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Much of human decision making occurs in dynamic situations where decision makers
have to control a number of interrelated elements (dynamic systems control). Although
in recent years progress has been made toward assessing individual differences in
control performance, the cognitive processes underlying exploration and control of
dynamic systems are not yet well understood. In this perspectives article we examine the
contribution of different approaches to modeling cognition in dynamic systems control,
including instance-based learning, heuristic models, complex knowledge-based models
and models of causal learning. We conclude that each approach has particular strengths
in modeling certain aspects of cognition in dynamic systems control. In particular,
Bayesian models of causal learning and hybrid models combining heuristic strategies
with reinforcement learning appear to be promising avenues for further work in this field.

Keywords: dynamic decision making, complex problem solving, cognitive modeling, instance-based learning,
heuristics, causal learning

INTRODUCTION

Handling dynamic systems is a common requirement in everyday life, ranging from operating
a novel technical device, to managing a company or understanding the dynamics of social
relationships. Considerable progress has been made toward assessing dynamic systems control
(DSC) as a cognitive skill, particularly in educational contexts (OECD, 2014; Schoppek and Fischer,
2015). However, the development of cognitive theories which describe and explain the mental
processes underlying this skill seems to lag behind. In this perspectives article we therefore examine
what computational models of cognition can contribute toward an improved understanding
of different cognitive processes involved in DSC. For this purpose, we briefly review several
approaches to cognitive modeling in DSC, summarize their relative strengths and weaknesses, and
conclude with what we perceive as promising routes for future research.

Dynamic systems control can be defined as a form of dynamic decision making that requires
(1) a series of interrelated decisions (2) in interaction with a dynamic system inducing states
of subjective uncertainty (3) with the aim of attaining (and maintaining) a goal state and/or to
explore the system and possible courses of action (also see Edwards, 1962; Osman, 2010). Subjective
uncertainty may be caused by random fluctuations of the system but also by limited knowledge
of the system’s structure and its dynamics (Osman, 2010). In cognitive research DSC is typically
investigated using computer-simulated microworlds, which are the focus of the present paper (but
see Klein et al., 1993, for a different approach). Microworlds emulate cognitively relevant features of
DSC situations (e.g., limited information, delayed feedback, time pressure) framed in a semantically
plausible setting such as managing a company or fighting a forest fire (Brehmer and Dörner, 1993;
Gonzalez et al., 2005).
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In this article, the terms cognitive model or computational
model (of cognition) refer to any mechanistic account of cognitive
processes that is sufficiently specified to allow a computer-based
implementation yielding quantitative predictions of behavior,
cognitive processing steps, or neural activity (Lewandowsky
and Farrell, 2011). Computational models enforce conceptual
completeness, as all functionally relevant properties of a theory
have to be made explicit for its computational implementation.
Furthermore, computational models generate precise predictions
of data patterns that can be empirically tested, which most
verbally expressed theories are unable to do with the same
level of precision. Models implemented as computer programs
can also be used for simulation-based exploration to investigate
how varying parameter settings, assumptions about cognitive
processes, or simulated task demands affect model behavior.
For a comprehensive treatment of computational modeling in
cognition − including its challenges and problems − please refer
to Lewandowsky and Farrell (2011).

We will now consider the contribution of different approaches
to modeling cognition in DSC with selected examples. Our brief
review begins with comparatively simple and knowledge-lean
modeling paradigms, moving toward approaches involving more
complex strategies and knowledge structures (see Table 1 for an
overview).

