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1 Introduction

The structure of gauge and gravity theories, and the relationships between them, continue

to be the subjects of active research. An important example of such a relationship is the

double copy [1–3], which states that perturbative scattering amplitudes in gravity theories

both with and without supersymmetry can be obtained from their counterparts in a non-

abelian gauge theory by exchanging the couplings, and also replacing colour information

with kinematic information in a prescribed way. This relies on a certain colour-kinematics

interplay — BCJ duality — being possible in the gauge theory [1]. Both BCJ duality and

the double copy are proven at tree-level [3–11], where the latter is equivalent to the known

KLT relations [12] between gauge and gravity amplitudes, that arise from string theory. At

loop level these properties remain conjectural, although highly non-trivial evidence exists

at multiloop level in a variety of theories [2, 13–34]. All-order evidence is possible in certain

special kinematic limits [35–42], and other related studies can be found in [43–67].

It remains unclear whether or not the double copy is an accident of perturbative

scattering amplitudes, or represents a much deeper relationship between gauge, gravity

and related theories. A number of recent studies have therefore looked at whether or

not other quantities can be matched up and, if so, whether the relevant relationship is

related to the double copy for amplitudes. Reference [68] considered a family of exact

classical solutions in gravity, stationary Kerr-Schild metrics, and found that these could

indeed be single-copied to Yang-Mills theory. Well-known gravitational objects such as the

Schwarzschild and Kerr black holes emerge as special cases. The Kerr-Schild framework

can also be generalised to include (time-dependent) plane waves, and known properties of

amplitudes in the self-dual sector of Yang-Mills theory and gravity [10]. The case of an
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arbitrarily accelerating particle was considered in ref. [69]. This also has a Kerr-Schild

form, which has the effect of forcing the radiation to appear as a source term on the right-

hand side of the Yang-Mills and Einstein equations. This source term could be related

to known amplitudes for the Bremsstrahlung of photon and graviton radiation, thus more

tightly establishing the link between the classical and amplitude double copies.

Reference [70] went beyond the simple Kerr-Schild form used in ref. [10], in considering

the Taub-NUT solution. This has a double Kerr-Schild form, yet nevertheless can be single

copied to a gauge theory dyon, whose magnetic monopole charge maps to the NUT charge

in the gravity theory. Furthermore, ref. [70] already hinted at the possibility of constructing

a double copy around a non-trivial background metric (namely the de Sitter metric), and

we will return to this in what follows. Further work relating to the classical double copy

has investigated whether or not the source terms in the field equations are physically

meaningful [71], and whether the copy can be extended to solutions involving inverse powers

of the coupling [72, 73]. An alternative body of work has focused on constructing gravity

fields from convolutions of gauge fields, in a variety of theories [59, 74–78]. The double

copy has also been applied to classical solutions generated order-by-order in perturbation

theory [79–81].

Recently, ref. [82] considered generalising the double copy for amplitudes to include

a non-trivial background metric in the gravity theory. Let us define the graviton hµν
according to

gµν = ḡµν + κhµν , (1.1)

where gµν is the full metric, and κ =
√

32πGN , withGN Newton’s constant. In the standard

BCJ double copy for amplitudes [1–3], one identifies the background metric ḡµν with the

Minkowski metric ηµν , so that zero graviton corresponds to the complete absence of gravity.

One may instead consider a different choice, and indeed there may be good practical reasons

for doing so: in a variety of astrophysical and / or cosmological applications, one must

analyse perturbations around a non-trivial background metric. Reference [82] considered

the particular case of so-called sandwich plane waves, namely plane wave solutions whose

deviation from Minkowski space has a finite extent in space and time.1 One may consider

such waves in either gauge theory or gravity, and the authors demonstrate explicitly that a

three-point amplitude for a graviton defined as the deviation from a gravitational sandwich

wave can be obtained as the double copy of a gauge theory three-point function, where the

gauge field is defined around a gauge theory sandwich wave. They further note that this

procedure is obtainable from ambitwistor string theory [83] (see also [84, 85]), which would

in principle provide a general framework for formulating a similar procedure for different

types of background.

Given the previously observed links between the Minkowski space amplitude double

copy of refs. [1–3] and the classical double copy of refs. [68–70], the results of ref. [82]

suggest that some analogue of the curved space amplitude double copy should also be

possible for classical solutions. The aim of this paper is to study this issue, and we will

1More precisely, such waves are confined to a finite region of the lightcone coordinate u = z − t, for a

wave travelling in the +z direction.

– 2 –



J
H
E
P
1
2
(
2
0
1
7
)
0
0
4

A
a

h

Minkowski

h

Type A Type B

A
a

A
a

_
+

Curved g
_

Curved g
_

Curved g
_

Figure 1. Two possible interpretations of a double copy in curved space: in type A, a gauge field

has a non-trivial background field Āaµ in Minkowski space, and copies to a graviton defined on a

curved background ḡµν , where ḡµν and Āaµ are themselves related by a double copy relationship. In

type B, a gauge field on a non-dynamical curved background ḡµν double copies to a graviton defined

around the same background.

present a number of examples. Firstly, we will construct Kerr-Schild solutions on a curved

background by trivially rewriting single Kerr-Schild solutions. We will be able to interpret

such solutions as double copies of gauge fields with non-trivial backgrounds, and we will

call this relationship a type A curved space double copy. We will also find an alternative

interpretation, namely that one may regard the graviton as being the double copy of a

gauge field living on a non-dynamical curved spacetime background, which we will refer

to as type B. The difference between these two double copies is shown schematically in

figure 1, and the second of these is perhaps at odds with what one normally means by

the double copy, which relates entire gravity solutions to gauge theory counterparts in flat

space. It is then presumably the case that the type B map is not fully general, but exists

only in special cases. That does not however, reduce its usefulness, where it applies.

