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Abstract—To maximise spectrum access opportunities for white
space devices, incorporating real-time spectrum sensing with
geolocation database is a promising approach to enhance de-
tection resolution with reduced computation complexity. Ad-
vanced spectrum sensing techniques are needed to quickly and
accurately identify spectrum occupancy over a wide frequency
range. However, the stringent requirements from wideband
signal acquisition and processing pose a major implementation
challenge in compact devices with limited energy storage and
computation capabilities. In this paper, a hybrid scheme of sub-
Nyquist wideband spectrum sensing with geolocation database
is proposed to achieve accurate detection of the surrounding
spectrum with reduced number of required measurements and
computation complexity. Two iterative algorithms are modified
to incorporate a priori information from geolocation database,
therefore enabling spectrum sensing to be performed only on a
limited number of potentially vacant channels over TV White
Space. Theoretical analyses and simulation results show that
the proposed joint scheme speeds up the sensing process with
enhanced detection performance and smaller required sampling
rate, while the updated channel information from wideband
spectrum sensing reduces the risk of interferences to the dynamic
incumbent users.

Index Terms—Wideband Spectrum Sensing, Sub-Nyquist Rate
Sampling, TV White Space, Simultaneous Orthogonal Matching
Pursuit, `v norm minimisation.

I. INTRODUCTION

The rapid growth of Internet of things and mobile services
is overwhelming current static spectrum supply, and thus en-
couraging an urgent need for improved and dynamic spectrum
usage to mitigate the spectrum supply-demand gap [1]. There
is an increased interest in the promising technique of spectrum
sharing to facilitate efficient use of the spectrum driven by the
following three factors: first, there is a significant spectrum
crunch faced by the commercial mobile broadband users with
the compelling need to get additional spectrum for the wireless
broadband services [2]; second is the awareness that many
licensed frequency bands are underutilised in practice either
over time or geography [3]; finally, there have been some
rapid advances towards the development of dynamic spectrum
access through approaches such as geolocation database and
cognitive radio [4].

The threat of spectrum scarcity has encouraged the gov-
ernments to take critical steps towards releasing multiple
bands for dynamic spectrum sharing, such as TV White
Space (TVWS) [5], [6], Citizens Broadband Radio Service
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(CBRS) in the 3.5 GHz band [7], and the 5 GHz unlicensed
bands [8]. TVWS is the first major instance of spectrum
sharing to be considered, which refers to the unused TV
channels among the active ones in the ultra-high frequency
(UHF) spectrum [9]. The experiences and concepts of utilising
TVWS can also be extended to other white space bands.
Compared with traditional Wi-Fi, the superior penetration
propagation characteristic over UHF spectrum enables TVWS
to have longer communication distance and better penetration
through obstacles [10]. It has since been shown that over 50%
of locations in the UK are likely to have more than 150 MHz
of unutilized TV spectrum and that even 90% of locations
might have around 100 MHz of spectrum available [11].
Hence, making this spectrum available for reuse could bring
substantial value to the citizens and consumers [12]. The UK
communication regulator, Office of Communications (Ofcom),
has announced the licence exempt regulations for TVWS in
December 2015 [5]. Compact and low-power white space
devices (WSDs) for rural broadband/WiFi-like accesses could
therefore operate on the vacant channels [13].

To enable dynamic spectrum access over white space, fast
and accurate detection of the spectrum is crucial to ensure
that there is no harmful interference caused to the surround-
ing licensed services, including Digital Terrestrial Televisions
(DTT), Programme Making and Special Events (PMSE) users,
e.g., wireless microphone systems, and other future incumbent
users [11], [14], [15]. White space devices (WSDs) should
either sense the presence of primary signals or make use
of a geolocation database to determine which spectrum is
unused in the vicinity [5]. Current operational mechanism
to discover available TV channels is using the geolocation
database [16]. This is primarily because spectrum sensing is
expensive in cost, energy consumption, and hardware com-
plexity. In contrast, the geolocation approach does not require
complex hardware and is easier to implement, where devices
determine their locations and query a geolocation database that
will return a list of available frequency channels and their asso-
ciated maximum transmit powers at current location. However,
geolocation database suffers from its inherent inefficiency. The
geolocation approach uses propagation modelling to determine
the available spectra, and hence, is very conservative in the
channels it returns for a given location. Moreover, it can only
protect registered systems, but PMSE users operate mostly on
an unlicensed basis. For the concern of the speed of database
update, the use of real-time spectrum sensing in addition to
geolocation is proposed to resolve the issue for the efficient
use of white space and harmonious coexistence with dynamic
incumbent systems [17], [18].
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In [19] and [20], hybrid frameworks are proposed to incor-
porate the advantages of both geolocation database and spec-
trum sensing, in which different spectrum sensing modules are
sequentially performed at each channel after its occupancy is
initially determined by the geolocation database. However, for
the received signal over a wide frequency range, sequentially
scanning the channels one by one will introduce a long
sensing period and thus may cause missed opportunities or
interferences [21]. Directly acquiring the wideband signals
to detect spectral opportunities is thus desirable to capture
the instant spectrum changes [5]. To alleviate the high sam-
pling rate, compressive sensing was introduced to implement
wideband spectrum sensing [22]. In [23], a database assisted
compressive wideband spectrum sensing algorithm is proposed
to reduce the sensing costs by employing the information from
geolocation database to construct a non-iteratively reweighted
least square signal reconstruction. Specifically, the channel his-
torical power information from geolocation database is utilised
for the weight calculation to replace the iterative process of
weights updating in the iteratively reweighted least square
(IRLS) algorithm. However, the resolution and accuracy of
channel power information from geolocation database would
affect the reconstruction accuracy in such a non-iterative way.
Moreover, if unregistered PU appears or dynamic change of
the spectrum status occurs, the error in the prior information
from geolocation database would severely degrade the recov-
ery performance.

