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Multiplex networks describe a large number of complex social, biological and transportation net-
works where a set of nodes is connected by links of different nature and connotation. Here we uncover
the rich community structure of multiplex networks by associating a community to each multilink
where the multilinks characterize the connections existing between any two nodes of the multiplex
network. Our community detection method reveals the rich interplay between the mesoscale struc-
ture of the multiplex networks and their multiplexity. For instance some nodes can belong to many
layers and few communities while others can belong to few layers but many communities. Moreover
the multilink communities can be formed by a different number of relevant layers. These results point
out that mesoscopically there can be large differences in the compressibility of multiplex networks.

The current Big Data explosion requires the develop-
ment of new algorithms and theoretical methods to ex-
tract information from large datasets. Often in this con-
text, it is advantageous to combine information coming
from different sources and to represent the data by a
multiplex network [1–5]. A multiplex network is formed
by a set of nodes connected in different layers by links
indicating interactions of different types. Multiplex net-
works are ubiquitous spanning from complex infrastruc-
ture networks [4, 6, 7], to social [8–11] biological [8, 12]
and transportation networks [13, 14]. For instance, in-
dividuals can be related by different type of social ties,
neurons can interact through chemical synapses and elec-
trical gap junctions, and two locations can be connected
by different means of transportation.

A multiplex network tends to have a richer structure
than single networks and this richness is reflected in its
communities [9, 10, 15–17]. The communities of a multi-
plex network cannot be obtained by considering its lay-
ers individually. Some communities might exist only in
one layer, other communities can overlap on many layers
and finally there are communities that only exist when
considering the whole structure of the multiplex network.
Several algorithms [9, 18–22] have been recently proposed
to detect multilayer communities. These include meth-
ods based on multilayer modularity optimization [9, 20],
diffusion properties on multilayer networks [18, 21] and
consensus clustering [22]. All these techniques are node-
based community detection methods where each node
or each replica-node (realization of a node in a given
layer) is classified in one community. Interestingly in the
framework of single-layer community detection [23, 24]
it has been observed that link-based community detec-
tion methods [25, 26] can be very fruitful to describe the
mesoscale organization of networks when nodes belong
to several communities at the same time [27]. The need
to extend the link communities to multiplex network is
rather pressing. For instance if we consider individuals
interacting through different on-line social network plat-
forms, say Twitter and Facebook, it might be misleading
to think that an individual or an account (a Twitter or
Facebook account) might belong just to a single commu-

nity. In fact, influential Twitter of Facebook accounts
tend to reach more than one community of the same on-
line platform.

In simple networks any two nodes can be either con-
nected or not connected by a link, in multiplex network
any two nodes can be connected in multiple ways. We
say that two nodes are connected via a multilink [3, 11],
where the multilink describes the pattern of connections
between two nodes. In this work we propose a multi-
link community detection method for multiplex networks
which extends link communities to the multiplex net-
work framework. Our community detection method is
based on the similarity of incident multilinks. In order to
reduce unnecessary layer-information, the similarity be-
tween two multilinks is measured by comparing the local
structure of the multiplex against a local, maximum en-
tropy null model. To avoid introducing bias via the null
model, the null model describes our state of knowledge of
the multiplex in a way that is maximally noncommittal
to the layered structure.

Here we show that using the proposed multilink com-
munity detection method not only we are able to ex-
tract relevant information on the mesoscale structure of
multiplex networks, but also we can contribute to the
scientific debate about the compressibility of the multi-
plex network structures. Recent research on multiplex
networks questions whether it is opportune to aggre-
gate or disaggregate their layers. Aggregation of lay-
ers could be useful for removing redundant information.
De Domenico et al. [28], have shown that for the vast ma-
jority of multiplex networks there is trade-off between the
information content and the minimization of their total
number of layers. The case of disaggregating a single
network to a multi-layer network has been considered by
Vales-Catala et al. in Ref. [29]. According to their re-
sults some single networks are better represented as mul-
tiplex networks because they are effectively the result of a
blind multiplex network aggregation procedure. Finally,
Peixoto [30], using a statistical inference approach, has
revealed that there is no clear answer, the benefits of the
aggregation or disaggregation of the layers are dependent
on the system under study.
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Here we show that actually the optimal answer to the
question whether it is more appropriate to aggregate or
disaggregate a general multiplex network might not be
global but mesoscale. Our analysis of social, biologi-
cal and transportation networks reveals that in multi-
plex networks there is a very rich interplay between their
mesoscale organization and their multiplexity. Multilinks
communities can include connections of only one layer or
of multiple layers. Additionally we observe that not al-
ways the layer activity (in how many layers a node is
connected) correlates with the community activity (in
how many communities a node can be found). For ex-
ample there can be nodes that are connected in many
layers (high layer activity) but belong only to few mul-
tilink communities (low community activity) and nodes
belonging to few layers (low layer activity) but belonging
to many multilink communities (high community activ-
ity). The first possibility suggests that mesoscopically
the network could be compressed while the second possi-
bility suggests that mesoscopically the network could be
expanded into many layers making a case for a definition
of a mesoscale compressibility of the multiplex network.