INSTANCE-BASED LEARNING

Instance-based learning (IBL) models have arguably been among
the most successful approaches to cognitive modeling in DSC.
They are based on a simple principle analogous to reinforcement
learning: control actions that lead to a successful outcome
become reinforced in memory and will therefore more likely be
remembered and enacted when a similar situation is encountered
in the future (Gonzalez et al., 2003). The application of this
learning principle in DSC can be traced back to Berry and
Broadbent’s (1984) semi work on knowledge acquisition in
dynamic systems. In their deceptively simple task, the production
of a simulated sugar factory had to be kept in a target range by
adjusting the number of workers. Surprisingly, most participants
were unable to verbally describe the system’s structure despite
being able to control it above chance level. As an explanation,
Broadbent et al. (1986) suggested that people might store
instances of situation-action combinations they have experienced
in memory (e.g., hiring X workers when the current number
of workers is Y and the current production is Z). Subsequent
decision making in turn is based on retrieving instance memories
similar to the situation encountered. Those instances repeatedly
associated with successful outcomes (e.g., reaching the target
production) become reinforced in memory and gradually start
to dominate behavior, although no verbalizable representation of
the system’s structure has been formed.

A computational IBL model of the sugar factory task has
been implemented by Taatgen and Wallach (2002; also see
Dienes and Fahey, 1995) using the ACT-R cognitive architecture
(Anderson et al., 2004). Each instance was modeled as a
unit in declarative memory encoding current state, action

and outcome. On encountering a given system state, the
model searches for instance memories that are similar to
the current state and have led to the target outcome in the
past, taking into account how often the instance memory
has been retrieved before. The model requires only two
production rules and closely fits human behavior. A model
of the sugar factory relying on a similar associative learning
mechanism was implemented by Gibson et al. (1997) using an
artificial neural network. This illustrates that the basic learning
principle is independent of any specific modeling architecture.
IBL has also been applied to modeling more complex tasks
such as controlling an array of pumps in a simulated water
purification plant where the system state changes in real
time (Gonzalez et al., 2003). The model included a blending
mechanism to interpolate information across related instances
and relied on a simple decision heuristic as fallback when
instance memories were insufficient. A generic implementation
of the IBL framework has been made available by Dutt and
Gonzalez (2012) to make IBL modeling accessible to non-expert
modelers.

An approach similar to IBL was used by Glass and Osman
(2017; also Osman et al., 2015) to model learning in a simple
dynamic system with continuous input and output variables.
Instead of relying on a cognitive architecture, the authors adapted
a general-purpose reinforcement learning algorithm to this task
(Sutton and Barto, 1998). The model updated the reinforcement
history of input variables after each trial depending on how
much the last action reduced goal distance. This results in
model behavior broadly similar to IBL. Glass and Osman (2017)
specifically focused on modeling group differences between
young and old adults in terms of exploration vs. exploitation
behavior. They mapped this behavioral preference on the noise
parameter affecting the choice of input values. Reinforcement
learning has also been used to model conflicts between short- and
long-term goals and how unreliable information affects learning
in dynamic control (Gureckis and Love, 2009).

In sum, IBL and reinforcement learning models have been
successfully used to explain different aspects of exploration and
control in DSC. The basic mechanism is simple, cognitively
plausible and requires only few task-specific assumptions.
However, IBL models critically depend on the availability of
immediate outcome feedback and the frequent repetition of
similar decision situations to facilitate learning, which limits the
type of task they can be applied to (see Table 1). Furthermore,
IBL models cannot easily explain how people acquire explicit
knowledge of the causal structure of a system, which is a central
element of some DSC tasks (e.g., Kluge, 2008; Wüstenberg et al.,
2012).

HEURISTIC MODELS

Heuristics-based approaches to DSC assume that people rely
on simple rule-of-thumb-type decision strategies for controlling
dynamic systems. These strategies do not guarantee an optimal
result, but allow to achieve reasonable outcomes across a range
of conditions with limited cognitive effort (Brehmer, 2005; Shah

Frontiers in Psychology | www.frontiersin.org 2 November 2017 | Volume 8 | Article 2032

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-08-02032 November 27, 2017 Time: 15:56 # 3

Holt and Osman Cognitive Modeling in Dynamic Systems Control

and Oppenheimer, 2008). Characteristically, heuristic strategies
do neither involve complex reasoning nor a detailed mental
representation of the problem structure. Empirical research has
shown that heuristics can explain adaptive behavior in many
decision making situations as well as common errors and
biases (Gilovich et al., 2002; Gigerenzer and Brighton, 2009).
Furthermore, due to their simplicity heuristics are relatively easy
to implement as cognitive models (e.g., Marewski and Mehlhorn,
2011).

