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Abstract

This paper employs a Zero Lower Bound (ZLB) consistent shadow-rate model to de-

compose UK nominal yields into expectation and term premium components. Com-

pared to a standard affine term structure model, it performs relatively better in a

ZLB setting by capturing the stylized facts of the yield curve. The ZLB model is then

exploited to estimate inflation expectations and risk premiums. This entails jointly

pricing and decomposing nominal and real UK yields. We find evidence that medium-

and long-term inflation expectations are contained within narrower bounds since the

early 1990s, suggesting monetary policy credibility improved after the introduction of

inflation targeting.
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1. Introduction

In March 2009, the Monetary Policy Committee announced a cut of the policy rate to

0.5%, from a level of 4.5% six months earlier. This decision was accompanied by an

economic stimulus via large-scale asset purchase programs. Since 2009, UK short yields

stemming from nominal sovereign bonds reached historically low levels.

When nominal yields come close to the Zero Lower Bound (ZLB), further downward

movements are considered unlikely (due to the non-negativity of nominal interest rates),

thus resulting in an asymmetry in expectations (because paths involving negative yields are

excluded) and a reduction in volatility (because only upward movements are possible).1

In such a situation, the yield curve is anchored at the short end, agents’ expectations

reflect the belief that the policy rate would not be (substantially) further reduced, and

the volatility of short-term rates falls.

These considerations lead to question the use of standard Gaussian affine term struc-

ture models, because they do not take into account the non-linearity existing in proximity

of the lower bound. In periods of low nominal yields, conditional expectations and vari-

ances produced by these models might well be violating the inherent asymmetry in the

time series evolution of nominal yields. As a result, these models can generate both im-

plausible nominal risk premiums (see, Kim and Singleton, 2012) and imprecise expected

inflation projections.

In addition to very low nominal yield levels, estimating inflation expectations has also

preoccupied policymakers. Break-Even Inflation (BEI) rates (i.e., the difference between

nominal and real yields) provide a proxy for market expectations of future inflation lev-

els. However, even assuming nominal and real government bonds are equally liquid, this

measure is an imperfect representation of inflation expectations as it is polluted by an

inflation risk premium.

This paper considers two main issues. First, the paper aims at analyzing whether

traditional models produce different results than ZLB-consistent models for the UK.2 We

1Negative nominal yields remain a possibility in periods of crisis (e.g., Denmark, the euro area, Switzer-
land), when bondholders require an insurance to safe-guard their investments, however it seems that an
effective lower bound does exist and is a by-product of the level of the policy rate and the convenience
yield.

2We provide results for the United Kingdom. Previous results have mainly focused on Japan and the
United States (e.g., Kim and Singleton, 2012; Christensen and Rudebusch, 2013).
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show that using a term structure model that incorporates the ZLB restriction provides a

better representation of the nominal UK yield curve in terms of replicating the stylized

facts of the term structure in low interest rate environments.

Second, the paper provides a decomposition of the UK term structure and estimates

of inflation expectations and inflation risk premiums. To this end, the existing literature

uses standard Gaussian affine term structure models for both the nominal and the real

yield curve. In this paper we combine a ZLB-consistent term structure model for the

nominal yield curve with a standard Gaussian affine term structure model for the real

yields. This novel modeling choice offers the possibility to consistently estimate market-

implied inflation expectations and associated risk premiums across sample periods that

include nominal yield curve data constrained by the ZLB. Specifically, our proposed model

preserves the empirical regularity of counter-cyclical inflation risk premiums.

We address both issues by building on the framework recently proposed by Christensen

and Rudebusch (2015), which in turn is based on contributions by Black (1995) and

Krippner (2012). Specifically, we use a Shadow-rate Lower Bound Nelson and Siegel

(SLB-NS) term structure model that imposes the non-negativity of interest rates. Unlike

Kim and Singleton (2012)’s model, this particular representation has the benefit of being

capable of encompassing more than two factors (which will be important in fitting both

nominal and real yields, jointly). Additionally, the factor loadings, borrowed from Nelson

and Siegel (1987)’s model, facilitate the tractability of the model and offer an interpretation

of the factors in terms of level, slope and curvature of the term structure.

Our methodological contribution is to extend the shadow-rate model to allow for the

joint pricing of nominal and real sovereign bonds such that only nominal yields are bound

to be non-negative. As far as future inflation projections are concerned, the benefits of

using an asset pricing model come into play by enabling the disentanglement of inflation

risk premiums from BEI rates, thus providing estimates of pure inflation expectations.

There is a considerable number of papers examining inflation expectations and risk

premiums (see, Chen et al., 2005; Christensen et al., 2010; Chun, 2011; Chernov and

Mueller, 2012; Grishchenko and Huang, 2012; D’Amico et al., 2014; Hordahl and Tristani,

2014). Only a limited literature is available for UK yields, despite the fact that the UK’s

inflation-linked bond market is one of the most liquid ones and the UK Debt Management
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Office — an Executive Agency of HM Treasury — is committed to maintain this liquidity

with regular issuance of inflation-linked bonds. A few exceptions include Joyce et al.

(2010) which provide inflation projections up to 2009 (i.e., before unconventional monetary

policies were put in place), and Abrahams et al. (2016) which use an affine term structure

model for the joint pricing of nominal and real yields that accounts for potential lack of

liquidity on US and UK data.

Importantly, all of the contributions cited above use standard term structure models

to extract inflation expectations, which means no ZLB is imposed on the nominal yield

curve. This would imply model misspecification if applied to UK data, since recent UK

nominal yields are arguably constrained by the ZLB.

Our analysis of UK yield curves uses data ranging from January 1986 to August 2014.

We find that Gaussian affine term structure models and ZLB-consistent models generate

different results at the ZLB. Compared to a standard affine term structure model, a ZLB-

consistent model performs relatively better in a ZLB setting and effectively captures the

stylized facts of yield curves in a low interest rate environment. These stylized facts

include: (i) the non-negativity of UK nominal yields and, (ii) the volatility compression

of short- and medium-term yields.

The ZLB model is then exploited to estimate inflation expectations and risk premiums.

We find evidence that medium- and long-term inflation expectations are contained within

narrower bounds since the early 1990s, suggesting monetary policy credibility improved

after the introduction of inflation targeting. In addition, we show that the sharp increase

in inflation risk premiums in the late 2008 is likely to be partially driven by liquidity and

pricing distortions in the inflation-linked bond market. Though inflation risk premiums

dropped soon after March 2009, they have been steadily increasing since August 2013 as

investors might have been placing more weight on future inflation uncertainty.

The paper is structured as follows. In Section 2 we estimate term structure models for

nominal yields. In Section 3 we estimate a joint term structure model of nominal and real

curves using an SLB-NS model that restricts solely nominal yields in a positive domain.

Section 4 provides and analyzes the decomposition of BEI rates into two components,

namely inflation expectations and risk premiums. We provide concluding remarks in

Section 5. Appendix 6 encloses further technical details.
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2. Modeling nominal UK yields at the zero lower bound

In this section we estimate term structure models for the nominal yield curve. In particular,

we consider two alternative term structure models. The first is affine and Gaussian (and

therefore does not take into account the ZLB restriction) while the second is a shadow-

rate model (and therefore does take into account the ZLB restriction). We then compare

the two models in terms of: (i) replicating yield curve stylized facts in a low interest

rate environment, (ii) in-sample fit, (iii) estimated expectations, and (iv) estimated term

premiums. Our empirical evidence points towards supporting the use of shadow-rate

models in fitting UK nominal yields.

