos and Whitlock, 2015) or problems inherent to genomic

screening techniques (Lowry et al., 2017), potential pitfalls of

NGS refer to properly accounting for demographic effects, which

may mask or confound signatures of selection (Bierne et al., 2013;

Hoban et al., 2016). Also important to consider is the broad range

of mechanisms upon which natural selection relies to leave its sig-

nature onto the genomes. Outlier detection might straightfor-

wardly identify genetic variants that have quickly arisen to

fixation as a result of a strong and directional selection, the so

called hard sweeps (but see Jensen et al., 2016). However, several

other mechanisms that do not leave such a stark signature of

selection may also be involved, at the molecular level, in the adap-

tive process. For example, soft sweeps, balancing selection, epige-

netic variation or phenotypic plasticity are mechanisms whose

detection of their signature might require other statistical tools.

The occurrence of these mechanisms in the evolutionary history

of marine fishes has been reviewed elsewhere (Bernatchez, 2016).

Merging biophysical models and genomic tools:
applications to evolutionary ecology and fisheries
management
The identification of ecological selective pressures through mod-

elling of ocean dynamics and the capture of signatures of evolu-

tionary processes through population genomics have largely been

presented and interpreted in parallel. Exceptions are perhaps

studies that correlate (spatial) genetic variation with environmen-

tal cues, i.e. temperature or salinity—environmental correlations

(Limborg et al., 2012; Teacher et al., 2013; Benestan et al., 2016).

However, those studies do not capture ecological dynamics per se

and do not explore any putative causality of the relationships

beyond the limits offered by correlative approaches. By simulat-

ing a diverse set of ecological parameters, biophysical modelling

tests multiple scenarios to which information retrieved from the

genomes of the natural populations could be weighed upon or

accounted for. Here, we will describe two possible workflows to

explore the potential of biophysical models as tools to study evo-

lutionary hypotheses in the marine realm. The first relates to the

use of biophysical modelling to identify localized selective pres-

sures that may shape species’ traits in early life stages of marine

fishes. Upon identification, one can screen for the underlying

molecular basis of such traits. Those specific genes could then

enter monitoring programmes, since loss of genetic variation may

reveal changes in selection pressure, which may otherwise not be

identified. The second perspective uses biophysical models to test

evolutionary hypotheses. In short, the idea is to simulate ecologi-

cal processes together with genetic information in order to inves-

tigate the causes and consequences of local adaptation and

connectivity. For example, simulating larval dispersal can provide

expectations regarding direction and quantitative estimates of

gene flow among putative populations (Benestan et al., 2015).

This is crucial because understanding the causes and consequen-

ces of the emergence of reproductive barriers assists in the defini-

tion of fish stocks but cannot be causally assessed with either

biophysical models or genetic tools alone.

Identification of selective pressures and adaptive
responses in independently managed stocks
By considering a vast array of ecological parameters, biophysical

models are initially designed to explore how their variation affects

survival of fish early life stages (Peck and Hufnagl, 2012). It is

exactly the effect on survival that allows us to identify selective

pressures, as is the case in the example of the common sole. This

fish species is widely distributed from the North-East Atlantic

Ocean, the Mediterranean and North Seas (Perry et al., 2005). Its

life cycle is characterized by a pelagic larval phase followed by a

benthic adult phase, facilitated by the ontogenic change that flat-

tens the body of adults. The spawning and larval settling at nurs-

ery grounds in the North Sea basin are shaped by the local

hydrodynamics of the area. There are six spawning grounds,

forming distinct genetically isolated reproductive units (Savina

et al., 2010). Like many other marine species, the evolution of dis-

tinct spawning areas is largely unknown. Yet, biophysical model-

ling has shed light on potential mechanisms underlying this

genetic structure: Lacroix et al. (2013) investigated the influence

of hydrodynamics on the connectivity between spawning and

nursery grounds as well as the role of larval behaviour on the

abundance of recently metamorphosed larvae in the different

nursery grounds. Two types of larval behaviours were simulated

in their model: vertical migrations and settling delay. The results

showed that observed larvae abundance in nursery grounds could

be explained both by the hydrodynamics connecting spawning

and nursery grounds, as well as larval behaviour. In particular,

simulations including “settling delay” correlated well with abun-

dance from records of fish stock (FAO, 2001)—further suggesting

that delayed behaviour increases the settling success in the nurs-

ery grounds. Interestingly, modelled larval abundance was not

consistent across nursery grounds (Lacroix et al., 2013). This sug-

gests that strategies that facilitate success in the transport and set-

tlement of larvae are, to some extent, population-specific, i.e.