The use of heuristics has also been proposed as an explanation
for decision making behavior in DSC (e.g., Brehmer and
Elg, 2005; Cronin et al., 2009). One of the best known
examples of a computational heuristic model in DSC is
Sterman’s (1989) model of decision making in a supply chain
management task. The model is based on the anchoring-and-
adjustment heuristic (Tversky and Kahneman, 1974), which
involves substituting an unknown quantity (supplies ordered)
with a related known quantity (sales forecast), adjusting for
further influences (current stock level). Data simulated using
this heuristic closely match human behavior and reproduce
the characteristic oscillation between over- and undersupply
that arises from ignoring system delays (Sterman, 1989).
The cold store temperature regulation task (Reichert and
Dörner, 1988) poses a similar challenge to participants, as
the system responds with delay to changed inputs. Reichert
and Dörner’s (1988) model captures how participants gradually
learn to control the system by applying incremental changes
to a proportional-control heuristic after unsuccessful control
attempts. A conceptually related adaptive heuristic strategy
is directional learning: if increasing an input improves the
outcome then continue to increase it, otherwise decrease
it. Computational models of directional learning have for
example been used to model behavior in dynamic economic

games, such as the multiple-round prisoner’s dilemma or
the ultimatum game (Selten and Stoecker, 1986; Grosskopf,
2003).

Heuristic models can also be combined with reinforcement
learning to simulate how people learn to choose among
competing heuristic strategies. The probability of selecting a
strategy depends on the outcomes that this strategy has produced
in the past (Erev and Barron, 2005). For example, Gonzalez
et al. (2009) used this approach to model response times in a
dynamic radar detection and decision making task. The model
fitted human data about as well as an alternative IBL model,
although it transferred less well to changed task conditions.
In contrast, Fum and Stocco (2003) found that a strategy-
based learning model of the sugar factory task performed
better under changed conditions than the corresponding IBL
model of Taatgen and Wallach (2002). It appears that the
transfer across situations depends on the details of the task,
the type of training, and the strategies implemented. Strategy-
based learning can also be applied to highly complex tasks such
as fighting a simulated forest fire (De Obeso Orendain and
Wood, 2012). In this model four high-level heuristic strategies
competed (e.g., dropping water on the fire or creating a barrier
to contain the fire), which were modeled in great detail. The
model successfully reproduced how varying the conditions in
the training phase affected preferences for particular strategies in
later transfer.

In sum, there are several good examples of heuristics-based
and hybrid models that address pertinent theoretical questions
in DSC (e.g., handling delays, transfer of learning). Although
incorporating more task-specific knowledge than pure learning
models, models of this type typically still have a relatively
simple basic structure. When heuristic models are extended
with more complex strategies and abstract knowledge structures

TABLE 1 | Basic approaches to cognitive modeling in dynamic systems control (DSC).

Approach Requirements Strengths Limitations Examples

Instance-based
learning: Acquisition of
situation-response
associations guided by
outcome feedback.

Frequent exposure to
similar states of the
DSC task.
Prior knowledge can
be minimal.

Simple formalism
Universal applicability
across different domains
High neural and cognitive
plausibility

No representation of
causal knowledge
Requires direct
outcome feedback

Taatgen and Wallach, 2002;
Gonzalez et al., 2003

Heuristic models:
Simple “rules of thumb”
with low cognitive
requirements.

Situations for which
control heuristics based
on prior knowledge are
available.

Structurally simple models
Role of heuristics in
decision making well
supported
Can be extended with
reinforcement learning

No representation of
causal knowledge
Need to establish
suitable heuristics for
each domain

Reichert and Dörner, 1988;
Sterman, 1989

Complex
knowledge-based
models: Complex
cognitive strategies and
abstract mental
representations.

Typically requires
considerable
task-specific prior
knowledge.