We start by describing the affine term structure model, and how it can be modified

to implement the ZLB. We adopt the framework laid down Christensen et al. (2011) and

Christensen and Rudebusch (2015) from which this section draws heavily on and to which

the interested reader may refer to for a complete discussion. Here, to make the paper

self-contained, we provide a brief outline of these models.

2.1. AFNS model for nominal yields

We consider the Arbitrage Free Nelson and Siegel dynamic term structure model (AFNS)

of Christensen et al. (2011). The AFNS is an asset pricing model which relies on the

existence of a physical measure P and a risk-neutral measure Q to disentangle expectation

components from risk premium components. This model uses three latent factors (level,

slope, and curvature, respectively denoted by LN
t , SN

t , CN
t ) to describe the yield curve.3

The factor loadings feature the empirically popular Nelson and Siegel (1987) functional

form and are consistent with the absence of arbitrage, while yields are affine in the latent

factors. Specifically, the latent state vector XN
t =

(

LN
t , SN

t , CN
t

)

′

solves the following

system of stochastic differential equations under the risk-neutral measure Q:

dXN
t = κN,Q

[

θN,Q
−XN

t

]

dt+ σNdW
XN ,Q
t , (1)

3It is widely accepted in the literature that three pricing factors are typically considered sufficient
(see Litterman and Scheinkman, 1991; Ang and Piazzesi, 2003). This is also confirmed via a principal
component analysis. Further details are available in Subsection 2.3.
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where θN,Q is the unconditional mean of the process, κN,Q is the mean-reversion matrix

and W
Q
t denotes a three-dimensional Wiener process.

Since the pricing factors are latent, a set of normalization restrictions is used to identify

the model. Specifically, θN,Q = [0, 0, 0]′, the diffusion σN is a diagonal matrix with entries

(σ11,N , σ22,N , σ33,N )′, and κN,Q is defined as:

κN,Q =













ε 0 0

0 λN
−λN

0 0 λN













, (2)

where λN is a mean-reversion parameter and ε = 10−6 to obtain a near unit root behavior

for the level factor.

The instantaneous risk-free rate is an affine function of the state variables and is

specifically defined as the sum of the level and slope factors:

rNt = LN
t + SN

t . (3)

Note that the curvature factor does not feature in the instantaneous risk-free rate as

the latter is a driver of yields with medium-term maturities.4 As shown in e.g. Ang and

Piazzesi (2003), nominal zero-coupon bond prices are exponentially affine functions of the

state variables. As an immediate consequence, the representation of nominal zero-coupon

yields with maturity T at time t is given by an affine function of the state variables, as

shown below:

yN (t, T ) = −
AN (t, T )

T − t
−

BN (t, T )′

T − t
XN

t

= LN
t +

(

1− e−λN (T−t)

λN (T − t)

)

SN
t +

(

1− e−λN (T−t)

λN (T − t)
− e−λN (T−t)

)

CN
t −

AN (t, T )

T − t
,

(4)

where AN (t, T ) and BN (t, T ) are the unique solutions to a system of Riccati equations.

AN (t, T ) is known as the adjustment term (see, Christensen et al., 2011, for the derivation)

4The level factor drives all maturities (long and short), while the slope and curvature factors predom-
inantly drive short-term and medium-term maturities, respectively.
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and BN (t, T ) matches the Nelson-Siegel factor loadings. The AFNS model is formulated

in continuous time and Girsanov’s theorem ensures the change from the physical to the

risk-neutral measure, dWQ
t = dW P

t + ΓN
t dt, where ΓN

t is the market price of risk. Under

essentially affine risk premium specifications (see, Duffee, 2002; Cheridito et al., 2007), it

takes the form below, with γN0 being a three-dimensional vector and γN1 a 3x3 matrix:

ΓN
t = γN0 + γN1 XN

t . (5)

We can now extract the latent state variables XN
t =

(

LN
t , SN

t , CN
t

)

′

under the physical

measure. The dynamics are given by the following stochastic differential equation:

dXN
t = κN,P

[

θN,P
−XN

t

]

dt+ σNdW
XN ,P
t . (6)

The key parameters are κN,P (on which we impose the restrictions stemming from the

general-to-specific method detailed in Subsection 2.3), θN,P (which is unrestricted) and

σN (which has a diagonal structure).

2.2. SLB-NS model for nominal yields

We now consider how the model described above is modified in order to implement the

ZLB restriction. The adjustments described in this Subsection imply that a non-linearity

is introduced in the framework, and therefore the model implementing the ZLB is no longer

Gaussian nor affine, but still features loadings in line with Nelson and Siegel (1987).5 This

model is introduced in Christensen and Rudebusch (2015), and relies on contributions by

Black (1995) and Krippner (2012).6

The introduction of the ZLB hinges on the definition of an unobservable variable —

the shadow-rate — which can be thought of as the policy rate that would generate the

observed yield curve had the ZLB not been binding. The shadow-rate will have the same

dynamics as the instantaneous risk-free rate under the AFNS, while the new dynamics for

5Specifically, the loadings of the shadow yield curve are as for the Nelson-Siegel model, while the
loadings for the lower-bound yield curve, which are those relevant to the observed data, are attenuated
versions of the Nelson-Siegel model. For further details refer to Krippner (2015).

6Note that the model is not arbitrage-free, but is a very close and tractable approximation to the
framework by Black (1995). These points are discussed further in Christensen and Rudebusch (2015) and
Krippner (2015).
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the instantaneous rate will consist of the maximum between the shadow-rate and zero.7

The latent shadow-rates and instantaneous rates are respectively defined as:

sNt = LN
t + SN

t , (7)

rNt = max
{

0, sNt
}

. (8)

As in the AFNS, the state dynamics under the risk-neutral Q measure and the physical

P measure are given by Equations (1) and (6), respectively. We now use a few important

concepts borrowed from the bond option price literature.8 Recently, Krippner (2012)

and Krippner (2013) develop a shadow-rate framework in which a representation for the

ZLB instantaneous forward rate is provided. This representation is valid for all Gaussian

term structure models, including the AFNS, and depends on the instantaneous forward

shadow-rates as well as an additional component, which is a function of the conditional

variance of a European call. In the case of the SLB-NS model, analytical solutions for the

instantaneous forward shadow-rates and the conditional variance are provided by Chris-

tensen and Rudebusch (2015), and we report them in Appendix 6 for reference.9 The ZLB

zero-coupon bond yields, denoted by yN (t, T ), are given by:

yN (t, T ) =
1

T − t

∫ T

t

[

f(t, s)Φ

(

f(t, s)

ω(t, s)

)

+ ω(t, s)
1

√

2π
exp

(

−
1

2

[

f(t, s)

ω(t, s)

]2
)]

ds. (9)

It is important to note at this stage that yN (t, T ) is no longer a linear function of

the state variables, unlike in the AFNS model. This non-linearity is translated in the

estimation procedure, whereby a conventional Kalman filter cannot be used and is replaced

7The same analysis can be conducted with a different threshold. Recent developments in Denmark
and Switzerland have shown that despite the existence of physical cash, interest rates can go negative;
nonetheless, rates seem to be bound below by a threshold known as the convenience yield. In the case of
the UK, we opt for zero, as we want to reflect an “effective” lower bound for the UK that accounts for the
convenience yield as well as the possibility of future downward revisions of the policy rate. Indeed, outside
the sample considered in this paper, the bank rate has been further reduced to 25 basis points in response
to the Brexit referendum. Similar lower bound thresholds of zero for the UK have been supported by the
literature (see, Andreasen and Meldrum, 2015).