RESULTS

Multiplex network

Let us consider a multiplex network formed by
N nodes and M layers α = 1, 2, . . . ,M . The
multiplex network is the set of M networks
~G = {G[1], G[2], . . . , G[α], . . . , G[M ]} where each net-
work G[α] = {V,E[α]} is formed by the same set of N
nodes V = {i; i = 1, 2, . . . , N} and by the set of links
E[α] which describe the connections in layer α. We
assume that all these networks are undirected and we
represent each layer α = 1, 2, . . . ,M by the adjacency
matrix a[α]. The whole multiplex network can be
expressed via its multilinks [3, 11]. Every pair of nodes
(i, j) is connected by a multilink

~mij =
(
m

[1]
ij ,m

[2]
ij , . . . ,m

[α]
ij . . .m

[M ]
ij

)
, (1)

with m
[α]
ij = a

[α]
ij indicating in which layers of the mul-

tiplex network the two nodes are connected. Whenever
node i and node j are connected at least in one layer, i.e.
~m 6= ~0, we say that they are connected by a non-trivial
multilink. To decide if a non-trivial multilink exist, it is
convenient to construct the aggregated network Ĝ formed
by the N nodes of the multiplex. The adjacency matrix
A of the aggregated network Ĝ has elements

Aij = θ

(
M∑
α=1

a
[α]
ij

)
, (2)

where θ(x) is the step function θ(x) = 1 if x > 0 and
θ(x) = 0 if x ≤ 0. We indicate with L =

∑
i<j Aij

the total number of links of the aggregated network, or
equivalently the number of non-trivial multilinks.

In a multiplex network the nodes might not be con-
nected in each layer. The number of layers in which a
node is connected (or active) is called the node activity
[8, 31] and reveals relevant coarse grained information
about the node.

Multilink similarity

In the context of single networks several community
detection methods use hierarchical clustering applied ei-
ther to a similarity matrix between nodes [32] or between
links [25, 26]. Here we construct a hierarchical clustering
of multiplex networks based on a measure of similarity
between incident multilinks. By defining the similarity
between multilinks here we generalize the link communi-
ties previously defined for single layers [25, 26] to multi-
plex networks.

In a similar spirit to the use of the modularity func-
tion for detecting node communities [33], the similarity
between incident multilinks is evaluated by comparing
simultaneously the cohesiveness and the multiplexity of
their neighbourhood to a maximum entropy null model.

To every pair of multilinks connecting nodes i and k
and nodes j and s we assign the similarity Sik,js. The
similarity Sik,js is non-zero only between incident multi-
links (i.e. for s = k) and is a function of two parameters:
ε and z. The parameter ε ∈ (0, 1) can be tuned depend-
ing on the role that we want to assign to the composition
of the two incident multilinks with respect to their lo-
cal neighborhood. The additional parameter z ∈ (0, 1)
evaluates the role of multiplexity and represent the cost
we want to attribute to incident multilinks of different
composition.

Specifically the non-zero similarities Sik,jk are given by

Sik,jk = εσijk + (1− ε)σij\k. (3)

where σijk evaluates the contribution of the two incident
multilinks while σij\k, evaluates instead the contribution
due to the existence of other multilinks, joining node i
and node j directly or by paths of length two excluding
node k. The parameter ε ∈ (0, 1) tunes the relative im-
portance between these two contributions. The term σijk
is expressed as

σijk = zβik,jk ,

(4)

with

βij,rs = 1−
∑M
α=1m

[α]
ij m

[α]
rs

M
. (5)

The smaller is z the larger is the “penalty” for hav-
ing multilinks ~mik and ~mjk with different layer com-
position. If the multilinks connecting nodes (i, k) and
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(j, k) have not even a link in a common layer, βik,jk = 1
and zβik,jk = z, indicating the maximum cost attributed
to multiplexity. If, on the contrary the two multilinks
have the same layer composition, then βik,jk = 0 and
zβik,jk = 1 indicating that we attribute no cost penalty
to this configuration.