Modeling of complex
knowledge structures and
reasoning strategies

Can be very complex
Often highly
task-specific, limited
transfer

Schunn and Anderson, 1998;
Schoppek, 2002

Causal learning:
Bayesian induction of
causal relations from
observing system
behavior.

Task sufficiently simple
to allow causal
attribution. Prior
knowledge can be
minimal.

Comprehensive formalism
for representing causal
knowledge, uncertainty and
knowledge updating

Have not yet been
directly applied to
system control tasks

Steyvers et al., 2003;
Meder et al., 2010
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they gradually transform into complex knowledge-based models,
which we will consider next.

COMPLEX KNOWLEDGE-BASED
MODELS

Complex knowledge-based models involve the creation and
transformation of abstract knowledge structures combined with
complex cognitive strategies. This corresponds to the notion
of mental models guiding reasoning and actions in DSC (e.g.,
Brehmer, 1992). Models of this type are often implemented
as production systems, i.e., sets of if-then-rules that act on
knowledge objects or initiate external behaviors (Newell and
Simon, 1972). This flexible mechanism allows to express a wide
range of strategies up to expert performance at the expense of
resulting in very complex and task-specific models in many cases.

Anzai (1984) presented one of the first models of this type in
the context of navigating a simulated large ship which responded
with considerable delay. Based on the analysis of verbal
protocols, Anzai (1984) designed a production system model
that qualitatively captured the acquisition of control knowledge
in novices and experts. Later studies showed how production
system approaches can be extended to model performance even
in complex real-time decision making tasks such as that of a
radar operator or flying a commercial jet plane (Schoelles and
Gray, 2000; Schoppek and Boehm-Davis, 2004). In modeling real-
time control tasks the emphasis usually lies on modeling the time
course of control performance and typical errors.

A different class of DSC task that requires scientific reasoning
to explore the causal structure of unknown systems has
been particularly relevant in the recent educationally oriented
wave of DSC research (Herde et al., 2016). Schoppek (2002)
proposed a fine-grained cognitive model that was able to
systematically explore and control a small dynamic system based
on linear equations. The model incorporated an explicit mental
representation of the system’s structure and mental calculation
steps to derive input values. This strategy is sufficiently
general to control any simple dynamic system based on linear
equations (Funke, 2001). The model was able to simulate the
effects of different degrees of system knowledge and strategic
sophistication and compared favorably to results from human
data (Schoppek, 2002). Similarly, Schunn and Anderson (1998)
applied a production system approach to model the task of
designing scientific experiments (given a restricted set of design
options) and drawing conclusions about causal relations from
the simulated results. This model was able to successfully
capture performance differences between experts and novices by
modeling their respective domain knowledge and exploration
strategies.

An apparent advantage of complex knowledge-based models
is their ability to explain how causal system knowledge combined
with reasoning strategies informs the actions that people take.
It seems difficult to imagine how some forms of DSC could be
explained without recourse to reasoning and abstract knowledge
representation, for example, extrapolating system behavior in
new situations or hypothesis testing and rule-deduction in

discovery learning. However, models of this type are often neither
simple nor elegant and require the inclusion of considerable
task-specific knowledge (Taatgen and Anderson, 2010).

BAYESIAN CAUSAL LEARNING

Another modeling approach with a focus on structural
knowledge is the use of Bayesian networks to model causal
learning (Meder et al., 2010; Osman, 2017). Bayesian networks
represent a formalism to express the strength of belief in
causal hypotheses and provide a principled mechanism based
on Bayesian inference for updating beliefs as new evidence
becomes available (Holyoak and Cheng, 2011). For instance,
Steyvers et al. (2003) used Bayesian networks to model
human causal learning either by passive observation of a
causal system or through direct interaction with it. This
addresses a central aspect of DSC, system exploration and
the formation of structural knowledge, although the approach
has yet to be applied to DSC tasks requiring goal-directed
control.