8As formulated in Krippner (2012), in the presence of currency, the investor has the option but not the
obligation to hold cash. Therefore, if a zero-coupon bond trades below par (implying a positive yield), the
investor will choose to hold the bond; however if the bond trades above par (implying a negative yield),
the investor’s return can be maximized by holding cash, with the bond trading at par. Hence, when the
optionality of cash exists, the price of a bond can be expressed as the price of a shadow-rate zero-coupon
bond (which can trade above par) minus a call option whose underlying is the shadow-bond price.

9This is done by setting the vector (X1, X2, X3)
′, and variables σ11, σ22, σ33, found in Appendix 6,

equal to (LN
t , SN

t , CN
t )′ and σ11,N , σ22,N , σ33,N , respectively.
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by an extended Kalman filter.10

2.3. Data and empirical results

We estimate both models using nominal zero-coupon UK yields. The data set consists of

continuously-compounded monthly nominal yields spanning from October 1986 to August

2014 and includes a set of seven maturities, namely 6, 12, 24, 36, 60, 84 and 120 months.11

Interestingly, the time period under analysis incorporates three main changes in monetary

policy practices in the UK: the introduction of inflation targeting in September 1992,

the Bank of England’s independence in May 1997, and the introduction of ‘Quantitative

Easing’ in March 2009.

We first conduct a principal component analysis (PCA) to determine the number of

pricing factors required to explain the cross-sectional variation of nominal yields. Second,

for each of our two models (AFNS and SLB-NS), we use a general-to-specific method in

order to impose the relevant restrictions on the mean-reversion matrix κN,P.12

Table 1 displays the loadings from the PCA for the set of maturities and the per-

centage variation of yields that is being captured by each component. Note that the first

component is characteristic of a level factor due to its homogeneity, the second component

incorporates a sign switch between shorter and longer maturities hence displaying a slope

feature and finally the third component, being U-shaped, has the behavior of a curva-

ture factor. Additionally, the first three components explain 99.99% of the cross-sectional

yield variation. The PCA results validate the literature’s widespread use of three factors

bearing the interpretation of level, slope and curvature.

It is at this point that the general-to-specific strategy comes into play. We implement

it to find the best specification for the mean-reversion matrix κN,P. The procedure goes

as follows. First, we estimate the model without setting any restrictions on κN,P. Subse-

quently, we run a second estimation, this time setting the least significant element of κN,P

10Additional information regarding the extended Kalman filter is provided in Online Appendix A. Note
that the use of the extended Kalman filter is conventional in this literature, while, alternatives to this
procedure are the iterated extended Kalman filter and the unscented Kalman filter.

11The UK DMO issues bonds that have maturities of up to around 55 years. The aim of this study is
to only analyze rate dynamics up to 10 years.

12Note that using the so-called preferred specification is of importance due to the sensitivity of results
to different specifications (see, Joslin et al., 2011, 2014; Christensen and Rudebusch, 2015). The issue
of sensitivity is particularly relevant when considering the estimation of risk premiums, given they rely
heavily on the estimation of κN,P.
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(stemming from the previous estimation) to zero. We repeat this procedure until we are

left with a diagonal κN,P, and at each iteration, we compute the Akaike Information Cri-

terion (AIC) and Bayes Information Criterion (BIC). We rule our decision by minimizing

the AIC (when the AIC and BIC decision rules do not coincide).13

The results of the general-to-specific analysis on the AFNS model are displayed in Ta-

ble 2, and the preferred specification is given by specification (6), which is consistent with

Christensen and Rudebusch (2012)’s findings for the UK. Table 3 indicates the parameter

estimates of the AFNS specification. The results of the general-to-specific method applied

to the SLB-NS model are found on Table 4 and indicate that the preferred specification

is given by specification (5). The estimated parameters are found on Table 5. The in-

sample fit of the AFNS and SLB-NS models is comparable, with the average root mean

squared errors amounting to roughly 4 basis points. Rather than the in-sample fit, the

main benefit of our model is instead the ability to replicate key stylized facts such as

volatility attenuation and a zero probability of having short-term negative rates, which

are both not attainable using a Gaussian model. We devote the next Subsection 2.4 to

the importance of accounting for the ZLB in term structure models.

2.4. The importance of modeling the ZLB

In this Subsection, we explain why including the ZLB in a term structure model is impor-

tant for the UK, and how it affects the results.

Figure 1 displays the state variables, namely the level, slope and curvature, estimated

using the AFNS and SLB-NS models, respectively. The Figure shows that, prior to the

ZLB period, state variables estimated from the two models roughly coincide and have a

correlation of approximately 99%. During the ZLB, this feature persists for both the level

and the slope; however the curvature factor exhibits a significant change in behavior from

one model to another, with the correlation now dropping to roughly 84%. This could be

explained by the fact that the ZLB imposes a non-linear restriction (see Eq. (9)), which

potentially is best translated into effects on the non-linear curvature state variable.

13Since in any given step of the procedure the removed coefficient is (generally) an insignificant one,
the overall effect of the removal of such a coefficient on the likelihood is small, when one moves from one
estimated model to the one immediately following it. However, when more restrictions get imposed, the
difference between the likelihoods becomes significant. Note that a similar pattern can be found in other
papers such as Christensen et al. (2010) and Christensen and Rudebusch (2012).

10



Nominal yields can be further decomposed into two components: the so called risk-

neutral yields and the term premiums. The latter can be computed through numerical

methods and is given by:

TPN (t, T ) = yN (t, T )−
1

T − t

∫ T

t

EP
t

[

rNs
]

ds. (10)

In order to assess the effect of accounting for the ZLB on expectations, Panel (a) of

Figure 2 depicts the expectation components of the 10-year nominal yield obtained using

the preferred AFNS and SLB-NS models, respectively. We observe that neglecting the

ZLB restriction leads to an overestimation of the fitted expectation term of the ten-year

yield by up to 1%. This is consistent with Christensen and Rudebusch (2012)’s result

which states that declines in US treasury yields mainly reflect lower expectations. In

Panel (b) of Figure 2, we provide the estimates of the 10-year fitted term premiums of

nominal yields, with and without the ZLB assumption. At first glance, we notice the two

series do not coincide even prior to the ZLB period. This finding is consistent with a

similar comparison conducted by Ichiue and Ueno (2013). This difference can be justified

by the highly sensitive nature of term premiums to different preferred specifications used

by each of these models. More importantly, prior to the ZLB, both term premiums track

each other and move in the same direction. Conversely, in recent years, models neglecting

the ZLB restriction tend to generate implausibly large negative term premiums (see, Kim

and Singleton, 2012). Moreover, our findings corroborate Malik and Meldrum (2016)’s

result whereby UK bond term premiums are positively related to uncertainty about future

inflation. Indeed, in line with their findings, our ZLB-consistent 5-year term premium

displays a correlation of 89% with 3-year survey-based inflation uncertainty measures,

unlike its Gaussian counterpart which displays a correlation of -21%.14

Moreover, it is worth mentioning that the expectation component under the Gaussian

model is typically higher than under the shadow-rate model due to the fact that Gaussian

models have a tendency to revert back to the mean relatively fast. In contrast, shadow-

rate models are designed to maintain model-implied yields and their expectation terms

relatively low for prolonged periods of time (Christensen and Rudebusch, 2013).