Motivated by the above challenges, a low-complexity hy-
brid scheme of sub-Nyquist wideband spectrum sensing with
geolocation database is explored in this paper for the effec-
tive use of white spaces within the coexistence of dynamic
incumbent systems, such as the wireless microphones that
do not register in the database. Recent works show that
the use of additional prior information on the support in
compressive sensing has advantages in terms of number of
required measurements and computational complexity during
the reconstruction stage [24]. To relax the sensing sensitivity
required on the sensor node, prior TV channel occupancy
status from geolocation database is utilised in the sensing
process. With the assists from geolocation database, part of
the complexity of local wideband sensing is transferred to the
core network, thus decreasing the processing complexity and
energy consumption required on the spectrum sensing.

To incorporate the channel status information from geoloca-
tion database, sub-Nyquist wideband spectrum sensing scheme
based on multicoset sampling is exploited [25], in which a low-
dimensional measurement matrix is computed to locate the
occupied channels through recovering its support based on the
jointly sparse nature of multiband signals. Two reconstruction
algorithms, greedy algorithm and `v-norm (0 < v < 1)
minimisation, are employed in the recovery process. Theo-
retical analyses and simulation results show that the proposed
hybrid scheme speeds up the sensing process with enhanced
detection performance and smaller sampling rate, while the
use of spectrum sensing can track the changes of spectrum
occupancy state in real-time. This is specially important when
the prior information from geolocation is not perfectly reliable,
so the instant channel occupancy state provided by spectrum
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Fig. 1: System architecture of the proposed hybrid scheme.

sensing reduces the risks of WSDs interfering with dynamic
incumbent users.

II. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

A. Signal Model

Assume that the observed signal x(t) is given by:

x(t) = s(t) + n(t), (1)

where s (t) is the primary signal and n(t) ∼ N (0, σ2
n) is the

additive white Gaussian noise with zero mean and variance
σ2
n.
The received signal x(t) is assumed to be a continuous-time

wideband signal. Since the wideband spectrum is normally
under-utilised in reality, x(t) bears a sparse property in the
frequency domain such that all (or most) of its energy is
concentrated in one or more disjoint frequency bands and
its spectral measure is small relative to the overall signal
bandwidth.

Without loss of generality, the wideband spectrum to be
monitored is evenly segmented into M narrowbands, each of
them with bandwidth B0. The channels are indexed from 0 to
M − 1. For TVWS spectrum regulation in UK, each channel
is 8 MHz and there are M = 40 channels ranging from 470 to
790 MHz. Suppose there are up to κ active channels occupied
during the sensing period with S = [S1,S2, ...,Sκ] denoting
the set containing the indices of the occupied channels. The
spectrum utilisation ratio is defined as α, then κ = α ·M . The
task of wideband spectrum sensing is to find the presences and
locations of the license transmissions or equivalently locating
the active channel set S.

B. System Architecture

Fig. 1 shows the block diagram of the proposed hybrid
scheme. The aim of this framework is to enable the WSDs
to use spectrum in the TV bands at a particular location and
time on a shared basis subject to ensuring that there would be
a low probability of harmful interference to other spectrum
users in the band, such as digital TV broadcast signals,
or dynamic incumbent systems, e.g., unregistered wireless
microphones. WSDs’ operation in TVWS will be controlled
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by the geolocation database, where WSDs measure their geo-
graphical location and query a geolocation database in order
to get information on available frequencies at this location.
The operational scenario with WSDs can be described as a
communication between a master device and a slave device.
Master WSD can establish a direct communication link with
the geolocation database and request operational parameters
for the transmission of any slave WSDs that are located within
its coverage area.

For the efficient use of white spaces within the coexistence
of dynamic incumbent systems, a joint scheme of geolocation
database and spectrum sensing is explored in this paper. The
rightmost side of Fig. 1 shows the diagram of the sensor
network, which can be accessed and configured remotely.
Spectrum sensing is implemented on the sensor nodes to scan
the overall spectrum in real-time, and reports the dynamic
changes of spectrum occupancy status to the geolocation
database. Furthermore, in the context of spectrum sensing,
some of the frequency bands are heavily used by the primary
users such as local radio stations, local TV stations, etc., so
the related information at the geolocation database will be
stable due to TV broadcasting arrangement in the long run
(e.g., years). Therefore, although the side-information from
geolocation database is possibly with some errors due to the
dynamic changes of the spectrum state, such information can
be incorporated at the sensing terminals to reduce the sensing
costs.