After examining simple Kerr-Schild examples, we will generalise our findings to multi-

ple Kerr-Schild solutions, including a reexamination of the Taub-NUT spacetime considered

in ref. [70]. Finally, we will show a family of non-trivial examples of the type B double

copy map, in which the background spacetime is conformally flat, without a Kerr-Schild

form. This illustrates that this second type of double copy map may be more applicable

than näıvely thought, and can also provide a double copy in cases in which it is not known

how to construct a double copy of type A.

The structure of the paper is as follows. In section 2, we briefly review relevant details

regarding the classical double copy that will be needed in what follows. In section 3, we

study Kerr-Schild solutions from the viewpoint of a curved space double copy. In section 4,

we consider the example of Kerr-Schild solutions built upon conformally flat background

metrics. Finally, in section 5, we discuss our results and conclude. Technical details are

contained in the appendix.

2 The classical double copy

Here, we briefly review the double copy for classical solutions of refs. [68–70]. Given that

this will be the focus of our paper, we will not discuss in detail the corresponding story
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for amplitudes (see e.g. [86–88] for pedagogical reviews). Our starting point is to consider

Kerr-Schild metrics, in which the graviton, defined in eq. (1.1), is given by

hµν =
κ

2
φkµkν . (2.1)

Here φ(xµ) is a scalar function, and kµ is a 4-vector that is null and geodesic both with

respect the background and the whole metric. That is

gµνkµkν = ḡµνkµkν = 0, kµDµkν = 0, (2.2)

where Dµ is the covariant derivative associated with the background metric, i.e. Dρ(ḡµν) =

0. The null property implies that the index of the Kerr-Schild vector kµ can be raised with

either ḡµν or gµν , where the inverse metric takes the simple form

gµν = ḡµν − κ2

2
kµkνφ. (2.3)

Upon substituting the ansatz of eq. (1.1) into the Einstein equations, one finds a linear

form for the Ricci tensor with the particular index placement shown below:

Rµν = R̄µν − κhµρR̄ρν +
κ

2
Dρ (Dνh

µρ +Dµhρν −Dρhµν) , (2.4)

where R̄µν is the Ricci tensor associated with ḡµν . Thus, if one finds a field φ and Kerr-

Schild vector kµ such that the Einstein equations (vacuum or otherwise) are solved, this

constitutes an exact solution i.e. the graviton receives no higher order corrections.

Equation (2.4) simplifies in the case that the background space is taken to be Minkowski

Rµν
ḡµν→ ηµν−−−−−−→ κ

2
∂ρ (∂νh

µρ + ∂µhρν − ∂ρhµν) . (2.5)

For a given field φ and Kerr-Schild vector kµ, one may define a (non-abelian) gauge field

according to

Aaµ = caφkµ, (2.6)

where ca is an arbitrary constant colour vector. For all stationary Kerr-Schild metrics (i.e.

those not depending explicitly on time), this gauge field solves the linearised Yang-Mills

equations:

∂µF aµν = 0, (2.7)

where F aµν is the abelian-like field strength tensor2

F aµν = ∂µA
a
ν − ∂ν Aaµ. (2.8)

To see this, note that eqs. (2.1), (2.5) imply

R0
i

ḡµν→ ηµν−−−−−−→ κ

2
∂ρ
[
∂i(φk

0 kρ)− ∂ρ(φk0 ki)
]

(2.9)

2The non-linear term that is usually present in the non-abelian field strength vanishes upon substituting

the ansatz of eq. (2.6).

– 4 –



J
H
E
P
1
2
(
2
0
1
7
)
0
0
4

where we use latin indices to denote spatial components. Without loss of generality, one

may choose a coordinate system such that k0 = 1, such that the result of eq. (2.7) follows.

As in gravity, the linearisation of the field equations is exact, so that the gauge field receives

no higher order corrections.

The gauge field of eq. (2.6) is referred to as the single copy of its corresponding Kerr-

Schild graviton hµν , by analogy with the BCJ double copy for amplitudes [1–3]. In fact,

the two double copies are related to each other. One way to see this is take the zeroth copy

of eq. (2.6), which involves replacing the remaining copy of the vector kµ with a second

colour vector:

Φaa′ = ca c̃a
′
φ. (2.10)

This is a solution of a biadjoint scalar field theory, whose equation is

∂2Φaa′ − yfabcf̃a′b′c′Φbb′Φcc′ = 0, (2.11)

where fabc and f̃a
′b′c′ are structure constants associated with two (potentially different)

Lie groups. Indeed, eq. (2.10) is such that the nonlinear term in eq. (2.11) vanishes, leaving

the simpler equation

∂2Φaa′ = 0. (2.12)

When sources are present on the right-hand side, we can then interpret φ as a scalar

propagator, integrated over the source distribution. The fact that one does not modify

the function φ upon taking the single or zeroth copies of eqs. (2.1), (2.6) is similar to

the fact that denominators of amplitudes (themselves interpretable as scalar propagators)

remain the same in biadjoint scalar, gauge and gravity theories. As mentioned above,

stronger evidence for the connection between the classical and amplitude double copies

comes from considering the accelerated particle, where the Kerr-Schild description recovers

known amplitudes for the emission of soft photons and gravitons [69].

It is not known how to fully generalise the classical double copy to exact solutions

which are not of Kerr-Schild form. One way to make progress is to construct solutions

order-by-order in a perturbation expansion in κ, as explored in refs. [79–81]. One may

also explore known generalisations of the Kerr-Schild ansatz. An example is the double

Kerr-Schild ansatz, in which the graviton has the form

hµν =
κ

2

[
φ1kµkν + φ2lµlν .