143-year survey-based inflation uncertainty measures are constructed using the conditional variance
implied by the Bank of England’s Survey of External Forecasters’ aggregate distribution function.
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Finally, another key fact that a non-ZLB model generates is a positive probability of

negative rates. Following the analysis by Christensen and Rudebusch (2013), in Panel (a)

of Figure 3 we show that — in the absence of the ZLB restriction — the probability of

negative rates implied by the Gaussian AFNS model jumps to about 50% after the financial

crisis. Similarly, Panel (b) of Figure 3 shows that while the Gaussian AFNS model imposes

homoskedasticity throughout the sample, the ZLB-consistent SLB-NS model replicates the

stylized fact of volatility attenuation in yields, during the period 2008-2014 (see, Filipovic

et al., 2016). Note that such volatility measures are defined as the square root of the

model-implied conditional yield variances, and those are obtained using the conditional

covariance matrix of the state variables. In the case of the AFNS model the volatility is

available in closed-form, while in the case of the SLB-NS model, standard Monte Carlo

simulations are used.15

Therefore, compared to a standard affine Gaussian term structure model, a ZLB-

consistent model performs relatively better by capturing the stylized facts of the yield

curve at the ZLB.16

3. Joint modeling of nominal and real UK yields at the zero

lower bound

In this Section, we propose and estimate a new model that combines a ZLB-consistent term

structure model for the nominal yield curve with a standard Gaussian affine term structure

model for real yields. This novel modeling choice offers the possibility to consistently

estimate market-implied inflation expectations and associated risk premiums across sample

periods that include nominal yield curve data constrained by the ZLB, which will be

discussed in Section 4.

3.1. The model

Our methodological contribution is to extend the shadow-rate model to allow for the joint

pricing of nominal and real sovereign bonds such that only nominal yields are bound to

15Note that the volatility can also be computed using numerical integration.
16Note that the shadow-rate series we obtain is similar to that of Wu and Xia (2016) for the UK.
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be non-negative. As far as future inflation projections are concerned, the benefits of using

an asset-pricing model come into play by enabling the disentanglement of inflation risk

premiums from BEI rates, thus providing estimates of pure inflation expectations.

We first consider the structure of our joint SLB-NS model. The joint latent state

vector is given by XJ
t =

(

LN
t , SN

t , Ct, L
R
t , S

R
t

)

′

.17 The state vector XJ
t solves the following

stochastic differential equations under the risk-neutral measure Q:

dXJ
t = κJ,Q

[

θJ,Q −XJ
t

]

dt+ σJdW
XJ ,Q
t , (11)

where dWQ
t is a five-dimensional Wiener process.

For identification purposes, the following restrictions are imposed: θJ,Q = [0, 0, 0, 0, 0]′ ,

the diffusion σJ is a diagonal matrix whose elements are (σ11,J , σ22,J , σ33,J , σ44,J , σ55,J)
′,

and κJ,Q is defined as:

κJ,Q =

























ε 0 0 0 0

0 λN
−λN 0 0

0 0 λN 0 0

0 0 0 ǫ 0

0 0 0 λR
−λR

























, (12)

where λN and λR are scalars that represent the speed of mean-reversion for nominal and

real yields respectively, and ε = 10−6.

The joint SLB-NS model restricts nominal yields in the positive domain while simul-

taneously keeping real yields unrestricted. The instantaneous risk-free nominal and real

rates are thus given respectively by:

rNt = max
{

0, LN
t + SN

t

}

, (13)

rRt = LR
t + SR

t . (14)

We note that the nominal instantaneous risk-free rate is the maximum between zero and

17We thank an anonymous referee for pointing out this specification. This specification matches the
empirical characteristics of the data as determined by the PCA in Table 1. That is, the nominal yield
curve data is well-explained by three factors (level, slope, and curvature), and the real yield curve data is
well-explained by two factors (level and slope).
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the nominal shadow-rate, while the real instantaneous risk-free rate is linear in the state

variables. Let us denote by yN (t, T ) and yR (t, T ) the ZLB nominal zero-coupon bond

yields and the real zero coupon bond yields, respectively. In Appendix 6, we provide

further details on yN (t, T ).18 Their representations are given as follows:

yN (t, T ) =
1

T − t

∫ T

t

[

fN (t, s)Φ

(

fN(t, s)

ωN (t, s)

)

+ ωN (t, s)
1

√

2π
exp

(

−
1

2

[

fN(t, s)

ωN (t, s)

]2
)]

ds,

(15)

yR (t, T ) = LR
t +

(

1− e−λRτ

λRτ

)

SR
t + αR

(

1− e−λRτ

λRτ
− e−λRτ

)

Ct −
AR(τ)

τ
, (16)

where we denote by αR the weight of real yields on the curvature of nominal yields.

This model can be written in a state-space representation and estimated via quasi-

maximum likelihood. Note that nominal yields and real yields are non-linear and affine

functions of the state vector, respectively. As a consequence, to accommodate for the

non-linearity, the computation of the likelihood requires the use of an extended Kalman

filter.

The market price of risk under the essentially affine risk premium specifications takes

the form:

dWQ
t = dW P

t + ΓJ
t dt, (17)

ΓJ
t = γJ0 + γJ1 X

J
t . (18)

By applying the change of measure, we extract the latent state variable vector XJ
t =

(

LN
t , SN

t , Ct, L
R
t , S

R
t

)

′

which solves the stochastic differential equations below:

dXJ
t = κJ,P

[

θJ,P −XJ
t

]

dt+ σJdW
XJ ,P
t , (19)

where P denotes the physical measure.

18This is done by setting the vector (X1, X2, X3)
′, and variables σ11, σ22, σ33, found in Appendix 6,

equal to (LN
t , SN

t , Ct)
′ and σ11,J , σ22,J , σ33,J , respectively.
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3.2. Data and empirical results

We consider a data set combining nominal and real zero-coupon bond yields. Specifically,

the data consists of continuously-compounded monthly nominal and real yields spanning

from October 1986 to August 2014 and includes a set of seven maturities for nominal yields,

namely, 6, 12, 24, 36, 60, 84 and 120 months, and an additional set of six maturities for real

yields: 60, 72, 84, 96, 108 and 120 months. Note that we have chosen longer maturities for

real yields, in comparison to nominal yields, due to a reduced liquidity of real sovereign

bonds in the short-end.19

As in the nominal case, before enforcing the zero lower-bound on nominal yields, we

need to first find the preferred specification of our mean reversion matrix κJ,P. We hence

proceed in conducting such a strategy on a joint SLB-NS model, which imposes the non-

negativity assumption solely on nominal yields.