C. Problem formulation

Exploiting the sparse nature of the wideband spectrum due
to the under-utilisation in practice, sub-Nyquist sampling is
employed to implement wideband spectrum sensing, which
acquires wideband signals using the sampling rate lower than
the Nyquist rate and then detects spectral opportunities using
these partial measurements [26]. To reduce the computation
complexity, the channel status information from geolocation
database, i.e., the locations of occupied channels, will be
incorporated in the sensing framework. The purpose of this
paper is then to show how this prior information can be
efficiently used in the sub-Nyquist wideband spectrum sensing.

The compressive measurement acquisition at each sensor
node can be expressed by the following analytical model:

y = Φx+ ξ, (2)

where Φ ∈ Rm×N is the sensing matrix to collect the com-
pressive measurements y from the original signal x, m ∈ Z
(with k < m < N ) refers to the dimension of y, and ξ is
the noise perturbation, whose magnitude is constrained by an
upper bound δ, i.e., ||ξ||2 < δ.

Under certain assumptions, e.g., restricted isometry property
(RIP) on Φ [27], robust signal reconstruction with respect
to (2) could be achieved as

min
x∈RN

||x||0 subject to ‖|Φx− y||22 ≤ δ. (3)

Recent works show that additional prior information on the
signal can be employed in the sparse recovery framework
to improve the recovery performance [28]. For instance, if

incomplete or complete prior information on the support of the
sparse domain is available, the sparse recovery framework can
be modified to seek a signal that explains the measurements
and whose support contains the smallest number of new
additions to the known support T [24], so the sparsest solution
is given by

min ||(x)T c ||0 subject to ||Φx− y||22 ≤ δ. (4)

The minimization problem in (3) is aimed at finding the
sparsest solution that explains the measurements. In (4), the
problem is modified to minimise the number of nonzeros in
other positions only, i.e., those that do not belong to the known
support T . An important property of (4) is that a solution
x̄ is not strictly constrained to be nonzero in the locations
specified by T , since the corresponding values are determined
from the measurement constraints and the minimisation of the
objective function associated to the remaining positions [24].
Therefore, if there are some errors in the support set T , i.e.,
some positions in T actually do not belong to the support, the
minimisation problem in (4) can still reconstruct the actual
signal, but more measurements may be required compared to
the case when no errors are present in the known support T .

Suppose that the support of x is denoted as S, and k := |S|.
The size of the known part of the support t := |T |, the size
of unknown support u := |U |, and Ue := T \ S is the error
in the known part with the size e := |Ue|, so that k = t +
u − e. The theoretical lower bound for exact reconstruction
based on l0-minimization can be expressed with the restricted
orthogonality constant δ as [24]

δt+2u < 1, (5)

which is much weaker than that of the original sparse recovery
δ2k < 1 [27] as the restricted orthogonality constant δ is
nondecreasing, and k � u, k � e. Sufficient condition for
exact reconstruction in terms of δ measures the theoretical
minimum number of measurements needed. Therefore incor-
porating the prior known part of the support can reduce the
number of measurements, so that the related sampling rate will
be reduced for the power-limited devices.

To improve the recovery performance with reduced process-
ing requirements, the information from geolocation database
is incorporated in the proposed spectrum sensing scheme. By
harnessing the benefits of both approaches, the hybrid frame-
work is a promising solution for the efficient use of the white
space with coexistence of dynamic incumbent systems, in-
cluding digital TV broadcast signals and unregistered wireless
microphones. Since the geolocation database stores available
frequency channel lists and their associated maximum transmit
powers at current location and time, this paper aims to study
how to incorporate this channel occupancy status information
in the sub-Nyquist wideband spectrum sensing to reduce the
reconstruction complexity in terms of the sampling rate and
computational costs.

The notation used is as follows. The superscripts (·)T , (·)H
and (·)† denote transpose, Hermitian transpose and pseudo-
inverse of a matrix (X† = (XHX)

−1
XH ), respectively. Ai,j

is the i-th entry of the matrix A. ai is the i-th column of the
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matrix A. A[i] is the i-th row of the matrix A. AT denotes
the sub-matrix containing the columns of A with indices from
T . The notation, [0,M − 1] := [0, 1, ...,M − 1]. T c denotes
the complement of the set T . T1 \ T2 = T1 ∩ T c2 denotes the
set difference. And |T | denotes the size of set T .

III. SUB-NYQUIST WIDEBAND SIGNAL SAMPLING

To reduce the energy consumption in high frequency signal
processing, compressive multicoset sampling is adopted in
this paper to reduce the signal sampling and acquisition costs
with ease of implementation. From the practical standpoint,
multicoset sampling can be realized by a time-interleaved
ADC [29], [30], in which only a subset of channels are
used. The whole procedure of the proposed scheme can be
formulated into a three-step framework, as shown in Fig. 2:

1) Each sensor implements a multicoset sampler that blind-
ly samples the signal at a rate lower than the Nyquist
rate.