]
(2.13)

There are now two scalar fields φi, and two separate Kerr-Schild vectors kµ and lµ, each

of which satisfies the null and geodesic requirements of eq. (2.2), as well as the mutual

orthogonality condition

gµνkµlν = ḡµνkµlν = 0. (2.14)

Unlike in the single Kerr-Schild case, this ansatz is not guaranteed to linearise the Einstein

equations: one finds a correction term to eq. (2.4), whose explicit form (in the present

notation) may be found in ref. [70]. A special case where linearity indeed occurs is the

Taub-NUT solution [89, 90], whose Kerr-Schild form was first presented in ref. [91]. The

two terms in eq. (2.13) contain, respectively, a Schwarzschild-like point mass M at the
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origin, and a NUT charge N , where the latter gives rise to a rotational character in the

gravitational field at spatial infinity. Reference [70] single copied this solution by analogy

with eq. (2.6):

Aaµ = ca
[
φ1 kµ + φ2 lµ

]
. (2.15)

Note that the single copy is taken term-by-term, analogous to the BCJ double copy for

amplitudes. The gauge theory solution was found to be a dyon. The electric charge in the

gauge theory maps to the Schwarzschild mass, as it must do for consistency with the pure

Schwarzschild case. The magnetic monopole charge of the gauge theory solution maps to

the NUT charge, thus making precise the statement that the Taub-NUT solution can be

thought of as magnetic-monopole-like.

Of particular interest for the present study is the fact that ref. [70] considered the Taub-

NUT solution on a de Sitter background, as well as Minkowski space. The corresponding

gauge field was then found to satisfy the curved space Maxwell equations

DµF aµν = 0, (2.16)

where Dµ is the covariant derivative associated with de Sitter space, and

F aµν ≡ DµA
a
ν −DνA

a
µ = ∂µA

a
ν − ∂νAaµ (2.17)

is the curved space field strength tensor.3 This is already an example of the type B double

copy illustrated in figure 1, in which a graviton defined around a non-Minkowski background

is identified with a gauge field living on the same (non-dynamical) background. Given the

fact that this map is not what one ordinarily associates with the double copy, it is not

clear what, if at all, the zeroth copy of the gauge field corresponds to. For the Taub-NUT

example of ref. [70], the biadjoint field

Φaa′ = ca c̃a
′
(
φ1 + φ2

)
(2.18)

was found to satisfy the equation

D2Φaa′ ≡ DµDµΦaa′ = −2λΦaa′ , (2.19)

where λ is the cosmological constant. It was speculated that this was a solution of the

biadjoint theory conformally coupled to gravity, with Lagrangian

L =
1

2
(DµΦaa′)(DµΦaa′)− y

6
fabcf̃a

′b′c′Φaa′Φbb′Φcc′ − R
12

Φaa′Φaa′ , (2.20)

where R is the Ricci scalar, a property making use of the fact that R ∝ λ for de Sitter

spacetime. The constant of proportionality is precisely such as to make eq. (2.19) follow

from eq. (2.20), in four spacetime dimensions.

Having reviewed all necessary details regarding the Kerr-Schild double copy, we now

turn to the investigation of other curved space examples.

3The second equality in eq. (2.17) follows from the fact that terms involving the Christoffel symbol

vanish upon forming the antisymmetric combination of covariant derivatives.
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3 Kerr-Schild solutions in curved space

As stated in the introduction, our examination of curved space instances of the classical

double copy is motivated by the results of ref. [82], concerning a double copy of type A.

This associates a gauge theory amplitude in the presence of a non-trivial background field,

with a gravity amplitude defined with respect to a non-Minkowski background metric,

where the gauge and gravity background fields should be related. In this section, we will

see that Kerr-Schild solutions indeed provide a natural framework for constructing such

double copies for exact field solutions, rather than perturbative amplitudes.

3.1 Single Kerr-Schild solutions

The simplest such examples can be constructed, albeit rather artificially, by starting with

single Kerr-Schild metrics around Minkowski space. We may split up such solutions ac-

cording to

gµν = ηµν + φkµkν

= ηµν + φ1kµkν + φ2kµkν , (3.1)

where we have introduced

φ1 = ξφ, φ2 = (1− ξ)φ, 0 ≤ ξ ≤ 1. (3.2)

Thus, as is well-known (see e.g. [92]), any given single Kerr-Schild metric can always be

thought of as a double Kerr-Schild metric. Following the discussion of section 2, it is

straightforward to single copy eq. (3.1) term-by-term, resulting in the gauge field

Aaµ = ca
[
φ1kµ + φ2kµ

]
. (3.3)

This is itself a rewriting of eq. (2.6), that is ultimately possible due to the linearity of the

field equations in the Kerr-Schild double copy. However, we can reinterpret eqs. (3.1), (3.3)

as follows. By defining

ḡµν = ηµν + φ1kµkν , (3.4)

we may rewrite eq. (3.1) as

gµν = ḡµν + h̃µν , h̃µν = φ2kµkν , (3.5)

so that the solution of eq. (3.1) may be regarded as containing a graviton field involving

only the field φ2, defined with respect to the non-Minkowski background ḡµν . On the gauge

theory side, we can define

Āaµ = caφ1kµ, (3.6)

so that the solution of eq. (3.3) becomes

Aaµ = Āaµ + Ãaµ, Ãaµ = caφ2kµ. (3.7)

This is thus our first example of a type A curved space double copy, for classical solutions

rather than amplitudes. A gauge field defined with respect to a non-trivial background
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field copies to a graviton field with a non-trivial background, where the two backgrounds

are themselves related (i.e. they are themselves Kerr-Schild, so we know how to double

copy them).