The results of the general-to-specific method applied to the joint SLB-NS model are

found on Table 6 and indicate that the preferred specification is given by specification

(20). The estimated parameters stemming from this preferred specification are found on

Table 7. The fit of both nominal and real yields is very satisfactory (i.e., the average root

mean squared errors is roughly equal to 5 basis points) and further allows us to explore

inflation expectations and risk premiums, which we discuss in the next Section.

4. Inflation expectations and risk premiums

There is a considerable number of papers examining inflation expectations and risk pre-

miums using standard term structure models. Prominent examples include Chen et al.

(2005), Christensen et al. (2010), Chun (2011), Chernov and Mueller (2012), Grishchenko

and Huang (2012), D’Amico et al. (2014) and Hordahl and Tristani (2014), while studies

on the UK, in particular, include Joyce et al. (2010) and Abrahams et al. (2016). Im-

portantly, all of these contributions do not make allowances for the ZLB on the nominal

19The BEI data are provided by the DMO and are not publicly available. However, they are virtually
equivalent to the data provided by the Bank of England. Specifically, the models of the DMO and the Bank
of England use Variable Roughness Penalty (VRP) estimates of nominal and real spot rates, which are
computed following Anderson and Sleath (2001). The only difference is that, unlike the Bank of England,
the DMO does not use General Collateral repo rates but only gilt data with maturity greater than 3
months. In practice, this difference has an extremely limited impact —of no more than two basis point
—on the estimated BEI rates.
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yield curve. This implies model misspecification if applied to UK data, since recent UK

nominal yields are arguably constrained by the ZLB (see Subsection 2.4).

In this Section we address the decomposition of BEI rates into inflation risk premiums

and expectations. The existence of risk-neutral and physical measures provides us this de-

composition. We denote by
dMN

t

MN
t

and
dMR

t

MR
t

, the nominal and real pricing kernel dynamics,

respectively, and provide their expressions below:

dMN
t

MN
t

= −rNt dt− ΓJ ′

t dW
J,P
t , (20)

dMR
t

MR
t

= −rRt dt− ΓJ ′

t dW
J,P
t . (21)

By using the two stochastic discount factors above, one can extract the following system

of equations (see, Christensen et al., 2010, for further details):

BEI(t, T ) = yN (t, T )− yR(t, T )

= yN (t, T ) + Z(t, T )− yR(t, T )

= yR(t, T ) + πe(t, T ) + φ(t, T ) + Z(t, T )− yR(t, T )

= πe(t, T ) + Z(t, T ) + φ(t, T )

= πe(t, T ) + φ(t, T ),

(22)

πe(t, T ) = −
1

T − t
ln

{

EP
t

[

exp

(

−

∫ T

t

(rNu − rRu )du

)]}

, (23)

where πe(t, T ), πe(t, T ) and φ(t, T ) denote respectively the inflation expectation obtained

using the shadow-rate, the ZLB-consistent inflation expectation (obtained using the short-

rate) and inflation risk premium for maturity T (at time t). The term Z(t, T ) represents

the “option effect”, which captures the value of the option of holding cash at the ZLB.

This effect is such that yN (t, T ) = yN (t, T ) + Z(t, T ) and πe(t, T ) = πe(t, T ) + Z(t, T ).

Figure A in Online Appendix B shows that the magnitude of Z(t, T ) can reach up to

approximately 80 basis points during the ZLB.20 The solution to the expression in curly

brackets in Eq. (23) is obtained through numerical procedures.21

20Online Appendix B provides further details on the decomposition of breakeven inflation rates in a ZLB
environment. The matter of how option effects should be treated in such a decomposition is interesting in
its own rights and would benefit from further research.

21Note that πe(t, T ) is a continuous process as it is implicitly a function of latent factors, hence it is
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In Panel (a) of Figure 4, we display the 5- and 10-year inflation expectations. We

identify a handful of key monetary policy events over the sample, including the adoption

of inflation targeting in September 1992 (sparked by the withdrawal of the pound sterling

from the European Exchange Rate Mechanism), the independence of the Bank of England

in setting monetary policy in May 1997, the cut of the bank rate to 0.5% and launch of

the asset purchase program in March 2009, the asset purchase program reaching a running

total of £375bn in July 2012 (thus amounting to roughly 30% of debt at the time), and

finally the adoption of forward guidance in August 2013 and February 2014. We note

that since 1992 inflation expectations have decreased, possibly as a result of investors’

confidence in the new monetary policy framework that was reinforced in the Bank of

England Act 1998; similar results are found in Joyce et al. (2010) and Andreasen (2012).

Since the mid-2000s, there is a tendency for the 5- and 10-year spot inflation projections

to be below the current inflation level, while at a 10-year horizon inflation projections

systematically undershoot target inflation after 2008.22

Panel (b) of Figure 4 depicts 5- and 10-year inflation risk premiums. We observe

that the compensation for inflation risk significantly dropped after the independence of

the Bank of England, suggesting a gained credibility in inflation targeting practices and

conveying a period of lower uncertainty. Moreover, there are indications that the fall in

term premiums observed in Figure 2 might very well be driven by lower inflation risk

premiums during that period, while the sharp increase in inflation risk premiums in the

late 2008 is likely to be partially driven by liquidity and pricing distortions in the inflation-

linked market (refer to Panel (a) of Figure 5, for liquidity premium estimates). Though

inflation risk premiums dropped soon after March 2009, they have been steadily increasing

since August 2013 as investors might have been placing more weight on future inflation

uncertainty.23

In 2008, inflation expectations decreased abruptly, reaching a trough of -3% in January

2009, stayed around 0 immediately after this period, and then eventually slowly reverted

not directly comparable to observed inflation.
22We take into account that inflation expectations are RPI based since real sovereign bonds differ from

nominal ones in that payments are adjusted in line with movements in RPI. Note that in December 2003,
the Bank of England changed its inflation target from a 2.5% level of RPIX to a 2% level of CPI.

23It is worth noting that, towards the end of our sample, UK breakeven rates are relatively higher than
in the US. Specifically, during the period 2013-2014, 5-year UK breakeven rates hovered around 3% while
their US counterparts fluctuated around 2%.
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back to up to 2%. The large downward swing observed between November 2008 and the

end of 2012 is decisively far relative to survey-based inflation expectations, which instead

hovered around 2% during this period.

This swing occurred in conjunction with a large volatility in the inflation-linked bond’s

market, which suffered reduced liquidity. At that time, the spread between BEI and

inflation-linked swap rates sharply widened to historical highs. As a result, it is likely

that part of the large blip observed in January 2009 has been affected by this event and is

therefore liquidity-related. To verify this conjecture we consider adjusting our estimates

for this liquidity effect.