The term σij\k includes contributions from paths of

length one (Mij) and two (M̂ijr) between node i and
node j that pass through node r with r 6= k, i.e.

σij\k =
1

µ

Mij +
∑
r 6=k

M̂ijr

 , (6)

where µ is a normalization constant with µ = max(1, ν)
with

ν = min

∑
r 6=k

Air,
∑
r 6=k

Ajr

 . (7)

Similarly to the modularity measure [33], term Mij

evaluates the significance of the observed multilink ~mij

against its expectation and, M̂ijr evaluates the signifi-
cance of two non-trivial multilinks ~mir, ~mjr connecting
respectively node i and node j to a common node r 6= k
against their expectations. These terms are

Mij = (Aij − p
~mij
ij )zβij,ijδ (Aij , 1) ,

M̂ijr = (AirAjr − p~mirir p
~mjr
jr )zβir,jrδ (AirAjr, 1) , (8)

where βij,rs is given by Eq. (S − 15), and δ(x, y) is the
Kronecker delta (i.e. δ(x, y) = 1 for x = y and δ(x, y) = 0
otherwise). The term zβij,rs puts a cost to the paths
that are created using different layers. The expectation
of multilink ~mrs is given by the probability p~mrsrs , which is
evaluated using maximum entropy ensembles preserving
the degree of node i and node j in each layer α, and the
multilinks ~mik, ~mjk (see Methods and SI for details).

Multilink Communities

From the L× L similarity matrix Sik,js, we construct
a dendrogram via single linkage hierarchical clustering.
The dedrogram contains information about the multi-
plex structure which cannot be obtained from the aggre-
gated network. Finally the multilink communities are
determined by cutting the dendrogram at a height that
correspond to an optimal value of a appropriate score
function.

To obtain the multilink communities we desire to use
a score function that does not use any a priori assump-
tions about the multilink composition. To this end we
have considered a score function used on single-layer link-
community detection methods, i.e. the link modularity
Q [26] (see Method for its definition). An alternative
choice could be to choose the partition density D used in

[25]. The optimal partition is defined by the maximum
value of Q obtained when considering all the heights in
the dendrogram (see SI for typical profiles of this link
modularity on real datasets).

Once every multilink is associated to a given multilink
community we can assign to each node a community ac-
tivity given by the number of communities to which its
incident multilinks belong.
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FIG. 1: (a) A simple multiplex and (b) its dendrogram ob-
tained from the multilink similarity. The dashed red line
shows the maximum link modularity used to define the link
communities. Panel (c) shows the partition of the multiplex
network into three communities revealing that communities
can be formed by a single (community {a, b, c, d}) or multiple
layers (community {d, e, f}) and that the nodes communities
are independent on the node activity (node d belongs to two
community and is active in one layer, node g is belongs to
one community and is active in one layer). The multilink
communities are detected using ε = 0.4, z = 0.6.

DISCUSSION

A simple example

The community activity of a node resulting from the
multilink community detection method is independent on
its layer activity. To illustrate this property we consider
the multilayer network shown in Fig. 1(a) decomposed
in three multilink communities 1(c)) detected using the
parameters ε = 0.4 and z = 0.6. Node d is active in
a single layer but belongs to two multilink communities.
On the contrary node g is active in two layers but belongs
to just one community.

Additionally the communities can be formed by inter-
actions existing only in one layer or in multiple layers.
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For instance the community formed by the nodes {e, d, f}
of the multiplex network shown in Fig. 1(a), only exist
due to the combination of different layers in the mul-
tiplex. On the contrary the community formed by the
nodes {a, b, c, d} include only links of a single layer.

The dendrogram in Fig. 1(b) shows the hierarchical
structure of the link communities of the multiplex net-
work in Fig.1(a) and reveals the multilayer nature of the
network also in the case of this very symmetrical and
clustered topology. In fact, the left and right communi-
ties of Fig. 1(c), although they play the same role in the
aggregated network, have a different decomposition into
multilink sub-communities. There are two factors that
contribute to this difference. The right community has
a multilink formed by two layers (multilink 14) which is
no present in the other community. The second factor
is more subtle and it would generate differences in the
hierarchical structure even if the community on the right
included only links existing in a single layer (see SI for
details).