As indicated in figure 1, there is another way to consider double copies in curved space

(type B). Namely, it may be possible to single copy a graviton defined with respect to a

non-Minkowski background, to a gauge field living on the same background. To this end,

one may consider the graviton field h̃µν of eq. (3.5), which single copies to the field Ãaµ
of eq. (3.7). On the gauge theory side, one may impose the same background ḡµν , and

examine the curved space Maxwell equations

DµF̃ aµν = jν , (3.8)

where F̃ aµν is the field strength tensor formed from the gauge field Ãaµ. For a consistent

double copy of type B, one requires that the source current is somehow related to the

energy-momentum tensor in a recognisable way, so that the two solutions are related. Let

us give two examples. Firstly, one may consider the Schwarzschild metric, for which

φ =
2M

r
, kµ = (1, 1, 0, 0), (3.9)

where we adopt spherical polar coordinates (t, r, θ, φ). Writing the graviton as

hµν =
2M1

r
kµkν +

2M2

r
kµkν , M1 +M2 = M, (3.10)

we may define the background field

ḡµν = ηµν + h̄µν , h̄µν =
2M1

r
kµkν , (3.11)

and then single copy the graviton

h̃µν =
2M2

r
kµkν (3.12)

to get a gauge field

Ãaµ =
ca

r
kµ. (3.13)

The curved space Maxwell equations of eq. (3.8) then yield4

jaµ = 0, (3.14)

which is indeed consistent: the Schwarzschild metric is a vacuum solution in General

Relativity. Here we find that its curved space single copy is also a (gauge theory) vacuum

solution, on the curved space defined by ḡµν .

A second example is given by de Sitter spacetime, which has the Kerr-Schild form

φ = λr2, kµ = (−1, 1, 0, 0), (3.15)

4Here, we do not include the delta function source at the origin, corresponding to the point charge

(mass) sourcing the field Ãaµ (hµν).
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where λ is the cosmological constant. Splitting this similarly to eq. (3.10) gives

hµν = λ1r
2kµkν + λ2r

2kµkν , λ1 + λ2 = λ. (3.16)

We can then define the graviton

h̃µν = λ2r
2kµkν , (3.17)

whose single copy gauge field

Ãaµ = caλ2r
2kµ (3.18)

satisfies the curved space Maxwell equation with

jaν = (6λ2, 0, 0, 0). (3.19)

Again this makes sense: the graviton is sourced by a constant energy density filling all

space which, in the gauge theory, becomes a constant charge density. The single copy has

thus turned momentum degrees of freedom into colour degrees of freedom, precisely as in

the flat space case examined in ref. [70] (and also the single copy for amplitudes [1–3]).

We have not been able to prove in general that the curved space Maxwell equations are

satisfied for arbitrary single Kerr-Schild solutions that are rewritten in the form of eq. (3.5).

However, we have at least shown for some special — and, indeed, astrophysically relevant

— cases, a type B double copy map is possible. The question then arises of how general

this map is. The conventional double copy, in its simplest form, relates a gauge theory to

a gravity theory. A gauge theory on a curved background (even if this is non-dynamical)

would appear to involve gravity, and thus this type of double copy map seems to relate

a coupled Einstein-gauge theory system to itself. One does not then expect this map to

be fully general, or to apply to supersymmetric generalisations that are known to work in

flat space.

Evidence towards this viewpoint can be gleaned by examining the zeroth copy. As

discussed in section 2, the Kerr-Schild field φ is found to satisfy the linearised biadjoint

scalar field equation, and can be interpreted as a scalar propagator. In the type II double

copy, we can take the zeroth copy of the gauge field Ãaµ to generate a scalar field

Φ̃aa′ = cac̃a
′
φ2, (3.20)

and consider the curved space linearised biadjoint equation

DµDµΦaa′ = cac̃a
′
ξ, (3.21)

which defines ξ. For the Schwarzschild and de Sitter examples, we find

ξSWC = −4M1M2

r4
, ξdS = 6λ2 − 10r2λ1λ2 (3.22)

respectively, which we can not straightforwardly interpret as being related to the source

current in the gauge theory. It thus seems that the type B double copy can indeed associate

a gauge theory solution in curved space with a gravity counterpart, at the expense of not

having a consistent zeroth copy. This also sheds light on the speculation of ref. [70], that

the zeroth copy for a curved background may result in a biadjoint scalar theory conformally

coupled to gravity (eq. (2.20)). The results of eq. (3.22) provide a simple counter-example

to this conjecture, showing that the situation is more complex than previously thought.
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3.2 Multiple Kerr-Schild solutions

In the previous section, we used single Kerr-Schild solutions to provide some first examples

of curved space double copies, of both type A and type B. Here, we study whether such

conclusions also apply to more complicated solutions. As a first generalisation, we may

consider multiple Kerr-Schild solutions in Minkowski space, namely those of form

gµν = ηµν +
∑
i

φik
(i)
µ k(i)

ν , (3.23)

where each vector k
(i)
µ is null and geodesic with respect to both the Minkowski and full

metric, and the set of Kerr-Schild vectors obeys the mutual orthogonality relations

ηµνk(i)
µ k(j)

ν = gµνk(i)
µ k(j)

ν = 0, ∀i, j. (3.24)

In certain cases, this ansatz linearises the mixed Ricci tensor Rµν , and thus provides an

exact solution of the Einstein equations.5 We further consider the general class of multi-

Kerr-Schild solutions in which each term in the graviton is itself a solution of the linearised

Einstein equations. In the stationary case, we may then single copy eq. (3.23) to produce

a gauge field

Aaµ = ca
∑
i

φik
(i)
µ . (3.25)

Given that each term in the graviton constitutes a stationary Kerr-Schild solution, the

results of ref. [68] immediately imply that each term in eq. (3.25) satisfies the linearised

Yang-Mills equations. Linearity then implies that the complete field of eq. (3.25) is also a

solution, and thus a well-defined single copy of the gravity result.