Rather than embedding a liquidity risk premium in the model, we use a very simple

proxy measure of liquidity, given by the difference between inflation-linked swaps and BEI

rates (refer to Panel (a) of Figure 5). While this measure cannot be considered a pure

measure of liquidity premiums, it serves our goal of confirming the conjecture that the large

downward swing in expectations of January 2009 is at least partially due to liquidity issues.

Moreover, this proxy measure, proposed by Christensen and Gillan (2011), tracks well, and

actually is more conservative than those obtained using more sophisticated model-based

approaches (e.g. D’Amico et al., 2014; Andreasen et al., 2017).

Panel (b) of Figure 5 plots 5-year inflation expectations implied by our joint SLB-NS

estimation and their 5-year liquidity-adjusted counterparts. Liquidity-adjusted inflation

expectations are obtained by adding the estimated liquidity premium to model-implied

inflation expectations. Moreover, Figure 5 contains the time series of 3-year survey-based

inflation expectations (taken from the Bank of Englands Survey of External Forecasters).

The Figure lends support to the conjecture that the large downward swing observed

between November 2008 and the end of 2012 can be partially explained by liquidity issues

causing a distortion in market prices, however, even after adjusting for this effect, model-

based expectations appear to be well below survey expectations at the peak of the crisis.

This might reflect a difficulty of our parametric model to fully capture such an extreme

event, which included for example the sharp and sudden fall in RPI as shown in Panel

(a) of Figure 4.24. Subsequently to this sharp drop, model-implied inflation expectations

24It is also worth noting that survey-based inflation expectations tend to be more persistent than their
market-based counterparts, and are available at a lower frequency
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picked up and realigned with survey-based expectations by the beginning of 2011.

4.1. Discussion

Previous studies on the UK term structure include Joyce et al. (2010) and Abrahams

et al. (2016). The former only considers pre-2008 data in a Gaussian framework (lim-

iting thus comparability with our sample period), while the latter includes data on the

financial crisis without accounting for the inherent non-linearity in the presence of the

ZLB. Our nominal yield and BEI rate decompositions plotted in Figures 2 and 4 are in

line with the decompositions provided by Abrahams et al. (2016). Specifically, nominal

term premiums are of similar magnitudes, and tend to be, on average, negative during the

period 1997-2008, and starting 2012. Inflation risk premiums are embedded in nominal

term premiums and hence, negative term premiums can be suggestive of negative inflation

risk premiums. Indeed, both our inflation risk premiums (see Figure 4) and Abrahams

et al. (2016)’s are negative and of similar magnitude during the period 1997-2000 and tend

to oscillate around zero thereafter, until the outbreak of the Great Recession. However,

unlike Abrahams et al. (2016)’s estimates, our inflation risk premiums increase and turn

significantly positive during the crisis. Importantly, the imposition of the ZLB constraint

increases the persistence of the model, hence leading to a slower pace of policy normal-

ization and larger nominal term premiums for a given level of yields, leading to a larger

inflation risk premium.

Notably, our ZLB-consistent 5- and 10-year inflation risk premiums display a correla-

tion of 68% and 72% with survey-based inflation uncertainty measures and of -26% and

-21% with year-over-year annual GDP growth, respectively. Instead, if one were to use the

5- and 10-year inflation risk premium Gaussian counterparts that do not account for the

ZLB, these correlations would have the opposite signs: -47% and -4% (with survey-based

inflation uncertainty) and 17% and 3% (with year-over-year annual GDP growth), respec-

tively. These results suggest that accounting for the ZLB can generate counter-cyclical

inflation risk premiums (given the negative correlations obtained between model-implied

inflation risk premiums and GDP growth).25

25We further regress our model-implied 5- and 10-year inflation risk premiums on an inflation uncertainty
proxy and find that the respective slope coefficients are positive and statistically significant at a 1%
significance level, while the R-squared coefficients are equal to 47% and 51%, respectively. We replicate
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5. Conclusions

This paper first examines whether traditional models produce different results than ZLB-

consistent models for the UK, using data ranging from January 1986 to August 2014. We

find that, compared to a standard affine term structure model, a ZLB-consistent model

performs relatively better in a ZLB setting, in terms of replicating the stylized facts of

the yield curve in low interest-rate environments. We find that imposing the ZLB in the

model specification allows correcting for the unreasonably low term premium projections

stemming from a standard model not featuring a ZLB restriction after 2009.

Based on this superior performance of the shadow-rate model at the ZLB (vis-à-vis

standard Gaussian affine term structure models) for the nominal yield curve, we subse-

quently build a ZLB-consistent model that jointly prices nominal and real yields in the

UK. We specify and estimate a joint SLB-NS model that is able to impose the ZLB restric-

tion on nominal yields while allowing real yields to fall below zero. The model proposed

is consistent with the behavior of UK data in the last decade, since it takes into account

the existence of a ZLB. Previous studies on the UK term structure only consider pre-2008

data (in the case of Joyce et al., 2010) and do not allow for the non-linearity inherent in

the presence of the lower bound (in the case of Abrahams et al., 2016).

The model we propose is used to estimate inflation expectations and risk premiums in

the presence of the ZLB. Our decompositions provide evidence supporting the conclusion

that the Bank of England Act 1998 established credibility in inflation targeting. Finally, we

find that inflation premiums have been steadily increasing since August 2013, suggesting

that investors might be placing more weight on future inflation uncertainty.

this analysis on the Gaussian counterparts and conversely find that the slope coefficients are negative and
statistically significant in the case of the 5-year inflation risk premium and insignificant in the case of the
10-year inflation risk premium.
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6. Appendix: SLB-NS model à la Krippner

The instantaneous shadow forward rates are obtained by deriving the logarithmic bond

prices P (t, T ) with respect to the maturity T , as follows:

f(t, T ) = −
∂

∂T
lnP (t, T )

= X1 + e−λ(T−t)X2 + λ(T − t)e−λ(T−t)X3 +Af (t, T ),

(24)

where Af (t, T ) is obtained below:

Af (t, T ) = −

∂A(t, T )

∂T

= −
1

2
σ2
11(T − t)2 −

1

2
σ2
22

(

1− e−λ(T−t)

λ

)2

−
1

2
σ2
33

(

(T − t)e−λ(T−t)
−

1− e−λ(T−t)

λ

)2

.

(25)

Transforming the conditional variance of a European call option maturing at time T ,

contingent on the zero-coupon bond with maturity T + ǫ, we can obtain a representation

of ω(t, T )2:

ω(t, T )2 = σ2
11(T − t) + σ2

22

(

1− e−2λ(T−t)

2λ

)

+ σ2
33

[

1− e−2λ(T−t)

4λ
−

1

2
(T − t)e−2λ(T−t)

−
1

2
λ(T − t)2e−2λ(T−t)

]

.

(26)

Note that Eqs. (25) and (26) hold for the case of a diagonal covariance matrix. Christensen

and Rudebusch (2015) and Krippner (2015) provide expressions allowing for correlations.