Florentine Families

The Florentine Families Multiplex Network [34] con-
sist of M = 2 two layers, one layer describes the business
dealings between N = 16 florentine families in the XV
century, the other layer their alliances due to marriages.
Fig. 2(a) shows these relationships between the families.
Figure 2(b) shows the dendrogram describing the mul-
tilink communities for ε = 0.5, z = 0.6 (see SI for the
dependence of the number of clusters on ε and z).

The two detected single multilink communities corre-
spond to two different scenarios (Fig. 2(c)). The multi-
link between the Strozzi and the Ridolfi family establish
an interaction between two families which have connec-
tions between different clusters; the multilink between
the Acciaiuoli and the Medici family is a leaf of the mul-
tiplex network, being the only multilink connecting the
Acciaiuoli family to the rest of the multiplex network.

For each family we compare their layer activity and
their community activity (Fig. 2(d)). We observe that
families with high community activity are powerful bro-
kers between different communities. Most relevantly, the
Medici play a pivotal role as they are brokers between
three different communities. The Barbadori and the
Guadagni family have the same community activity as
the Ridolfi and the Strozzi family but while the first two
are connected in both layers the latter two are connected
to the other families exclusively in one layer (the mar-
riage alliances).

Multiplex Connectome of C. elegans

The Multiplex Connectome of C. elegans [35, 36] has
two layers M = 2, the chemical synapses and the gap
junctions describing the interactions between N = 279
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FIG. 2: (a) The Florentine Families Multiplex Nework de-
scribing the business and marriage alliances of the XV century
florentine families. (b) Heat map displaying the multilink sim-
ilarity matrix and its relative dendrogram . (c) Partition of
the Florentine Families multiplex network into five multilink
communities. (d) Layer and community activity of the differ-
ent families. The Medici family is characterized by achieving
the maximum of the community activity. The multilink com-
munities are detected using ε = 0.4, z = 0.6.

neurons. As an example, we obtained the multilink com-
munities for ε = 0.4 and z = 0.6. The multiplex has
845 multilink communities of which 652 (about 77%) are
made of single multilinks. The distribution of the sizes
of the communities is broad. (Fig. 3(a)). The largest
community is formed by 878 multilinks followed commu-
nities including 67 links and 51 links. Although there is
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FIG. 3: (a) Distribution of the communities sizes for the Mul-
tiplex Connectome of C. elegans. (b) The two most similar
sub-communities contained in the largest multilink commu-
nity. (c) Neurones ranked in decreasing order of their com-
munity activity. (d) Layer and community activity for the
top ranked neurons. (the contribution of communities with
single multilinks is in pink while the contributions of commu-
nities with more than one multilink is in blue). The multilink
communities are detected using ε = 0.4, z = 0.6.

a large dominant community in the multiplex network,
the internal structure of this community can be investi-
gated via the dendrogram. We noticed that the ADAL
and ADAR are the neurones that cluster first with some
of their neighbouring neurones (Fig. 3(b)) for all values
of z.

This multiplex has neurons which have large commu-
nity activity (Fig. 3(c)). By ranking the neurons ac-
cording to their community activity we find in the first
two positions the RIBR and RIBL neurons, which are
head interneurons connected via gap junctions to multi-
ple other neuron classes, suggesting that these neurons
play a role in brokering between different communities
(Fig. 3(d)).

European Multiplex Air Transport Network

The European Multiplex Air Transport Network [14]
comprises of N = 417 European airports and M = 37
layers corresponding to the airlines that have flight con-
nections between these airports. The total number of
multilink describing these connections is 2953. For the
case that ε = 0.4 and z = 0.6, our algorithm obtains 1790
multilink communities. The largest community includes
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FIG. 4: (a) Largest link community of the European Mul-
tiplex Air Transportation Network. Lufthansa’s flights are
shown in blue, the other airlines in pink. (b) Second largest
link community. Ryanair’s flights are shown in blue, the other
airlines in pink. (c) Community vs. layer activity of the EU
airports. While the layer activity appears to have a positive
correlation with the layer activity, large difference in com-
munity activity can be oserved between airports with large
layer activity (compare for instance Amsterdam (AMS) and
Vienna (VIE)).The multilink communities are detected using
ε = 0.4, z = 0.6.