As for the solution of eq. (3.1), we can use any multi-Kerr-Schild solution of the form

of eqs. (3.23), (3.25) to construct a type A curved space double copy. To do this, one may

partition the terms in eq. (3.23) into two sets Γ1 and Γ2, before defining

ḡµν = ηµν +
∑
i∈Γ1

φik
(i)
µ k(i)

ν , Āaµ = ca
∑
i∈Γ1

φik
(i)
µ , (3.26)

and

h̃µν = ηµν +
∑
i∈Γ2

φik
(i)
µ k(i)

ν , Ãaµ = ca
∑
i∈Γ2

φik
(i)
µ . (3.27)

The full gravity and gauge fields may now be written as

gµν = ḡµν + h̃µν , Aaµ = Āaµ + Ãaµ. (3.28)

This is indeed an example of the type A double copy shown in figure 1: the gauge field Ãaµ
defined with respect to the background field Āaµ double copies to the graviton h̃µν , defined

with respect to the background metric ḡµν .

5Examples involving more than two terms are the higher dimensional Taub-NUT-like solutions of

refs. [93, 94].
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Figure 2. Generalisation of the type A double copy of figure 1 to include the zeroth copy, which

relates the gauge field defined with a non-trivial background to similar solutions in a biadjoint scalar

theory.

Furthermore, the zeroth copy is also well-defined, as for the flat space classical double

copy: from eq. (3.25), we may define the biadjoint field

Φaa′ = cac̃a
′∑

i

φi. (3.29)

The fact that each term in the gauge field satisfies the linearised Yang-Mills equations

implies, again from ref. [68], that each term in eq. (3.29) satisfies the linearised biadjoint

scalar equation. Similarly to eq. (3.26), we may then define

Φ̄aa′ = cac̃a
′ ∑
i∈Γ1

φi, Φ̃aa′ = cac̃a
′ ∑
i∈Γ2

φi, (3.30)

so that the full biadjoint field can be written

Φaa′ = Φ̄aa′ + Φ̃aa′ . (3.31)

This is a direct analogue of the type A double copy between gauge theory and gravity:

a classical field defined with respect to a background copies between biadjoint scalar and

gauge theory. The relationship between the three theories is shown in figure 2. Given that

we will always be talking about solutions of the linearised Yang-Mills equations from now

on, we will omit colour indices and vectors in what follows.

We may also examine whether or not it is possible to construct a type B double copy

for multi-Kerr-Schild solutions, by considering specific examples. In section 3.1, we saw

that this was indeed possible for the Schwarzschild and de Sitter solutions, split according

to eqs. (3.1), (3.2). More generally, we can take either of these gravitons as part of the

background metric ḡµν , and allow either of them to be the perturbation h̃µν . The full list of

possibilities is enumerated in table 1, where the full metric is given by eq. (3.1), with kµ =

(1, 1, 0, 0) in spherical polar coordinates. The first two rows contain the pure Schwarzschild

(SWC) and de Sitter (dS) metrics, and the third / fourth rows the cases already considered

in the previous section. Finally, the fifth and sixth rows contain the metric formed by

perturbing the Schwarzschild solution with a de Sitter Kerr-Schild graviton, and vice versa.

For each metric, we give an expression for the timelike component jt of the source current
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Metric φ1 φ2 jt ξ

SWC 0 2m2/r 0 0

dS 0 λ2r
2 6λ2 6λ2

SWC+SWC 2m1/r 2m2/r 0 −4m1m2/r
4

dS+dS λ1r
2 λ2r

2 6λ2 6λ2 − 10r2λ1λ2

SWC+dS 2m1/r λ2r
2 6λ2 6λ2 − 8m1λ2/r

dS+SWC λ1r
2 2m2/r 0 4λ1m2/r

Table 1. Table of type B single and zeroth copies of Kerr-Schild metrics of the form of eq. (3.1),

where φ1 and φ2 are allowed to be different. Here A+B denotes a Kerr-Schild graviton for met-

ric B considered as a perturbation on background metric A, where SWC and dS represent the

Schwarzschild and de Sitter gravitons respectively.

that appears in the curved space Maxwell equation of eq. (3.8) (the spacelike components

are found to vanish in all cases), as well as the quantity ξ that appears on the right-hand

side of the curved space linearised biadjoint equation (eq. (3.21)).

In all cases, the type B single copy indeed holds. That is, the gauge theory contains

a source current consistent with the perturbation term in the gauge field: zero in the

Schwarzschild case,6 and a uniform charge density in the de Sitter case, whose counterpart

in gravity is the cosmological constant. There are no terms in the source current which

are sensitive to the field φ1, which would invalidate the picture of figure 1. The zeroth

copy holds only in the cases of a pure single Kerr-Schild solution (i.e. the cases considered

in the original classical double copy of refs. [68, 70]). For all of the double Kerr-Schild

solutions, the source includes a position-dependent term that has no immediately evident

counterpart in the gauge or gravity theory.

In the above examples, the full metric contains two Kerr-Schild terms, each of which

has the same vector kµ, corresponding to a spherically symmetric system. We can then ask

what the most general results for jt and ξ are, for unspecified functions φ1(r) and φ2(r).