2) A low-dimensional measurement matrix is constructed
from sub-Nyquist samples.

3) Based on the jointly sparse nature of the multiband
signals, the occupied channels are located through joint
sparse recovery, where prior channel status information
from geolocation database will be incorporated to relax
the computation complexity.

In this section, we first briefly describe the sub-Nyquist signal
sampling process based on multicoset sampling.

Given the number of channels M , multicoset sampling is
executed by sampling the signal at the time instants (mM +
ci)T , where i = 1, ..., p, m ∈ Z, and 1/T = fs is the Nyquist
sampling rate. The set C = {ci}pi=1 that consists of p distinct
integers randomly selected from [0,M − 1], is referred as a
(M,p) sampling pattern. Multicoset sampler can be realised
by p parallel cosets, each of them taking uniform samples at
time instants {mMT + ciT} by a decimated sampling rate
1
MT = fs/M with a time offset of {ciT}, i = 1, ..., p. The
average sub-Nyquist sampling ratio equals to α = p/M . The
measurement sequence of the i-th coset is defined as

xci [n] =

{
x(nT ), n = mM + ci, m ∈ Z

0, otherwise. (6)

Applying Fourier transform to xci [n] gives the relationship
between its spectrum Xci(e

j2πfT ) and the unknown Fourier
Transform of x(t) [31]:

Xci(e
j2πfT ) =

∑+∞
n=−∞ xci [n]e−j2πfnT

= 1
MT

∑M−1
m=0 X(f +

m

MT
)︸ ︷︷ ︸

Xm(f)

ej
2π
M cim

= 1
MT

∑M−1
m=0 Xm(f)ej

2π
M cim ∀f ∈ [0,B0],

(7)
for every 1 ≤ i ≤ p, where Xm(f) = X(f+ m

MT ) corresponds
to the pieces of the original spectrum X(f) in the m-th
channel, which is shifted to the left by m

MT units.
As x(t) = s(t) + n(t), the corresponding Fourier trans-

form can be expressed as X(f) = S(f) + N(f). Define
Sm(f) = S(f + m

MT ), m = 0, ...,M − 1, and S(f) =
[S0(f), S1(f), ..., SM−1(f)]T . Similarly we define Nm(f)
and N(f). We can rewrite (7) into the matrix form as


Xc1(ej2πfT )
Xc2(ej2πfT )

...
Xcp(ej2πfT )


︸ ︷︷ ︸

Y(f)

=
1

MT


e
j2πc10
M e

j2πc11
M · · · e

j2πc1(M−1)
M

e
j2πc20
M e

j2πc21
M · · · e

j2πc2(M−1)
M

...
...

...
...

e
j2πcp0

M e
j2πcp1

M · · · e
j2πcp(M−1)

M


︸ ︷︷ ︸

A

×


X0(f)
X1(f)

...
XM−1(f)


︸ ︷︷ ︸

X(f)

= A[S(f) + N(f)], ∀f ∈ [0,B0],

(8)

where Y(f) is a matrix whose i-th row is Xci(e
j2πfT ),

X(f) = [X0(f), X1(f), ..., XM−1(f)]T is the unknown spec-
trum vectors of x(t) in the M channels, and A ∈ Cp×M is a
matrix with (i, j)-th element given by Ai,j = 1

MT e
j 2π
M ci(j−1)

Reconstruction of the unknown matrix X(f) in (8) is
referred to as the multiple measurement vectors (MMV) prob-
lem, as X(f) is row-sparse, i.e., having nonzero entries in
only a few rows. Since the parameter M in the multicoset
sampler is set based on the number of channels in the
spectrum of interest, the positions of nonzero rows of in (8) is
equivalent to the active channel index set S. So here we can
incorporate the channel status information from geolocation
database in the recovery process, as it shows which part of
channels are supposed to be occupied, in order to enhance the
recovery performance with fewer measurements under sub-
Nyquist sampling.
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IV. JOINT SPARSE RECOVERY INCORPORATED WITH
GEOLOCATION DATABASE

The computation of the sparse solution in (8) is a MMV
problem. Extension of the single measurement vector (SMV)
to the MMV problem is considered in [32], where the objec-
tive is to minimise the number of rows containing nonzero
entries while satisfying the measurement constrain in (8). The
problem can be formulated as

min ||R`q (X)||0 subject to Y = AX, (9)

where R`q (X) is a vector in RM whose i-th entry is the `q
vector norm of the i-th row of X , i.e.,

R`q (X) = [v1, v2, ..., vM ]T ,

where vi = ||X[i]||q = (
∑N
j=1 |xi,j |q)1/q.

(10)

As in the SMV problem, (9) is NP-hard but can be approxi-
mately solved by the following `1 minimization problem:

min ||R`q (X)||1 subject to Y = AX. (11)

Some existing convex relaxation and greedy algorithm for
the sparse recovery problem have been proposed to extend to
accommodate MMV problem [32], [33], which aims to solve
X from the multiple-measurement vector Y .