723 nodes, about 24% of the total number of multilinks.
The smallest communities are made of single multilinks
and there are 1696 of them, about 57% of the multilinks.

We observe that the main communities have very dif-
ferent composition in term of single layers. Figure 4(a)-
(b) shows the two largest communities. All the airlines
(layers) contribute to the structure of the largest com-
munity (Fig. 4(a)). The second largest community has
a very different structure, only few airlines contribute to
this community.

When comparing the airports and their community ac-
tivity, we observe (Fig. 4(c)) that while large layer activ-
ity, an airport serving multiple airline companies, seems
to be correlated to high community activity, there is a
significant variability in the community of airports that
are active in many layers. For example Vienna (VIE) and
Amsterdam (AMS) have a comparable layer activity but
very different community activity. Similarly there are air-
ports with small layer activity but significant community
activity, for example Luton (LTN) and Bergamo (BGY)
airports. This indicates that the airports might adopt
different strategies to broker between different commu-
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nities. These strategies might involve serving flights of
many airline companies or serving flights of relatively
fewer airline companies.
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FIG. 5: (a) Specificity for the communities in the Multiplex
Connectome of C. elegans. (b) Specificity for the first and sec-
ond largest communities for the European Air Transportation
Network. Both panels indicate a large variability in the layer
composition of different communities. The multilink commu-
nities are detected using ε = 0.4, z = 0.6.

Composition of the multilink communities

To investigate whether the communities are formed ex-
clusively by links of a single layer or include links of sev-

eral layers we introduce the layer specificity x
[α]
c which is

the fraction of multilinks in a community c which include

a link in layer α. Therefore x
[α]
c = 1 indicates that all the

multilinks of a community include a link in layer α, while

x
[α]
c = 0 indicates that the community does not include

any link in layer α. Note that since a single multilink
can include links of different layers, the sum of the layer

specificity x
[α]
c for community c in general do not add to

one.
In the Multiplex Connectome of C. elegans we observe

that many communities are exclusively formed by one
type of multilink, however, the three largest communities
have a multiplex nature as they include different types of
multilinks (see Fig. 5(a) where the larger communities
are indicated by the labels 1, 2, 3 in order of decreasing
size).

In the European Multiplex Air Transportation Net-
work, the largest community, apart from Flybe, contains
flights from all other airlines (Fig 5(b)). The largest
contribution comes from Lufthansa with an specificity
of 0.10 followed by Turkish Airlines with 0.07 specificity.
The second largest community has a different structure,
in this case only seven airlines contribute to the com-
munity, the largest contribution is from Ryanair with a
specificity of 0.60. In this multiplex, low-cost airlines
like Ryanair, Easyjet and Wideroe have high specificity
(often equal to 1) in many communities. However these
airlines rarely have high specificity in the same commu-
nity. This is a consequence of the competition between
low-cost airline companies as they tend to differentiate
each other by having unique flights to some destinations.

CONCLUSIONS

Our method reveal the richness of multiplex networks
at their mesoscale structure. This is achieved by associ-
ating to each pair of incident multilinks a similarity mea-
sure based on the comparison of the local connectivity
of two multilinks against a null model. Our intrinsically
multiplex community detection method allow us to asso-
ciate to each node multiple communities independently
on its layer activity. Specifically we can have nodes ac-
tive exclusively in one layer and belonging to multiple
communities or active in many layers but belonging only
to few communities. The proposed method is here ap-
plied to several real datasets revealing that the mesoscale
structure of a multiplex can be organised via communi-
ties containing links in many different layers and, at the
same time, communities having one predominat layer.
This suggests that the mesoscale organization of multi-
plex networks has a rich mesoscale structure that is not
captured by methods that aim at compressing the infor-
mation on few single layers.

MATERIALS AND METHODS

Maximum Entropy Ensemble

To evaluate the similarity Sik;jk between two incident
multilinks connecting nodes (i, k) and (j, k) we need to

calculate the probability p~m`r`r of the multilinks ~m`r with
` = i, j and r 6= k in our null model. The null model is a
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maximum entropy ensemble determined by the probabil-

ity P (~G) associated to each possible multiplex network
~G with adjacency matrices ã[α] and satisfying the con-
straints

∑
~G

P (~G)
∑
r 6=k

ã
[α]
`r

 = q
[α]
` − a

[α]
`k , (9)

with α = 1, 2, . . . ,M , ` = i, j and q
[α]
` indicating the

degree on node ` in layer α.(See SI for further details).
Therefore the ensemble randomizes the original multiplex

network by keeping constants the degrees q
[α]
` and the

multilinks ~m`k with ` = i, j.