genetically encoded and locally adapted. It seems that settling

mechanisms maintain the genetic structure and genetic diversity,

thereby maintaining the adaptive potential of the common sole

stocks in the North Sea. Similar observations may be extended to

another flatfish species (Pleuronectes platessa) that inhabits the
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same geographical area and possibly shares the same coastal nurs-

ery grounds (Hufnagl et al., 2013).

The identification of loci differentially under selection

strengthens the arguments of distinct stocks and is therefore rele-

vant for management (Hemmer-Hansen et al., 2014a). Fisheries

management often refers to genetic diversity as a genome-wide

characteristic. However, increased genomic resolution tends to

reveal particular regions to be specific targets of natural selection

(Nosil et al., 2009; Feulner et al., 2015; Sodeland et al., 2016). In

the case of the common sole, one could assume that selection for

settling behaviour leaves a stronger signal in the genome than

produced by genetic drift due to population structure. It is then

possible to estimate genome-wide neutral differentiation between

locations, and expect genomic regions putatively linked to settling

behaviour to emerge as candidate loci under selection (Narum

and Hess, 2011; Diopere et al., 2017). That sort of genetic variants

have shown to be involved in the molecular basis of certain

behavioural traits in marine species, such as the adult migration

of the anadromous steelhead trout (Hess et al., 2016), benthic

adaptation and schooling behaviour in three-spined sticklebacks

(Greenwood et al., 2013; Erickson et al., 2016), and age variation

at which Atlantic salmon migrates to the sea (Johnston et al.,

2014).

The possible identification of genomic regions of adaptive

divergence in the common sole genome would also be important

to enhance predictions of the species response to the accentuated

impact of climate change in the North Sea (Perry et al., 2005).

Because this species is undergoing a southward shift of its distri-

bution range (Engelhard et al., 2011), linking genetic variation

involved in settling behaviour with any type of characteristic of

the settling environment could permit the identification of suit-

able habitat areas outside the native range.

The identification of putative strategy-specific genetic variation

would allow for the development of genetic markers to be

screened along time series or at various geographic scales. For

fisheries, this would translate into a tool to monitor ecologically

relevant adaptive genetic diversity and also to prevent mismatches

between populations and habitats in the cases where transloca-

tions would be a management method. Biophysical modelling,

tissue sampling for DNA extraction and sequencing of random

genetic markers are common procedures in management of spe-

cies with well described biology (Ferguson, 1994; Palsbøll et al.,

2007). They are used to delimitate boundaries, whether those of

stocks to exploit or marine protected areas to preserve (Palumbi,

2003). This means that including screens of adaptive genetic

diversity would not add substantial efforts but the benefits could

be high. For instance, the detection of shifts in the allelic frequen-

cies of functional variants during monitoring programmes could

alert managers for changes in selective pressures, therefore

prompting for a rapid response.

Connectivity and maintenance of evolutionary
potential in near panmictic species
Genetics—and now genomics—contribute to the detection, defi-

nition and establishment of “populations” in marine species

(Dunlop et al., 2009; ICES, 2015). The absence of conspicuous

barriers to free movements of individuals does not necessarily

imply the existence of a single reproductive unit nor that of a

genetically homogenous stock (Hauser and Carvalho, 2008;

Cowen and Sponaugle, 2009). Genetic variation may evolve at

finer geographic scales due to drift and early emergence of sub-

populations, due to local adaptation, or the existence of cryptic

species (Hemmer-Hansen et al., 2013; Breusing et al., 2016; Picq

et al., 2016). Overlooking the possibility of these scenarios may

bring irreversible damage to the sustainability of exploited species

(Brodersen and Seehausen, 2014). A critical example is perhaps

that of the North Sea cod (Hutchinson, 2008). In the early 21st

century, genetic analyses of archived otolith samples revealed that

the single population stock was in fact formed by several geneti-

cally distinct sub-populations (Hutchinson et al., 2003). Further

investigations revealed that decades of fishing pressure preceding

the 1960s/1970s collapse have disproportionally affected each of

the sub-populations and likely compromised a sustainable exploi-

tation (Hutchinson, 2008).