The results are

jt =
2φ′2(r)

r
+ φ′′2(r) = ∇2

Mφ2, ξ = ∇2φ2 = jt(1− φ1(r))− φ′1(r)φ′2(r). (3.32)

Here ∇2 is the Laplacian operator associated with the full background metric, and ∇2
M the

corresponding operator in Minkowski space. We thus conclude that if φ2 is associated with

a vacuum solution in Minkowski space, the type II single copy is well-defined, in that it is

also a vacuum solution. However, the source for the zeroth copy involves the background

field φ1 and thus does not seem to have a meaningful interpretation. Of course, the fields

φ1 and φ2 in eq. (3.32) are not arbitrary, but must be fixed by the Einstein equations. For

the case of spherically symmetric (and stationary) vacuum solutions up to the presence of a

cosmological constant, the only possible solutions are the Schwarzschild and de Sitter cases

examined already in table 1. Nevertheless, the general form of the current in eq. (3.32)

does not rule out that there may be non-trivial solutions with extended sources, such that

6As earlier, we do not bother showing the delta function source at the origin.
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one may still find a consistent single copy interpretation. It is not known even in the flat

space case how to construct such maps (see e.g. refs. [69, 71] for discussions of source terms

in various contexts).

Above we have discussed cases in which the background scalar field φ1 is spherically

symmetric. Our results are more general than this, however. We have explicitly checked

that our conclusion that the type B single copy is a vacuum solution if φ2 is associated

with a vacuum solution in Minkowski space, holds true even if φ1 has an arbitrary spatial

and temporal dependence.

It is furthermore useful to note that, as in the flat space cases considered in ref. [68], one

may transform the type B single copy gauge field into a more recognisable form. Starting

with the gauge field in spherical polar coordinates,

Aµ = φ2(−1, 1, 0, 0),

one may perform a gauge transformation

Aµ → A′µ = Aµ +Dµχ(r) = Aµ + ∂µχ(r), (3.33)

where

χ(r) = −
∫ r

dr′ φ2(r′), (3.34)

so that eq. (3.33) implies

A′µ = (−φ2, 0, 0, 0). (3.35)

Thus, φ2 indeed has the interpretation of an electrostatic potential.

As implied above by the above results, the type B double copy is not necessarily

expected to be a fully general map between exact solutions in gauge and gravity theories in

curved space. However, it is interesting to examine whether or not it shares the property of

the type A (and amplitude) double copies, in being independent of the number of spacetime

dimensions d. Indeed, one may show that for a d-dimensional background metric ḡµν of

the form of eq. (3.4), the gauge field Ãµ of eq. (3.7) satisfies the Maxwell equations, with

a current density given by7

jµ = (∇2
Mφ2, 0, 0 . . . , 0), (3.36)

where the Minkowski-space Laplacian on the right-hand side is in (d−1) space dimensions.

Thus, our above discussion generalises for any d. We present a proof of these statements

in appendix A.

Having examined multiple Kerr-Schild solutions where each term contains the same

Kerr-Schild vector kµ, it is instructive to instead consider an example in which these vectors

can be different. One such example is the Taub-NUT solution, for which the metric takes

the form

gµν = ηµν + φkµkν + ψlµlν . (3.37)

7Equation (3.36) also turns out to be true when the field φ1 depends on time and the non-radial spatial

coordinates.
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The Minkowski line element can be written as

ds2 = −dt2 +
ρ2

a2 + r2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdϕ2 (3.38)

in spheroidal coordinates, where

ρ2 ≡ r2 + a2 cos2 θ. (3.39)

The vectors kµ and lµ are defined by

lµdx
µ = dt+

ρ2

a2 + r2
dr − a sin2 θdϕ (3.40)

kµdx
µ = dt− iρ2

a sin θ
dθ +

r2 + a2

a
dϕ, (3.41)

while the scalar functions φ and ψ are given by

ψ =
2mr

ρ2
, φ =

2la cos θ

ρ2
. (3.42)

As for the various metrics considered in table 1, in considering the type B single copy, we

can take either of the Kerr-Schild terms to be part of the background metric, resulting in

two possibilities:

Case 1: gµν = ḡµν + φkµkν , ḡµν = ηµν + ψlµlν ,

Case 2: gµν = ḡµν + ψlµlν , ḡµν = ηµν + φkµkν .

The gauge fields obtained from the single copy of the perturbation term in both cases

satisfy homogeneous Maxwell equations

jν = 0, (3.43)

so that the single copy is indeed consistent (n.b. the Taub-NUT solution is a vacuum

solution). The zeroth copy factor is given in both cases by

ξ =
4φψ(ρ2 − 2r2)

ρ4
, (3.44)

so that, consistently with our previous results, the type B single copy does not appear to

be meaningful.

Let us summarise the results of this section. We have examined whether it is possible to

construct a double copy for classical solutions that mimics the result found for amplitudes in

ref. [82]. We have indeed found such a procedure, based on the same Kerr-Schild solutions

that were used to formulate a flat space double copy in refs. [68–70]. In this picture, a gauge

field defined with respect to a non-trivial background field copies to a graviton defined with

respect to a background metric, where the background fields in the two theories are related.

We were able to relate the background fields due to the fact that they obeyed the original

Kerr-Schild double copy by themselves. Furthermore, there is a well-defined zeroth copy,
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in which the resulting biadjoint field is also defined with respect to a background, where

the latter is the zeroth copy of the background gauge field. We call this procedure a type

A curved space double copy, to distinguish it from an alternative procedure (type B) in

which the gauge field lives on a non-dynamical curved spacetime, and copies to a graviton

field defined with respect to the same spacetime. In this picture, the zeroth copy does not

appear to be meaningful, in that the biadjoint field appears not to be physically related to

its gauge theory counterpart, due to the presence of unwanted source terms.

In all of the above cases, we knew how to construct a type A double copy due to the

fact that we could relate the background gauge field with its gravitational counterpart.

The type B double copy, however, does not require such a relationship, as the same curved

metric appears in both the gauge and gravity theories. It is then interesting to look for

examples of this relationship in which the background metric is not of Kerr-Schild form,

and thus cannot be single-copied according to the procedure of refs. [68–70]. We have

indeed found such examples, which we describe in the following section.