Link modularity

Let us consider the adjacency matrix W determining
the line graph of the aggregated network. This matrix
has elements W`,`′ = 1 if the link ` is incident to the link
`′ while otherwise W`,`′ = 0. For any given dendrogram
cut, we indicate the cluster membership of multilink cor-
responding to the link ` of the aggregated network as c`.
The link modularity Q [26] is given by

Q =
1∑
` d`

∑
`,`′

[
W`,`′ −

d`d`′∑
` d`

]
δ(c`, c`′), (10)

where d` =
∑
`′ W`,`′ and δ(a, b) = 1 if and only if a = b

otherwise δ(a, b) = 0.

Codes

The codes implementing the Multilink Community
detection method are freely available at the website:
https://github.com/ginestrab.

Data

All the datasets analyzed in this paper are freely avail-
able on the data repository http://deim.urv.cat/˜ man-
lio.dedomenico/data.php.
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SUPPLEMENTARY INFORMATION

Supplementary Information on the Multilink
Community detection algorithm

General considerations

The similarity between any two incident multilinks of
the multiplex network is the basic element of the multi-
link community detection algorithm. The similarity ma-
trix is used to perform a hierarchical clustering of the
multilinks, ultimately finding the multilink communities
as described in the main body of the paper. In the same
spirit as in Ref. [33] the similarity matrix is constructed
by comparing the local neighborhood of each pair of in-
cident multilinks to a maximum entropy null model for
the multiplex network.

Here we give further information on the maximum en-
tropy null model that we used to evaluate the similarity
between any two incident multilinks. This model extends
previous results on exponential random graphs of single
[37] and multiplex networks [3, 11].

Multiplex network

Let us consider a multiplex network ~G =
{G[1], G[2], . . . , G[α], . . . , G[M ]} formed by N nodes
and M layers α = 1, 2, . . . ,M . . Every layer α is
formed by a undirected network with adjacency matrix
a[α]. Every pair of nodes (i, j) is connected by a
multilink [3, 11]

~mij =
(
m

[1]
ij ,m

[2]
ij , . . . ,m

[α]
ij . . .m

[M ]
ij

)
, (S-11)

with m
[α]
ij = a

[α]
ij indicating in which layers of the mul-

tiplex network the two nodes are connected. Whenever
node i and node j are connected at least in one layer, i.e.
~m 6= ~0, we say that they are connected by a non-trivial
multilink.

The aggregated network Ĝ is the single network in
which any two nodes are connected if they are linked
at least in one layer of the multiplex network. The ad-
jacency matrix A of the aggregated network Ĝ has ele-
ments

Aij = θ

(
M∑
α=1

a
[α]
ij

)
, (S-12)

where θ(x) is the step function θ(x) = 1 if x > 0 and
θ(x) = 0 if x ≤ 0. We indicate with L =

∑
i<j Aij

the total number of links of the aggregated network, or
equivalently the number of non-trivial multilinks.

http://deim.urv.cat/~
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Multilink similarity

In order to detect the multilink communities we assign
a non zero similarity Sik,jk to every pair of incident mul-
tilinks connecting respectively the generic nodes i and k
and j and k. The non-zero similarities Sik,jk are given
by

Sik,jk = εσijk + (1− ε)σij\k. (S-13)

where σijk evaluates the contribution of the two incident
multilinks while σij\k, evaluates instead the contribution
due to the existence of other multilinks, joining node i
and node j directly or by paths of length two excluding
node k. The parameter ε ∈ (0, 1) tunes the relative im-
portance between these two contributions. The term σijk
is expressed as

σijk = zβik,jk ,

(S-14)

with

βij,rs = 1−
∑M
α=1m

[α]
ij m

[α]
rs

M
. (S-15)

The term σij\k includes contributions from paths of

length one (Mij) and two (M̂ijr) between node i and
node j that pass through node r with r 6= k, i.e.