Let us now denote by f(t, T ), the ZLB instantaneous forward rate. Setting Φ(.) to be

the standard normal cumulative probability, we obtain a representation for f(t, T ):

f(t, T ) = f(t, T )Φ

(

f(t, T )

ω(t, T )

)

+ ω(t, T )
1

√

2π
exp

(

−
1

2

[

f(t, T )

ω(t, T )

]2
)

. (27)
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Table 1: Principal components in nominal and real yields

Maturity First PC Second PC Third PC

Nominal yields

6 months 0.4212 -0.4861 0.5232
12 months 0.4120 -0.3699 0.0981
24 months 0.3971 -0.1723 -0.3303
36 months 0.3841 -0.0029 -0.4839
60 months 0.3622 0.2596 -0.3315
84 months 0.3428 0.4339 0.0451

120 months 0.3146 0.5844 0.5113
% explained 97.90 1.95 0.14

Real yields

60 months 0.4321 0.6563 0.5152
72 months 0.4199 0.3210 -0.2525
84 months 0.4099 0.0396 -0.4941
96 months 0.4017 -0.1922 -0.3526

108 months 0.3949 -0.3805 0.0350
120 months 0.3893 -0.5320 0.5488
% explained 98.96 1.03 0.01

We provide the loadings on the three first principal components of nominal yields at maturities of 6, 12, 24, 36,
60, 84 and 120 months and the three first principal components of real yields at maturities of 60, 72, 84, 96,
108 and 120 months. The percentage cross-sectional variation accounted for by each component is displayed on
the final row. The data comprises of monthly nominal and real zero coupon bond yields from October 1986 to
August 2014.
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Table 2: Evaluation of alternative specifications of the three factor AFNS model for nom-
inal rates

Alternative specifications logL m p-value AIC BIC

(1) Unrestricted κN,P 13324.1389 23 -26602.2779 -26514.5529

(2) κ
N,P
31

= 0 13324.1386 22 0.9803 -26604.2773 -26520.3664

(3) κ
N,P
31

= κ
N,P
32

= 0 13324.1379 21 0.9993 -26606.2759 -26526.1791

(4) κ
N,P
31

= κ
N,P
32

= κ
N,P
21

= 0 13324.1174 20 0.9978 -26608.2347 -26531.9521

(5) κ
N,P
31

= ... = κ
N,P
12

= 0 13324.0991 19 0.9998 -26610.1982 -26537.7297

(6) κ
N,P
31

= ... = κ
N,P
13

= 0 13323.8107 18 0.9890 -26611.6215 -26542.9671

(7) κ
N,P
31

= ... = κ
N,P
23

= 0 13321.4142 17 0.5706 -26608.8284 -26543.9882

We estimate and evaluate seven alternative specifications of the individual standard AFNS model on nominal
yields. The restrictions imposed on κN,P for each alternative specification are reported on the first column. For
the estimation of each specification, we record its log-likelihood (LogL), number of parameters (m) and the
p-value of a likelihood ratio test of the hypothesis that a specification with (m− i) parameters is different from
the one with (m− i+1) parameters. The information criteria (AIC and BIC) are reported and we display their
minimum in bold.
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Table 3: Three factor AFNS estimates for nominal rates

κ
N,P
t κ

N,P
.,1 κ

N,P
.,2 κ

N,P
.,3 θN,P σN

i,i

κ
N,P
1,. 0.0848 - - 0.0824 0.0118

(0.031624) (0.031623) (0.033686)

κ
N,P
2,. - 0.3706 -0.2413 -0.0214 0.0174

(0.031623) (0.031623) (0.031631) (0.033907)

κ
N,P
3,. - - 0.4538 -0.0103 0.0304

(0.031623) (0.031628) (0.031768)

The estimated parameters of the κN,P matrix, θN,P vector, and diagonal diffusion matrix σN
i,i

are given for our

preferred individual three-factor standard AFNS model for nominal yields. The estimated value of λN is 0.4321
with standard deviation of 0.031623. The numbers in parentheses are the standard deviations of the estimated
parameters.
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Table 4: Evaluation of alternative specifications of the three factor SLB-NS model for
nominal rates

Alternative specifications logL m p-value AIC BIC

(1) Unrestricted κN,P 13591.3729 23 -27136.7458 -27049.0208

(2) κ
N,P
31

= 0 13591.3717 22 0.9614 -27138.7434 -27054.8326

(3) κ
N,P
31

= κ
N,P
12

= 0 13591.2280 21 0.8661 -27140.4559 -27060.3592

(4) κ
N,P
31

= κ
N,P
12

= κ
N,P
32

= 0 13591.1876 20 0.9940 -27142.3752 -27066.0926

(5) κ
N,P
31

= ... = κ
N,P
13

= 0 13590.6782 19 0.9069 -27143.3564 -27070.8879

(6) κ
N,P
31

= ... = κ
N,P
21

= 0 13589.1025 18 0.6767 -27142.2050 -27073.5507

(7) κ
N,P
31

= ... = κ
N,P
23

= 0 13586.1000 17 0.4226 -27138.1999 -27073.3597

We estimate and evaluate seven alternative specifications of the individual SLB-NS model on nominal yields.
The restrictions imposed on κN,P for each alternative specification are reported on the first column. For the
estimation of each specification, we record its log-likelihood (LogL), number of parameters (m) and the p-value
of a likelihood ratio test of the hypothesis that a specification with (m − i) parameters is different from the
one with (m − i + 1) parameters. The information criteria (AIC and BIC) are reported and we display their
minimum in bold.
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Table 5: Three factor SLB-NS estimates for nominal rates

κ
N,P
t κ

N,P
.,1 κ

N,P
.,2 κ

N,P
.,3 θN,P σN

i,i

κ
N,P
1,. 0.0362 - - 0.0513 0.0157

(0.034041) (0.007385) (0.000488)

κ
N,P
2,. 0.1103 0.3359 -0.2286 -0.0005 0.0206

(0.072374) (0.047283) (0.032776) (0.012462) (0.000833)

κ
N,P
3,. - - 0.4507 -0.0164 0.0324

(0.031654) (0.006607) (0.001453)

The estimated parameters of the κN,P matrix, θN,P vector, and diagonal diffusion matrix σN
i,i

are given for

our preferred individual three-factor SLB-NS model for nominal yields. The estimated value of λN is 0.4622
with standard deviation of 0.009396. The numbers in parentheses are the standard deviations of the estimated
parameters.