Suggestions have been made to increase the resolution of

genomic analyses to employ a holistic approach using neutral,

selective and hitchhiker loci to assess connectivity (Gagnaire

et al., 2015). For all marine species, the primary challenge is to

understand how the physical movement of individuals shapes

and maintains the spatial distribution of genetic diversity. For

many exploited species, this is inherent to the knowledge gap

regarding spatial–temporal occurrence of spawning events as well

as sampling location (i.e. spawning, nursery or foraging grounds).

By incorporating genetic information in simulations of physical

dispersal/movement and performing in silico capture of individu-

als—mimicking sample collection—physical models are powerful

tools to explore hypothetical scenarios: because hydrodynamic

models are built upon time series of data that span a range of

environmental regimes, distribution of genetic variation can be

simulated under natural conditions. If expanded to larger, open-

ocean systems, seascape genetics provides the initial framework to

investigate putative associations between ocean environment and

distribution of genetic diversity (Selkoe et al., 2008). However, as

the use of individual-based modelling and next generation

sequencing was, at that time, not considered, understanding how

dispersal and connectivity could shape the evolution and distri-

bution of adaptive genetic variation was not approachable. With

the next example we will suggest possible ways to integrate the

recent advances in the seascape framework.

The Antarctic toothfish (Dissostichus mawsoni) is a member of

the notothenioid lineage that inhabits Austral waters. Despite a

rapid emergence as economically important species, knowledge of

its ecology, dynamics and structure in the Ross Sea (and else-

where in the Antarctic waters) is scarce (Ainley et al., 2013;

Abrams et al., 2016). The apparent single panmictic population is

spread across a large geographical area, with the spawning

grounds located in the North Banks region (Hanchet et al., 2008).

Ocean currents in the Ross Sea connect pelagic larvae to the nurs-

ery grounds along the Antarctic continental shelf where juveniles

feed. Adults then migrate to the Ross Sea to forage (Hanchet

et al., 2008). Ashford et al. (2012) attempted to validate the con-

nectivity hypothesis between spawning, nursery, and foraging

grounds by combining results of a biological (otolith chemistry)

and a physical oceanography (modelling and Lagrangian particle

tracking) source. The wide geographical distribution of the spe-

cies is intriguing: adults, which drift with currents, are found in

areas that in theory are inaccessible, considering physiological

characteristics of the species. Likewise, the same physiological

characteristics would impede adults to swim from those locations

back to the spawning grounds. Dispersal simulations provided

two important insights. First, the complete life cycle of this
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species is apparently supported by the circulation system of the

Ross Sea (Ross Gyre), where ontogenic changes in buoyancy may

have facilitated the adaptation to regional conditions after the

occupation of an empty niche around Antarctica (Ainley et al.,

2013). The negative buoyancy in juveniles prevents dispersal away

from important nursery grounds and the neutral buoyancy in

adults facilitates the roaming between foraging and spawning

grounds (Ashford et al., 2012). Second, the study suggested the

existence of an alternative life cycle with some individuals using a

narrower geographic range than others. Under the actual hydro-

dynamic conditions, this strategy is predicted to have marginal

implications on the dynamics of the population occupying the

Ross Gyre (Ashford et al., 2012). However, conditions changing,

the alternative life cycle could gain a key role for the viability of

the species. While the modelling approach successfully identified

two distinct strategies, it has yet to show their significance to the

overall population dynamics. Whether this represents distinct but

yet undetected spawning grounds, two distinct strategies within a

single panmictic population or both is largely unknown. Since

the species is managed as a single stock in this area, clarifying the

contribution of each strategy to the overall population dynamics

could result in implementing novel fisheries regulations.