σij\k =
1

µ

Mij +
∑
r 6=k

M̂ijr

 , (S-16)

where µ is a normalization constant with µ = max(1, ν)
with

ν = min

∑
r 6=k

Air,
∑
r 6=k

Ajr

 . (S-17)

Similarly to the modularity measure [33], term Mij

evaluates the significance of the observed multilink ~mij

against its expectation and, M̂ijr evaluates the signifi-
cance of two non-trivial multilinks ~mir, ~mjr connecting
respectively node i and node j to a common node r 6= k
against their expectations. These terms are

Mij = (Aij − p
~mij
ij )zβij,ijδ (Aij , 1) ,

M̂ijr = (AirAjr − p~mirir p
~mjr
jr )zβir,jrδ (AirAjr, 1) ,(S-18)

where βij,rs is given by Eq. (S − 15), and δ(x, y) is the
Kronecker delta (i.e. δ(x, y) = 1 for x = y and δ(x, y) = 0
otherwise). The expectation of multilink ~mrs is given by
the probability p~mrsrs , which is evaluated using maximum
entropy ensembles.

The null model should not change the multilinks ~mik

and ~mjk determining the connection of nodes i and j with
node k. This restriction fixes the connections between

node i and k and node j and k but it does not restrict
the connections between nodes i and j and their other
neighbors. To capture the local structure on layer α, the
null model should preserve the number of neighbors of

nodes i and j in each layer α, that is their degree q
[α]
i

and q
[α]
j , however, except from node k, the neighbors

are selected at random from the remaining N − 2 nodes.
Therefore the maximum entropy model is preserving the
degree of node i and node j in each layer α, and the
multilinks ~mik, ~mjk.

Maximum entropy ensemble

The considered maximum entropy ensemble is charac-

terised by the probability P (~G) assigned to each possible

multiplex network ~G determined by the set of adjacency
matrices ã[α] with α = 1, 2, . . . ,M . This probability is
found by maximising the entropy S which is the loga-
rithm of the number of typical multiplex networks in the
ensemble,

S = −
∑
~G

P (~G) lnP (~G) (S-19)

given the set of structural constraints under considera-
tion. These constraints are

∑
~G

P (~G)
∑
r 6=k

ã
[α]
ir

 = q
[α]
i − a

[α]
ik ,

∑
~G

P (~G)
∑
r 6=k

ã
[α]
jr

 = q
[α]
j − a

[α]
jk , (S-20)

with α = 1, 2, . . . ,M . By introducing the Lagrangian

multipliers λ
[α]
i , λ

[α]
j with α = 1, 2, . . . ,M the probability

P (~G) can be written as

P (~G) =
1

Z
e−

∑M
α=1H

[α]
ij , (S-21)

where the partition function Z is a normalization con-

stant, and F
[α]
ij is given by

H
[α]
ij = λ

[α]
i

 ∑
r 6={k,i,j}

ã
[α]
ir

+ λ
[α]
j

 ∑
r 6={k,i,j}

ã
[α]
jr


+(λ

[α]
i + λ

[α]
j )ã

[α]
ij . (S-22)

The marginal probability of single links of nodes i and
node j in each layer α are given, for r 6= {i, j, k} by

p
[α]
ir =

∑
~G

(
P (~G)ãir

)
=

e−λ
[α]
i

1 + e−λ
[α]
i

,

p
[α]
jr =

∑
~G

(
P (~G)ãjr

)
=

e−λ
[α]
j

1 + e−λ
[α]
j

, (S-23)
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and by

p
[α]
ij =

∑
~G

(
P (~G)ãij

)
=

e−λ
[α]
i −λ

[α]
j

1 + e−λ
[α]
i −λ

[α]
j

. (S-24)

The Lagrangian multipliers λ
[α]
i and λ

[α]
j are determined

by the constraints in Eq. (S-20) that, in terms of the
marginals is ∑

r 6={j,k}

p
[α]
ir

+ p
[α]
ij = q

[α]
i − a

[α]
ik , ∑

r 6={i,k}

p
[α]
jr

+ p
[α]
ij = q

[α]
j − a

[α]
jk . (S-25)

Finally this maximum entropy ensemble allow us to de-

termine the probability p~mirir and p
~mjr
jr of the multilinks

~mir, ~mjr which are given respectively by

p~mirir =
∑
~G

P (~G)

M∏
α=1

(
ã
[α]
ir m

[α]
ir + (1− ã[α]ir )(1− p[α]ir )

)

=

M∏
α=1

(
p
[α]
ir m

[α]
ir + (1−m[α]

ir )(1− p[α]ir )
)
, (S-26)

and

p
~mjr
jr =

∑
~G

P (~G)

M∏
α=1

(
ã
[α]
jr m

[α]
jr + (1− ã[α]jr )(1− p[α]jr )

)

=

M∏
α=1

(
p
[α]
jr m

[α]
jr + (1−m[α]

jr )(1− p[α]jr )
)
. (S-27)

Multilink communities

From the L× L similarity matrix Sik,js, we construct
a dendrogram via single linkage hierarchical clustering.
The multilink communities are obtained by cutting the
dendrogram at a height that correspond to the maximum
value of the link modularity Q.