From a DSC perspective, the strength of Bayesian models
of causal learning lies in the nuanced representation of causal
structures and probabilistic dependencies combined with a
mechanism for updating this knowledge from experience.
This makes them a strong contender for explaining structural
knowledge acquisition in DSC tasks with an exploration focus
(e.g., Kluge, 2008; Wüstenberg et al., 2012). A Bayesian approach
provides a formal account of the causal environment from which
it is possible to deduce a suitable course of action, given the state
of knowledge (including the level of uncertainty) a person has of
the world at that time (Osman, 2010, 2017).

SYNTHESIS AND CONCLUDING
REMARKS

In pursuit of answering the question what cognitive modeling
can contribute to DSC research we have considered several
approaches (see Table 1). In terms of knowledge-lean modeling
approaches, IBL strikes a good balance between simplicity,
cognitive plausibility and explanatory power for a range of DSC
tasks. On the downside, IBL has strict task requirements (e.g.,
availability of feedback, repeated decisions) and cannot easily
explain the acquisition of causal knowledge or extrapolation to
unfamiliar conditions. Heuristic models have no universal task
requirements and can be combined with learning mechanisms
to achieve a similar adaptivity as IBL models. However, since
effective heuristics rely on exploiting the structure of the
environment, finding suitable candidate heuristics for a given
task can be a considerable challenge and any specific heuristics-
based model is only applicable to a particular niche (Marewski
and Schooler, 2011).

Complex knowledge-based models are probably the most
domain-specific type of model. They require strong assumptions
about knowledge structures and cognitive procedures used by
decision makers. If this information is available, it is possible to
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model skilled expert performance, elaborate reasoning strategies,
and the acquisition of explicit structural knowledge, e.g., through
active hypothesis testing. With respect to modeling causal
knowledge, Bayesian models of causal learning provide an
interesting alternative.

They offer an integrated account for representing and
updating causal knowledge in a coherent framework, including
the representation of epistemic uncertainty. However, these
models have so far not been directly applied to model control in
microworld DSC tasks.

As our discussion shows, each modeling approach has its
particular strengths and weaknesses, which render it suitable
for particular modeling tasks. For researchers it therefore seems
important to select a modeling approach that matches the
research question and that suits the task to be modeled. For
example, modeling the process of acquiring explicit causal
knowledge in simple dynamic systems through hypothesis testing
(e.g., Wüstenberg et al., 2012) naturally maps on complex
knowledge-based models or Bayesian models of causal learning
but is likely to run into difficulties when approached with an IBL
framework.

In general, we think that the rapidly advancing theories
in causal learning and hybrid models combining heuristic
strategies with reinforcement learning offer considerable
untapped potential for cognitive modeling in DSC. Causal
learning directly addresses the core issue of DSC tasks focusing
on causal exploration (e.g., Steyvers et al., 2003). However,
in order to simulate full task performance models of this
type would need to be extended by including interaction
with the task. Hybrid models in turn may be most suitable
to model behavior in complex decision making tasks (e.g.,
Danner et al., 2011), where (heuristically guided) information
reduction and gradual strategy adaptation are central for task
performance.

We furthermore propose that computational models based
on cognitively plausible process assumptions (e.g., reinforcement

learning, use of simple heuristics, Bayesian knowledge updating)
could be used as a yardstick for evaluating human performance
in DSC (see Brehmer, 2005). This stands in contrast to using
mathematical optimization or optimal rational strategies as a
benchmark for performance (e.g., Sager et al., 2011). Defining
rationally optimal strategies in DSC does have its place, for
example when designing decision support systems. However,
from a behavioral perspective the question of “what is maximally
possible” is often less relevant than “what is humanly possible,”
given the realities of incomplete information and limited
cognitive capacity (Klein, 2002).

In conclusion, computational models of cognition appear
to offer a promising path for advancing research and
theory development in DSC. Computational approaches
have successfully been used to model a range of cognitive
phenomena in different domains of DSC. Promising starting
points for further developments include, for example, recent
advances in causal learning and hybrid models which combine
simple heuristics with reinforcement learning mechanisms.
Computational modeling of cognitive processes in DSC remains
a constructive challenge that probes – and ideally enhances –
our understanding of human behavior in complex dynamic
environments.
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