28



Table 6: Evaluation of alternative specifications of the five factor joint SLB-NS model

Alternative specifications logL m p-value AIC BIC

(1) Unrestricted κJ,P 26608.7127 51 -53115.4253 -52920.9047

(2) κ
J,P
45

= 0 26608.4935 50 0.5080 -53116.9870 -52926.2805

(3) κ
J,P
45

= κ
J,P
24

= 0 26608.3524 49 0.8684 -53118.7048 -52931.8124

(4) κ
J,P
45

= κ
J,P
24

= κ
J,P
52

= 0 26608.2849 48 0.9873 -53120.5698 -52937.4915

(5) κ
J,P
45

= ... = κ
J,P
32

= 0 26608.2836 47 1.0000 -53122.5673 -52943.3031

(6) κ
J,P
45

= ... = κ
J,P
35

= 0 26608.2781 46 1.0000 -53124.5563 -52949.1063

(7) κ
J,P
45

= ... = κ
J,P
15

= 0 26608.2621 45 1.0000 -53126.5242 -52954.8883

(8) κ
J,P
45

= ... = κ
J,P
12

= 0 26608.2057 44 1.0000 -53128.4113 -52960.5896

(9) κ
J,P
45

= ... = κ
J,P
13

= 0 26608.2011 43 1.0000 -53130.4022 -52966.3946

(10) κ
J,P
45

= ... = κ
J,P
25

= 0 26607.8972 42 0.9999 -53131.7944 -52971.6009

(11) κ
J,P
45

= ... = κ
J,P
31

= 0 26607.8868 41 1.0000 -53133.7737 -52977.3943

(12) κ
J,P
45

= ... = κ
J,P
43

= 0 26607.8501 40 1.0000 -53135.7003 -52983.1350

(13) κ
J,P
45

= ... = κ
J,P
34

= 0 26607.5563 39 1.0000 -53137.1126 -52988.3615

(14) κ
J,P
45

= ... = κ
J,P
51

= 0 26607.3570 38 1.0000 -53138.7139 -52993.7770

(15) κ
J,P
45

= ... = κ
J,P
42

= 0 26607.1214 37 1.0000 -53140.2428 -52999.1200

(16) κ
J,P
45

= ... = κ
J,P
54

= 0 26606.9659 36 1.0000 -53141.9318 -53004.6231

(17) κ
J,P
45

= ... = κ
J,P
21

= 0 26606.9071 35 1.0000 -53143.8141 -53010.3196

(18) κ
J,P
45

= ... = κ
J,P
23

= 0 26606.8994 34 1.0000 -53145.7988 -53016.1183

(19) κ
J,P
45

= ... = κ
J,P
14

= 0 26606.4894 33 1.0000 -53146.9789 -53021.1126

(20) κ
J,P
45

= ... = κ
J,P
53

= 0 26606.0090 32 1.0000 -53148.0180 -53025.9658

(21) κ
J,P
45

= ... = κ
J,P
41

= 0 26590.4770 31 0.0544 -53118.9540 -53000.7159

We estimate and evaluate thirteen alternative specifications of the joint SLB-NS model on nominal and real
yields. The restrictions imposed on κJ,P for each alternative specification are reported on the first column. For
the estimation of each specification, we record its log-likelihood (LogL), number of parameters (m) and the
p-value of a likelihood ratio test of the hypothesis that a specification with (m− i) parameters is different from
the one with (m− i+1) parameters. The information criteria (AIC and BIC) are reported and we display their
minimum in bold.
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Table 7: Five factor joint SLB-NS estimates

κ
J,P
t κ

J,P
.,1 κ

J,P
.,2 κ

J,P
.,3 κ

J,P
.,4 κ

J,P
.,5 θJ,P σJ

i,i

κ
J,PP
1,. 0.0890 - - - - 0.0551 0.0161

(0.031623) (0.036095) (0.031627)

κ
J,PP
2,. - 0.1327 - - - -0.0523 0.0205

(0.031623) (0.036508) (0.031666)

κ
J,PP
3,. - - 0.2461 - - 0.0181 0.0321

(0.031623) (0.031633) (0.031631)

κ
J,PP
4,. -0.2432 - - 0.4420 - 0.0166 0.0061

(0.031623) (0.031623) (0.031644) (0.031770)

κ
J,PP
5,. - - - - 0.4000 -0.0186 0.0271

(0.031623) (0.031623) (0.031625)

The estimated parameters of the κJ,P matrix, θJ,P vector, and diagonal diffusion matrix σJ
i,i

are given for our

preferred joint five-factor SLB-NS model for nominal and real yields. The estimated value of λN is 0.4606 with
standard deviation of 0.031623 and the estimated value of λR is 0.4558 with standard deviation of 0.031623.
The estimated value of αR is 0.2782 with standard deviation of 0.031623. The numbers in parentheses are the
standard deviations of the estimated parameters.
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Figure 1: Estimated state variables
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(a) Level factor
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(b) Slope factor
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(c) Curvature factor

State variables (measured in per cent), estimated using the preferred AFNS and SLB-NS
models. The vertical dotted line represents the date (March 2009) when the Monetary
Policy Committee announced a cut of the policy rate to 0.5% and an economic stimulus
via large-scale asset purchase programs.
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Figure 2: Fitted 10-year expectation component and term premium
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(a) Fitted expectation term of the 10-year nominal yield
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(b) Fitted 10-year nominal term premium

Fitted expectation term of the 10-year nominal yield — Panel (a) — and 10-year fitted
term premiums of nominal yields — Panel (b) — estimated using the preferred AFNS
and SLB-NS models. The light-gray bars indicate UK recessions. The vertical dotted
line represents the date (March 2009) when the Monetary Policy Committee announced
a cut of the policy rate to 0.5% and an economic stimulus via large-scale asset purchase
programs.
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Figure 3: The importance of the ZLB
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(a) Probability of the 6-month yield being negative using the AFNS
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(b) Conditional volatility of the 6-month yield

Panel (a) depicts the conditional probability of the UK’s 6-month nominal interest rate
being negative, implied by the estimated preferred AFNS model. Panel (b) depicts the
conditional volatility of the UK’s 6-month nominal interest rate, implied by the estimated
preferred AFNS and SLB-NS models, respectively. The vertical dotted line represents
the date (March 2009) when the Monetary Policy Committee announced a cut of the
policy rate to 0.5% and an economic stimulus via large-scale asset purchase programs.
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Figure 4: 5- and 10-year BEI rate decompositions
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(a) Inflation expectations by maturity, RPI inflation and old RPI inflation target level
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(b) Inflation premiums by maturity

The 5- and 10- year expected inflation rates — Panel (a) — and inflation risk premiums
— Panel (b) — implied by the preferred joint SLB-NS model. Panel (a) includes the
series for historical RPI inflation and the old RPI inflation target of 2.5%, which is
approximately consistent with the new 2% CPI target. The data span from October 1986
to August 2014. The light-gray bars indicate UK recessions. The vertical dotted lines
represent respectively: (i) September 1992, when the Bank of England adopted inflation
targeting, (ii) May 1997, when the Bank of England gained independence in setting
monetary policy and (iii) March 2009, when the Monetary Policy Committee announced
a cut of the policy rate to 0.5% and an economic stimulus via large-scale asset purchase
programs.
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Figure 5: Liquidity proxy and comparison of market-based and survey-based inflation
expectations

Time
2004 2006 2008 2010 2012 2014 2016

R
at

e 
(p

er
 c

en
t)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
5-year
10-year

(a) 5-year and 10-year liquidity premium estimates
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(b) Market-based and survey-based inflation expectations

Panel (a) reports estimates of 5- and 10-year liquidity premiums, obtained as the
difference between inflation-linked swaps and BEI rates, as described in Christensen and
Gillan (2011). Panel (b) reports 5-year inflation expectations implied by our joint SLB-NS
estimation and their 5-year liquidity-adjusted counterparts. 3-year survey-based inflation
expectations stemming from the Bank of England’s Survey of External Forecasters are
provided. 2-standard deviation bounds around these 3-year survey-based measures are
constructed using the conditional variance implied by the survey’s aggregate distribution
function.
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