4 Conformally flat background metrics

In this section, we consider conformally flat spacetimes. More specifically, we consider

spacetimes whose metrics can be written (in some coordinate system) as a conformal trans-

formation of Minkowski space:

ḡµν = Ω2(xµ)ηµν . (4.1)

As the bar notation on the left-hand side already suggests, we will use such metrics as

background metrics for Kerr-Schild solutions. This will work for any conformally flat

metric, given that if kµ is null and geodesic with respect to the Minkowski metric, it is

straightforward to show that it is also null and geodesic with respect to ḡµν .

As a warm-up, let us examine the case where the background is the well-known Einstein

static universe. For convenience, we will adopt the coordinates and conventions of ref. [95],

such that the line element is

ds̄2 = −dt2 + dr2 − 2a sin2 θdϕdr +
|β|2

D2
dθ2 + (|β|2 + a2 sin2 θ) sin2 θdϕ2, (4.2)

where

D = 1− (a2/R2
0) sin2 θ,

β = (R2
0 − a2)1/2 sin

r

R0
+ ia cos θ.

The Ricci tensor and scalar for this metric take the particularly simple forms

R̄µν =
2

R2
0

(ḡµν + ūµūν), R̄ =
6

R2
0

, (4.3)

respectively, where uµ is the unit timelike vector given by

ūµ = (1, 0, 0, 0), ūµ = (−1, 0, 0, 0). (4.4)
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We can construct a solution

gµν = ḡµν + 2Hkµkν (4.5)

of single Kerr-Schild form, where for the Kerr-Schild term we adopt the notation of ref. [95]

for ease of comparison. The Kerr-Schild vector kµ is defined by

√
2kµ = (−1,−1, 0, a sin2 θ), (4.6)

while the scalar function

H = mDµk
µ, (4.7)

with Dµ the covariant derivative associated with ḡµν . The solution defined by eqs. (4.5)–

(4.7) corresponds to a rotating black hole over the Einstein static universe. In order to

further examine the effect of this perturbation, we note that the mixed-index Ricci tensor

of the full metric can be recast in the form

Rµν = − 2

R2
0

(1−H)(δµν + uµuν), (4.8)

where we have introduced the vectors

uµ =
ūµ√

1−H
, uµ =

1√
1−H

(ūµ +
√

2Hkµ). (4.9)

The Einstein equations then become

Rµν −
1

2
δµνR = −8π((ρ+ p)uµuν + pδµν ) + Λδµν . (4.10)

That is, the matter content of the theory is that of a perfect fluid, whose energy density ρ

and pressure p are given in this case by

8πρ =
3

R2
0

(1−H)− Λ, (4.11)

8πp = − 1

R2
0

(1−H) + Λ. (4.12)

We see that the presence of the Kerr-Schild term acts to redefine the parameters associated

with the background metric, reminiscent of the split Kerr-Schild metrics we considered in

section 3.1. A number of other such solutions are presented in ref. [95].

We may single copy the graviton appearing in eq. (4.5) by defining the gauge field

Aaµ = caHkµ, (4.13)

which we find satisfies the homogeneous linearised Yang-Mills equation

DµF
µν = 0, (4.14)

where Dµ, as above, is the covariant derivative for the Einstein static universe. This

provides an example of the type B double copy of figure 1: on the gravity side, a fluid is
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needed to source the background metric. There is no corresponding source current in the

gauge theory, as there is no background gauge field, unlike in the type A double copy.

In the previous examples of the type B double copy, we saw that the zeroth copy did

not appear to have a meaningful interpretation. Interestingly, in the present example the

field H satisfies the homogeneous linearised biadjoint scalar equation

D2H = 0, (4.15)

which indeed leads to a well-defined zeroth copy for this case.

Having seen a particular example of the type B single copy for non-Kerr-Schild back-

grounds, let us now consider the general case of background metrics of the form of eq. (4.1),

where the Minkowski metric is given in spherical polar coordinates (t, r, θ, φ), so that the

conformally transformed metric takes the form

ḡµν = Ω2(xµ)diag(−1, 1, r2, r2 sin2 θ). (4.16)

Upon constructing the gauge field

Aµ = kµφ2(r), kµ = (−1, 1, 0, 0), (4.17)

we find that this satisfies the curved space Maxwell equation (in the spacetime whose metric

is ḡµν)

DµF
µν = jν , jν =

(
∇2

Mφ2

Ω4(xµ)
, 0, 0, 0

)
, (4.18)

where ∇2
M is the Minkowski space Laplacian operator. Note that this result does not

require the conformal factor Ω to have spherical symmetry — it may be a general function

of (t, r, θ, φ). From eq. (4.18), we see that if the gauge field of eq. (4.17) satisfies a vacuum

Maxwell equation in Minkowski space, it also does so in the conformally transformed metric,

analogous to the double Kerr-Schild examples considered in the previous section. Thus, the

Minkowski space single copy extends to a type B curved space double copy, even though

the background metric ḡµν does not have a Kerr-Schild form, and thus is not immediately

amenable to a type A single copy. We may also examine the type B zeroth copy, and one

finds the curved space linearised biadjoint equation

DµDµφ2 =
∇2

Mφ2

Ω2(xµ)
+

2φ′2(r)∂rΩ(xµ)

Ω3(xµ)
. (4.19)

The second term on the right-hand side involves a spatial derivative of the conformal factor,

which is not present in the gauge theory source. Thus, it does not seem possible to interpret

the zeroth copy in general, in line with our previous conclusions for the type B procedure.