To enhance the recovery performance with fewer measure-
ments under sub-Nyquist sampling, prior channel information
from geolocation database is incorporated in the wideband
spectrum sensing. Based on the white space channel informa-
tion from the geolocation database, the sensor node can get
a response with details of available channels in the vicinity.
Assuming that T ⊂ [0, M − 1] is the prior knowledge of
the occupied channel indices from geolocation database, its
relation to the actual occupied channel set S can be expressed
as:

S = T ∪4 \4e, (12)

where 4 := S \ T is newly occupied channel set, and 4e :=
T \S is the newly released channel indices, i.e., the occupied
channel indices recorded at geolocation database but actually
released as vacant at current time.

Motivated by the above challenges, two reconstuction al-
gorithms, greedy algorithm and `v norm minimisation are
modified in the MMV problem to incorporate the informa-
tion from geolocation database in the recovery process. The
aforementioned methods construct an estimate of the signal at
each iteration, thereby being more intuitive to incorporate T
in the recursion as an initial condition.

A. Subspace-Augmented Joint Sparse Recovery with Prior
Information

To reduce computation costs in the compact sensor node,
we firstly extend the greedy algorithm of simultaneous or-
thogonal matching pursuit (SOMP) [33] to this joint sparse
problem because of its lower complexity compared with other
`1-minimization algorithms. To reduce the required number
of measurements and the computational complexity, channel
status information from geolocation database is incorporated
in the reconstruction process to locate the occupied channels.

The channel occupancy status from geolocation database gives
a priori information about some of the occupied channels
that should be selected as they may be used or reserved by
the registered systems. This way, local spectrum sensing is
performed only on a limited number of potentially vacant TV
channels.

Each multicoset sampler gets p sample sequences Y (f) ∈
Cp×N . To further reduce the computation complexity of the
recovery, we compute the covariance matrix of the sample
sequences as [34]

R = E[Y (f)Y H(f)] = A[Rs + σ2
nI]AH , (13)

where Rs = E[S(f)SH(f)] is the M ×M primary signal
correlation matrix. As there are up to κ active channels
occupied during the sensing period, R can be decomposed via
the rank-revealing eigenvalue decomposition (RREVD) as [25]

R = UΛUH = U sΛsU
H
s +

σ2
n

MT 2
UnU

H
n , (14)

where U = [U s,Un], Λs = diag{λ1, ..., λκ} contains the κ
non-increasing principal eigenvalues and U s contains the cor-
responding eigenvectors, while Un contains the corresponding
eigenvectors associated with the smallest p − κ eigenvalues
σ2
n

MT 2 related to the noise variance. As the noise term only
perturbs the eigenvalues, the range of R spanned by Us,
coincides with the signal subspace spanned by AS(f), and its
orthogonal complement spanned by Un is the noise subspace.
Therefore, the κ largest eigenvalues Λs and the corresponding
eigenvectors Us are chosen to construct the measurement
matrix as χs = Us

√
Λs, and we can define the following

linear system
χs = Aνs, (15)

where the support of the sparsest solution to (15) converges to
the original primary signal, i.e., supp(νs) = supp(S(f)) [25].
As at most κ active channels are assumed to be occupied
by licensed users, νs can be approximated to be jointly κ-
sparse as it contains up to κ significant rows. To reduce
the computation complexity and improve the detection per-
formance against noise permutation, SOMP is applied to the
constructed low-dimensional measurement matrix χs in this
paper, denoted as subspace-augmented SOMP (SA-SOMP).
Compared with original sub-Nyquist samples Y (f) ∈ Cp×N ,
using χs ∈ Cp×κ for recovery reduces the computation cost
required on the sensor nodes. To avoid the threshold setting,
exponential fitting test (EFT) is applied for the estimation of
the support dimension κ̂ [35].

In the recovery process of SA-SOMP, the column of A
that is most strongly correlated with the remaining part of the
signal is chosen at each iteration. Then we subtract off its
contribution from the measurement matrix χs and iterate on
the residual. Note that the indexes of the selected columns
of A refers to the locations of nonzero rows of νs. As
the parameter M in the multicoset sampler is set based on
the number of channels in the received signal, the support
of νs is equivalent to the active channel set S. Therefore,
based on the information from the geolocation database, the
initialization of the support recovery is modified to subtract
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Algorithm 1 Joint sparse recovery in SA-SOMP with Prior
Information
Require: R ∈ Cp×p, A = [a1, ...,aM ] ∈ Cp×M , κ̂, T
Ensure: S

1: [U s, Λs] ← RREVD(R, κ̂), χs = U s

√
Λs

2: t = 0, S = T + 1, ν0 = A†T +1χs, r0 = χs −AT+1ν0,
3: while t ≤ κ̂− |T | do
4: t← t+ 1
5: mt = arg max

m
‖ aH

mrt−1 ‖2, m ∈ 1, ...,M

6: S ← S ∪mt, νt = A†Sχs
7: rt ← χs −ASνt
8: end while
9: return S=S-1

off the contributions of these corresponding columns in the
measurement matrix as they may be used or reserved by the
registered licence systems. Thus, before starting the iteration,
the residual is initialized as

r0 = χs −AT+1(A†T+1χs), (16)

where T ⊂ [0,M − 1] is added with 1 as the corresponding
column indices of A start from 1. The entire procedure of the
proposed joint sparse recovery based on SA-SOMP augmented
by geolocation database is summarised in Algorithm 1. A
sparsity-based halting criterion is used in the recovery process,
i.e., t ≤ κ̂− |T |. Therefore, with the TV channel information
T from geolocation database, the number of iterations will be
reduced, so that the joint approach could speed up the sensing
process.