The link modularity Q [26] is given by

Q =
1∑
` d`

∑
`,`′

[
W`,`′ −

d`d`′∑
` d`

]
δ(c`, c`′), (S-28)

where W is the adjacency matrix of the line graph of the
aggregated network and has elements W`,`′ = 1 if the
link ` is incident to the link `′ while otherwise W`,`′ = 0.
Additionally in Eq. (S − 28) we indicate with d` the
link-degree d` =

∑
`′ W`,`′ and and with c` the cluster

membership of the multilink corresponding to the link `
of the aggregated network. Finally δ(a, b) = 1 if and only
if a = b otherwise δ(a, b) = 0.

Once every multilink is associated to a given multilink
community, each node is attributed a community activity
given by the number of different communities to which
its incident multilinks belong.

Supplementary Information on the results obtained
on real datasets with the Multilink Community

detection algorithm

More on the benchmark multiplex network

As mentioned in the main part of the paper when con-
sidering the example of the simple multiplex shown in
Fig. 1(a)-(b). The right and left multilink communities
have a different internal structure due to a subtle factor,
this difference is clearly seen in the dendrogram Fig. 1(b).
To explain this difference we consider a very simple mul-
tiplex. Figure S-6(a) shows this simple multiplex network
and its partition into multilink communities (shaded ar-
eas). Although the community structure of this multiplex
network is identical to Fig. 1(c), its dendrogram (Fig. S-
6(b)) is again, not symmetric under the permutation of
the right and left communities. The difference is due to
the multiplexity of the network. In fact node f and node
d play slightly different roles in their communities. Node
f is active in two different layers, while node d is active
only in one layer. Our method distinguishes these two
cases.
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FIG. S-6: (a) A simple two layer multiplex network (purple
and ochre links) and its multilink communities (shaded areas)
and (b) its dendrogram obtained from the multilink similarity.
The dashed red line shows the maximum link modularity used
to define the link communities.

Aggregated degree vs. community activity

We investigated if there is a correlation between the
degree of the aggregated network Ĝ and the community
activity of the nodes. Figure S-9 shows community activ-
ity vs. degree of the aggregated network for the Multiplex
Connectome of C. elegans (Fig. S-9(a)) and the European
Multiplex Air Transportation Network (Fig. S-9(b)). For
small degrees, there is a significant positive correlation
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between these two quantities, but as the degree increases,
the correlation diminishes.
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FIG. S-7: Aggregated degree vs. community activity for the
(a) Multiplex Connectome of C. elegans and (b) for the Eu-
ropean Mutliplex Air Transportation Network.

The score function profile of the analyzed datasets

The multilink communities are determined by cutting
the dendrogram at a height that corresponds to the max-
imum value of the score function Q. In the datasets con-
sidered here, we observed that the profile of the link mod-
ularity Q (Fig. S-8) displays a well defined global max-
imum, suggesting that the determination of the optimal
partition is not questionable.

The number of multilink communities as a function
of the parameters ε and z

In general the values of the parameters z and ε will
depend on the network under consideration. The pa-
rameters used in the here were chosen to demonstrate
the dependence of the number of multilink communities

as function of the parameters. An example of this de-
pendance is shown in Fig. S-9(a)-(b) for the Florentine
families. We noticed that for many different values of
the parameters the method consistently divided the mul-
tiplex into five link communities, in the manuscript we
used ε = 0.4 and z = 0.6 to show these five link commu-
nities.
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FIG. S-8: Number of clusters against the score function Q
(link–modularity) for the (a) Florentine Families Multiplex
Network (ε = 0.5, z = 0.6), (b) for the Multiplex Connectome
of C. elegans (ε = 0.4, z = 0.6) and (c) for the European
Multiplex Air Transportation Network (ε = 0.4, z = 0.6).
The maximum of Q determines the number of clusters which
define the multlink communities of the multiplex network.
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