5 Discussion

The aim of this paper has been to examine whether or not the classical double copy of

refs. [68–70] can yield gravitons defined around a non-Minkowski background metric. Our

motivation is the recent study of [82], which constructs such a procedure for amplitudes.
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They consider gauge fields corresponding to perturbations around a plane-wave solution,

whose amplitudes double copy to amplitudes for gravitons defined with respect to a gravi-

tational plane wave background. We call this an example of a type A curved space double

copy, depicted schematically in figure 1, and in which a gauge field defined with respect

to a non-trivial background copies to a graviton defined with respect to a non-Minkowsi

metric, where the background fields in both cases are related. We have shown that one can

indeed construct such a double copy for classical solutions, based on Kerr-Schild solutions,

which underlie the classical double copy of refs. [68–70] in flat space. Furthermore, there is

a well-defined zeroth copy, which maps the gauge field to a biadjoint scalar field, satisfying

a linearised equation of motion. This is itself interesting for the curved space amplitude

double copy of ref. [82]. There, the authors considered three-point amplitudes, which do not

contain propagator factors. For the flat space double copy, the fact that the zeroth copy ex-

ists for classical solutions is related to how one deals with propagator factors in amplitudes.

Thus, the fact that the zeroth copy also works for the type A curved space double copy

suggests that the results of ref. [82] can indeed be generalised to higher-point amplitudes.

We also saw that it was possible to interpret the type A classical double copy in an

alternative way, namely that one can associate a graviton defined with respect to a non-

Minkowski background metric, with a gauge field living on the same spacetime. We named

this a type B double copy, and presented a number of non-trivial examples. In almost

all of the cases studied here, the zeroth copy does not have a meaningful interpretation,

suggesting that the type B double copy is not a fully general relationship between gauge

and gravity theories that is rooted in first principles, but rather a map that applies in

certain special cases. Nevertheless, it could be very useful to have such a map, particularly

when the background spacetimes (e.g. the de Sitter metric) are cosmologically relevant.

Furthermore, a type B double copy may exist even when it is not known how to formulate

a type A copy, due to e.g. having a background metric that is not of Kerr-Schild form —

we have here given the explicit example of conformally flat metrics, including the Einstein

static universe. One may prove in general that for stationary spherically symmetric gauge

fields on a conformally flat metric, a vacuum Maxwell equation in Minkowski space implies

a vacuum solution on the curved space, and thus a meaningful type B single copy.

Note that, as for the classical double copy in flat space, our results are tied to a partic-

ular choice of coordinates on the gravity side, and thus a particular gauge. For amplitudes,

the double copy is also gauge-dependent, in that the kinematic numerators do not satisfy

kinematic Jacobi relations in arbitrary gauges. Nevertheless, there are gauge-independent

BCJ relations between partial amplitudes associated with different colour structures, and

it is interesting to ponder whether this has a counterpart in the classical double copy con-

sidered here. Unfortunately the answer is no, given that Kerr-Schild solutions (and their

gauge theory counterparts) linearise the equations of motion. In principle, one could ob-

tain the classical field solutions from (off-shell) Feynman diagrams, if one knew how to

construct a graviton propagator in the Kerr-Schild coordinate system, and a corresponding

gluon propagator in the gauge theory. At linear order, there is only a single Feynman

diagram, and thus no counterpart of the BCJ relations. This does not mean, however, that

they have no analogue in classical solutions that do not linearise the field equations (such
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as those considered recently in refs. [79–81, 96]). In that case, there are multiple colour

structures at higher orders in perturbation theory, and thus indeed a potential classical

realisation of the BCJ relations. This issue certainly deserves further investigation.

Our results provide a way of extending the classical double copy of refs. [68–70], and

will prove useful in further investigations of the double copy, and its applications. A

number of avenues for further work suggest themselves. Firstly, it would be interesting to

know whether a type A double copy can be set up for background metrics that are not

Kerr-Schild. Secondly, it would be useful to systematically determine the circumstances in

which the type B double copy applies, including the possible addition of non-trivial source

terms. Finally, one may investigate whether the type A or type B double copies allow for

new insights or calculations relevant for astrophysics and cosmology.
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A The type B single copy in d dimensions

In this appendix, we consider the Maxwell equation for the gauge field

Aµ = φ2(r)kµ, kµ = (−1, 1, 0, . . . , 0)

in a d-dimensional spacetime with spherical polar coordinates (t, r, θ1, . . . , θd−2) whose met-

ric is given by

ḡµν = ηµν + φ1(xρ)kµkν .

Note that, for the sake of generality, we allow φ1 to depend on all coordinates. One may

then construct the field strength tensor

Fµν = DµAν −DµAν = ∂µAν − ∂νAµ,

where the second equality follows in the absence of torsion. It is straightforward to show

that the only non-zero components of this tensor are

Ftr = −Frt = −φ′2(r). (A.1)

The curved space Maxwell equation is given by

DµF
µν = ∂µF

µν + Γ̄µµα F
αν + Γ̄νµα F

µα = jν , (A.2)

where Γ̄αβγ is the Christoffel symbol associated with ḡµν . From the standard result

Γ̄αβγ =
1

2
ḡασ(∂β ḡγσ + ∂γ ḡβσ − ∂σ ḡβγ),
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one finds that the only non-zero Christoffel symbols are given by

Γ̄ttr = −Γ̄rrr = −1

2
(1 + φ1)∂rφ1 +

1

2
ḡtr∂tḡrr

Γ̄ttt = −Γ̄rrt =
1

2
(−1 + φ1)∂tφ1 +

1

2
∂rφ1

Γ̄θiθir =
1

r
. (A.3)

The current in eq. (A.2) is then found to be

jµ = (∇2
Mφ2, 0, 0, . . . , 0), (A.4)

where

∇2
Mf(r) =

1

rd−2
∂r

(
rd−2∂rf(r)

)
(A.5)

is the Minkowski-space Laplacian of a spherically symmetric function in (d − 1) spatial

dimensions.
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