B. Iterative Reweighted Support Detection with Prior Infor-
mation

Besides the `1 norm, other functions of X(f) have also
been proposed as objective functions. Among these algorithms,
`v diversity measure (0 < v < 1) has received great attention
because of its improved performance as it provides a closer
approximation to the `0-norm minimisation. The objective
function can be formulated as

Jv,q(X) = ||R`q (X)||vv =

M∑
i=1

(||X[i]||q)v, 0 < v ≤ 1, q ≥ 1.

(17)
The `v norm minimisation is nonconvex but can be solved
through the transformation of the original problem into a
sequence of convex problems using iterative reweighting [36].
In [37], a reweighted `2 algorithm is proposed to extend
FOCal Underdetermined System Solver (FOCUSS) to the
MMV problem to minimise the above objective, with q = 2,
referred to as MFOCUSS. More specifically, the objective
function in (9) is modified as a weighted least square problem
in Lagrangian form:

min ||Y −AX||2F + λ

M∑
i=1

wi(||X[i]||2)2, (18)

where ||.||F is the Frobenius norm, wi is the weighting
parameter, and λ is the Lagrange multiplier. The problem

in (18) will be repeatedly solved by updating the weight wi
at each iteration using the solution from previous iteration: at
each iteration, wi will be set as

w
(t)
i = (||X(t−1)[i]||2)v−2. (19)

where w
(t)
i , i = 1, ...,M is the value of the weighting

vector to be used at the t-th iteration and X(t−1) is
the (t − 1)-th iterate. After convergence, X(t−1) will be
sufficiently close to X(t), so that

∑M
i=1 w

(t)
i (||X[i]||2)2 =∑M

i=1((||X(t−1)[i]||2)v−2(||X[i]||2)2 will be close to∑M
i=1((||X(t−1)[i]||2)v , which is the original `v norm

problem in (17) with q = 2.
The weighting parameter w(t) are computed from the row

norms of the solution obtained in the previous iteration, so
the corresponding rows with smaller norm are likely to be de-
emphasised as they are irrelevant in fitting the data and vice
versa. In (19), as 0 < v < 1, the weights will be chosen
inversely proportional to the `2-norm of the rows. Since it
gives a large weight to the small component, it will encourage
a sparse solution in the minimisation problem of (18).

As shown in the proposed hybrid system model in the Fig. 1,
the white space response from geolocation database records
the channel occupancy status, while the sensing network will
monitor the whole spectrum to find the dynamic changes.
As the i-th row in X(f) corresponds to the piece of the
original spectrum in the subchannel, the occupied channel
information from geolocation database indicates the indices
of the corresponding rows with large norm. Similar as (4), the
objective function in (18) can therefore be changed as the `v
minimisation over the remaining positions only, i /∈ T , i.e.,

min ||Y −AX||2F + λ
∑
i/∈T

wi(||X[i]||2)2. (20)

By defining
wi = 0,∀i ∈ T , (21)

the minimisation in (18) is transformed in the form of (20).
Here, in order to add the prior channel occupancy informa-

tion from geolocation database, the weighing strategy in the
joint sparse reconstruction is modified as

w
(t)
i =

{
τ(||X(t−1)[i]||2)v−2, i ∈ T
(||X(t−1)[i]||2)v−2, otherwise,

(22)

where τ is a specified small constant. For τ = 0, the first
expression in (22) reduces to 0 as required by (21).

Given an initial guess of the signal X(0) (e.g., the least-
squares solution), the iterative reweighting algorithm generates
a sequence of iterations of as follows:

X(t+1) := arg min
X∈CM×N

||Y −AX||2F + λ
∑
i/∈T

wi(||X[i]||2)2.

(23)
The solution to (23) at the t-th iteration can be expressed as

X(t+1) = W (t)AT (AW (t)AT + λI)−1Y , (24)

where W (t) = diag{[1/w(t)
1 , ..., 1/w

(t)
M ]}. The initial weight

is given by

w
(0)
i =

{
τ, i ∈ T
1, otherwise. (25)
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Algorithm 2 Iterative Reweighted Support Detection with
Prior Information based on MFOCUSS
Require: Y ∈ Cp×N , A = [a1, ...,aM ] ∈ Cp×M , T , λ, κ̂
Ensure: S

1: Initialise W (0) using (25) and t = 0
2: while halting criterion in (26) false do
3: Compute X(t+1) = W (t)AT (AW (t)AT + λI)−1Y
4: Weight W (t+1) updates using (22)
5: t = t+ 1
6: end while
7: Estimate support S by selecting the position of the first κ̂

smallest components in W (t+1)

8: return S=S-1

The algorithm is terminated once the convergence criterion has
been satisfied, i.e.,

||X(t+1) −X(t)||F
||X(t)||F

≤ δ, (26)

where δ is a user-selected parameter. Here, based on the
sparsity guess of the support dimension κ̂ from EFT [35],
the estimated active channel set is determined by selecting the
position of the first κ̂ smallest components in the final weight
w. The entire procedure of the proposed joint sparse recovery
based on MFOCUSS augmented by geolocation database is
summarised in Algorithm 2.