For this specific example, we envision two possible approaches

to explore the contribution of each strategy to the population

dynamics and possible impacts to the species management. The

first includes the simulation of two genetically distinct foraging

grounds, where virtual Lagrangian drifters mimicking the

current-driven dispersal of adults towards spawning would be

incorporated. In this case, one must consider (i) Mendelian

inheritance, (ii) fixed mutation rate, and (iii) equal starting heter-

ozygosities of the genetic variants employed to discriminate for-

aging grounds in the simulations. Also, one must assume that

foraging grounds segregate into distinct spawning areas and that

the gene flow between them, i.e. proxy for number of individuals

belonging to one area that went to reproduce in the other, is con-

stant across generations. Under these conditions, the model could

be run for several generations across oceanographic scenarios that

include the temporal and spatial natural variation the local cur-

rents to explore the likelihood of the two foraging strategies to

evolve into two distinct populations. For instance, one could

observe in how many generations oceanographic conditions

would lead to a spatial, temporal or spatial–temporal displace-

ment of adult individuals in the spawning area. The second

approach that could be used includes genome-wide screens of

individuals of the Ross Sea population to identify candidate loci

under selection assuming a single panmictic population (Antao

et al., 2008; Foll and Gaggiotti, 2008). Upon identification, the

frequencies of candidate loci would be correlated with environ-

mental variables such as temperature, salinity or current speed,

provided by hydrographic modelling of the region. Lastly, genetic

variants could be incorporated into individual-based models to

explore the performance of genetic variants under different ocean

regimes, considering, for instance, each variant with a specific

value of advection loss (e.g. Figure 3). To mitigate the effect of

stochasticity, one could either perform replicated runs—consid-

ering multiple generations—with exactly the same parameters

and correct the average of advective loss by the variance obtained

across replicates or test different hydrodynamic models (if avail-

able) of the region of interest (Hufnagl et al., 2017). In theory,

advective loss could be correlated with estimates of effective pop-

ulation size obtained from genetic data for instance.

The approaches described here would provide two levels of

information to fisheries management. The first information

would be an overview of possible environmental factors influenc-

ing the stock dynamics: considering the importance of ocean cur-

rents to fish migration in the area, it is relevant to understand

how regime shifts could impact the stock’s structure. In the case

of regime shifts leading to spatial or temporal fragmentation of

the stock, management strategies would respond by partitioning

the fishing activity to avoid disproportional harvesting of one

stock over the other. The second information is critical to esti-

mate, from a genetic perspective, the resilience of the stock to

regime shifts. A direct management practice would be to in silico

evaluate the impact of stock partitioning and likewise implemen-

tation of different quotas either on a spatial or on a temporal

scale. When information is scare, the overarching goal is to pre-

serve all levels of diversity, until the dynamics of ecosystems or

the natural history of the target species are better understood.

Overall, the proposed framework can be summarized as fol-

lows (Figure 3a–e): (i) sum up the basic knowledge about the life

cycle of the target species, as well as the hydrodynamic features of

the region that it inhabits. If knowledge gaps exist, regarding, for

instance, the spawning grounds, the nursery grounds and the sen-

sitivity of early life stages to oceanographic processes—such as

currents or upwelling events—they can be identified with ocean

models. The availability of Ocean Global Circulation Models

developed for several regions of the World facilitates the choice of

specific hydrodynamic models (reviewed in Fossette et al., 2012).

(ii) To test how different ecological factors might influence the

survival of larvae, one could simulate variation of speculative key

traits (one trait, multiple variants) that confer fitness advantage

in variable ecological pressures. For example, consider a trait

linked to advection such as pelagic larval duration, and respective

variants A, B, and C (Figure 3c). A could be associated with short,

B average and C long planktonic phase respectively. These could

be incorporated into the biophysical model by varying advection

time of each variant and quantify abundance, at the end of the

simulations. Predicted abundance obtained from the model

would then be correlated with observed abundance (based on

recruitment indices obtained from fisheries data, for instant).

Significant correlations would support the role of the trait in

responding to oceanic variation and being under oceanic current-

mediated selection. (iii) Sampling the target species for DNA, one

would then perform genome-wide screens to obtain genomic

markers (Figure 3d). In a first stage, those would be used to char-

acterize population structure and estimate levels of neutral differ-

entiation. In a second stage, candidate loci under selection could

be identified to afterwards be compared against publicly available

genomes.

Correlation between simulated trait variation and its putative

genetic basis could then be tested in diverse ways. Individuals

could, for instance, be sampled from natural populations at nurs-

ery grounds under conditions similar to those modelled and

screened the frequency of identified genetic variants. Another

possibility would be to collect the eggs of target species and rear

them under manipulated laboratory conditions: different salin-

ities or temperatures could be tested to verify the variation in egg

buoyancy or growth rates; the importance of size at first feeding

check could be tested by exposing reared juveniles to food items

of different sizes. Individuals whose traits have varied under

manipulated conditions would then be screened for the presence

of identified genetic variants.
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Incorporating genetic information that underlies the basis of

trait variation in management practices, i.e. performing genetic

screens of fish stocks, would open new avenues in evolutionary-

based fisheries management. It would facilitate predictions on

how shifts in ecological conditions would impact the dynamics of

fishing stocks, as well as facilitate measures to replenish species or

populations abundances.