V. NUMERICAL ANALYSIS

This section provides simulation results to evaluate the
proposed wideband spectrum sensing scheme, in which the
impact of different system parameters, such as the SNR, the
sub-Nyquist sampling ratio, the spectrum occupancy ratio,
and the detection performance with prior information from
geolocation database, are investigated.

A. Simulation Setup and Performance Measures

Consider the received signal x(t) ∈ F = [0, 320] MHz
containing M = 40 channels of equal bandwidth B0 = 8
MHz and up to κ ≤M active channels. The simulated signal
is generated as

x(t) =

κ∑
i=1

√
EiB0sinc(B0(t− ti))ej2πfit + n(t), (27)

where sinc(x) = sin(πx)/(πx), Ei, ti, and fi define the
energy, time offset, and carrier frequency respectively, on
each active channel, and n(t) ∼ N (0, σ2

n) is the additive
white Gaussian noise. The signal is observed on a time frame
of T = 25.6 µs starting at t = 0, which corresponds to
T ·320·106 = 8192 Nyquist rate samples. Fig. 3 depicts one ex-
ample of the signal with κ = 4 active channels, i.e., α = 10%.
In this example, Ei = {1, 1, 1, 1}, ti = {4, 8, 16, 20} µs and
the spectrum support is centred at fi = {36, 92, 156, 212}
MHz. Thus the active channel set is S = [4, 11, 19, 26].

To quantify the detection performance we compute the
detection probability Pd, i.e., the fraction of occupied channels

0 16 32 48 64 80 96
0

1

2

3

Time (µµµµs)

|x
(t

)|

0 32 64 96 128 160 192 224 256 288 320
0

50

100

Frequency (MHz)

|X
(f

)|

210 3 38 395 6 87 94 10 11 12 2619...... ...... ......13 14

Fig. 3: Simulated signal illustration in time and frequency
domains, with M = 40, κ = 4 and S = [4, 11, 19, 26].

correctly being reported as occupied. The estimated active
channel set Ŝ is compared against the original signal support
S to compute the detection probability under 2000 trials.

B. Results and Analysis

1) Spectrum Sensing Performance versus SNR and sub-
Nyquist Sampling Ratio: The joint sensing performance based
on SA-SOMP and MFOCUSS is first evaluated in different
conditions using the simulated signals with the number of
occupied channels κ = |S| = 0.2M = 8. So the channel
occupancy ratio α = 20%. The active channel set S are
generated uniformly at random from [0,M−1], among which
the prior known part T from geolocation database of size τ
are randomly chosen from the elements of S. The size of
T , referred as τ , is varied between 0 to κ. The case τ = 0
corresponds to the sensing only case without assists from
geolocation database. The case τ = κ means current channel
occupancy states from geolocation database are reliable and
no change occurs on the spectrum at current time.

Firstly, the received SNR is set as −5 dB and the number
of cosets p is varied in the multicoset sampler from 10 to 40,
corresponding to the sub-Nyquist sampling ratio Ω = p/M
from 25% to 100%. As shown in the Fig. 4 and Fig. 5, the
detection performance generally increases with the number of
cosets p, and also improves as the percentage of the known
part τ increases. With geolocation database, the resulting
curves of both schemes are shifted to the left, showing that
smaller sub-Nyquist sampling ratios (smaller number of cosets
in implementation) are required in the joint sensing scheme
to achieve the same detection probability compared with the
sensing only. When p = 15 < 2κ (Ω = 37.5%), joint sensing
scheme based on SA-SOMP achieve 0.93 above detection
probability when τ ≥ 0.5κ, while the sensing only has only
0.6 probability of correct detection. Compared with SA-SOMP,
the joint sensing scheme based on MFOCUSS achieves better
detection performance, as smaller number of cosets p is needed
for the same detection probability. To achieve the desired
detection probability of 0.9 [38], sensing only based on SA-
SOMP needs around p = 25 cosets (sub-Nyquist sampling
ratio Ω = 62.5%), and MFOCUSS needs around p = 20 cosets
(sub-Nyquist sampling ratio Ω = 50%), while the joint sensing
schemes need only p = 15 cosets. Moreover, joint sensing
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Fig. 4: Detection Probability Pd vs. number of cosets p with
κ = 8 and SNR = −5 dB under different number of occupied
channels known from geolocation database based on SA-
SOMP.