Challenges to overcome
This manuscript aims at re-affirming the importance of interdis-

ciplinary collaboration between biophysical modellers and evolu-

tionary biologists, in particular population geneticists. Because

management decisions have wide implications not only for the

environment but also to the society, it is important to carefully

consider the caveats of each approach: e.g. the stochasticity

(a)

(d)

(e)

(b)

(c)

Hydrodynamic model
of the region (central polygon)

Figure 3. Framework to integrate evolutionary theory into biophysical modelling. Here, the use of biophysical models is highlighted to
identify selective pressures in the target system, and work all the way down to the identification of a possible genetic-basis of the adaptive
response. Briefly, the first step is to identify the system of interest. Biophysical modelling should then take into consideration the oceanic
processes that occur in the target area, which assumes the incorporation of already existing oceanic models as well as biological traits of the
model organism. Trait variation can be incorporated either by observations (i) from the field, i.e. seasonality in spawning activity, (ii) inferred
from laboratory experiments, i.e. variation in buoyancy, or (iii) simulated within the IBM via manipulation of key variables, i.e. those present in
Figure 1. The identification of a selective pressure also permits one to formulate a priori expectations regarding candidate loci, facilitating
interpretation of FST outlier approaches when variants cannot be mapped to known functional regions.
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inherent to biophysical modelling, which requires an assessment

of model sensitivity to mitigate its effects, or the assumptions of

population genetic theories, of which the complexity of marine

populations and the signatures of natural selection left in the

genome of marine species seem to frequently defy (Hauser and

Carvalho, 2008; Selkoe et al., 2008; Bernatchez, 2016; Hufnagl

et al., 2017). However, to jointly interpret the outcomes of the

combined methods is also a way to reduce the errors inherent to

each approach. Identifying the key selective pressures together

with the genes directly evolving under those pressures confer

robustness to the modelling and population genomic results alike

(Figure 3). Furthermore, it allows for the formulation of stronger

assumptions than non-causal environmental correlations.

Regarding stock identification and connectivity, what are thought

to be artefacts of biophysical modelling can be used as

hypothesis-driven scenarios and tested for validation/refutation

with genetic tools, or vice versa.

Another important challenge is the high likelihood of pheno-

typic variation to be governed by multiple genes of small effect

size. In those cases, it is suggested to invest in denser genomic

screens, larger sample sizes, and extend the analyses to within-

population comparisons of genetic and phenotypic variation

(Gagnaire and Gaggiotti, 2016). Methodology based on polygenic

scoring to estimate the contribution of multiple candidate loci to

the observed trait variation, particularly designed to detect poly-

genic selection in marine populations would also be an approach

to follow (Gagnaire and Gaggiotti, 2016).

On the future of evolutionary-based fisheries
management
By coupling ecological and biological parameters, biophysical

models explore the interaction of biological entities with their

surrounding environments under simulations of realistic ecologi-

cal conditions. Although they are mainly applied in a purely eco-

logical framework, here we have suggested how they can further

be used as in silico tools in evolutionary ecology to enhance fish-

eries management and provide estimates of adaptive potential.

Understanding stock resilience has recently gained increasing

importance because of rapid ocean changes, including ocean

acidification (Sunday et al., 2014), and raising temperatures

(Harley et al., 2006), with possible influence on major ocean cur-

rents (Broecker, 1997). The multitude of selective pressures acting

on fish stocks calls for upscaling the traditional management

strategies to a level where the adaptation to selective pressures

and consequence for stock dynamics is considered. Because

trait/genetic variation are a key aspects of a species’ evolutionary

potential, their preservation should be seriously considered in

management strategies. As the complete set of ecological condi-

tions is impossible to reproduce in controlled environments and

most of the marine exploited species are far from being model

experimental organisms, we argue that the use of biophysical

models to create and test evolutionary hypotheses is the first step

to better understand organism–environment interactions.
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