10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Cosets p

D
ec

ti
on

 P
ro

ba
bi

lit
y 

P d

 

 

MFOCUSS, Sensing Only
MFOCUSS, ττττ=0.500κκκκ
MFOCUSS, ττττ=0.625κκκκ
MFOCUSS, ττττ=0.750κκκκ
MFOCUSS, ττττ=0.875κκκκ
MFOCUSS, ττττ=1.000κκκκ

Fig. 5: Detection Probability Pd vs. number of cosets p
with κ = 8 and SNR = −5 dB under different number of
occupied channels known from geolocation database based on
MFOCUSS.

can update the lack of channel occupancy information in
the geolocation database, thus eventually reaching the desired
detection probability Pd.

Then the detection performance is evaluated with varying
received SNR from -5 dB to 15 dB. Assume geolocation
database provides 50% above occupied channel information.
Multicoset sampler with p = 15 cosets is used to sample
the received signals. As the results shown in the Fig. 6 and
Fig. 7, the detection performance of the proposed joint sensing
schemes are superior to that of the sensing only, especially
more sensitive to the low levels of the SNR.

2) Average Iteration Number to Convergence: As shown in
the Algorithm 1, a sparsity-based halting criterion is used in
the recovery process based on SA-SOMP. Therefore, with the
TV channel status information from geolocation database, the
number of iterations will be reduced to κ̂−τ , so that the joint
approach would speed up the sensing process.

Fig. 8 shows the average number of iterations in the pro-
posed scheme based on MFOCUSS to achieve the convergence
criterion in (26). By employing the prior information from
geolocation database, the number of iterations in the joint
sensing scheme is reduced for all values of p. As τ increas-
es, the corresponding curve is shifted to the bottom. This
shows that the prior information on the channel occupancy
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Fig. 6: Detection Probability Pd vs. SNR with κ = 8 and
p = 15 under different number of occupied channels known
from geolocation database based on SA-SOMP.
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Fig. 7: Detection Probability Pd vs. SNR with κ = 8 and
p = 15 under different number of occupied channels known
from geolocation database based on MFOCUSS.
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Fig. 8: Average number of iterations based on MFOCUSS to
achieve convergence.

states from geolocation database is appropriately used by the
proposed MFOCUSS method through the weighting scheme
given by (22). The use of the prior information allows a
reduction in the number of iterations, therefore reducing the
total computation time to convergence.

Comparing the number of iterations in MFOCUSS with that
in SA-SOMP, it shows that a better detection performance
is achieved in MFOCUSS at the cost of more number of
iterations required in the recovery process. In addition, at
each iteration, the computation complexity of SA-SOMP is
O(p2M), while it is O(pMN) in the MFOCUSS. Therefore,
SA-SOMP provides a more computation-efficient solution for
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Fig. 9: Detection Probability Pd vs. number of cosets p with
κ = 8 and SNR = −5 dB based on SA-SOMP under dif-
ferent number of occupied channels known from geolocation
database with partially incorrect prior information.
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Fig. 10: Detection Probability Pd vs. number of cosets p
with κ = 8 and SNR = −5 dB based on MFOCUSS
under different number of occupied channels known from
geolocation database with partially incorrect prior information.

the proposed joint sparse recovery.
3) Spectrum Sensing Performance with partially incorrect

prior information in the geolocation database: Fig. 6 and
Fig. 7 follows that the prior information from geolocation
database is correct for all given channels. As stated in Section
IV, it may be the case that the information from geolocation
database is not fully reliable, so some of the channel occu-
pancy states are changed at current time. In this situation, the
joint sensing scheme can still recover the actual signals, but
more measurements are required compared to the case when
no errors are present in T .

In Fig. 9 and Fig. 10, the cases in which T contains some
incorrect prior information are simulated, which means that
apart from the c channels correctly belonging to the support,
there are ω out of τ channels in T that do not belong to
the current signal support. The simulation setting is same as
that in Fig. 4 and Fig. 5, but with different combinations of
c and ω in T . As shown in the Fig. 9 and Fig. 10, the joint
sensing scheme can still reconstruct the underlying signals and
shows an improvement in detection performance with respect
to the case with no prior information. The joint sensing scheme
based on MFOCUSS achieves better detection performance
than that of the SA-SOMP, where the incorrect elements in T
are removed from the minimisation problem.

VI. CONCLUSION

In this paper, a low-complexity hybrid scheme of sub-
Nyquist wideband spectrum sensing with geolocation database
is proposed for the effective use of white spaces within the
coexistence of dynamic incumbent systems. The simulation
results show that the prior channel status information from
geolocation database leads to a reduction in the required sub-
Nyquist sampling ratio to achieve the desired detection per-
formance. Moreover, the reduction in the number of iterations
and computation time for convergence is also verified when
prior information is added in the recovery process. If the
prior information is not perfectly reliable, there is still an
improvement in detection performance compared with spec-
trum sensing only. Therefore by harnessing the information
from geolocation database, the proposed sensing scheme can
update the instant channel occupancy state to reduce the risks
of interference to the existing incumbent users. This makes
it possible to apply the proposed joint sub-Nyquist scheme
on compact devices to get accurate spectrum occupancy state
with reduced processing requirements.
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